
Replicated Indexes for Distributed DataDavid LometOne Microsoft Way, Bldg. 9Redmond, WA 98052lomet@microsoft.comAbstractWe describe a distributed index structure, in whichdata is distributed among multiple sites and indexesto the data are replicated over multiple sites. Thispermits good scalability as storage and accessing loadare distributed over the sites and each site with an in-dex replica has fast local access to the index structure,making remote requests at most for data at the leavesof the index tree. We call our method the dPi-tree be-cause it is based on the Pi-tree. We replicate the indexwithout the need for coherence messages. This workswhether the index replica is persistent or a transientcached copy. We generalize a technique �rst used toprovide recovery for Pi-tree indexes to independentlyand lazily maintain the index replicas. A further re-sult is that each index replica is fully recoverable, anarea not treated previously in replication schemes. Wealso show how the data in the leaves of the index canbe distributed and re-distributed at very low cost.1 Introduction1.1 ScalabilityData mining, data warehousing, and the generalescalation of the complexity of queries and the sizeof the underlying data put an increased premium onscaleable database systems. One aspect of that scala-bility is providing very e�cient access to data as thesize of the data explodes and the number of processorsinvolved in accessing the data increases. This leads toan interest in distributed search structures in whichthe data is spread over multiple sites. This also leadsto an interest in replicated search structures so that asubstantial part of the computational cost of an accesscan be done locally, also reducing latency.There are additional payo�s from data distributionand search structure replication. Data distributionenhances one's ability to access data in parallel, ex-ploiting the set of processors at which the data re-sides. Index structure replication can, if done withreal independence of index maintenance, greatly in-crease concurrency of access. Further, redundant in-

dex structures also enhance data read availability, asdoes replicated data in general. Availability of thedistributed data does not become dependent on theavailability of some single copy of the index stored ona possibly unavailable processor.Consider two limited forms of distributed systems,client/server systems and cluster based systems.Client/Server: Servers are typically very heavilyused, and can easily become the bottleneck insystem performance when accessing shared data.Replicated indexes permit all index traversal tobe o�-loaded to clients, with only the data leafaccesses remaining at the server. This improvesresponse time and reduces network tra�c as well.Clusters: In clusters, any processor can play the roleof both client and server. It then becomes pos-sible to distribute the data over members of thecluster, while replicating the index at all membersof the cluster. This improves upon client/serverby spreading the data access load and permittingthe accesses to proceed in parallel.In both forms of distributed system above, cachinghas frequently been used to increase performance.We view cached index structures as transient repli-cas. Such transient replicas increase the desirabilityof our techniques for incrementally building replicas,as cached versions are continually being rebuilt.The di�culty in exploiting distributed search struc-tures is the update burden imposed. What searchstructure permits low cost maintenance when dis-tributed over several processors? What search struc-ture permits several replicas of its index to be easilyand inexpensively maintained?There has been recent interesting work on dis-tributed and/or replicated search structures [2, 6, 7, 9,10, 13]. This work attacks the cost of maintaining dis-tributed and replicated search structures. The work of[9, 2, 13] is targeted at hashing structures. The DRTof [7] is a distributed (not replicated) binary tree.

1.2 Our ApproachOur system and communication models are similarto [6], and our search structure shares some structuraland operation characteristics with their proposed dB-tree which is based on the B-link tree of [8]. Like thedistributed DRT tree and RPs* of [10], we employ aform of \correction message". DRT, RPs*, and dB-tree all use lazy techniques to maintain distributedindex trees over multiple processors.We call our search structure the dPi-tree as it isa derivative of the Pi-tree of [11]. There, a correc-tion mechanism was used to enable high concurrencyand robust recovery for a centrally stored tree. Whendealing with distributed and replicated trees, the cor-rection mechanism requires messages, which we sendlazily, and only when other information is requested.Correction is triggered in the same way as index recov-ery is triggered in [11], via detection of a misdirectedsearch.What distinguishes our techniques are their greatsimplicity and low cost, enabled by the extremely lazyway that we handle index structure maintenance. Un-like the dB-tree or an RP* tree, the dPi-tree does notrequire convergence of index replica node structure.No e�ort is made to keep the \replicated" index struc-tures coherent- only the index content, i.e. the set ofindex terms, is important. All replica indexes mustcontinue to e�ectively index and provide access to theunderlying non-replicated data at the leaves of the in-dex tree. Thus, the dPi-tree does not need to providecoherence messages in which one replica informs an-other of an index node split. The speci�c paginationof each index replica is managed solely by the replicaitself, without reference to other replicas. Further,when data nodes of the index tree split, the postingof the index term for the new node in any of the in-dex replicas can be very lazy since access to the datais always possible and the index term to be used canalways be found via side traversals.An additional bonus of our approach is that systemfailures can interrupt operation at arbitrary momentsand the search correctness of the dPi-tree is not com-promised. This is a natural consequence of the robust-ness of the Pi-tree, in which a system crash betweenthe time a node split occurs and the time when itsparent index node is updated does not e�ect searchcorrectness, and the parent node is eventually updatedduring subsequent search operations. The dPi-tree in-herits this robustness directly from the Pi-tree.The fundamental insight that we exploit is that in-formation about changes to the organization of data,its node splitting and its distribution, is propagated

only on messages in which the exchange of data isrequired in any event. This is the same strategy asused with Pi-trees to ensure that interrupted splitseventually post an index term to the parent node. Itis not unlike the correction messages of [7], but heresuch messages are always in response to explicit ac-cess requests. Each index replica can maintain itselfbased only on this information, and hence index repli-cas need not exchange messages to ensure structureconvergence. Such convergence is not required. Ourapproach depends fundamentally on the unique struc-ture provided by the Pi-tree, in particular, the pres-ence of additional information on side links betweensibling nodes.The rest of the paper is organized as follows. Insection 2, we describe the Pi-tree, emphasizing whatit is that makes the Pi-tree unique, and sketching howthat is exploited for concurrency control and recovery.Based on its very lazy concurrency and recovery tech-nique, we describe in section 3 an index replicationprotocol that very lazily maintains dPi-tree replicas.How data can be distributed in a low cost way is de-scribed in section 4. The more complex re-balancingof data among processors of a cluster is also describedthere. It also exploits a very lazy approach to infor-mation propagation. We conclude in section 5 with adiscussion of what has been accomplished and whatmight further be done.2 Pi-Trees2.1 Pi-tree StructureThe Pi-tree was introduced in [11] to provide a highconcurrency index tree that also supported recovery.It was described then as a generalization of the B-link-tree [8] in that both search structures have sidepointers connecting nodes at the same level on thesearch tree that are used to permit tree re-structuringthat separate node splitting from the posting of theindex term for the new node (see Figure 1.). ThePi-tree generalized B-link trees by permitting multi-dimensional index trees to exploit side pointers.In one important sense, however, Pi-trees are notgeneralizations of B-link trees. It is that the linksto sibling nodes of a Pi-tree are not purely pointers.Rather, they are the index terms that are to be postedto the parent node of the new sibling in directing thesearch to that node. This \indexed" side link is ne-cessitated by the intent to support multi-dimensionalsearching. When traversing among the data nodes fordata that is in some region of interest, a single di-mensional search space trivially (by the nature of thesearch space) provides a search direction. With multi-dimensional index structures, the search direction of a

split this node

install sibling pointer

now install child pointer Figure 1: Side links permit node splits to be sepa-rated from index term postings because the new nodeis reachable via the side link without using the new in-dex term. For Pi-trees, the side pointer comes with anindex term describing the search space of the sibling.side link needs to be supplied explicitly by the indexstructure. One needs to know, e.g., that proceedingin the X direction exits a query range, but that ad-ditional items of the range exist in the Y direction.Hence, distinguishing X from Y in the links (i.e. hav-ing the links describe the space to which they refer)then becomes important. This division of the searchspace is illustrated in Figure 2.More precisely, each node (within a single level ofthe Pi-tree) is given responsibility for a well de�nedpart of the search space when it is created. The in-variant that is preserved within the Pi-tree is that theentire space for which a node is responsible is reach-able from that node. A node delegates responsibilityfor part of its search space to a new node during a nodesplit. We call the original node the container, and thenew node to which it has delegated responsibility forpart of the search space the extracted node. To main-tain the invariant that the search space for which it isresponsible be reachable, the container must maintainan indexed side pointer that refers to the extractednode and identi�es the space for which the extractednode is responsible.An index node referencing a set of child nodes re-tains within its information the containment orderingamong its children. This is trivial in the case of aone-dimensional B-link tree where simply ordering the

1. First split A along hyperplane

2. In A, make an indication that
 point with x > 7 are in B using
 the low and high x and y

3. In A, add an indication of the
 borders of C.

B: (7,10, 0, 6)

4. In B, indicate the borders of D.

D: (7, 10, 3, 6)

A

A
B

C
B

A

C

A B

D

coordinates.

6

0
0

0
0

0
0

0
0

6

6

6

10

10

10

10

7

7

7

C: (0, 7, 4, 6)

3

x = 7

B: (7,10, 0, 6)

4

4Figure 2: Space division and side pointers for a twodimensional search space are shown. Splits are by hy-perplane with node space described via border coor-dinates. In a Pi-tree, nodes contain sibling terms forsiblings split from them.index terms by the single attribute is su�cient. Withmulti-dimensional searching, more complex contain-ment can arise. With the hB-Pi-tree, such contain-ment is reected in the k-d tree that comprises theindex node. Containment order is essential in manag-ing node deletion.2.2 Concurrency Control and RecoveryWhile side pointers are important for range search-ing, their intent in the B-link-tree is to provide highconcurrency during tree structure modi�cations. ThePi-tree extends this to also ensure that recovery of thesearch tree is possible should the system crash at anyarbitrary time. The foundation for this is that sidepointers give you multiple paths to the data nodes atthe leaves. In particular, during a node split, an up-dater can gain access to a new node via a side pointer,even before its index term is posted in its parent node.This means that, e.g. a Pi tree, does not need to lock(latch) an index node (so as to permit the immediateposting of the index term for a new child) while itschildren nodes are being split.The same kind of reasoning that permits concur-rency enables one to separate the structure modi�ca-tion into two atomic parts for recovery. Atomic action#1 splits a full node and provides an indexed side link

to the new node in the original over-full node. Atomicaction #2 posts the index term to the new node's par-ent. A system crash between the time a node has splitand the time the index term for the new node is postedto its parent nonetheless leaves the tree well-formed,i.e., all data remains accessible and the structure con-tinues to permit correct search by means of side in-dex terms. The only thing that remains to be doneis to ensure that this index term is eventually postedso that performance remains logarithmic in the size ofthe data. And this is exactly what the Pi-tree indexedside pointers permit.For multi-dimensional search spaces, space decom-position can be quite complex. During a side traver-sal, one needs to know which of the possible directionsa side pointer is taking the search. For \lazy" post-ing of an index term, one needs the exact descriptionof the search space handled by the new node so thatthe index structure remains search correct. The Pi-tree provides this with indexed side pointers. Whena side pointer is traversed, at any level of the Pi-tree,this occasion is used to post the missing index term.The sibling term's presence provides the informationneeded to update the parent. That is, the sibling termbecomes the index (child) term posted to the parentnode. Its posting is not an issue of search correctness,but solely of search performance.Crashes may be quite frequent, index posting maybe long delayed, and the Pi-tree index remains searchcorrect because of the indexed side pointers. Indeed,the entire Pi-tree index between the root and the dataleaves can be reconstructed via posting during sidetraversals. All the information needed to index theleaves is present in the leaves. This is not the casewhen the side pointers do not describe the search spaceof the new node. It is these indexed side pointersand this lazy index updating that we exploit in orderto construct and maintain replicated and distributedindexes to the same data. And we do this with noneed to keep the index replicas coherent, even even-tually, and hence we can dispense with messages usedto maintain coherent index structures [6].3 Lazy Update of Replicated IndexesThis section describes how we deal with data nodesplitting which results, of course, from data being in-serted into a leaf of the index structure. We begin witha primitive technique and proceed to a more e�ectivebut still very simple technique. We do not treat nodeconsolidation (deletion) here, which we see as decid-edly secondary. This is left to section 4.We assume that the data that is being indexed isnot itself replicated. We are only concerned, as was

[6], with index replication, by which we mean \inte-rior nodes", not leaf nodes. How data (leaf nodes)might be distributed among several processors of adistributed system is also discussed in section 4. Datadistribution is orthogonal to the handling of the index-ing structure and its replication. Replication of theindex has an excellent cost/bene�t ratio. The cost islow because the index is typically less than one per-cent of the �le size. The performance bene�t is largebecause the server is very e�ectively o�-loaded. Onlythe data node search remains for the server, the clienttaking responsibility for the entire index portion of thesearch.In the subsequent discussion, we are indi�erent asto whether the replicated index is a persistent replicaor simply represents a cached version of the interiornodes of the index.3.1 The Primitive TechniqueWe describe initially a primitive technique thatneeds an absolute minimumof information fromwhichto start and that maintains an index replica withoutknowledge of any other index. We describe this tech-nique not because it is a practical method but to il-lustrates how little information is needed in order tomaintain index replicas. Our pragmatic techniques ex-ploit the existence of other indexes to more rapidlyconstruct a replica with logarithmic search perfor-mance.We assume that data has been entered into a collec-tion of one or more data nodes and that these nodesare connected by indexed side pointers. We furtherassume that there is a pointer, which we call theprime pointer(PP) stored in a known location withinour distributed system. The PP references the primenode(PN) which is responsible for the entire searchspace and which is connected to all other data nodesvia side pointers, either directly or indirectly. Therewill usually be an existing index structure for access-ing these data nodes as well, but our primitive indexcreation and maintenance method does not require orexploit it.We pass the prime pointer to the site at which anindex replica is desired. Search requests that arrive atthat site trigger a traversal of the data nodes via sideindex pointers, starting with the data node referencedby the PP. Each traversal results in the posting of anadditional index term to the index nodes maintainedat the site. The �rst index term posted triggers thecreation of an index root. Subsequent postings resultin the index growing. Index nodes split at each site,completely independently of how they may be splittingat any other site. No coordination between the sites

is required.Replicated Pi-tree indexes need never be coherent.They can contain di�erent nodes, with di�erent indexterms and even have di�erent heights. The complete-ness of a Pi-tree index \replica" reects how manyside traversals have been done via the Pi-tree rootedat a site. These side traversals include the originalsequence whose update necessitated the splitting of adata node. Importantly, here, even the splitting of adata node does not result in a broadcast to all indexreplicas. Only the replica whose traversal resulted inthe update and data node split is noti�ed, and eventhat noti�cation may fail. Information about splits orindex traversals is never broadcast to all replicas.3.2 Index Sharing TechniqueThe primitive technique above stubbornly refusesto learn from others. It insists on discovering, in itsentirety, all the index terms that it will need for eachnew index replica. We can do much better by per-mitting a new replica to learn from a prior replica.This is particularly important when we are dealingwith a cached index, as we then will be starting froman \empty" replica. The idea is to gain access to theindex terms that have already been discovered by an-other index replica that we call the basis. The basiscould be located at a data server.Our sharing technique is initiated as follows. In-stead of passing to the new replica a copy of the primepointer, we rather pass to it a copy of the root of thebasis index. In this way, the new replica receives abatch of information about accessing the underlyingdata. The new replica is a partial one, sharing someof the index structure of the basis. This is similar tothe technique used in Exodus [1] for creating a newversion, but in this case, the intent is to optimize cre-ation of the index replica. Thus, instead of cloningthe path to an updated data node, as done in Exodus,we clone paths as we proceed through the tree doingsearches. This incremental replica creation is is shownin Figure 3.When the replica starts processing search requests,it traverses its own private nodes as it would wereit a completely independent replica. When a searchcomes to an index term that references an index nodeof the basis (or some other replica, since sharing canbe recursive), it requests the acquisition of that nodeof the shared index. When the node is received, it isreplicated locally and the pointer that originally re-ferred to the remote shared node is made to referencethe local copy of the node. In this way, a new replicaacquires index terms in node size batches, permittingit to provide e�cient logarithmic access to the data

old version newversion

shared shared old shared new

root of root of

Figure 3: Exodus tree versioning has versions withunique roots but shared subtrees. For our distributedindexes, these versions are the local replicas. Eachlocal replica starts with a copy of the root of a basisreplica and initially shares the rest of the index withthe basis.immediately, assuming that its basis replica had suchlogarithmic access. This is a form of bulk correctionmessage, i.e., where the index is grown a Pi-tree nodeat a time.Within a cloned index node, the index terms carrywith them a way of identifying the site at which theindex nodes they reference are instantiated. A nodethat is returned to a requesting site and that will bereplicated at that site will be in a form that is appro-priate for the basis site. That is, all pointers to nodesin the basis site will be indicated as private pointers.But the replicated version of the node at the request-ing site must treat these pointers as remote pointers tothe basis site. Thus, our index pointers can no longerbe simple local disk addresses. Note, however, thatpointers to data nodes are unchanged by this opti-mization. These pointers, which are stored at the treelevel immediately above the data level, constitute thevast majority of index terms, and they are una�ectedby index replication. Only higher levels are impacted,which is much less than one per cent of the size of thereplicated index.Once again, there is no need for coherence mes-sages. The index sharing technique is a performanceenhancement that permits a more rapid constructionof the replica. At any time after the replica has ac-quired a complete path to the prime node (PN), allindex terms pointing to shared index nodes can bedropped without sacri�cing search correctness or theability to eventually complete the replica. However,shared index pointers continue to optimize the con-

struction of every un�nished part of the new replica.So retention of the shared index is of great value.What we are describing is an optimization: when-ever index node sharing is not involved, our new tech-nique can default to the primitive behavior. In partic-ular, whenever a side index term is traversed, a newindex term is posted in the parent node. This includesside index terms within an index replica as well as forthe data nodes. In this case, in addition to doing thetraversal, we also copy the node encountered. Theindex term posted is thus to the copied node.3.3 Message MinimizationThe protocol above requires request/response mes-sages every time a single dPi-tree node is transferred.Essentially, nodes are transferred one by one as the Pi-tree node search path is traversed. There is leveragein terms of reduced message tra�c if multiple nodescan be transferred in a single message. The proce-dure below returns all the nodes and their associatedindex terms for the search path that is traversed at ashared replica. Indeed, we accumulate the search pathas we return from lower parts of the tree and pass itto sharing replicas that requested data indexed in thedPi-tree. Since we know the search request, we can infact do this. We proceed as indicated in Figure 4.Again, what we have described is a form of correc-tion message. But now, the entire Pi-tree path froman initial local replicated node to the data is correctedin one large batch operation. Thus, it only requiresmodest access activity from an index site for the in-dex maintained there to provide very e�ective accessto the underlying data. Note also, that unlike [7], atree merge is not required. Rather, the path returnedis appended to the existing replica by replacing a re-mote reference to a reference to a local copy of thepath. Also, we deal easily with the paths that aremissing from the replica as the replica is built. Theindex information in such missing paths is reached viaeither child pointers or via side pointers to nodes inthe basis or to nodes shared by the basis.Requests from a client site to a site with a sharedindex do not require re-traversal of the shared indexstarting from the root. Rather, the search simply con-tinues down the shared index from the node identi�edby the requesting replica. This avoids unnecessarywork and reduces the access burden placed on sharedsites. Thus, if a requesting replica has reached level nof the tree (as measured by distance from the leaves),the shared replica proceeds from level n � 1 onward.The search is not re-initiated at the root.A shared replica, in trying to complete a search fora remote node, itself may become the remote node in

1. Replica A encounters a reference to a shared node Nwhile processing a search request. Replica A sends amessage to B (the owner of N) that identi�es N andthe search request itself.2. Replica B receives the request from A and accessesN. It uses the search request from A to continue thesearch in N.� If the search leads to a data node reference,replica B returns node N's contents to replica A,where the node is replicated. In the replica atA, pointers in node N which had been to nodeslocal to B, become pointers to shared nodes thatrefer to replica B.� If the search leads to a node M at replica B, thenthe search is continued at B, adding the localnodes that it encounters in the search to the setof nodes that it will return to A. These includeboth child nodes and sibling nodes reached viaside traversals.� If the search leads to a shared node M at yetanother replica C, then B requests M from Cand when C has returned the appropriate nodeor nodes that are further down the index tree,B concatenates those nodes with the nodes thatit has traversed locally and returns the entireconcatenated sequence to A. B also adds thenodes from C to its replica of the index.3. Replica A replicates the returned sequence of indexnodes in its local index replica, changing shared point-ers to private pointers as appropriate. This con-version applies both to child pointers and to siblingpointers. It converts the remote pointer that trig-gered the remote request in step 1 to a local pointerto the �rst of the replicated nodes. It then contin-ues the search to the data node P where one expectsto �nd the data. This involves sending the search re-quest and the address of P to the site where P resides.4. Eventually (see the next section on data level orga-nization), the data level responds with a list of sidepointers traversed and the ultimate node Q that con-tains the data space speci�ed in the request. Notethat the data level does not send the contents of thetraversed nodes, as these are not useful for maintain-ing the index replica.5. Replica A adds the index terms returned to the ap-propriate node(s) of its index, performing structuremodi�cations (i.e. node splits) as needed to storethese new index terms.6. Finally, the node returned (Q) is searched for the datarequested in the search.Figure 4: The procedure to build a replica index byadding to it all dPi-tree nodes in the path to the dataas a correction message during an index search.

further processing of the search. This recursive pro-cess ensures that the shared replica has a completepath to the data prior to passing the path to its re-mote client replica. Note also that the data itself is notaccessed by remote replicas holding the shared indexnodes since the shared replica does not need the dataitself. This saves a data access by the shared replica,putting that burden on the requesting replica.3.4 \Seriously" Incomplete ReplicasA replica that is seriously incomplete will accessmultiple new nodes on the path to the data. Thisposes two problems.� How do we keep the correction messages reason-able in size when multiple new nodes need to bereturned?If the path traversed has too many nodes to com-fortably �t into a single return message, this isnot a large di�culty. Whenever results are re-turned that do not include the data requested, apointer is returned to the node where the searchmay be continued. In the full optimization case,this will be to a data node. But should there bea large number of side traversals, this could beto a node at some remote index, either the basisreplica returning the path, or to another. In allcases, the strategy is to include what is returnedin one's own replica and to request a search con-tinuation from the node referenced by this �nalpointer. Thus, how many nodes in the path tothe data are returned to a requester can be veryexibly determined.� How do we avoid long side traversal searches,which are a form of linear search, when a greatdeal of update activity may have moved the dataof interest to a relatively remote node?We need a short circuiting mechanism that pre-vents such long side traversals if we make morethan n side traversals in a search. A value of nthat is approximately the height of the index treeshould be reasonable. At that point, a partic-ularly simple approach is to re-start the searchat the root of the basis replica. Should we havethe same problem with the basis, we re-apply theshort-circuiting technique recursively. The resultis to limit the number of node traversals to nomore than 2 �height� of � tree �number� of �replicas, though in practice, the number of nodetraversals should be very close to the height ofthe tree.

3.5 Shrinking the ReplicaNot only can one grow the size of an index replica,but one can shrink it as well. This is the case for thesame reason that we can be lazy in posting updates tothe index. Data remains accessible via side pointers.Index size reduction is particularly important whendealing with transient (cached) replicas. This permitsus to retain only the part of the tree that is active,and hence to maximize the e�ectiveness of the cachein reducing remote accesses. And this ensures that thepre�x of the entire path to the data is always presentat the replica.It is almost always possible to delete an index termfrom a local replica, whether or not that index termpoints to a local node of the replica, a data (leaf) levelnode, or to a node that exists in the basis replica.Deletion of an index term must leave the containmentstructure of the index node well formed. The result isthat the container for a node X whose index term wedelete will appear to contain the space previously con-tained by X. Subsequent searches to the search spaceof X will be directed to X's container. Since the con-tainer has delegated responsibility for the space to X,sibling traversal from the container will lead to X.Such sibling traversals can be used to re-post the in-dex term for X. Thus, deleting X's index term leavesthe parent node of the dPi-tree in a state as if thecontainer for X has been split with X being extracted,but before the index term for X has been posted.We can delete an entire dPi-tree node N by drop-ping all its child index terms except for the index termto the child that serves as the containing node for theother children. At any point we can try to merge anode I with its container node. (And N will alwayscontain at least this one child index term.) We insertthe remaining contents of N into N's container node,including N's children as children of the container andN's siblings as siblings of the container. Sibling termsare never directly deleted. A sibling term is only re-moved when the node to which it refers is merged intothe container. At this point the sibling index termreferring to the node from the container is dropped.Such deletion of index terms permits us to freespace in a dPi-tree index node for more active partsof the tree. Dropping an entire index node permitsus to reclaim space in the cache for other nodes. Allinformation so dropped can be easily recovered shouldit be needed again. No coordination/coherence withother replicas is required for this. Subsequent refer-ence to data in subtrees that are not represented inthe index will result in the reconstruction in the localreplica of the path to the data requested.

When we are dealing with transient replicas (cachedcopies of the dPi-tree index), a normal assumption isthat no other replica is using it as a basis for repli-cation. Thus, there are no other replicas with point-ers to dPi-tree nodes of the transient replica. Hence,for these replicas, there is no need for coherence mes-sages to cope with node deletion. Note here, however,that deleting nodes from an index replica is not sim-ply a matter of dropping them and reaccessing themas needed, which is the way that caching is normallyaccomplished. Such simple node dropping is only pos-sible if one were to retain an index term to a node inthe basis. This is possible, but does not provide for theincremental construction of the replica and the com-plete independence among replicas that is so e�ectiveat reducing the search and update cost.4 Data Level OrganizationWe have not yet addressed how the data itself mightbe managed by a data server, and how its updatingand data node splitting is handled. That is the topicof this section. We describe two approaches for assign-ing data nodes to servers, one involving centralizing alldata at a single server, the second involving distribut-ing it among multiple sites.4.1 Centrally Stored DataThe simplest way to manage the data, which is notreplicated in our system model, is to assign all of itto a single data server. The data server itself shouldprobably maintain an index to the data, from whichfuture index replicas can be initialized. Our central-ized data server maintains the data and the index forit very much as it would were there no index replicasinvolved. We describe here only the incremental dif-ference that is made by the data server's need to copewith the index replicas and update requests that cancome from multiple clients with replicas.As with a search request, the data server receivesan update request from a (index replica maintaining)client that identi�es the data node at the server wherethe request activity is expected to occur. For a searchor an update, this is the node that the client believesdirectly contains the portion of the search space de-sired. An update request is also accompanied by thenew data and an indication of whether this is an up-date, insert, or delete.The identi�ed data node may contain the searchspace desired, or it may have delegated it to anothernode which can be accessed by side traversal from theoriginally identi�ed node. Each side traversal resultsin a side index term being added to the message thatwill be sent back to the requester. These side point-ers represent index terms that should be added to the

client's index replica to make its index more complete.A data node split in order to provide storage to accom-modate the update is simply a particular instance ofthis process. (The only additional work is that thedata server itself will probably want to update its ownindex to the data.)Our central server needs to perform concurrencycontrol and recovery on the data that it manages. Thiscan most easily be handled by the Pi-tree techniqueitself [11] but other techniques are possible so long asside index terms are maintained [4, 11, 12]. There isno guarantee to the clients that any data node that itmay have read will remain valid while the client cachesit (in the traditional way). The client must take outexplicit locks, on either some of the records of thedata node, or on the node itself, at the server. Anobvious optimization is to piggyback lock requests onthe messages that request the data nodes themselves.4.2 Distributing Data Among Sites4.2.1 Distribution StrategySupporting index replicas to permit the index searchto be o�-loaded to clients permits a substantial scale-up in the number of clients that can be served withthe indexed data. However, the single central dataserver remains a potential bottleneck. To scale fur-ther, the data itself needs to be distributed amongmultiple servers. A few of the several ways the distri-bution might be done are:Opportunistic: Choose the updating site as the sitefor the new node that is created by the split. Thisreduces communication costs because the updat-ing site is already a participant.Randomized: Choose the site for the new nodebased on a randomization process that uniformlydistributes the load, such as via a hash functionapplied to the key. While not precluding the needfor re-balancing, it is much reduced.Range: Assign particular sites ranges of key values tostore. The new node goes to the site handling thekey range involved. This localizes range searchingto a smaller number of sites.Where the new node in a node splitting index mod-i�cation resides at the same site as the original node,the techniques used for centrally managed data suf-�ce. However, redistribution of data among the siteswill undoubtedly be required at times. System con�g-urations change, update activity skews the load, toomany keys fall into one range. Indeed, unbalancedload is possible with essentially all data placement

policies without resorting to very substantial coordi-nation message overhead. Re-balancing data betweensites can be accomplished in terms of node deletion.To migrate a node, we perform a data node split",and move the entire contents of the old data node tothe new node at a di�erent site. This uses the nodesplit protocol described below. Then we delete the oldnode. Clearly, the magic of this is in the handling ofnode deletes, the subject of section 4.3.4.2.2 Distributed Node SplittingFor the tree restructuring resulting from a split to cor-rectly survive a system crash, the action of splitting anode must be atomic. That is, within the same atomicaction, two actions need to occur.� The new node must be allocated and initializedwith about half the contents of the old node.� The old node must be updated so as to removethe contents now stored in the new node and havea sibling index term that now identi�es the newnode as the place where a search is to continue.The new node and the old node may be co-located orat separate sites. In either event, we require atomicity.When co-located, such atomicity is easy to provide.When at separate sites, we require atomicity via adistributed commit protocol.Two site atomicity can be achieved very inexpen-sively in this case. Site N writes the new node andprepares its part of the atomic action. N noti�es siteO that serves the old node that the old node has beensplit, the key value used in accomplishing the split,and the address of the new node. In the same message,N transfers commit coordination to O. O removes thedata now in the new node from the old node, and in-serts a side index link in the old node that refers tothe new node at site N. O then commits the atomicaction locally. N waits to receive a separate accessrequest for the new node before committing its cre-ation of the new node, thus using this access messageas a lazy commit message. Should N wait too long,it asks O whether the action committed. It may needto do that in any event as commit messages may belost. Site O remembers the commit status and cananswer such inquiries by simply checking whether theold node has been updated with a side index link tothe new node. This results in a normal case with onlyone message to both transfer information and to co-ordinate the distributed atomic action.There is no commit processing overhead for site O.The overhead involves only site N's need for a durable

\prepared" state which permits the new node to bedeleted if site O does not commit. For index replicaupdating, a lazy message informs the updater of thenode split trigged by its update. Other replicas will benoti�ed during subsequent accesses. None of the indexupdating need be transactional as coherence is not re-quired. The sibling index term will keep moved dataaccessible for search as well as providing the informa-tion needed for subsequent updating of the indexes.4.3 Handling Deletes4.3.1 The Deletion StructuresIn order to keep the Pi-tree data level search correctwhen a data node N is deleted, we require the followingactions to be atomically performed.� Empty the deleted node N by updating N's \con-taining" node, i.e. the one with sibling index termreferring to N, with the data and sibling terms ofN so that all data for which the container is re-sponsible remains accessible.� Delete N and establish a tombstone for it contain-ing a forwarding address to N's containing node.(We eventually garbage collect this tombstone.)The strategy we pursue will preserve index correctnessin a very lazy fashion. No index replica need be in-volved in a delete atomic action. A data node deleteonly requires an atomic action involving the site Dwith the node to be deleted and the site C with itscontainer. These sites may have to handle accessesrelated to the deleted node for some time after thedelete has been accomplished.Site D keeps a tombstone for the deleted node Nfor as long as any index replica may have a pointer toN. The tombstone identi�es the search space of N andcontains a forwarding address to N's container, nowresponsible for the search space of N. This permitsthe system to distinguish invalid references to N fromvalid references to the same node when N is reused.All incoming accesses must check the tombstone ta-ble before accessing data nodes. This tombstone tablemust be persistent, but should be small enough to re-side entirely in main memory while the index is beingused. To keep it small, we garbage collect tombstonesas described next.4.3.2 Garbage Collecting the TombstoneThere is control information in each node describingevery deleted node that the node has absorbed andthat has an outstanding tombstone. This control in-formation consists of a description of the search space

of the deleted node together with a bit vector witha bit for each index replica. The bit is on if that in-dex replica may have a dangling pointer to the deletednode, and o� otherwise. When all the bits have beenturned o�, site C tells site D that the tombstone canbe garbage collected.There will usually be zero, sometimes one, rarelymore than one such deleted node whose tombstone acontainer node needs cope with. Further, we assumethat the number of index replicas is modest, say fewerthan 64, perhaps fewer than 16. Thus the control in-formation for a deleted node might be no more thana word per deleted node with tombstone, and a fewwords at most. Also, since deletes are optional andrequire that the container accept data as well as con-trol information from the deleted node, the containernode can refuse to participate in a delete to limit thenumber of such deleted nodes.We distinguish two kinds of data access to thesearch space that had been handled by the deletednode.Accesses by way of the tombstone When an ac-cess request comes to site D, the request is for-warded to C (as if it were a side traversal) to-gether with an indication that this request comesvia the tombstone. Site C satis�es the request,and includes in its response not only the data re-quested, but the container node address and anindication that the deleted node has in fact beendeleted. The requester then removes its indexterm referring to the deleted node. This is analo-gous to the lazy way in which node splitting andindex maintenance is handled. (Note: Since theindex term is not removed within a coordinatedatomic action with the request, we can only saythat we expect it to be removed.)Accesses directly to the container When an ac-cess specifying a search space handled by thedeleted node comes directly to the container, itis clear that the requestng replica does not havea dangling pointer to the deleted node. The bitassociated with that index replica in the containernode is turned o� (if not already o�). The requestis then answered in the normal fashion. 1When the bits representing the index replicas haveall been turned o�, site C noti�es site D that the tomb-stone can be garbage collected. This does not require1This assumes that once an index replica indicates that itknows about a node deletion, that no delayed request for thedeleted node ever is made again from that replica. This requiressome care by the replicas.

a two site atomic action. Rather, site D simply dropsthe tombstone in a local atomic action. It then no-ti�es C that the tombstone is gone. Should eithermessage be lost, C will eventually ask D to delete thetombstone again and D will comply or simply reportthat this has been done already. [This exploits tomb-stone existence as testable state for the atomic action.]Once the tombstone has been con�rmed as garbagecollected, the information in the container node forthe tombstone can be discarded as well.4.3.3 Additional CommentsThe deleted node can serve as its own tombstone. Thecost of this is that the node itself is not garbage col-lected until all replicas have referenced the containernode directly. The bene�t is that no separate tomb-stone table is needed, and there is no tombstone \look-aside" needed before accessing data nodes at a site. Ifdeletion is su�ciently uncommon, this is a good strat-egy. If deletion becomes more common, then the needto reclaim space becomes more urgent, justifying aseparate tombstone table.Index node deletion for other than transient repli-cas(as opposed to data node deletion) does not ap-pear to have much of a payo�. An index node willrarely become su�ciently empty because many datanodes must �rst be deleted. Further, each index isless than one percent of the size of the data so mostof the gain from node deletion involves deleting datanodes. Index node deletion is a trivial task when noindex sharing is involved (see section 3.4). However,supporting deletes with index sharing requires greatere�ort, which we do not describe, and complicates thesharing process itself.5 DiscussionWe have shown how to generalize an existing in-dex structure, the Pi-tree, for index replication in acluster-based or client/server system. The advantageof index replication is to o�-load index traversals fromthe primary data server to the client or node perform-ing the access. This also avoids the message overheadof a distributed search.5.1 Very Lazy Replica UpdatingThe advantage of using dPi-trees over other indexorganizations is that dPi-trees enable a very lazy strat-egy for index maintenance. This exploits Pi-tree sib-ling index terms which were initially used to keep thePi-tree recoverable while enabling high concurrency.No explicit (and separate) index coherence messageswere required, and indeed, the node structure of theindex replicas need not be coherent for the search to

remain correct. It is the redundancy of paths throughPi-tree indexes (both child and sibling index terms)that makes this possible. Thus, our replication strat-egy has less overhead than any of its predecessors.If other methods can refer to their update strat-egy as \lazy", then we can justi�ably describe ours as\very lazy". Separate coherence messages are neverused in index maintenance for node splitting. A \cor-rection message" is always piggybacked on the re-sponse to an access request, and we describe how toreturn the entire shared path from the current pointin the local index to the remote data. This permitsa local replica to update its index with large batchoperations. The result is that no tree is likely to bemore than a few accesses away from providing excel-lent indexing performance. Even when dealing withdeletes, we take a lazy approach of using tombstonesand notifying an index replica that a delete has oc-curred as part of a response to an access request. Onlydata level restructuring involving splitting or deletionrequires coordination via atomic actions. And theseactions involve only sites that host data nodes. Indexonly sites need never be involved.Messages to inform replicas of new data nodes arerequired in all approaches. However, with our ap-proach, the messages needed to provide index replicacoherence are never needed as replica coherence is it-self unnecessary. Delays introduced by the need tosynchronize for index coherence are thus completelyavoided. Finally, the simplicity of the strategy makesits implementation cost modest compared with meth-ods requiring more strenuous coherence measures.We suggest that node deletion only occur within theindex level of the dPi-tree for transient replicas. Suchdeletes are strictly local and have no impact on otherreplicas when we preclude cached (transient) replicasas the basis for other replicas. Hence, no coherencestrategy of any sort is required for them.5.2 Concurrency and RecoveryEach replica supports high concurrency and recov-ery at its site, an issue not addressed previously. Indexconcurrency and recovery can be handled at a singlesite by means of the Pi-tree algorithm [11]. Multi-site coordination is not needed. Index node locking isneeded only to provide synchronization among localupdates to a replica. When a response to a remote re-quests needs to include a version of an index node, itis always acceptable to deliver a copy of an earlier ver-sion of the node since whether the node is out-of-dateis not critical to our algorithms.Data (as opposed to index) concurrency and recov-ery can be handled by a variant of the Pi-tree strategy.

Typically, this would exploit low level physical redoand high level logical undo. Because data nodes canbe split between sites, recovery needs to cope with thisdistribution. But this is a standard part of distributedactions and poses no additional di�culties.5.3 Range SearchingWhen a search request is for a range of values, adistributed search structure can execute the request inparallel. This is a very important aspect of index treeperformance. During a range search, all children nodesof an index node that are within the range can beaccessed in parallel. When the index is to distributeddata, di�erent nodes can return the data within therange while executing in parallel.The search requesting node then needs to determinewhen the range search is complete. The existence ofside pointers for dPi-trees makes this easy. We needcompute twi sets as we perform the search.nodes needed Addresses for data nodes within therange that are at other processes. This is initial-ized to the data nodes that are immediate chil-dren of the index nodes in the range.nodes searched Addresses for all nodes that arewithin the range and that have been searched al-ready.Each process involved in the search returns (1) its datain the range, together with (2) the list of data nodeaddresses in which the data was found, which is addedto \nodes searched", and (3) the list of side pointers tonodes that are part of the range but that are locatedelsewhere, which are added to \nodes needed". Whennodes searched equals nodes needed, the range searchis complete.5.4 Data NodesHow to deal with the data at the leaf level of an in-dex tree is largely orthogonal to index replication. Wedemonstrated lazy methods that are in the same spiritas our lazy index replication, to deal with distribut-ing the leaves across multiple sites. We also showedhow to lazily handle node deletes. These methodsavoid the introduction of coherence messages. How-ever, there is more complexity involved as splittingand deleting nodes requires atomicity, and distribu-tion increases the cost and complexity of atomicity.We use a tombstone technique for coping with dan-gling references to deleted data nodes. Hence, lockcoupling is not required when accessing the dPi-treesince its only function is to provide assurance that thereference found at one level of the tree is not danglingwhen used to access the next level.

5.5 GeneralityThe laziness of our method is enabled by the factthat Pi-trees maintainnot only a side pointer to siblingnodes, but an entire side index term with both spacedescription and pointer [11]. It is this index term thatprovides the source for lazy updating of index replicasas all replicas eventually store this index term. This isa very powerful paradigm for lazy distributed searchstructure maintenance that should �nd use in otherdistributed and/or replicated search structures, e.g.hashing or grid like structures. What we do require isthat the search space for which a node is responsiblenot increase since we deal with node deletes in a ratherspecial and less e�cient fashion. This precludes thedirect application of our techniques to spatial searchusing the R-tree [5]. We feel, however, that the hB-Pi-tree [3] is a more robust search structure in any event,and our techniques apply immediately to it.AcknowledgmentsWitold Litwin provided a valuable critical readingof an earlier version of this paper. In addition to cor-recting misunderstandings about existing distributedindexing methods, he raised two issues: bounding theworst case number of side traversals (see section 3.4)and parallel search for range queries, with its require-ment to determine when such a query is complete (seesection 5.3).References[1] Carey,M., DeWitt, D., Richardson, J., and Shekita,E. Object and File Management in the EXODUS Ex-tensible Database System. Proc. Very Large DatabasesConf.(Sept. 1986) 91-100.[2] Devine, R. Design and Implementation of DDH: A Dis-tributed Dynamic Hashing Algorithm. 4th Int'l Conf.on Foundations of Data Organization and Algorithms.(Oct. 1993) Evanston, IL[3] Evangelidis, G., Lomet, D., and Salzberg, B. The hB-Pi-Tree: A Modi�ed hB-tree Supporting Concurrency,Recovery, and Node Consolidation. Proc. Very LargeDatabases Conf.(Sept. 1995) Zurich, Switz. 551-561.[4] Gray, J. and Reuter, A. Transaction Processing: Con-cepts and Techniques Morgan Kaufmann (1993) SanMateo, CA[5] Guttman, A. R-trees: A Dynamic Index Structure forSpatial Searching. Proc. ACM SIGMOD Conf.(May1984) Boston, MA 47-57.[6] Johnson, T., and Krishna, P. Lazy Updates forDistributed Search Structure. Proc. ACM SIGMODConf.(May 1993) Washington, D.C. 337-346.[7] Kroll, B. and Widmayer, P. Distributing a Search TreeAmong a Growing Number of Processors. Proc. ACMSIGMOD Conf.(May, 1994) Minneapolis, MN 265-276.[8] Lehman, P., and Yao, B. E�cient Locking for Concur-rent Operations on B-trees. ACM Trans. on DatabaseSystems 6,4 (Dec. 1981) 650-670.

[9] Litwin, W., Neimat, M-A, and Schneider, D. LinearHashing for Distributed Files. Proc. ACM SIGMODConf.(May 1993) Washington, D.C. 327-336.[10] Litwin, W., Neimat, M-A, and Schneider, D. RP*: AFamily of Order-Preserving Scaleable Distributed DataStructures. Proc. Very Large Databases Conf.(Sept.1994) Santiago, Chile[11] Lomet, D. and Salzberg, B. Access Method Concur-rency with Recovery. Proc. ACM SIGMOD Conf.(May1992) San Diego, CA 351-360.[12] Mohan, C. and Levine, F. ARIES/IM: An E�cientand High Concurrency Index Management MethodUsing Write-Ahead Logging. Proc. ACM SIGMODConf.(May 1992) San Diego, CA 371-380.[13] Vingralek, R., Breitbart, Y., and Weikum, G. Dis-tributed File Organization with ScaleableCost/Performance. Proc. ACM SIGMOD Conf.(May,1994) Minneapolis, MN 253-264.

