
On Fast and Provably Secure Message Authentication Based onUniversal Hashing�Victor ShoupBellcore, 445 South St., Morristown, NJ 07960shoup@bellcore.comDecember 4, 1996AbstractThere are well-known techniques for message authentication using universal hash functions. Thisapproach seems very promising, as it provides schemes that are both e�cient and provably secure underreasonable assumptions. This paper contributes to this line of research in two ways. First, it analyzes thebasic construction and some variants under more realistic and practical assumptions. Second, it showshow these schemes can be e�ciently implemented, and it reports on the results of empirical performancetests that demonstrate that these schemes are competitive with other commonly employed schemes whosesecurity is less well-established.1 IntroductionMessage Authentication. Message authentication schemes are an important security tool. As moreand more data is being transmitted over networks, the need for secure, high-speed, software-based messageauthentication is becoming more acute.The setting for message authentication is the following. Two parties A and B agree on a secret key a. Amessage authentication scheme consists of two algorithms S and V . If A wants to send a message x to B,then A �rst computes the message authentication code, or MAC, � = Sa(x), and sends the pair (x; �) to B.When B receives a pair (x; �), B evaluates Va(x; �), which returns 1 if the MAC is valid, and 0 otherwise.Security for message authentication schemes can be formally de�ned, as in Bellare et al. [4], essentiallyalong the same lines as for digital signatures [8]: we say that an adversary forges a MAC if, when givenoracle access to Sa and Va, it obtains Va(x; �) = 1 for some message x that was never given to the oracle forSa; a message authentication scheme is secure if it is computationally infeasible to forge a MAC.Common Approaches to Message Authentication. One of the most widely used message authenti-cation schemes is built using a block cipher, typically the Data Encryption Standard (DES), and applyingit to the message in Cipher Block Chaining (CBC) mode. Only recently has this scheme been shown to besecure [4], under a reasonable assumption about DES, although the level of security provided by this schemedegrades quite quickly as the number of queries or the message length increases. Moreover, as DES is appliedto every block of the message, this scheme is quite slow, especially in software.Another common practice today is to use a cryptographic hash function h, such as MD5, and set Sa(x) =h(a �x �a), where \�" denotes concatenation. Many variations on this scheme have been proposed as well (see[16])). These schemes are typically much faster than the CBC-DES scheme; unfortunately, the security ofthese schemes is not well-established; to obtain much con�dence in the security of this approach, one must�A preliminary version of this paper appears in Proc. Crypto '96, pp. 313-328, 1996.1



assume a good deal more about the properties of h than seems warranted (but see [2] for some progress inthis area).The Universal-Hash Construction. The problem of message authentication was studied early on in aninformation-theoretic setting, �rst by Gilbert et al. [7], and later by Wegman and Carter [18]. Wegman andCarter's universal-hash construction was later placed in a cryptographic setting by Brassard [6], Krawczyk[12], and Rogaway [17]. This construction uses a 2-universal family H of hash functions, and a pseudo-random family F of functions. Assume that the outputs of both types of functions are bit strings of thesame length, say l. The secret key for such a scheme consists of a pair (h; f), where h 2 H and f 2 F arechosen at random. The MAC for a message x is (r; f(r)� h(x)), where the \tag" value r is a counter thatis incremented with each application of algorithm S.Actually, one does not need a 2-universal family of hash functions, but rather, a family of hash functionssatisfying the following property for suitably small � � 2�l: for any pair of inputs x1 6= x2 and for any l-bitstring z, for a random h 2 H, the probability that h(x1)� h(x2) = z is no more than �. In this case, we sayH is an �-AXU (almost exclusive-or universal) family of hash functions.The main theorem concerning the security of the basic universal-hash construction is the following (see[17] and [12] for more details and references).Theorem 1 Assume H is �-AXU, and that F is replaced by the truly random family R of functions. In thiscase, if an adversary makes q1 queries to S and q2 queries to V , the probability of forging a MAC is at mostq2�.If in passing from R to F the forgery probability should signi�cantly increase, this would give us astatistical test to distinguish F from R that makes q1 + q2 queries to the test function.Our Contributions. We contribute to this line of research in two ways. In the �rst part, xx2-3, we analyzethe basic construction and some variants under more realistic and practical assumptions. In the second part,xx4-7, we show how schemes based on universal hashing can be e�ciently implemented, and we report onthe performance of these implementations.New Analysis and Constructions. Consider the choice of the family F of pseudo-random functions F .Since f is evaluated at just a single counter value per message, one can usually a�ord to employ a functionwith strong security properties, but which may be somewhat slow to evaluate. A block cipher such as DESseems like a very good choice.There is, however, an irritating problem with using DES in conjunction with Theorem 1: namely, DES isa permutation (on 64-bit strings). The level of security implied by Theorem 1 decreases quadratically withq1+q2, and as q1+q2 nears 232, Theorem 1 says nothing at all about the security of the message authenticationscheme. This is because with close to 232 queries to a test function, we can already distinguish DES from arandom function, since DES will not yield any collisions, unlike a random function.There are several cryptographic constructions in the literature (e.g., [3, 1]) that su�er from the sameproblem.In x2, we analyze the security of the universal-hash construction using pseudo-random permutations, andshow that it is in fact more secure than implied by the above theorem. We also give a small modi�cation tothe universal-hash construction with even better security properties.Another potential problem with the basic universal-hash construction is that algorithm S is not stateless.This might be inconvenient in certain situations where reliably maintaining state is di�cult, or where manyparties are authenticating with the same key. In x3, we show a modi�cation to the basic construction thatis stateless and e�cient, while still being just as secure as the basic universal-hash construction.Fast Implementations. The most critical aspect of the universal-hash construction in terms of performanceis the familyH of hash functions. We need to be able to generate random elements of H reasonably quickly,and more importantly, we need to be able to apply functions in H to messages very quickly.We discuss three types of hash functions based on polynomials over �nite �elds. We show how thesethree types of hash functions can be e�ciently implemented in software, and we report on the performance2



of these implementations. In x4 we present the three hash functions under consideration, and summarizeour empirical results. In x5-7 we discuss our implementations of these functions, as well as some possiblealternative implementations. Our results indicate that on typical workstations and personal computers, theperformance of these hash functions is competitive with that of other commonly employed authenticationschemes whose security is less well established.Some of our techniques may be useful in other contexts as well, such as our method for constructing arandom irreducible polynomial of given degree over GF(2).2 Using a Pseudo-Random Family of PermutationsAs mentioned in the introduction, the established theory on the universal-hash construction is not adequateto explain what happens when pseudo-random permutations are used instead of pseudo-random functions.The following theorem is useful in that regard.Theorem 2 In the basic universal-hash construction, suppose H is �-AXU, and that F is replaced by thetruly random family P of permutations on l-bit strings. Suppose that the adversary makes q1 queries to Sand q2 queries to V . Then provided q21 � 1=�, the probability that the adversary forges a MAC is at most2q2�.This theorem is proved in the Appendix A.As usual, if in passing from P to a pseudo-random family F of permutations, the forgery probabilityincreases signi�cantly, we get a statistical test distinguishing F from P .The usefulness of this theorem depends on the �; for long messages, there is usually a trade-o� betweenthe e�ciency of the hash function and 1=�. This motivates the following construction.Let F be a family pseudo-random permutations on l bits. Let H1 be an �1-AXU family of hash functions,and H2 an �2-AXU family of hash functions. Assume these functions have l-bit outputs and that functionsin H1 have l-bit inputs.As in the basic universal-hash construction we use a tag value r that is a counter incremented with eachinvocation of S. The secret key for the MAC consists of f 2 F , h1 2 H1, and h2 2 H2, chosen randomly.The MAC for a message x is (r; f(r) � h1(r)� h2(x)):Theorem 3 Suppose that F is replaced by the truly random family P of permutations, and that an adversarymakes q1 queries to S and q2 queries to V . Then provided q21 � 1=�1, the probability that the adversary forgesa MAC is at most 2q2�2.This theorem is also proved in appendix A.As an example, suppose we are using DES and l = 64. Since h1 is applied to a short string, we can a�ordto use a familyH1 with �1 = 1=264. The theorem says we should use algorithm S no more than 232 times, atwhich point we should switch the MAC key. But note that until this point is reached (if ever), the securitydegrades only very little.3 Using a Random TagConsider the basic universal-hash construction. Let H be an �-AXU family of hash functions, and F apseudo-random family of functions, all functions mapping to l-bit strings, and that the functions in F havel-bit inputs. To make S stateless, instead of a counter, we might use a random l-bit tag. However, thesecurity in this case can degrade very rapidly. After O(l1=2) queries to the S-oracle, it is likely that two tagvalues collide. Depending on the family of hash functions, this event can compromise the scheme completely(this is certainly true for the hash functions discussed in this paper).3



One solution is to double the length of the random tag. However, we then need a pseudo-random functionfrom 2l to l bits. If we want to base the security on DES, with l = 64, we could use the general constructionof Aiello and Venkatesan [1] to build a pseudo-random function from 2l to l bits. However, that wouldrequire 6 DES applications. For the particular situation at hand, it turns out that two DES applications aresu�cient. We outline this construction.The secret key consists of two functions f and g chosen at random from a pseudo-random family F offunctions on l-bit strings, a random � 2 GF(2l), and a hash function h chosen at random from an �-AXUfamily of hash functions with l-bit outputs. To compute a MAC for a message x, the signing algorithmgenerates r; s 2 GF(2l) at random; the MAC is (r; s; f(r)� g(s) � �rs � h(x)).Theorem 4 Suppose that F is replaced by the family R of truly random functions on l-bit strings, and thatthe adversary makes q1 queries to the signing algorithm, and q2 queries to the verifying algorithm, whereq1 < 2l�1: Then the probability that the adversary forges a MAC is at most 1:5q21=22l + q2�:As usual, if in passing fromR to F we get a signi�cant increase the forgery probability, we get a statisticaltest to distinguish F from R.It still remains to prove an analogous theorem for permutations; nevertheless, DES, or some simpleconstruction based on it, still seems like a good candidate for F .4 Three Types of Hash FunctionsIn the remainder of this paper, we deal with the choice and implementation of an �-AXU family of hashfunctions.In this section, we present the three types of hash functions under consideration. We assume thatmessages are broken up into n blocks, each containing l bits. The output of the hash functions is l bits.The Evaluation Hash. The evaluation hash views the input as a polynomialM (t) of degree less than nover GF(2l). The hash key is a random element � in GF(2l). The hash value is M (�) � � 2 GF(2l). Thisfamily of hash functions is �-AXU with � � n=2l.The Division Hash. The division hash views the input as a polynomial m(x) of degree less than nl overGF(2). The hash key is a random irreducible polynomial p(x) of degree l over GF(2). The hash value ism(x) � xl mod p(x). Since the total number of irreducible polynomials of degree l is � 2l=l, it is easy to seethat this family of hash functions is �-AXU with � � nl=2l.The GeneralizedDivisionHash. The third hash function actually includes each of the �rst two as specialcases. Suppose that k j l. The generalized division hash views the input as a polynomial m(x) over GF(2k)of degree less than nl=k. The key is a random monic irreducible polynomial p(x) of degree l=k over GF(2k).The hash value is m(x)xl=k mod p(x). It is easy to show that this is �-AXU with � � nl=k2l.The division hash was �rst suggested for use in message authentication by Krawczyk [12]. The other twoare obvious variants, but have somewhat di�erent performance and security properties.An output length of l = 64 should provide an adequate level of security for the above three hash functions.Note that from the point of view of message authentication, MD5's output length of 128 is really \overkill"|this output length was chosen to make �nding collisions hard, another problem entirely.We have implemented the evaluation and division hashes with l = 64. One disadvantage of the divisionhash is that we have to generate a random irreducible polynomial of degree 64 over GF(2) whenever wegenerate a hash function. This can be somewhat time consuming. Moreover, with the division hash, onee�ectively has 6 bits less security than with the evaluation hash (i.e., � increases by a factor of 26). However,the division hash runs somewhat faster than the evaluation hash. We have also implemented the generalizeddivision hash with l = 64 and k = 8. We have found that with this method, hash function generation is4



much faster than with the division hash, while hashing speed is identical to that of the division hash. Also,one has only 3 bits less security than with the evaluation hash.We briey summarize some of our empirical results; more details can be found later in the paper. Thetimings are based on a C implementation using gcc on a Sun Sparc-10 workstation with a 70MHz clock. TheSparc-10 has a very typical 32-bit RISC architecture.One implementation of the generalized division hash uses one 8KB table for each hash function. Theset-up time (the time to generate the hash function and pre-compute the associated table) is about 255�s.The hash function itself achieves a bit rate of 50-75Mbps (106 bits per second).Cache Behavior. Because of the relatively large table size, cache behavior can heavily inuence the speedof the hash function. We performed a number of experiments to try to measure this inuence, and wherethe speed seemed to rely heavily on cache behavior, we report this speed as an interval. The highest speedin this interval represents an ideal situation, where a huge amount of data is hashed before pushing the tableout of cache. The lower speed represents a situation where only 2KB of data are hashed before pushing thetable out of cache. We still need to gain more practical experience with cache behavior.Using a table of just 2KB, the evaluation hash can be implemented so that it has a set-up time of just30�s, and runs at 34-36Mbps. Note the much smaller variance in running time due to cache e�ects.We have not included in the above the cost of the pseudo-random function. Using one of the faster DESimplementations, built by How [10], the set-up time is about 75�s, and the time for one DES operation isabout 10.5�s.We compare the above with a standard C implementation of MD5 on our machine, for which gcc producesquite good code. MD5 achieves a top speed of 41Mbps. This measures the speed of the internal compressionfunction; dealing with word-alignment and byte-ordering problems can reduce MD5's speed somewhat. Cachee�ects do not seem to a�ect the speed of MD5 signi�cantly.It is clear from the above running times that CBC-DES is very slow, running at only 6Mbps.As another example, we compiled our code for the generalized division hash on a 90 MHz Pentium,running linux and using gcc. Because of the very small register set on the Pentium, the gcc compiler wasnot able to generate very good code, and so we hand optimized the assembly code. The set-up time was was220�s, and the hash function runs at 85-100Mbps.We compare this to the hand-optimized assembly implementation of MD5 by Bosselaers, Govaerts, andVandewalle [5]. This runs at 113Mbps.Also, How's implementation of DES on our Pentium has a set-up time of 94�s, and one application takes11.5�s. This implies a rate of about 6Mbps for CBC-DES.5 The Evaluation HashTo implement the evaluation hash for GF(264), we select an irreducible polynomial f(x) 2 GF(2)[x] of degree64, and represent GF(264) as GF(2)[x]=(f(x)). It is convenient, especially on 32-bit machines, to select f(x)of the form x64 + f0(x), where deg f0(x) is small, for example f(x) = x64 + x4 + x3 + x+ 1.To evaluate a polynomial in GF(264)[t] at a point � 2 GF(264), we use Horner's rule. Thus, the criticaloperation is the map � 7! � � � (� 2 GF(264)): Since � remains �xed for many such multiplications, we canspeed things up considerably by performing a pre-computation.Suppose � = a(x) mod f(x), where a(x) 2 GF(2)[x], with deg a(x) < 64. For a given b(x) 2 GF(2)[x],with deg b(x) < 64, we want to compute a(x) � b(x) mod f(x). We discuss two methods to do this. Inboth of these methods, we assume that we have a table that allows us to compute the map v(x) 7! v(x) �x64 mod f(x) (deg(v(x) < 8) by table-lookup. This table will have 256 entries, and because of the specialform of f(x), each entry will be only 16-bits wide, for a total of 0.5KB.Method 1. Without any pre-computation, we can compute a(x) � b(x) mod f(x) for given a(x) and b(x) asfollows. First, we compute xia(x) mod f(x) for 0 � i < 8. Second, we write b(x) =P7i=0 bi(x)x8i, initialize5



r(x) to zero, and do the following:for i 7 down to 0 do r(x) r(x)x8 + bi(x)a(x) mod f(x):The pre-computed tables facilitate the computation.Timing results. In our Sparc-10 implementation, each multiplication mod f(x) takes about 6�s, whichyields a hash rate of about 11Mbps. The values xia(x) mod f(x) (0 � i < 8) were allocated to registers byour compiler, and the number of instructions executed per byte is about 32.Method 2. This method is the same as Method 1, except that given a(x) we perform a pre-computationthat allows us to compute the map v(x) 7! v(x) � a(x) mod f(x) (deg v(x) < 8) by table-lookup. This tablewill have 256 entries, but each entry will be 64-bits wide, for a total of 2KB.Timing results. In our Sparc-10 implementation, the pre-computation step for a given a(x) takes 30�s.The hash function then runs at about about 34-36Mbps. The number of machine instructions executed perbyte is about 14.For both of these methods, to achieve these hash rates one must process the message word-by-word, andnot byte-by-byte; that is, each word of the message is read from memory as a whole, and then exclusive-oredinto a register. Any byte-ordering problems can be dealt with at virtually no cost.6 The Division HashWe now consider the division hash. There are two problems that need to be dealt with: how to apply thehash function given the polynomial p(x) 2 GF(2)[x] of degree 64 that de�nes it, and how to generate arandom irreducible polynomial over GF(2) of degree 64. We deal with these problems in turn.6.1 Hash Function ApplicationAssume we have the polynomial p(x) de�ning the hash function. If the input to the function is m(x) =Pn�1i=0 mi(x)x64i, we initialize r(x) to zero, and do the following:for i n� 1 down to �1 do r(x) r(x)x64 +mi(x) mod p(x);where m�1(x) is de�ned to be zero.The critical operation is the 64-bit reduction map v(x) 7! v(x)x64 mod p(x) (deg v(x) < 64):We describetwo methods to implement this map.Method 1. In this method, we perform a pre-computation that allows us to compute v(x) 7! v(x)x64 modp(x) (deg v(x) < 8) by table look-up. This will require a table of 256 64-bit entries, for a total 2KB. Giventhis table for 8-bit reduction, we can easily compute the 64-bit reduction using 8 table lookups, shifts, andexclusive-ors.Timing results. In our Sparc-10 implementation of this method, the pre-computation step takes about30�s, and achieves a rate of 35-38Mbps. The number of machine instructions executed per byte is about 10.Method 2. The double-word shifts required in the above method are quite costly on 32-bit machines.On such machines, the following avoids these shifts, and yields better pipeline utilization as well. In thismethod, we perform a pre-computation that allows us to compute, for 0 � i < 4, the maps v(x) 7!v(x)x64+8i mod p(x) (deg v(x) < 8): This requires 4 tables, each with 256 64-bit entries, for a total of 8KB.With these tables, we can perform a 32-bit reduction with just 4 table look-ups and exclusive-ors. We repeatthis twice to get a 64-bit reduction.Timing results. For this method, the pre-computation step takes 120�s, and achieves a rate of 50-75Mbps.The number of machine instructions executed per byte is about 6.As in the evaluation hash, for reasons of e�ciency, the message should be processed word-by-word, insteadof byte-by-byte. 6



6.2 Generating an Irreducible PolynomialWe now consider the problem of generating a random irreducible polynomial of degree 64 over GF(2). Oneway is to generate polynomials at random and test for irreducibility. This is quite time consuming, andrequires a lot of random bits.A much better way to proceed is the following. We can assume that we already have one irreduciblepolynomial of degree 64, de�ning the extension �eld GF(264). Given this, we generate a random elementin GF(264) and then compute the minimal polynomial of this element. This procedure is also nice since weonly need 64 random bits.With this procedure, the probability that we get a polynomial whose degree is less than 64 is 1=232 (theprobability of choosing an element in GF(232)). While this is small, it cannot be ignored. If this happens,one could repeat the above procedure. However, it is actually better from both an e�ciency and securitystandpoint to do the following: if we get an irreducible q(x) of degree less than 64, then simply de�nethe hash function by the polynomial p(x) = q(x)x64�deg q(x): Although perhaps counter-intuitive, it is notdi�cult to show that the security of this hash function is just as good as that of the original (we leave thisto the reader to verify).So we have reduced our problem to the following, which we state in more general terms. Let K be a �eldand f(x) 2 K[x] a monic, irreducible polynomial of degree d. We are given a polynomial g(x) 2 K[x] ofdegree less than d, and we want to compute its minimal polynomial modulo f(x), i.e., the monic polynomialh(x) 2 K[x] of least degree such that h(g(x)) � 0 mod f(x).We describe three ways to solve this problem.Method 1. One of the most obvious and well-known methods is to compute powers of g(x) modulo f(x),and then �nd a linear relation using elimination techniques. This will in general take O(d3) arithmeticoperations in K.Consider the situation where K = GF(2) and d = 64. To compute the sequence of powers of g(x) modulof(x), we �rst build a table to make multiplication by g(x) modulo f(x) fast. For this, we use the techniqueof method 2 in x5. Now we have a matrix M 2 GF(2)65�64, and we want to �nd a vector v 2 GF(2)1�65satisfying vM = 0. One way to do this is standard Gaussian elimination; however, when we build thematrix, the rows are represented as word-pairs, but to perform Gaussian elimination, we need to performcolumn operations. Converting this matrix to a form that makes Gaussian elimination e�cient is quite timeconsuming. A much better approach is that of Parkinson and Wunderlich [15] (see also Lenstra and Manasse[13]) which �nds a solution using row operations.Timing results. In our Sparc-10 implementation, this method requires about 570�s: 30�s to build themultiplication look-up table; 125�s to compute the powers of g(x); and 415�s to perform the Parkinson-Wunderlich algorithm.Method 2. This method, due to Gordon [9], applies only to a �nite �eld K = GF(q). We compute thesequence of polynomials g(x)qi mod f(x) for 0 � i � m, where m is the smallest positive integer such thatg(x)qm � g(x) mod f(x). Note that m j d. We then compute h(x) = Qm�1i=0 (x � g(x)qi) mod f(x). Whenm = d, we replace h(x) with h(x) + f(x). This method uses O(d3 log q) arithmetic operations in K.Now consider the situation where K = GF(2) and d = 64. We have to do 63 squarings and multipliesmodulo f(x). There are a variety of ways to make the squarings fast with a pre-computed table. However,since the operands in the multiplies are di�erent every time, we cannot perform a pre-computation to speedthis up, making these multiplications quite slow. To perform these multiplications, we use the technique ofmethod 1 in x5.Timing results. In our Sparc-10 implementation, this method takes about 410�s: 35�s for the squarings,and 375�s to do the multiplications.Method 3. Consider the sequence of polynomials g0(x); g1(x); : : :, where gi(x) = g(x)i mod f(x). This is alinearly generated sequence over K with minimal polynomial h(x), i.e., it satis�es a linear recurrence whosecoe�cients are those of h(x). Borrowing a simple idea from Wiedemann [19], we consider the projected7



sequence a0 = g0(0); a1 = g1(0); : : :, i.e., we simply take the constant terms of the polynomial sequenceto get a sequence over K. This latter sequence is also linearly generated over K; in general its minimalpolynomial will divide h(x), but since h(x) is irreducible, and since the projected sequence is nonzero, theminimal polynomial of the projected sequence is also h(x).So now we have the following problem. We have a sequence of elements a0; a1; : : : in K that is linearlygenerated over K with minimal polynomial of degree at most d. The �rst 2d elements of this sequence fullydetermine its minimal polynomial, and this can be very e�ciently computed using the Berlekamp-Masseyalgorithm (see Massey [14] and also Kaltofen and Saunders [11]), which uses O(d2) arithmetic operations inK. Consider now the situation where K = GF(2) and d = 64. We compute the powers of g(x) as in method1, and pack the constant-term bits into 4 machine words. By keeping elements of GF(2) packed into words,with some care the Berlekamp-Massey algorithm can be implemented so as to be quite e�cient.Timing results. In our Sparc-10 implementation, the total time to compute a minimal polynomial withthis method is about 360�s: 30�s to build the multiplication look-up table; 250�s to compute the sequenceof powers; and 80�s to perform the Berlekamp-Massey algorithm.7 The Generalized Division HashThe generalized division hash achieves a bit-rate identical to that of the division hash, but has the advantagethat the required irreducible polynomial can be generated much faster.The generalized division hash works over the �eld K = GF(28). To generate the hash function andrequired tables, we have to perform arithmetic in K. To do this, we use the standard technique of usingexponentiation and logarithm tables so that a multiplication in K takes one addition and three table look-ups. To avoid special cases involving multiplication by 0, we set the logarithm of 0 to �255, and theexponentiation table is then indexed from �510 to 508. The total size of these tables is 2KB.7.1 Hash Function ApplicationSuppose we have a polynomial p(x) 2 K[x] de�ning the hash function. We can carry out division withremainder in much the same way as in x6. In fact, once we pre-compute the necessary tables, the algorithmsfor division with remainder are identical to those in x6. One di�erence is that constructing the tables takesjust a little more time: 35�s (instead of 30�s) in the 1-table method, and 140�s (instead of 120�s) in the4-table method.7.2 Generating an Irreducible PolynomialWe generate a random irreducible polynomial overK as follows. We �x an irreducible polynomialf(x) 2 K[x]of degree 8. For e�ciency purposes, f(x) is chosen to be of the form x8 + f0(x), where deg f0(x) < 4. Wechoose a random polynomial g(x) 2 K[x] of degree less than 8, and compute its minimal polynomial.This is done using the Berlekamp-Massey algorithm, as in the last section. This requires that we computeg(x)i mod f(x) for 0 � i < 16. These multiplications are done by a method analogous to method 2 inx5. Again, the special form of f(x) makes these multiplications more e�cient. Also as in x6, if we get anirreducible polynomial of degree less than 8, we use it anyway.Timing results. In our Sparc-10 implementation, the total time required to generate a random irreduciblepolynomial is 115�s: 35�s to build the multiplication look-up table; 30�s to compute the sequence of powers;and 55�s to perform the Berlekamp-Massey algorithm.8



8 ConclusionOur experience indicates that a message authentication scheme based on either the generalized division hashor the evaluation hash, along with DES, is an attractive alternative to schemes based on MD5, or similarcryptographic hash functions: one can obtain a much higher degree of provable security, while attainingreasonable performance.We summarize our empirical results here. Details of how these estimates were obtained are containedin the body of the paper. The scheme based on the generalized division hash requires 120 random bits togenerate an instance of the scheme. It uses one 8KB table per instance. Given the 120 bits de�ning theinstance, there is a set-up cost. On a 70MHz Sparc-10, the total set-up time is 330�s, and on a 90MHzPentium, 315�s. As to speed, it runs at 50-75Mbps on a Sparc-10, and 85-100Mbps on a Pentium. There isalso the cost of one DES application per message: about 11�s on both machines.In contrast, consider a scheme based on the evaluation hash. It also requires 120 random bits to generatean instance of the scheme. One variant of this scheme uses no tables, has no set-up time, but runs at 11Mbpson a Sparc-10. Another variant uses a table of 2KB per instance, and on a Sparc-10 has a set-up time is just105�s, and runs at 34-36�s. We have not implemented this on the Pentium. Because of the smaller set-uptime, and because the smaller table places less pressure on the cache, this scheme could be preferable to thegeneralized hash scheme in some situations.We compare the above to MD5 and CBC-DES.MD5 has no signi�cant set-up time or storage requirements. It runs at 41Mbps on a Sparc-10, and at113Mbps on a Pentium.CBC-DES has a set-up time of 75�s on the Sparc-10, and 94�s on the Pentium. The storage requirementsare not signi�cant. It runs at about 6Mbps on both machines.We note that our hash techniques complement the bucket-hash technique developed by Rogaway [17]very nicely. For high-speed authentication of very large �les, one would reduce the input size by a factor of,say, 10 using a bucket hash, and then apply, say, a generalized division hash to this shorter string.AcknowledgementThe author gratefully acknowledges Mihir Bellare for several discussions that led to the discovery and repairof an error in Theorem 4 in an earlier version of this paper, and also for pointing out the unpublished workof Bellare, Goldreich, and Krawczyk analyzing the related construction \f1(r1)� f2(r2) � f3(r3) � h(x)."Appendix A: Proof of Theorems 2 and 3To prove Theorem 2, without loss of generality, we assume that the adversary is deterministic, and that allS-queries are made before all V -queries. We are assuming that f is a random permutation. For 1 � i � q1,the adversary obtains strings wi = f(i)�h(xi); where each message xi is some function of w1; : : : ; wi�1. Let~w = (w1; : : : ; wq1).Lemma 1 Let h 2 H be an arbitrary hash function, and let ~w be an arbitrary sequence of strings that canappear as outputs from the S-oracle with nonzero probability. Then we have Pr[hj~w] � 2Pr[h]:Theorem 2 follows trivially from this lemma, using the standard argument for the security of the basicuniversal-hash construction with the fact that H is �-AXU.To prove Lemma 1, we use Bayes' theorem:Pr[hj~w] = Pr[h] Pr[~wjh]Pg2H Pr[g] Pr[~wjg] :9



We want to bound the quantity T =Xg2H Pr[g] Pr[~wjg]:from below.Fix g 2 H, and let vi = wi � g(xi) for 1 � i � q1. Then we havePr[~wjg] = � Qq1�1i=0 (2l � i)�1 if vi 6= vj for all 1 � i < j � q1,0 otherwise.It follows that T is just Qq1�1i=0 (2l � i)�1 times the probability that for a random g 2 H, the sequence~v = (v1; : : : ; vq1) contains no duplicates. Now, �x i and j with 1 � i < j � q1. If, on the one hand, xi = xj,then by the assumption that ~w appears with nonzero probability, and the fact that f is a permutation, itfollows that wi 6= wj, and so vi 6= vj. On the other hand, if xi 6= xj, then by the fact that H is �-AXU, itfollows that vi = vj with probability at most �. Thus, the sequence ~v contains duplicates with probabilityat most q21�=2, and so T � q1�1Yi=0 (2l � i)�1(1� q21�=2):From this it follows that Pr[hj~w] � Pr[h]=(1� q21�=2): The lemma then follows from the assumption thatq21 � 1=�.That proves Theorem 2. For Theorem 3, the key lemma is the following.Lemma 2 Let h1; h2 2 H1�H2 be an arbitrary pair of hash functions, and let ~w be an arbitrary sequence ofstrings that can appear as outputs from the S-oracle with nonzero probability. Then we have Pr[h1; h2j~w] �2Pr[h1; h2]:The proof of this lemma is quite similar to the proof of Lemma 1, and we leave the details to the reader.Appendix B: Proof of Theorem 4We sketch the proof of this theorem. As usual, we assume that all signing queries are made before allverifying queries. Let r1; s1; : : : ; rq1 ; sq1 be the random values created by the signer.For i � 1, de�ne a 2i-cycle as a sequence of distinct indices (j(1); : : : ; j(2i)) 2 f1; : : : ; q1g2i such thatrj(1) = rj(2); sj(2) = sj(3); : : : ; rj(2i�1) = rj(2i); sj(2i) = sj(1):For i � 2, de�ne a partial 2i-cycle as a sequence of distinct indices (j(1); : : : ; j(2i� 1)) 2 f1; : : : ; q1g2i�1such that rj(1) = rj(2); sj(2) = sj(3); : : : ; rj(2i�3) = rj(2i�2); sj(2i�2) = sj(2i�1):We will call this partial 2i-cycle bad if additionally,rj(1)sj(1) � � � � � rj(2i�1)sj(2i�1) = rj(2i�1)sj(1):Claim 1. Conditioning on the event that for all i � 1 there are no 2i-cycles and for all i � 2 there are nobad partial 2i-cycles, the probability of forging a MAC is at most q2�.To see this, note that on any cycle-free set f(ri; si)g of inputs, the set ff(ri)�g(si)g are are independentrandom strings (see Aiello and Venkatesan, Eurocrypt '96). So if there are no cycles, the signer has notleaked any information about � or h. Suppose the adversary attempts a MAC forgery for a message xof the form (r; s; ). There are three cases. First, suppose this (r; s) pair completes no cycle. Then bythe the independence of the value f(r) � g(s), the probability of success is 2�l. Second, if this (r; s) pairwas previously output by the signer, creating a 2-cycle, then by the AXU property of h, the probability ofsuccess is at most �. Third, suppose that for some i � 2, this (r; s) pair completes a partial 2i-cycle to forma 2i-cycle. Since this partial cycle was not bad, and the value of � was not leaked, the probability of successis at most 2�l. 10
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