Replicated Indexes for Distributed Data

David Lomet
One Microsoft Way, Bldg. 9
Redmond, WA 98052

lomet@microsoft.com

Abstract

We describe a distributed index structure, in which
data s distributed among multiple sites and indexes
to the data are replicated over multiple sites. This
permits good scalability as storage and accessing load
are distributed over the sites and each site with an in-
dex replica has fast local access to the index structure,
making remote requests at most for data at the leaves
of the index tree. We call our method the dPi-tree be-
cause it is based on the Pi-tree. We replicate the index
without the need for coherence messages. This works
whether the index replica is persistent or a transient
cached copy. We generalize a technique first used to
provide recovery for Pi-tree indexes to independently
and lazily maintain the index replicas. A further re-
sult 1s that each index replica s fully recoverable, an
area not treated previously in replication schemes. We
also show how the data in the leaves of the index can
be distributed and re-distributed at very low cost.

1 Introduction
1.1 Scalability

Data mining, data warehousing, and the general
escalation of the complexity of queries and the size
of the underlying data put an increased premium on
scaleable database systems. One aspect of that scala-
bility i1s providing very efficient access to data as the
size of the data explodes and the number of processors
involved in accessing the data increases. This leads to
an interest in distributed search structures in which
the data is spread over multiple sites. This also leads
to an interest in replicated search structures so that a
substantial part of the computational cost of an access
can be done locally, also reducing latency.

There are additional payoffs from data distribution
and search structure replication. Data distribution
enhances one’s ability to access data in parallel, ex-
ploiting the set of processors at which the data re-
sides. Index structure replication can, if done with
real independence of index maintenance, greatly in-
crease concurrency of access. Further, redundant in-

dex structures also enhance data read availability, as
does replicated data in general. Availability of the
distributed data does not become dependent on the
availability of some single copy of the index stored on
a possibly unavailable processor.

Consider two limited forms of distributed systems,
client /server systems and cluster based systems.

Client /Server: Servers are typically very heavily
used, and can easily become the bottleneck in
system performance when accessing shared data.
Replicated indexes permit all index traversal to
be off-loaded to clients, with only the data leaf
accesses remaining at the server. This improves
response time and reduces network traffic as well.

Clusters: In clusters, any processor can play the role
of both client and server. It then becomes pos-
sible to distribute the data over members of the
cluster, while replicating the index at all members
of the cluster. This improves upon client/server
by spreading the data access load and permitting
the accesses to proceed in parallel.

In both forms of distributed system above, caching
has frequently been used to increase performance.
We view cached index structures as transient repli-
cas. Such transient replicas increase the desirability
of our techniques for incrementally building replicas,
as cached versions are continually being rebuilt.

The difficulty in exploiting distributed search struc-
tures is the update burden imposed. What search
structure permits low cost maintenance when dis-
tributed over several processors? What search struc-
ture permits several replicas of its index to be easily
and inexpensively maintained?

There has been recent interesting work on dis-
tributed and/or replicated search structures [2, 6,7, 9,
10, 13]. This work attacks the cost of maintaining dis-
tributed and replicated search structures. The work of
[9, 2, 13] is targeted at hashing structures. The DRT
of [7] is a distributed (not replicated) binary tree.

1.2 Owur Approach

Our system and communication models are similar
to [6], and our search structure shares some structural
and operation characteristics with their proposed dB-
tree which is based on the B-link tree of [8]. Like the
distributed DRT tree and RPs* of [10], we employ a
form of “correction message”. DRT, RPs*, and dB-
tree all use lazy techniques to maintain distributed
index trees over multiple processors.

We call our search structure the dPi-tree as it is
a derivative of the Pi-tree of [11]. There, a correc-
tion mechanism was used to enable high concurrency
and robust recovery for a centrally stored tree. When
dealing with distributed and replicated trees, the cor-
rection mechanism requires messages, which we send
lazily, and only when other information is requested.
Correction is triggered in the same way as index recov-
ery is triggered in [11], via detection of a misdirected
search.

What distinguishes our techniques are their great
simplicity and low cost, enabled by the extremely lazy
way that we handle index structure maintenance. Un-
like the dB-tree or an RP* tree, the dPi-tree does not
require convergence of index replica node structure.
No effort is made to keep the “replicated” index struc-
tures coherent- only the index content, i.e. the set of
index terms, is important. All replica indexes must
continue to effectively index and provide access to the
underlying non-replicated data at the leaves of the in-
dex tree. Thus, the dPi-tree does not need to provide
coherence messages in which one replica informs an-
other of an index node split. The specific pagination
of each index replica is managed solely by the replica
itself, without reference to other replicas. Further,
when data nodes of the index tree split, the posting
of the index term for the new node in any of the in-
dex replicas can be very lazy since access to the data
is always possible and the index term to be used can
always be found via side traversals.

An additional bonus of our approach is that system
failures can interrupt operation at arbitrary moments
and the search correctness of the dPi-tree is not com-
promised. This is a natural consequence of the robust-
ness of the Pi-tree, in which a system crash between
the time a node split occurs and the time when its
parent index node is updated does not effect search
correctness, and the parent node is eventually updated
during subsequent search operations. The dPi-tree in-
herits this robustness directly from the Pi-tree.

The fundamental insight that we exploit 1s that in-
formation about changes to the organization of data,
its node splitting and its distribution, is propagated

only on messages in which the exchange of data is
required in any event. This i1s the same strategy as
used with Pi-trees to ensure that interrupted splits
eventually post an index term to the parent node. It
is not unlike the correction messages of [7], but here
such messages are always in response to explicit ac-
cess requests. Each index replica can maintain itself
based only on this information, and hence index repli-
cas need not exchange messages to ensure structure
convergence. Such convergence is not required. Our
approach depends fundamentally on the unique struc-
ture provided by the Pi-tree, in particular, the pres-
ence of additional information on side links between
sibling nodes.

The rest of the paper is organized as follows. In
section 2, we describe the Pi-tree, emphasizing what
it is that makes the Pi-tree unique, and sketching how
that is exploited for concurrency control and recovery.
Based on its very lazy concurrency and recovery tech-
nique, we describe in section 3 an index replication
protocol that very lazily maintains dPi-tree replicas.
How data can be distributed in a low cost way is de-
scribed 1n section 4. The more complex re-balancing
of data among processors of a cluster is also described
there. It also exploits a very lazy approach to infor-
mation propagation. We conclude in section 5 with a
discussion of what has been accomplished and what
might further be done.

2 Pi-Trees
2.1 Pi-tree Structure

The Pi-tree was introduced in [11] to provide a high
concurrency index tree that also supported recovery.
It was described then as a generalization of the B-
link-tree [8] in that both search structures have side
pointers connecting nodes at the same level on the
search tree that are used to permit tree re-structuring
that separate node splitting from the posting of the
index term for the new node (see Figure 1.). The
Pi-tree generalized B-link trees by permitting multi-
dimensional index trees to exploit side pointers.

In one important sense, however, Pi-trees are not
generalizations of B-link trees. It is that the links
to sibling nodes of a Pi-tree are not purely pointers.
Rather, they are the index terms that are to be posted
to the parent node of the new sibling in directing the
search to that node. This “indexed” side link is ne-
cessitated by the intent to support multi-dimensional
searching. When traversing among the data nodes for
data that is in some region of interest, a single di-
mensional search space trivially (by the nature of the
search space) provides a search direction. With multi-
dimensional index structures, the search direction of a

_

split this node

P

install sibling pointer

T
1

now install child pointer

Figure 1: Side links permit node splits to be sepa-
rated from index term postings because the new node
is reachable via the side link without using the new in-
dex term. For Pi-trees, the side pointer comes with an
index term describing the search space of the sibling.

side link needs to be supplied explicitly by the index
structure. One needs to know, e.g., that proceeding
in the X direction exits a query range, but that ad-
ditional items of the range exist in the Y direction.
Hence, distinguishing X from Y in the links (i.e. hav-
ing the links describe the space to which they refer)
then becomes important. This division of the search
space 1s illustrated in Figure 2.

More precisely, each node (within a single level of
the Pi-tree) is given responsibility for a well defined
part of the search space when it is created. The in-
variant that is preserved within the Pi-tree is that the
entire space for which a node is responsible is reach-
able from that node. A node delegates responsibility
for part of its search space to a new node during a node
split. We call the original node the container, and the
new node to which it has delegated responsibility for
part of the search space the extracted node. To main-
tain the invariant that the search space for which 1t is
responsible be reachable, the container must maintain
an indexed side pointer that refers to the extracted
node and identifies the space for which the extracted
node is responsible.

An index node referencing a set of child nodes re-
tains within its information the containment ordering
among its children. This is trivial in the case of a
one-dimensional B-link tree where simply ordering the

6
1. First split A along hyperplane
A xX=7
0 0 10
6 2. InA, make an indication that
A point withx > 7 arein B using
-T=B the low and high x and y
coordinates.
0 3 - 10 B: (7,10, 0, 6)
6 c 3. InA, add an indication of the
N B borders of C.
4 A @ ds B: (7,10, 0, 6)
C:(0,7,4,6
0 5 L 10 ()
6 .-
c D 4. In B, indicate the borders of D.
4 } N D: (7, 10, 3, 6)
3
A 4sB I
0
0 7 10

Figure 2: Space division and side pointers for a two
dimensional search space are shown. Splits are by hy-
perplane with node space described via border coor-
dinates. In a Pi-tree, nodes contain sibling terms for
siblings split from them.

index terms by the single attribute is sufficient. With
multi-dimensional searching, more complex contain-
ment can arise. With the hB-Pi-tree, such contain-
ment is reflected in the k-d tree that comprises the
index node. Containment order is essential in manag-
ing node deletion.

2.2 Concurrency Control and Recovery

While side pointers are important for range search-
ing, their intent in the B-link-tree is to provide high
concurrency during tree structure modifications. The
Pi-tree extends this to also ensure that recovery of the
search tree is possible should the system crash at any
arbitrary time. The foundation for this is that side
pointers give you multiple paths to the data nodes at
the leaves. In particular, during a node split, an up-
dater can gain access to a new node via a side pointer,
even before its index term is posted in its parent node.
This means that, e.g. a Pi tree, does not need to lock
(latch) an index node (so as to permit the immediate
posting of the index term for a new child) while its
children nodes are being split.

The same kind of reasoning that permits concur-
rency enables one to separate the structure modifica-
tion into two atomic parts for recovery. Atomic action
#£1 splits a full node and provides an indexed side link

to the new node in the original over-full node. Atomic
action #2 posts the index term to the new node’s par-
ent. A system crash between the time a node has split
and the time the index term for the new node is posted
to its parent nonetheless leaves the tree well-formed,
i.e., all data remains accessible and the structure con-
tinues to permit correct search by means of side in-
dex terms. The only thing that remains to be done
is to ensure that this index term 1s eventually posted
so that performance remains logarithmic in the size of
the data. And this is exactly what the Pi-tree indexed
side pointers permit.

For multi-dimensional search spaces, space decom-
position can be quite complex. During a side traver-
sal, one needs to know which of the possible directions
a side pointer is taking the search. For “lazy” post-
ing of an index term, one needs the exact description
of the search space handled by the new node so that
the index structure remains search correct. The Pi-
tree provides this with indexed side pointers. When
a side pointer is traversed, at any level of the Pi-tree,
this occasion is used to post the missing index term.
The sibling term’s presence provides the information
needed to update the parent. That is, the sibling term
becomes the index (child) term posted to the parent
node. Its posting is not an issue of search correctness,
but solely of search performance.

Crashes may be quite frequent, index posting may
be long delayed, and the Pi-tree index remains search
correct because of the indexed side pointers. Indeed,
the entire Pi-tree index between the root and the data
leaves can be reconstructed via posting during side
traversals. All the information needed to index the
leaves is present in the leaves. This 1s not the case
when the side pointers do not describe the search space
of the new node. It is these indexed side pointers
and this lazy index updating that we exploit in order
to construct and maintain replicated and distributed
indexes to the same data. And we do this with no
need to keep the index replicas coherent, even even-
tually, and hence we can dispense with messages used
to maintain coherent index structures [6].

3 Lazy Update of Replicated Indexes

This section describes how we deal with data node
splitting which results, of course, from data being in-
serted into a leaf of the index structure. We begin with
a primitive technique and proceed to a more effective
but still very simple technique. We do not treat node
consolidation (deletion) here, which we see as decid-
edly secondary. This is left to section 4.

We assume that the data that is being indexed is
not itself replicated. We are only concerned, as was

[6], with index replication, by which we mean “inte-
rior nodes”, not leaf nodes. How data (leaf nodes)
might be distributed among several processors of a
distributed system 1s also discussed in section 4. Data
distribution is orthogonal to the handling of the index-
ing structure and its replication. Replication of the
index has an excellent cost/benefit ratio. The cost is
low because the index is typically less than one per-
cent of the file size. The performance benefit is large
because the server is very effectively off-loaded. Only
the data node search remains for the server, the client
taking responsibility for the entire index portion of the
search.

In the subsequent discussion, we are indifferent as
to whether the replicated index is a persistent replica
or simply represents a cached version of the interior
nodes of the index.

3.1 The Primitive Technique

We describe initially a primitive technique that
needs an absolute minimum of information from which
to start and that maintains an index replica without
knowledge of any other index. We describe this tech-
nique not because 1t 1s a practical method but to il-
lustrates how little information is needed in order to
maintain index replicas. Qur pragmatic techniques ex-
ploit the existence of other indexes to more rapidly
construct a replica with logarithmic search perfor-
mance.

We assume that data has been entered into a collec-
tion of one or more data nodes and that these nodes
are connected by indexed side pointers. We further
assume that there 1s a pointer, which we call the
prime pointer(PP) stored in a known location within
our distributed system. The PP references the prime
node(PN) which is responsible for the entire search
space and which is connected to all other data nodes
via side pointers, either directly or indirectly. There
will usually be an existing index structure for access-
ing these data nodes as well, but our primitive index
creation and maintenance method does not require or
exploit it.

We pass the prime pointer to the site at which an
index replica is desired. Search requests that arrive at
that site trigger a traversal of the data nodes via side
index pointers, starting with the data node referenced
by the PP. Each traversal results in the posting of an
additional index term to the index nodes maintained
at the site. The first index term posted triggers the
creation of an index root. Subsequent postings result
in the index growing. Index nodes split at each site,
completely independently of how they may be splitting
at any other site. No coordination between the sites

1s required.

Replicated Pi-tree indexes need never be coherent.
They can contain different nodes, with different index
terms and even have different heights. The complete-
ness of a Pi-tree index “replica” reflects how many
side traversals have been done via the Pi-tree rooted
at a site. These side traversals include the original
sequence whose update necessitated the splitting of a
data node. Importantly, here, even the splitting of a
data node does not result in a broadcast to all index
replicas. Only the replica whose traversal resulted in
the update and data node split is notified, and even
that notification may fail. Information about splits or
index traversals is never broadcast to all replicas.

3.2 Index Sharing Technique

The primitive technique above stubbornly refuses
to learn from others. It insists on discovering, in its
entirety, all the index terms that it will need for each
new index replica. We can do much better by per-
mitting a new replica to learn from a prior replica.
This is particularly important when we are dealing
with a cached index, as we then will be starting from
an “empty” replica. The idea is to gain access to the
index terms that have already been discovered by an-
other index replica that we call the basis. The basis
could be located at a data server.

Our sharing technique is initiated as follows. In-
stead of passing to the new replica a copy of the prime
pointer, we rather pass to it a copy of the root of the
basis index. In this way, the new replica receives a
batch of information about accessing the underlying
data. The new replica is a partial one, sharing some
of the index structure of the basis. This is similar to
the technique used in Exodus [1] for creating a new
version, but in this case, the intent is to optimize cre-
ation of the index replica. Thus, instead of cloning
the path to an updated data node, as done in Exodus,
we clone paths as we proceed through the tree doing
searches. This incremental replica creation is is shown
in Figure 3.

When the replica starts processing search requests,
it traverses its own private nodes as it would were
it a completely independent replica. When a search
comes to an index term that references an indexr node
of the basis (or some other replica, since sharing can
be recursive), it requests the acquisition of that node
of the shared index. When the node is received, it is
replicated locally and the pointer that originally re-
ferred to the remote shared node is made to reference
the local copy of the node. In this way, a new replica
acquires index terms in node size batches, permitting
it to provide efficient logarithmic access to the data

root of root of

old version newversion
| | T
shared shared old shared new

Figure 3: Exodus tree versioning has versions with
unique roots but shared subtrees. For our distributed
indexes, these versions are the local replicas. Each
local replica starts with a copy of the root of a basis
replica and initially shares the rest of the index with
the basis.

immediately, assuming that its basis replica had such
logarithmic access. This is a form of bulk correction
message, 1.e., where the index is grown a Pi-tree node
at a time.

Within a cloned index node, the index terms carry
with them a way of identifying the site at which the
index nodes they reference are instantiated. A node
that is returned to a requesting site and that will be
replicated at that site will be in a form that is appro-
priate for the basis site. That is, all pointers to nodes
in the basis site will be indicated as private pointers.
But the replicated version of the node at the request-
ing site must treat these pointers as remote pointers to
the basis site. Thus, our index pointers can no longer
be simple local disk addresses. Note, however, that
pointers to data nodes are unchanged by this opti-
mization. These pointers, which are stored at the tree
level immediately above the data level, constitute the
vast majority of index terms, and they are unaffected
by index replication. Only higher levels are impacted,
which is much less than one per cent of the size of the
replicated index.

Once again, there is no need for coherence mes-
sages. The index sharing technique is a performance
enhancement that permits a more rapid construction
of the replica. At any time after the replica has ac-
quired a complete path to the prime node (PN), all
index terms pointing to shared index nodes can be
dropped without sacrificing search correctness or the
ability to eventually complete the replica. However,
shared index pointers continue to optimize the con-

struction of every unfinished part of the new replica.
So retention of the shared index is of great value.

What we are describing is an optimization: when-
ever index node sharing is not involved, our new tech-
nique can default to the primitive behavior. In partic-
ular, whenever a side index term is traversed, a new
index term is posted in the parent node. This includes
side index terms within an index replica as well as for
the data nodes. In this case, in addition to doing the
traversal, we also copy the node encountered. The
index term posted is thus to the copied node.

3.3 Message Minimization

The protocol above requires request/response mes-
sages every time a single dPi-tree node is transferred.
Essentially, nodes are transferred one by one as the Pi-
tree node search path is traversed. There is leverage
in terms of reduced message traffic if multiple nodes
can be transferred in a single message. The proce-
dure below returns all the nodes and their associated
index terms for the search path that is traversed at a
shared replica. Indeed, we accumulate the search path
as we return from lower parts of the tree and pass it
to sharing replicas that requested data indexed in the
dPi-tree. Since we know the search request, we can in
fact do this. We proceed as indicated in Figure 4.

Again, what we have described is a form of correc-
tion message. But now, the entire Pi-tree path from
an initial local replicated node to the data is corrected
in one large batch operation. Thus, it only requires
modest access activity from an index site for the in-
dex maintained there to provide very effective access
to the underlying data. Note also, that unlike [7], a
tree merge is not required. Rather, the path returned
is appended to the existing replica by replacing a re-
mote reference to a reference to a local copy of the
path. Also, we deal easily with the paths that are
missing from the replica as the replica is built. The
index information in such missing paths is reached via
either child pointers or via side pointers to nodes in
the basis or to nodes shared by the basis.

Requests from a client site to a site with a shared
index do not require re-traversal of the shared index
starting from the root. Rather, the search simply con-
tinues down the shared index from the node identified
by the requesting replica. This avoids unnecessary
work and reduces the access burden placed on shared
sites. Thus, if a requesting replica has reached level n
of the tree (as measured by distance from the leaves),
the shared replica proceeds from level n — 1 onward.
The search is not re-initiated at the root.

A shared replica, in trying to complete a search for
a remote node, itself may become the remote node in

1. Replica A encounters a reference to a shared node N
while processing a search request. Replica A sends a
message to B (the owner of N) that identifies N and

the search request itself.
2. Replica B receives the request from A and accesses

N. It uses the search request from A to continue the
search in N.

o [If the search leads to a data node reference,
replica B returns node N’s contents to replica A,
where the node is replicated. In the replica at
A, pointers in node N which had been to nodes
local to B, become pointers to shared nodes that

refer to replica B.
o [f the search leads to a node M at replica B, then

the search is continued at B, adding the local
nodes that it encounters in the search to the set
of nodes that it will return to A. These include
both child nodes and sibling nodes reached via

side traversals.
o [f the search leads to a shared node M at yet

another replica C, then B requests M from C
and when C has returned the appropriate node
or nodes that are further down the index tree,
B concatenates those nodes with the nodes that
it has traversed locally and returns the entire
concatenated sequence to A. B also adds the
nodes from C to its replica of the index.

3. Replica A replicates the returned sequence of index
nodes in its local index replica, changing shared point-
ers to private pointers as appropriate. This con-
version applies both to child pointers and to sibling
pointers. It converts the remote pointer that trig-
gered the remote request in step 1 to a local pointer
to the first of the replicated nodes. It then contin-
ues the search to the data node P where one expects
to find the data. This involves sending the search re-
quest and the address of P to the site where P resides.

4. Eventually (see the next section on data level orga-
nization), the data level responds with a list of side
pointers traversed and the ultimate node Q that con-
tains the data space specified in the request. Note
that the data level does not send the contents of the
traversed nodes, as these are not useful for maintain-

ing the index replica.
5. Replica A adds the index terms returned to the ap-

propriate node(s) of its index, performing structure
modifications (i.e. node splits) as needed to store

these new index terms.
6. Finally, the node returned (Q) is searched for the data

requested in the search.

Figure 4: The procedure to build a replica index by
adding to it all dPi-tree nodes in the path to the data
as a correction message during an index search.

further processing of the search. This recursive pro-
cess ensures that the shared replica has a complete
path to the data prior to passing the path to its re-
mote client replica. Note also that the data itselfis not
accessed by remote replicas holding the shared index
nodes since the shared replica does not need the data
itself. This saves a data access by the shared replica,
putting that burden on the requesting replica.

3.4 “Seriously” Incomplete Replicas

A replica that is seriously incomplete will access
multiple new nodes on the path to the data. This
poses two problems.

e How do we keep the correction messages reason-
able in size when multiple new nodes need to be
returned?

If the path traversed has too many nodes to com-
fortably fit into a single return message, this is
not a large difficulty. Whenever results are re-
turned that do not include the data requested, a
pointer is returned to the node where the search
may be continued. In the full optimization case,
this will be to a data node. But should there be
a large number of side traversals, this could be
to a node at some remote index, either the basis
replica returning the path, or to another. In all
cases, the strategy is to include what is returned
in one’s own replica and to request a search con-
tinuation from the node referenced by this final
pointer. Thus, how many nodes in the path to
the data are returned to a requester can be very
flexibly determined.

e How do we avoid long side traversal searches,
which are a form of linear search, when a great
deal of update activity may have moved the data
of interest to a relatively remote node?

We need a short circuiting mechanism that pre-
vents such long side traversals if we make more
than n side traversals in a search. A value of n
that is approximately the height of the index tree
should be reasonable. At that point, a partic-
ularly simple approach is to re-start the search
at the root of the basis replica. Should we have
the same problem with the basis, we re-apply the
short-circuiting technique recursively. The result
i1s to limit the number of node traversals to no
more than 2 x height — of —tree x number —of —
replicas, though in practice, the number of node
traversals should be very close to the height of
the tree.

3.5 Shrinking the Replica

Not only can one grow the size of an index replica,
but one can shrink it as well. This is the case for the
same reason that we can be lazy in posting updates to
the index. Data remains accessible via side pointers.
Index size reduction is particularly important when
dealing with transient (cached) replicas. This permits
us to retain only the part of the tree that is active,
and hence to maximize the effectiveness of the cache
in reducing remote accesses. And this ensures that the
prefix of the entire path to the data is always present
at the replica.

It is almost always possible to delete an index term
from a local replica, whether or not that index term
points to a local node of the replica, a data (leaf) level
node, or to a node that exists in the basis replica.
Deletion of an index term must leave the containment
structure of the index node well formed. The result is
that the container for a node X whose index term we
delete will appear to contain the space previously con-
tained by X. Subsequent searches to the search space
of X will be directed to X’s container. Since the con-
tainer has delegated responsibility for the space to X,
sibling traversal from the container will lead to X.
Such sibling traversals can be used to re-post the in-
dex term for X. Thus, deleting X’s index term leaves
the parent node of the dPi-tree in a state as if the
container for X has been split with X being extracted,
but before the index term for X has been posted.

We can delete an entire dPi-tree node N by drop-
ping all its child index terms except for the index term
to the child that serves as the containing node for the
other children. At any point we can try to merge a
node T with its container node. (And N will always
contain at least this one child index term.) We insert
the remaining contents of N into N’s container node,
including N’s children as children of the container and
N’s siblings as siblings of the container. Sibling terms
are never directly deleted. A sibling term 1s only re-
moved when the node to which it refers is merged into
the container. At this point the sibling index term
referring to the node from the container is dropped.

Such deletion of index terms permits us to free
space in a dPi-tree index node for more active parts
of the tree. Dropping an entire index node permits
us to reclaim space in the cache for other nodes. All
information so dropped can be easily recovered should
it be needed again. No coordination/coherence with
other replicas is required for this. Subsequent refer-
ence to data in subtrees that are not represented in
the index will result in the reconstruction in the local
replica of the path to the data requested.

When we are dealing with transient replicas (cached
copies of the dPi-tree index), a normal assumption is
that no other replica i1s using it as a basis for repli-
cation. Thus, there are no other replicas with point-
ers to dPi-tree nodes of the transient replica. Hence,
for these replicas, there is no need for coherence mes-
sages to cope with node deletion. Note here, however,
that deleting nodes from an index replica is not sim-
ply a matter of dropping them and reaccessing them
as needed, which is the way that caching is normally
accomplished. Such simple node dropping is only pos-
sible if one were to retain an index term to a node in
the basis. This is possible, but does not provide for the
incremental construction of the replica and the com-
plete independence among replicas that 1s so effective
at reducing the search and update cost.

4 Data Level Organization

We have not yet addressed how the data itself might
be managed by a data server, and how its updating
and data node splitting is handled. That is the topic
of this section. We describe two approaches for assign-
ing data nodes to servers, one involving centralizing all
data at a single server, the second involving distribut-
ing it among multiple sites.

4.1 Centrally Stored Data

The simplest way to manage the data, which is not
replicated in our system model, is to assign all of it
to a single data server. The data server itself should
probably maintain an index to the data, from which
future index replicas can be initialized. Our central-
ized data server maintains the data and the index for
it very much as it would were there no index replicas
involved. We describe here only the incremental dif-
ference that is made by the data server’s need to cope
with the index replicas and update requests that can
come from multiple clients with replicas.

As with a search request, the data server receives
an update request from a (index replica maintaining)
client that identifies the data node at the server where
the request activity is expected to occur. For a search
or an update, this is the node that the client believes
directly contains the portion of the search space de-
sired. An update request is also accompanied by the
new data and an indication of whether this is an up-
date, insert, or delete.

The identified data node may contain the search
space desired, or it may have delegated it to another
node which can be accessed by side traversal from the
originally identified node. Each side traversal results
in a side index term being added to the message that
will be sent back to the requester. These side point-
ers represent index terms that should be added to the

client’s index replica to make i1ts index more complete.
A data node split in order to provide storage to accom-
modate the update is simply a particular instance of
this process. (The only additional work is that the
data server itself will probably want to update 1ts own
index to the data.)

Our central server needs to perform concurrency
control and recovery on the data that it manages. This
can most easily be handled by the Pi-tree technique
itself [11] but other techniques are possible so long as
side index terms are maintained [4, 11, 12]. There is
no guarantee to the clients that any data node that it
may have read will remain valid while the client caches
it (in the traditional way). The client must take out
explicit locks, on either some of the records of the
data node, or on the node itself, at the server. An
obvious optimization is to piggyback lock requests on
the messages that request the data nodes themselves.

4.2 Distributing Data Among Sites
4.2.1 Distribution Strategy

Supporting index replicas to permit the index search
to be off-loaded to clients permits a substantial scale-
up in the number of clients that can be served with
the indexed data. However, the single central data
server remains a potential bottleneck. To scale fur-
ther, the data itself needs to be distributed among
multiple servers. A few of the several ways the distri-
bution might be done are:

Opportunistic: Choose the updating site as the site
for the new node that is created by the split. This
reduces communication costs because the updat-
ing site is already a participant.

Randomized: Choose the site for the new node
based on a randomization process that uniformly
distributes the load, such as via a hash function
applied to the key. While not precluding the need
for re-balancing, it is much reduced.

Range: Assign particular sites ranges of key values to
store. The new node goes to the site handling the
key range involved. This localizes range searching
to a smaller number of sites.

Where the new node in a node splitting index mod-
ification resides at the same site as the original node,
the techniques used for centrally managed data suf-
fice. However, redistribution of data among the sites
will undoubtedly be required at times. System config-
urations change, update activity skews the load, too
many keys fall into one range. Indeed, unbalanced
load is possible with essentially all data placement

policies without resorting to very substantial coordi-
nation message overhead. Re-balancing data between
sites can be accomplished in terms of node deletion.
To migrate a node, we perform a data node split”,
and move the entire contents of the old data node to
the new node at a different site. This uses the node
split protocol described below. Then we delete the old
node. Clearly, the magic of this is in the handling of
node deletes, the subject of section 4.3.

4.2.2 Distributed Node Splitting

For the tree restructuring resulting from a split to cor-
rectly survive a system crash, the action of splitting a
node must be atomic. That is, within the same atomic
action, two actions need to occur.

e The new node must be allocated and initialized
with about half the contents of the old node.

e The old node must be updated so as to remove
the contents now stored in the new node and have
a sibling index term that now identifies the new
node as the place where a search 1s to continue.

The new node and the old node may be co-located or
at separate sites. In either event, we require atomicity.
When co-located, such atomicity is easy to provide.
When at separate sites, we require atomicity via a
distributed commit protocol.

Two site atomicity can be achieved very inexpen-
sively in this case. Site N writes the new node and
prepares its part of the atomic action. N notifies site
O that serves the old node that the old node has been
split, the key value used in accomplishing the split,
and the address of the new node. In the same message,
N transfers commit coordination to O. O removes the
data now in the new node from the old node, and in-
serts a side index link in the old node that refers to
the new node at site N. O then commits the atomic
action locally. N waits to receive a separate access
request for the new node before committing its cre-
ation of the new node, thus using this access message
as a lazy commit message. Should N wait too long,
it asks O whether the action committed. It may need
to do that in any event as commit messages may be
lost. Site O remembers the commit status and can
answer such inquiries by simply checking whether the
old node has been updated with a side index link to
the new node. This results in a normal case with only
one message to both transfer information and to co-
ordinate the distributed atomic action.

There is no commit processing overhead for site O.
The overhead involves only site N’s need for a durable

“prepared” state which permits the new node to be
deleted if site O does not commit. For index replica
updating, a lazy message informs the updater of the
node split trigged by its update. Other replicas will be
notified during subsequent accesses. None of the index
updating need be transactional as coherence is not re-
quired. The sibling index term will keep moved data
accessible for search as well as providing the informa-
tion needed for subsequent updating of the indexes.
4.3 Handling Deletes

4.3.1 The Deletion Structures

In order to keep the Pi-tree data level search correct
when a data node N is deleted, we require the following
actions to be atomically performed.

e Empty the deleted node N by updating N’s “con-
taining” node, i.e. the one with sibling index term
referring to N, with the data and sibling terms of
N so that all data for which the container is re-
sponsible remains accessible.

e Delete N and establish a tombstone for it contain-
ing a forwarding address to N’s containing node.
(We eventually garbage collect this tombstone.)

The strategy we pursue will preserve index correctness
in a very lazy fashion. No index replica need be in-
volved in a delete atomic action. A data node delete
only requires an atomic action involving the site D
with the node to be deleted and the site C with its
container. These sites may have to handle accesses
related to the deleted node for some time after the
delete has been accomplished.

Site D keeps a tombstone for the deleted node N
for as long as any index replica may have a pointer to
N. The tombstone identifies the search space of N and
contains a forwarding address to N’s container, now
responsible for the search space of N. This permits
the system to distinguish invalid references to N from
valid references to the same node when N is reused.
All incoming accesses must check the tombstone ta-
ble before accessing data nodes. This tombstone table
must be persistent, but should be small enough to re-
side entirely in main memory while the index is being
used. To keep it small, we garbage collect tombstones
as described next.

4.3.2 Garbage Collecting the Tombstone

There is control information in each node describing
every deleted node that the node has absorbed and
that has an outstanding tombstone. This control in-
formation consists of a description of the search space

of the deleted node together with a bit vector with
a bit for each index replica. The bit 1s on if that in-
dex replica may have a dangling pointer to the deleted
node, and off otherwise. When all the bits have been
turned off, site C tells site D that the tombstone can
be garbage collected.

There will usually be zero, sometimes one, rarely
more than one such deleted node whose tombstone a
container node needs cope with. Further, we assume
that the number of index replicas is modest, say fewer
than 64, perhaps fewer than 16. Thus the control in-
formation for a deleted node might be no more than
a word per deleted node with tombstone, and a few
words at most. Also, since deletes are optional and
require that the container accept data as well as con-
trol information from the deleted node, the container
node can refuse to participate in a delete to limit the
number of such deleted nodes.

We distinguish two kinds of data access to the
search space that had been handled by the deleted
node.

Accesses by way of the tombstone When an ac-
cess request comes to site D, the request 1s for-
warded to C (as if it were a side traversal) to-
gether with an indication that this request comes
via the tombstone. Site C satisfies the request,
and includes in its response not only the data re-
quested, but the container node address and an
indication that the deleted node has in fact been
deleted. The requester then removes its index
term referring to the deleted node. This is analo-
gous to the lazy way in which node splitting and
index maintenance is handled. (Note: Since the
index term is not removed within a coordinated
atomic action with the request, we can only say
that we expect it to be removed.)

Accesses directly to the container When an ac-
cess specifying a search space handled by the
deleted node comes directly to the container, it
is clear that the requestng replica does not have
a dangling pointer to the deleted node. The bit
associated with that index replica in the container
node is turned off (if not already off). The request
is then answered in the normal fashion. !

When the bits representing the index replicas have
all been turned off, site C notifies site D that the tomb-
stone can be garbage collected. This does not require

I This assumes that once an index replica indicates that it
knows about a node deletion, that no delayed request for the
deleted node ever is made again from that replica. This requires
some care by the replicas.

a two site atomic action. Rather, site D simply drops
the tombstone in a local atomic action. It then no-
tifies C that the tombstone is gone. Should either
message be lost, C will eventually ask D to delete the
tombstone again and D will comply or simply report
that this has been done already. [This exploits tomb-
stone existence as testable state for the atomic action.]
Once the tombstone has been confirmed as garbage
collected, the information in the container node for
the tombstone can be discarded as well.

4.3.3 Additional Comments

The deleted node can serve as its own tombstone. The
cost of this is that the node itself is not garbage col-
lected until all replicas have referenced the container
node directly. The benefit is that no separate tomb-
stone table 1s needed, and there is no tombstone “look-
aside” needed before accessing data nodes at a site. If
deletion is sufficiently uncommon, this is a good strat-
egy. If deletion becomes more common, then the need
to reclaim space becomes more urgent, justifying a
separate tombstone table.

Index node deletion for other than transient repli-
cas(as opposed to data node deletion) does not ap-
pear to have much of a payoff. An index node will
rarely become sufficiently empty because many data
nodes must first be deleted. Further, each index is
less than one percent of the size of the data so most
of the gain from node deletion involves deleting data
nodes. Index node deletion is a trivial task when no
index sharing is involved (see section 3.4). However,
supporting deletes with index sharing requires greater
effort, which we do not describe, and complicates the
sharing process itself.

5 Discussion

We have shown how to generalize an existing in-
dex structure, the Pi-tree, for index replication in a
cluster-based or client/server system. The advantage
of index replication is to off-load index traversals from
the primary data server to the client or node perform-
ing the access. This also avoids the message overhead
of a distributed search.
5.1 Very Lazy Replica Updating

The advantage of using dPi-trees over other index
organizations is that dPi-trees enable a very lazy strat-
egy for index maintenance. This exploits Pi-tree sib-
ling index terms which were initially used to keep the
Pi-tree recoverable while enabling high concurrency.
No explicit (and separate) index coherence messages
were required, and indeed, the node structure of the
index replicas need not be coherent for the search to

remain correct. It is the redundancy of paths through
Pi-tree indexes (both child and sibling index terms)
that makes this possible. Thus, our replication strat-
egy has less overhead than any of its predecessors.

If other methods can refer to their update strat-
egy as “lazy”, then we can justifiably describe ours as
“very lazy”. Separate coherence messages are never
used in index maintenance for node splitting. A “cor-
rection message” is always piggybacked on the re-
sponse to an access request, and we describe how to
return the entire shared path from the current point
in the local index to the remote data. This permits
a local replica to update its index with large batch
operations. The result is that no tree is likely to be
more than a few accesses away from providing excel-
lent indexing performance. Even when dealing with
deletes, we take a lazy approach of using tombstones
and notifying an index replica that a delete has oc-
curred as part of a response to an access request. Only
data level restructuring involving splitting or deletion
requires coordination via atomic actions. And these
actions involve only sites that host data nodes. Index
only sites need never be involved.

Messages to inform replicas of new data nodes are
required in all approaches. However, with our ap-
proach, the messages needed to provide index replica
coherence are never needed as replica coherence is it-
self unnecessary. Delays introduced by the need to
synchronize for index coherence are thus completely
avoided. Finally, the simplicity of the strategy makes
its implementation cost modest compared with meth-
ods requiring more strenuous coherence measures.

We suggest that node deletion only occur within the
index level of the dPi-tree for transient replicas. Such
deletes are strictly local and have no impact on other
replicas when we preclude cached (transient) replicas
as the basis for other replicas. Hence, no coherence
strategy of any sort is required for them.

5.2 Concurrency and Recovery

Each replica supports high concurrency and recov-
ery at its site, an issue not addressed previously. Index
concurrency and recovery can be handled at a single
site by means of the Pi-tree algorithm [11]. Multi-
site coordination is not needed. Index node locking is
needed only to provide synchronization among local
updates to a replica. When a response to a remote re-
quests needs to include a version of an index node, it
1s always acceptable to deliver a copy of an earlier ver-
sion of the node since whether the node is out-of-date
is not critical to our algorithms.

Data (as opposed to index) concurrency and recov-
ery can be handled by a variant of the Pi-tree strategy.

Typically, this would exploit low level physical redo
and high level logical undo. Because data nodes can
be split between sites, recovery needs to cope with this
distribution. But this is a standard part of distributed
actions and poses no additional difficulties.

5.3 Range Searching

When a search request is for a range of values, a
distributed search structure can execute the request in
parallel. This is a very important aspect of index tree
performance. During a range search, all children nodes
of an index node that are within the range can be
accessed in parallel. When the index is to distributed
data, different nodes can return the data within the
range while executing in parallel.

The search requesting node then needs to determine
when the range search i1s complete. The existence of
side pointers for dPi-trees makes this easy. We need
compute twi sets as we perform the search.

nodes needed Addresses for data nodes within the
range that are at other processes. This is initial-
ized to the data nodes that are immediate chil-
dren of the index nodes in the range.

nodes searched Addresses for all nodes that are
within the range and that have been searched al-
ready.

Each process involved in the search returns (1) its data
in the range, together with (2) the list of data node
addresses in which the data was found, which is added
to “nodes searched”, and (3) the list of side pointers to
nodes that are part of the range but that are located
elsewhere, which are added to “nodes needed”. When
nodes searched equals nodes needed, the range search
is complete.

5.4 Data Nodes

How to deal with the data at the leaf level of an in-
dex tree is largely orthogonal to index replication. We
demonstrated lazy methods that are in the same spirit
as our lazy index replication, to deal with distribut-
ing the leaves across multiple sites. We also showed
how to lazily handle node deletes. These methods
avoid the introduction of coherence messages. How-
ever, there is more complexity involved as splitting
and deleting nodes requires atomicity, and distribu-
tion increases the cost and complexity of atomicity.
We use a tombstone technique for coping with dan-
gling references to deleted data nodes. Hence, lock
coupling is not required when accessing the dPi-tree
since its only function is to provide assurance that the
reference found at one level of the tree is not dangling
when used to access the next level.

5.5 Generality

The laziness of our method is enabled by the fact
that Pi-trees maintain not only a side pointer to sibling
nodes, but an entire side index term with both space
description and pointer [11]. Tt is this index term that
provides the source for lazy updating of index replicas
as all replicas eventually store this index term. This is
a very powerful paradigm for lazy distributed search
structure maintenance that should find use in other
distributed and/or replicated search structures, e.g.
hashing or grid like structures. What we do require is
that the search space for which a node is responsible
not increase since we deal with node deletes in a rather
special and less efficient fashion. This precludes the
direct application of our techniques to spatial search
using the R-tree [5]. We feel, however, that the hB-Pi-
tree [3] is a more robust search structure in any event,
and our techniques apply immediately to it.
Acknowledgments

Witold Litwin provided a valuable critical reading
of an earlier version of this paper. In addition to cor-
recting misunderstandings about existing distributed
indexing methods, he raised two issues: bounding the
worst case number of side traversals (see section 3.4)
and parallel search for range queries, with its require-
ment to determine when such a query is complete (see
section 5.3).

References

[1] Carey,M., DeWitt, D., Richardson, J., and Shekita,
E. Object and File Management in the EXODUS Ex-
tensible Database System. Proc. Very Large Databases
Conf.(Sept. 1986) 91-100.

[2] Devine, R. Design and Implementation of DDH: A Dis-
tributed Dynamic Hashing Algorithm. 4th Int’l Conf.
on Foundations of Data Organization and Algorithms.
(Oct. 1993) Evanston, IL

[3] Evangelidis, G., Lomet, D., and Salzberg, B. The hB-
Pi-Tree: A Modified hB-tree Supporting Concurrency,
Recovery, and Node Consolidation. Proc. Very Large
Databases Conf.(Sept. 1995) Zurich, Switz. 551-561.

[4] Gray, J. and Reuter, A. Transaction Processing: Con-
cepts and Techniques Morgan Kaufmann (1993) San
Mateo, CA

[5] Guttman, A. R-trees: A Dynamic Index Structure for
Spatial Searching. Proc. ACM SIGMOD Conf.(May
1984) Boston, MA 47-57.

[6] Johnson, T., and Krishna, P. Lazy Updates for
Distributed Search Structure. Proc. ACM SIGMOD
Conf.(May 1993) Washington, D.C. 337-346.

[7] Kroll, B. and Widmayer, P. Distributing a Search Tree
Among a Growing Number of Processors. Proc. ACM
SIGMOD Conf.(May, 1994) Minneapolis, MN 265-276.

[8] Lehman, P., and Yao, B. Efficient Locking for Concur-
rent Operations on B-trees. ACM Trans. on Database
Systems 6,4 (Dec. 1981) 650-670.

[9] Litwin, W., Neimat, M-A, and Schneider, D. Linear
Hashing for Distributed Files. Proc. ACM SIGMOD
Conf.(May 1993) Washington, D.C. 327-336.

[10] Litwin, W., Neimat, M-A, and Schneider, D. RP*: A
Family of Order-Preserving Scaleable Distributed Data
Structures. Proc. Very Large Databases Conf.(Sept.
1994) Santiago, Chile

[11] Lomet, D. and Salzberg, B. Access Method Concur-
rency with Recovery. Proc. ACM SIGMOD Conf.(May
1992) San Diego, CA 351-360.

[12] Mohan, C. and Levine, F. ARIES/IM: An Efficient
and High Concurrency Index Management Method
Using Write-Ahead lLogging. Proc. ACM SIGMOD
Conf.(May 1992) San Diego, CA 371-380.

[13] Vingralek, R., Breitbart, Y., and Weikum, G. Dis-
tributed File Organization with Scaleable
Cost/Performance. Proc. ACM SIGMOD Conf.(May,
1994) Minneapolis, MN 253-264.

