A Semi-Automatic Methodology for Repairing Faulty Web Sites *

Maria Alpuente

DSIC, Universidad Politécnica de Valencia,

Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain.
Email: alpuente@dsic.upv.es

Moreno Falaschi
Dip. di Scienze Matematiche e Informatiche,
Pian dei Mantellini 44,
53100 Siena, Italy.

Email: moreno.falaschi@Qunisi.it

Abstract

The development and maintenance of Web sites are diffi-
cult tasks. To maintain the consistency of ever-larger, com-
plex Web sites, Web administrators need effective mech-
anisms that assist them in fixing every possible inconsis-
tency. In this paper, we present a novel methodology for
semi-automatically repairing faulty Web sites which can be
integrated on top of an existing rewriting-based verifica-
tion technique developed in a previous work. Starting from
a categorization of the kinds of errors that can be found
during the Web verification activities, we formulate a step-
wise transformation procedure that achieves correctness
and completeness of the Web site w.r.t. its formal specifica-
tion while respecting the structure of the document (e.g. the
schema of an XML document). Finally, we shortly describe
a prototype implementation of the repairing tool which we
used for an experimental evaluation of our method.

1. Introduction

The increasing complexity of Web sites has turned their
design and construction into a challenging problem. Sys-
tematic, formal approaches can bring many benefits to Web
site construction, giving support for automated Web site
verification and repairing.

A lot of research work has been invested in consis-
tency management and repairing of software applications

*This work has been partially supported by the EU (FEDER) and the
Spanish MEC, under grant TIN 2004-7943-C04-02, by ICT for EU-India
Cross Cultural Dissemination Project under grant ALA/95/23/2003/077-
054, and by Generalitat Valenciana under grant GR03/025.

Demis Ballis
Dip. Matematica e Informatica,
Via delle Scienze 206,
33100 Udine, Italy.
Email: demis@dimi.uniud.it

Daniel Romero
DSIC, Universidad Politécnica de Valencia,
Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain.
Email: dromero@dsic.upv.es

and databases, whereas similar technologies are much less
mature for Web systems. In [13], a repair framework for
inconsistent distributed documents is presented that com-
plements the tool xlinkit [7]. The main contribution is the
semantics that maps xlinkit’s first order logic language to
a catalogue of repairing actions that can be used to inter-
actively correct rule violations though it does not predict
whether a repair action can provoke new errors to appear.
Also, it is not possible to detect whether two formulae ex-
pressing a requirement for the Web site are incompatible.
Similarly, in [15, 17] an extension for the tool CDET [16]
is presented. This extension includes a mechanism to re-
move inconsistencies from sets of interrelated documents,
which first generates direct acyclic graphs (DAGs) repre-
senting the relations between documents and then repairs
are directly derived from such DAGs. In this case, tempo-
ral rules are supported and interference and compatibility
of repairs are not completely neglected. Unfortunately, this
compatibility is expensive to check for temporal rules. Both
approaches rely on basic techniques borrowed from the field
of active databases [5]. Current research in this field focuses
on the derivation of active rules that automatically fire repair
actions leading to a consistent state after each update [12].

In our previous work on GVERDI [1, 2], we presented a
rewriting-like approach to Web site specification and verifi-
cation. Our methodology allows us to specify the integrity
conditions for the Web sites and then diagnose errors by
computing the requirements not fulfilled by a given Web
site, that is, by finding out incorrect/forbidden patterns and
missing/incomplete Web pages. We believe that our ap-
proach is particularly suitable for checking large static Web
sites, e.g. digital libraries, which contain a number of deeply
interconnected XML documents.

In this paper, we aim to complement our methodology
with a tool-independent technique for semi-automatically
repairing the errors found during that verification phase.
First, we formalize the kinds of errors that can be found
in a Web site w.r.t. a Web site specification. Then, we clas-
sify the repair actions that can be performed to repair each
kind of error. Since different repair actions can be exe-
cuted to repair a given error, our method is tuned to deliver
a set of correct and complete repair actions to choose be-
tween. Our repair methodology is formulated in two phases.
First, all the necessary actions to make the Web site correct
are performed. Once correctness of the Web site has been
achieved, the user is given the option to execute all the nec-
essary actions to make it complete. Moreover, this method-
ology allows us to manage the problems that might arise
from the interaction of repair actions.

The rest of the paper is structured as follows. Section
2 summarizes some preliminary definitions and notations
about term rewriting systems. In Section 3, first we recall
the Web verification framework of [1], which is based on
tree simulation, and then we categorize the different kinds
of errors that can be found as an outcome of the verification
technique. Section 4 describes our repairing methodology
for faulty Web sites, while Section 5 describes the system
we implemented. Section 6 concludes and discusses future
work.

2. Preliminaries

By V we denote a countably infinite set of variables and
3. denotes a set of function symbols, or signature. We con-
sider varyadic signatures as in [8] (i.e., signatures in which
symbols have an unbounded arity, that is, they may be fol-
lowed by an arbitrary number of arguments). 7(3,)) and
7(X) denote the non-ground term algebra and the term al-
gebra built on ¥ UV and X. Terms are viewed as labelled
trees in the usual way. Positions are represented by se-
quences of natural numbers denoting an access path in a
term. The empty sequence A denotes the root position. By
notation wj .wg, we denote the concatenation of position w;
and position wy. Positions are ordered by the prefix order-
ing, that is, given the positions wy,ws, w; < ws if there
exists a position x such that wy.x = ws. Given S C YUV,
Ogs(t) denotes the set of positions of a term ¢ which are
rooted by symbols in S. Moreover, for any position z,
{2}.0s(t) = {z.w | w € Os(t)}. t}, is the subterm at
the position u of ¢t. t[r], is the term ¢ with the subterm
rooted at the position u replaced by r. Given a term ¢, we
say that t is ground, if no variables occur in ¢. Syntactic
equality between objects is represented by =.

A substitution o = {X1/t1, Xa/ta,...} is a mapping
from the set of variables V into the set of terms 7(X,V)
satisfying the following conditions: (i) X; # X, whenever

i#j, (it) Xso =t;, i =1,...,n,and (iii) Xo = X, for
any X € V\ {Xy,...,X,}. By Var(s) we denote the set
of variables occurring in the syntactic object s.

Term rewriting systems provide an adequate computa-
tional model for functional languages. In the sequel, we fol-
low the standard framework of term rewriting (see [4, 10]).
A term rewriting system (TRS for short) is a pair (X, R),
where X is a signature and R is a finite set of reduction (or
rewrite) rules of the form A — p, A\, p € 7(Z, V), A € V
and Var(p) C Var(X). We will often write just R instead
of (3, R). Sometimes, we denote the signature of a TRS
(3, R) by Xg.

A rewrite step is the application of a rewrite rule to an
expression. A term s rewritestoatermt viar € R, s —, t
(or s — g t), if there exist a position u € Ox(s), r = X —
p, and a substitution o such that s, = Ao and t = s[pc]s,.
When no confusion can arise, we will omit any subscript
(i.e. s — t). Aterm s is a irreducible form (or normal form)
w.r.t. R, if there is no term ¢ s.t. s — g t. t is the irreducible
form of s w.r.t. R (in symbols s *)!R t)if s —»% tand ¢ is
irreducible.

We say that a TRS R is terminating, if there exists no
infinite rewrite sequence t; —g to —pgr ... ATRS R is
confluent if, for all terms s,1, %2, such that s —7% ¢; and
s —T, to, there exists a term ¢ s.t. t; —% ¢ and tp —} .
When R is terminating and confluent, it is called canoni-
cal. In canonical TRSs, each input term ¢ can be univocally
reduced to a unique irreducible form.

Let s = t be an equation, we say that the equation s = ¢
holds in a canonical TRS R, if there exists an irreducible
form z € 7(%, V) w.rt. R such that s —' 2z and t —' 2.

3. Rewriting-based Web Verification

In this section, we briefly recall the formal verification
methodology proposed in [1], which is able to detect erro-
neous as well as missing information in a Web site.

In our framework, a Web page is either an XML [18] or
an XHTML [19] document, which we assume to be well-
formed, since there are plenty of programs and online ser-
vices which are able to validate XHTML/XML syntax and
perform link checking (e.g. [14], [9]). As Web pages are
provided with a tree-like structure, they can be straightfor-
wardly encoded into ordinary terms of a suitable term alge-
bra 7(TextUTag), where TextUT ag is a signature contain-
ing the text and the tags on which we build our Web pages.
Note that XML/XHTML tag attributes can be considered as
common tagged elements, and hence translated in the same
way. Therefore, Web sites can be represented as finite sets
of (ground) terms.

In Figure 1, we present a Web site W of a research group,
which contains information about group members affilia-
tion, scientific publications, research projects, teaching and

personal data.

In the following, we will also consider terms of the non-
ground term algebra 7(7ext U 7ag, V), which may contain
variables. An element s € 7(7ext U Tag, V) is called Web
page template.

3.1. Web specification language

A Web specification is a triple (In,Ins, R), where R,
Iy, and I, are finite set of rules. The set R contains the
definition of some auxiliary functions which are executed
by standard rewriting [10].

The set I describes constraints for detecting erro-
neous Web pages (correctNess rules). As the amount
of faulty information is typically a small portion of the
whole content of a Web site, our correctness rules model
erroneous patterns rather than correct/safe patterns. We
believe that this approach facilitates both the specification
and the verification of correctness properties. Formally, a
correctness rule has the following form: 1 — error | C,
with Var(C) C Var(l), where 1 is a term, error is
a reserved constant, and C is a (possibly empty) finite
sequence containing membership tests (e.g. X € rexp)
w.rt. a given regular language', and/or equations over
terms. For the sake of expressiveness, we also allow to
write inequalities of the form s # t in C, which hold
whenever the corresponding equation s = t does not hold.
When C is empty, we simply write 1 — error. The
meaning of a correctness rule 1 — error | C, where C =
(X; in rexpi,...,Xp in rexpp,s; =ti...Sp = tu),
is the following. We say that C holds for substitution o,
if (i) each structured text X;0, i = 1,...,n, is contained
in the language of the corresponding regular expression
rexp;; (ii) each instantiated equation (resp. inequality)
(si =ti)o (resp. (s; #ti)o),i=1,...,m holdsin R.

The Web page p is considered incorrect if an instance 1o
of 1 is recognized within p, and C holds for o.

The third set of rules Ip; specifies some properties
for detecting incomplete/missing Web pages (coMpleteness
rules). A completeness rule is defined as 1 — r (q), where
1 and r are terms and q € {E,A}. Completeness rules of a
Web specification formalize the requirement that some in-
formation must be included in all or some pages of the Web
site. We use attributes (A) and (E) to distinguish “universal”
from “existential” rules. Right-hand sides of completeness
rules can contain functions, which are defined in R. In-
tuitively, the interpretation of a universal rule 1 — r (A)
(respectively, an existential rule 1 — r (E)) w.r.t. a Web
site W is as follows: if (an instance of) 1 is recognized in W,
also (an instance of) the irreducible form of r must be rec-
ognized in all (respectively, some) of the Web pages which

Regular languages are represented by means of the usual Unix-like
regular expressions syntax.

embed (an instance of) r.

Sometimes, we may be interested in checking a given
completeness property only on a subset of the whole Web
site. For this purpose, some symbols in the right-hand sides
of the rules are marked by means of the constant symbol
f. Marking information of a given rule r is used to select
the subset of the Web site in which we want to check the
condition formalized by r. More specifically, rule r is exe-
cuted on all and only the Web pages embedding the marking
information. A detailed example follows.

Example 3.1. Consider the Web specification which con-
sists of the following completeness and correctness rules
along with a term rewriting system defining the string con-
catenation function ++, the arithmetic operators + and *
on natural numbers and the relational operator <.

member (name(X),surname(Y)) —fhpage(fullname(X ++Y),
status) (E)
hpage(status(professor))—fhpage(fstatus(fiprofessor),
teaching) (A)
pubs(pub(name(X), surname(Y)))—fmembers(member(name(X),
surname(Y))) (E)
courselink(url(X),urlname(Y)) — ficpage(title(Y)) (E)
hpage(X) — error |Xin[:TextTag:]*sex[:TextTag:]"
blink(X) — error
project(granti(X), grant2(Y),total(Z)) — error |
X+Y#2Z
project(grant1(X), grant2(Y)) — error | X # Y 2
total(Z) — error | Z > 500000 = true

This Web specification models some required properties
for the Web site of Figure 1. First rule formalizes the follow-
ing property: if there is a Web page containing a member
list, then for each member, a home page should exist which
contains (at least) the full name and the status of this mem-
ber. The full name is computed by concatenating the name
and the surname strings by means of the ++ function. The
marking information establishes that the property must be
checked only on home pages (i.e., pages containing the tag
“hpage”). Second rule states that, whenever a home page of
a professor is recognized, that page must also include some
teaching information. The rule is universal, since it must
hold for each professor home page. Such home pages are
selected by exploiting the marks which identify professor
home pages. Third rule specifies that, whenever there exists
a Web page containing information about scientific publi-
cations, each author of a publication should be a member
of the research group. In this case, we must check the prop-
erty only in the Web page containing the group member list.
The fourth rule formalizes that, for each link to a course, a
page describing that course must exist. The fifth rule forbids
sexual contents from being published in the home pages of
the group members. This is enforced by requiring that the
word sex does not occur in any home page by using the

{ (1) members (member (name (mario), surname (rossi), status (professor)),

member
member

(
(
(
(

name (franca), surname (bianchi), status (technician)),
name (giulio), surname (verdi), status (student)),

member (name (ugo) , surname (blu), status (professor))

) 4

(2) hpage (fullname (mariorossi),phone (3333),status (professor),
hobbies (hobby (reading) , hobby (gardening))),

(3) hpage (fullname (francabianchi), status (technician), phone (5555),
links (link (url (www.google.com) ,urlname (google)),
link (url (www.sexycalculus.com),urlname (FormalMethods))),

(4) hpage (fullname (annagialli),status (professor),phone (4444),

teaching (course (algebra))),

(5) pubs (pub (name (ugo) , surname (blu),title (blahl),blink (year (2003))),
pub (name (anna) , surname (gialli),title (blah2),year (2002))),
(6) projects(project (pname (Al),grantl (1000),grant2(200),
total (1100),coordinator (fullname (mariorossi))),
project (pname (B1l) ,grantl (2000) ,grant2 (1000),
projectleader (surname (gialli),name (anna)),

total (3000)))}

Figure 1. An example of a Web site for a research group

regular expression [: TextTag :|*sex[: TextTag :|*, which
identifies the regular language of all the strings built over
(Text U Tag) containing word sex. The sixth rule is pro-
vided with the aim of improving accessibility for people with
disabilities. It simply states that blinking text is forbidden
in the whole Web site. The last three rules respectively state
that, for each research project, the total project budget must
be equal to the sum of the grants, the first grant should be
the double of the second one, and the total budget is less
than 500000 euros.

In our methodology, diagnoses are carried out by run-
ning Web specifications on Web sites. This is mecha-
nized by means of partial rewriting, a novel rewriting tech-
nique which we obtain by replacing the traditional pattern-
matching of term rewriting with a new mechanism based on
page (tree) simulation (cf. [1]).

3.2. Simulation and partial rewriting

Partial rewriting extracts “some pieces of information”
from a page, pieces them together, and then rewrites the
glued term. The assembling is done by means of tree simu-
lation, which recognizes the structure and the labeling of a
given term (Web page template) inside a particular page of
the Web site.

Our notion of simulation, <, is an adaptation of

Kruskal’s embedding (or “syntactically simpler”) relation
[6] where we ignore the usual diving rule? [11].

Definition 3.1 (simulation). The simulation relation

< C 7(Text UTag) X 7(Text UTag)

2The diving rule allows one to “strike out” a part of the term at the
right-hand side of the relation <. Formally, s < f(¢1,... tn), if s <5,
for some <.

on Web pages is the least relation satisfying the rule:

f(ty,. . tn) < g(s1,...,sn) ff £ = g and
t; 9 sp), fori=1,...,m and some injective
functionw : {1,...,m} — {1,...,n}.

Given two Web pages s; and so, if s; < s, we say that
s1 simulates (or is embedded or recognized into) so. We
also say that sy embeds s1. Note that, in Definition 3.1,
for the case when m is 0 we have ¢ < ¢ for each constant
symbol c. Also note that s; # ss if either s; or s5 contain
variables.

Now we are ready to introduce the partial rewrite re-
lation between Web page templates. W.l.o.g., we disre-
gard conditions and/or quantifiers from the Web specifica-
tion rules. Roughly speaking, given a Web specification
rule 1 — r, partial rewriting allows us to extract from, a
given Web page s, a subpart of s which is simulated by a
ground instance of 1, and to replace s by a reduced, ground
instance of r. Let s, t € 7(7ext U Tag, V). Then, s par-
tially rewrites to t via rule 1 — r and substitution o iff
there exists a position u € OTag(s) such that (i) 1o < S|us
and (ii) t = Reduce(ro,R), where function Reduce(z, R)
computes, by standard term rewriting, the irreducible form
of z in R. Note that the context of the selected reducible
expression s|, is disregarded after each rewrite step. By
notation s —; t, we denote that s is partially rewritten to t
using some rule belonging to the set [.

3.3. Error diagnoses

In order to diagnose correctness as well as completeness
errors, we follow the method we presented in [1]. We clas-
sify the kind of errors which can be found in a Web site

in terms of the different outputs delivered by our verifica-
tion technique when is fed with a Web site specification. In
Section 4, we will exploit this information to develop our
repairing/correction methodology. Let us start by charac-
terizing correctness errors.

Definition 3.2 (correctness error). Let W be a Web site and
(Ing, In, R) be a Web specification. Then, the quadruple
(p,w,1,0) is a correctness error evidence iff p € W, w €
Otaq(p), and 1o is an instance of the left-hand side 1 of a
correctness rule belonging to Iy such that 1o < pj,.

Given a correctness error evidence (p,w,1,0), 1o rep-
resents the erroneous information which is embedded in a
subterm of the Web page p, namely py,,.

We denote the set of all correctness error evidences of
a Web site W w.r.t. a set of correctness rules Iy by En (W).
When no confusion can arise, we just write F .

As for completeness errors, we can distinguish three
classes of errors: (i) Missing Web pages, (ii) Universal com-
pleteness errors, (iii) Existential completeness errors. In
our framework, all the three kinds of completeness errors
can be detected by partially rewriting Web pages to some
expression r by means of the rules of /;;, and then check-
ing whether r does not occur in a suitable subset of the Web
site.

Definition 3.3 (Missing Web page). Let W be a Web site and
(Ing, In, R) be a Web specification. Then the pair (x,W) is
a missing Web page error evidence if there existsp € W s.t.
P AYM randr € T(Text U Tag) does not belong to W.

When a missing Web page error is detected, the evidence
(r,W) signals that the expression r does not appear in the
whole Web site W. In order to formalize existential as well as
universal completeness errors, we introduce the following
auxiliary definition.

Definition 3.4. Let P be a set of terms in T(Text U Tag)
and r € 7(Text U Tag). We say that P is universally (resp.
existentially) complete w.r.t. r iff for each p € P (resp. for
some p € P), there exists w € Ozqy(p) 5.t. T I Py

Definition 3.5 (Universal completeness error). Let W be a
Web site and (Ipr, Iy, R) be a Web specification. Then
the triple (x,{p1,...,pn},A) is a universal completeness

error evidence, if there exists p € W s.t. p A}FM r and
{p1,.--,Pn} is not universally complete w.rt. r, p; € W,
i=1,...,n.

Definition 3.6 (Existential completeness error). Let W be
a Web site and (Ipr, In, R) be a Web specification. Then
the triple (r,{p1,---,pPn},E) is an existential completeness

error evidence, if there exists p € W s.t. p ATM r and
{p1,.-.,Pn} is not existentially complete w.rt. r, p; € W,

1=1,...,n

Note that Definition 3.5 (resp. Definition 3.6) formalizes
the fact that the Web site W fails to fulfil the requirement
that a piece of information must occur in all (resp. some)
Web pages of a given subset of W. We denote by Ej/(W)
the set containing all the completeness error evidences w.r.t.
Iy for a Web site W (missing Web pages as well as uni-
versal/existential completeness errors evidences). When no
confusion can arise, we just write F;.

The verification methodology of [1] generates the sets
of correctness and completeness error evidences E and
E3; mentioned above for a given Web site w.r.t. the input
Web specification. Starting from these sets, in the follow-
ing section we formulate a method for fixing the errors and
delivering a Web site which is correct and complete w.r.t.
the intended Web specification.

Definition 3.7 (Web site correctness). Given a Web spec-
ification (Ipr,In,R), a Web site W is correct w.rt.
(Inr, In, R) iff the set En of correctness error evidences
w.rt. I is empty.

Definition 3.8 (Web site completeness). Given a Web
specification (Ipr, In, R), a Web site W is complete w.r.t.
(Irr, In, R) iff the set Eyp of completeness error evidences
w.rt. Iy is empty.

4. Repairing a faulty Web site

Given a faulty Web site W and the sets of errors E and
Ens, our goal is to modify the given Web site by adding,
changing, and removing information in order to produce
a Web site that is correct and complete w.r.t. the consid-
ered Web specification. For this purpose, in correspondence
with the error categories distinguished in the previous sec-
tion, we introduce a catalogue of repair actions which can
be applied to the faulty Web site. Therefore, in our frame-
work, fixing a Web site consists in selecting a set of suitable
repair actions that are automatically generated, and execut-
ing them in order to remove inconsistencies and wrong data
from the Web site. The primitive repair actions we consider
are the following: change(p, w, t) which replaces the sub-
term p|,, in p with the term t; insert(p, w, t) which mod-
ifies the term p by adding the term t into py,,; add(p,W)
which adds the Web page p to the Web site W; delete(p, t)
which deletes all the occurrences of the term t in the Web
page p. Each repair action returns the modified/added Web
page after its execution.

Note that it is possible that a particular error could be re-
paired by means of different actions. For instance, a correct-
ness error can be fixed by deleting the incorrect/forbidden
information, or by changing the data which rise that error.
Similarly, a completeness error can be fixed by either 1) in-
serting the missing information, or 2) deleting all the data in
the Web site that caused that error. Moreover, modifying or

inserting arbitrary information may cause the appearance of
new correctness errors. In order to avoid this, we have to en-
sure that the data considered for insertion are safe w.r.t. the
Web specification, i.e. they cannot fire any correctness rule.
For this purpose, we introduce the following definition.

Definition 4.1. Let (I5s, I, R) be a Web specification and
p € 7(Text UTag) be a Web page. Then, p is safe w.r.t. Iy,
iff for each w € Oryy4(p) and (L — x| C) € Iy, either (i)
there is no o s.t. lo < Plws OF (ii) 1o < Pluw» but Co does
not hold.

In the following, we develop a repairing methodology
which gets rid of both, correctness and completeness errors.
We proceed in two main phases. First, we deal with correct-
ness errors. Some repair actions are automatically inferred
and run in order to remove the wrong information from the
Web site. After this phase, we will end up with a correct
Web site which still can be incomplete. At this point, other
repair actions are synthesized and executed in order to pro-
vide Web site completeness.

4.1. Fixing correctness errors

Throughout this section, we will consider a given Web
site W, a Web specification (Ips, Iy, R) and the set En # ()
of the correctness error evidences w.r.t. I for W. Our goal
is to modify W in order to generate a new Web site which is
correct w.r.t. (Ips, Iy, R). We proceed as follows: when-
ever a correctness error is found, we choose a possible re-
pair action (among the different actions described below)
and we execute it in order to remove the erroneous informa-
tion, provided that it does not introduce any new bug.

Given e = (p,w,1,0) € Ey, e can be repaired in two

distinct ways: we can decide either 1) to remove the wrong
content 1o from the Web page p (specifically, from pj,,), or
2) to change 1o into a piece of correct information. Hence,
it is possible to choose between the following repair strate-
gies.
“Correctness through Deletion” strategy. In this case, we
simply remove all the occurrences of the subterm pj,, of
the Web page p containing the wrong information 1o by
applying the repair action delete(p, p‘w).3

Example 4.1. Consider the Web site in Figure 1 and the
Web specification in Example 3.1. The term 10 = pj1.4 =
blink(year(2003)) embedded in the Web page (5) of W
(which is also called p in this example) generates a correct-
ness error evidence (p,1.4,1, o) w.r.t. the rule blink(x) —
error and hence a delete action will remove from p the sub-
term blink(year(2003)).

3Note that, instead of removing the whole subterm P|w- it would be
also possible to provide a more precise though also time-expensive imple-
mentation of the delete action which only gets rid of the part 1o of py,,
which is responsible for the correctness error.

“Correctness through Change” strategy. Given a correct-
ness error e = (p,w,1,0) € Ey, we replace the subterm
Plw Of the Web page p with a new term ¢ introduced by the
user. The new term ¢ must fulfill some conditions which are
automatically provided and checked in order to guarantee
the correctness of the inserted information. In the following
we show how to compute such constraints.

Roughly speaking, we first ensure that (i) ¢ does not
embed subterms which might fire some correctness rule
(local correctness property). Next, we have to guarantee
that ¢, within the context surrounding it, will not cause any
new correctness error (global correctness property).

Local correctness property. We handle conditional and
unconditional correctness rules separately. For conditional
rules, we must look for solutions to the following problem.
Let us consider the correctness error evidence e =
(p,w,1,0) € FEx and the associated repair action
change(p, w, t). We build the set of conditions
CSe={-C|3 (1—r]C)e Iy, aposition w’,
a substitution o s.t. 1o < pjy. }

We call CS, the constraint satisfaction problem associ-
ated with e. Roughly speaking, CS, is obtained by collect-
ing and negating all the conditions of those rules which de-
tect correctness errors in py,,. Such collection of constraints,
that can be solved manually or automatically by means of
an appropriate constraint solver [3], can be used to provide
suitable values for the term ¢ to be inserted. We say that
CS, is satisfiable iff there exists at least one assignment of
values for the variables occurring in CS, that satisfies all
the constraints. We denote by Sol(CS,) the set of all the
assignments that verify the constraints in CS,. The restric-
tion of Sol(CS.) to the variables occurring in o is denoted
by Sol(CS,)|,- Let us see an example.

Example 4.2. Consider the Web site W in Figure 1 and the
Web specification of Example 3.1. The following subterm of
Web page (6)

project (pname (Al) ,grantl (1000),grant2 (200),
total (1100),
coordinator (fullname (mariorossi)))

causes a correctness error e w.r.t. the rule

project(grant1(X), grant2(Y), total(Z)) — error |
X+Y#£2Z

The error can be fixed by changing the values of the grants
and the total amount, according to the solution of the con-

straint satisfaction problem CS, that follows.

{X+Y=2, X=Y%2, Z < 500000}

The constraints in CS, come from the conditions of the
last three rules of the considered Web specification. An ad-
missible solution, which can be chosen by the user, might
be

{X/1000, Y/500,Z/1500} € Sol(CS)

and the term t to be inserted might be

project (pname (Al) ,grantl (1000),grant2 (500),
coordinator (fullname (mariorossi)),
total (1500))

which does not contain incorrect data.

Sometimes CS, might be not solvable, since there are
two or more correctness rules demanding incompatible con-
ditions for correctness, and thus the user is asked to fix the
Web specification before proceeding.

Let us now consider unconditional rules. Example 4.2
shows how to get rid of a correctness error just by chang-
ing some values which occur into a piece of wrong infor-
mation. However, sometimes we may need to change not
only the values of the variables but also the structure of the
term containing the erroneous data. In this case, it might
happen that we introduce a “forbidden” structure which can
fire some unconditional correctness rule. Note that condi-
tional rules cannot introduce incorrect data in ¢, since we
assume that ¢ has been chosen according to the solution of
the constraint satisfaction problem CS,. Therefore, in order
to ensure correctness, the following structural correctness
property on the structure of term ¢ must hold for uncondi-
tional rules.

V1—=r€ Iy, we Orqy(t),substitution o, 10 A t),,.
(1)
Roughly speaking, the structural correctness property (1)
defined above ensures that no unconditional correctness rule
can be triggered on ¢. This is achieved by checking that no
left-hand side of an unconditional correctness rule is em-
bedded into t.

Example 4.3. Consider again Example 4.2 and the follow-
ing term, which modifies the values and the structure of the
Sfaulty Web page.

project (pname (Al) ,grantl (1000),grant2 (500),
projectleader (surname (gialli),
name (anna)), blink (total (1500)))

If we decided to replace the wrong information
with the term above, then the structural correctness
property (1) would not be fulfilled, since the term
blink (total (1200)) would fire rule (6) of the Web
specification.

Now we are ready to formalize the local condition for
the “correctness through change” strategy.

Definition 4.2. Given e = (p,w,1,0) € Ex and a repair
action change(p, w, t), we say that change(p, w, t) obeys
the local correctness property iff

e for each conditional rule (1 — r | C) € Iy, C # 0,
substitution ¢’ and position w', if 10" <t then

1. o' € Sol(CS,)|5r, when =C € CSe;
2. Co’ does not hold, when —C ¢ CSs,.

e for unconditional rules, the structural correctness
property (1) holds.

The local correctness property guarantees that a change
action is “locally safe”, in other words the term ¢ which
replaces the wrong information is safe w.r.t. Iy as stated by
the following proposition.

Proposition 4.1. Ler (I, Iy, R) be a Web specification,
e = (p,w,1,0) € En and change(p,w,t) be a repair
action. If p’ = change(p, w, t) obeys the local correctness
property, then piw =t is safe w.rt. In.

Note that it is possible to repair several errors simultane-
ously by applying one single change action, since a change
action affecting a term p may eventually fix all the correct-
ness errors which occur in all the subterms of p. More for-
mally, the following result holds.

Proposition 4.2. Let (I, In, R) be a Web specification,
e; = (p,wi,li,ai) € En,t=1,....n, w1 < wy <
... < wy, and p' = change(p, w1,t) be a repair action
that obeys the local correctness property. Then, pT w, =tis
safe w.r.t. In.

Now we proceed with the

Global correctness property. Whenever we fix some
wrong data by executing a repair action change(p, w,t),
it is not enough to ensure that the term ¢ to be introduced
is locally safe (local correctness property), we also need to
consider ¢ within the context that surrounds it in p. If we
don’t pay attention to such a global condition, some subtle
correctness errors might arise as witnessed by the following
example.

Example 4.4. Consider the Web page p = £(g(a), b,h(c)),
and the following correctness rule set

In ={(r1) £(g(b)) — error, (r2) g(a) — error}.

The Web page p contains a correctness error according to
rule (r2). The Web page £(g(b),b,h(c)) is obtained from
p by executing, for instance, the repair action

change(£(g(a), b, h(c)), 1, g(b)).

Although the term g(b) is safe w.rt. Iy (i.e. it does not
introduce any new correctness error), the replacement of
g(a) with g(b) in p produces a new correctness error which
is recognizable by rule (r1).

In order to avoid such kinds of undesirable repairs, we
define the following global correctness property, which sim-
ply prevents a new term ¢ from firing any correctness rule
when inserted in the Web page to be fixed.

The following definition is auxiliary. Let s,t €
T(Text U Tag) st. s < t. We define the set Embs(t)
as the set of all the positions in t which embed some sub-
term of s. For instance, consider the terms f(k,g(c)),
and f(b,g(c), k). Then, f(k.g(c)) < f(b,g(c),)., and
Embf(k,g(c)) (f(ba g(C), k)) = {A7 2,2.1, 3}

Definition 4.3. Ler (I, In, R) be a Web specification,
p’ = change(p,w,t) be a repair action producing the
Web page p’. Then, change(p, w,t) obeys the global cor-
rectness property if, for each correctness error evidence

e = (p/,w',1,0) wrt. Iy such that w' < w,
{w}.O7aq(t) N {w'}. Embi, (pl,,) = 0

The idea behind Definition 4.3 is that any error e in the
new page p’ = change(p, w, t), obtained by inserting term
t within p, is not a consequence of this change but already
present in a different sub-term of p. For this purpose, we
require that (the set of positions of) the wrong information
1o does not “overlap” the considered term ¢.

The execution of a change action which obeys the global
as well as the local correctness property, decreases the num-
ber of correctness errors of the original Web site as stated
by the following proposition.

Proposition 4.3. Let (Ip;,In, R) be a Web specification
and W be a Web site. Let En(W) be the set of correctness
error evidences w.r.t. I of W, and (p,w,1,0) € En(W).
By executing a repair action change(p, w, t), which obeys
the local as well as the global correctness property, we
have that |[Ex(W)| < |Ex(W)| where W = W\ {p} U
{change(p, w,t)}.

4.2. Fixing completeness errors

In this section, we address the problem of repairing an
incomplete Web site W. Without loss of generality, we as-
sume that W is an incomplete but correct Web site w.r.t. a
given Web specification (Ips, Iy, R). Such an assumption
will allow us to design a repair methodology which “com-
pletes” the Web site and does not introduce any incorrect
information.

Let Fjy(W) be the set of completeness error evidences
risen by Ip; for the Web site W. Any completeness error
evidence belonging to Fj;(W) can be repaired following
distinct strategies and thus by applying distinct repair ac-
tions. On the one hand, we can think of adding the needed
data, whenever a Web page or a piece of information in
a Web page is missing. On the other hand, all the infor-
mation that caused the error might be removed to get rid

of the bug. In both cases, we must ensure that the execu-
tion of the chosen repair action does not introduce any new
correctness/completeness error to guarantee the termination
and the soundness of our methodology.

“Completeness through Insertion” strategy. We consider
two distinct kinds of repair actions, namely add(p, W) and
insert(p, w, t), according to the kind of completeness error
we have to fix. The former action adds a new Web page p
to a Web site W and thus will be employed whenever the
system has to fix a given missing Web page error. The latter
allows us to add a new piece of information ¢ to (a subterm
of) an incomplete Web page p, and therefore is suitable to
repair universal as well as existential completeness errors.
More specifically, the insertion repair strategy works as
follows.

Missing Web page errors. Given a missing Web page error
evidence (r,W), we fix the bug by adding a Web page p,
which embeds the missing expression r, to the Web site W.
Hence, the Web site W will be “enlarged” by effect of the
following add action: W = WU {add(p, W)}, where r < py,,
for some w € Orqq(p).

Existential completeness errors. Given an existential
completeness error evidence (r,{p1,p2;.-.,Pn},E), We
fix the bug by inserting a term ¢, that embeds the missing
expression r, into an arbitrary page p;, ¢ = 1,...,n.
The position of the new piece of information ¢ in p;
is typically provided by the user, who must supply a
position in p; where ¢t must be attached. The insert
action will transform the Web site W in the following way:
W =W\ {p;i} U {insert(p;, w,t)}, where r < p;,, for
some w € Orqq(p).

Universal completeness errors. Given a universal com-
pleteness error evidence (r, {p1,p2,-.-,Pn},4A), we fix the
bug by inserting a term t;, that embeds the missing ex-
pression r, into every Web page p;, ¢ = 1,...,n not em-
bedding r. The position of the new piece of information
t; in each p; is typically provided by the user, who must
supply a postition w; in p; where ¢; must be attached. In
this case, we will execute a sequence of insert actions, ex-
actly one for each incomplete Web page p;. Therefore, the
Web site W will be transformed in the following way. For
each p; € {p1,p2,---,pn} such that r « Pijw, for each
w; € Orag(pi), W =W\ {p;} U{insert(p;, w;, t;)}, where
T < pju, for some w; € Oraqy(ps).

Both the add action and the insert action introduce new
information in the Web site which might be potentially dan-
gerous, since it may contain erroneous as well as incomplete
data. It is therefore important to constrain the kind of infor-
mation a user can add. In order to preserve correctness, we
compel the user to only insert safe information in the sense
of Definition 4.1. Hence, the new data being added by the

execution of some repair action cannot fire a correctness
rule subsequently.

Proposition 4.4. Let (Ip;,In, R) be a Web specification
and W be a correct Web site w.rt. (Ip, Iy, R). Let p1 =
insert(p, w, t) and p; = add(p2, W).

o Ifpy is safe w.rt. Iy, then W\ {p} U {p1} is correct
W.LL. (IM,IN,R).

o [f po is safe w.rt. I, then WU {pa} is correct w.rt.
(In1,IN, R).

Additionally, we want to prevent the execution of the re-
pair actions from introducing new completeness errors, that
is, we just want to fix all and only the initial set of com-
pleteness errors of the Web site W, namely Ej;(W). Given
a completeness error evidence e, we use notation e(r) to
make evident the unsatisfied requirement r signaled by e.

Definition 4.4. Let (Ins, In, R) be a Web specification and
W be a Web site w.rt. (Ipr, I, R). Let Ep(W) be the set of
completeness error evidences of Ww.r.t. 1.

e the repair action p; = insert(p, w,t) is acceptable
w.rt. (Ing, In, R) and W iff

1. pyissafe w.rt. (Ing, Iy, R);
2. 1 Dy, w € Ogqy(t), for some e(r) € Epr(W);
3. W =W\ {p}tU{p1}, then Ep;(W) C Eps(W).

e the repair action p; = add(p2, W) is acceptable w.r.1.
(IA[,IN,R) and W l]f

1. pois safe wrt. (Ipr, In, R);

2. < pojuws w € Oray(p2), for some e(r) €
EM(W>;
3. W =WU {pa}, then Epr(W) C Epg(W).

Definition 4.4 guarantees that the information which is
added by insert and add actions is correct and does not yield
any new completeness error. More precisely, the number of
completeness errors decreases by effect of the execution of
such repair actions.

Example 4.5. Consider the Web specification of Exam-
ple 3.1 and the universal completeness error evidence
(hp(status(professor),teaching), p1, pa, A) where py
and py are the home pages of MarioRossi and
Anna Gialli in the Web site of Figure 1. To fix the er-
ror, we should add some information to Web page (2),
while Web page (4) is complete w.rt. the requirement
hp(status(professor), teaching). Consider the pieces
of information

t1 = teaching(course(title(logic), syllabus(blah)))
to = teaching(courselink(url(www.mycourse.com),
urlname(Logic))).

If we introduce term ty, the corresponding insert action is
acceptable. However, inserting term to would produce a
new completeness error (i.e. a broken link error).

“Completeness through Deletion” strategy. When deal-
ing with completeness errors, sometimes it is more conve-
nient to delete incomplete data instead of completing them.
In particular, this option can be very useful, whenever we
want to get rid of out-of-date information as illustrated in
Example 4.6 below. The main idea of the deletion strategy
is to remove all the information in the Web site that caused
a given completeness error. The strategy is independent of
the kind of completeness error we are handling, since the
missing information is computed in the same way for all the
three kinds of errors by partially rewriting the original Web
pages of the Web site. In other words, given the missing
expression r of a completeness error evidence e(r) (that is,
a missing page error evidence (r, W), or an existential com-
pleteness error evidence (r, {p1,...,pPn},E), or a universal
completeness error evidence (r, {p1,.-.,Pn},4A)), there ex-
ists a Web page p € Wsuch thatp —* r. Therefore, we pro-
ceed by computing and eliminating from the Web pages all
the terms occurring in the partial rewrite sequences that lead
to a missing expression r. Since this problem is generally
undecidible, some restrictions on the specification language
must be considered (for more details, see the bounded spec-
ifications in [1, 2]).

More formally, given a Web specification (17, Iy, R), a
Web site W and a completeness error evidence e(r), the Web
site W will change in the following way.

Foreacht; — t9 — ... — r, where t; < Plws W €
O’Tag (p)a pew

wz{p€w|tl ﬁp\wvvw S OTag(p),Z': 1,,n}U
{delete(p,t;) | p € W, ti < Pju,w € O1ay(p)
i=1,...,n}

Example 4.6. Consider the Web specification of Example
3.1, the Web site W of Figure 1 and the missing Web page
error evidence (hpage(fullname(ugoblu), status),W),
which can be detected in W by using the completeness rules
in Ipr. The missing information is obtained by means of the
following partial rewrite sequence:

pub(name(ugo), surname(blu), title(blahl),
blink(year(2003))) —

member (name(ugo), surname(blu)) —
hpage(fullname(ugoblu), status)

By choosing the deletion strategy, we would delete all the
information regarding the group membership and the pub-
lications of Ugo B1lu from the Web site.

As in the case of the insertion strategy, we have to take
care about the effects of the execution of the repair actions.

More precisely, we do not want the execution of any delete
action to introduce new completeness errors. For this pur-
pose, we consider the following notion of acceptable delete
action.

Definition 4.5. Let (I5s, Iy, R) be a Web specification and
W be a Web site w.r.t. (Ips, In, R). Let Eyf(W) be the set of
completeness error evidences of W w.r.t. Ip;(W). The repair
action p1 = delete(p, t) is acceptable w.r.t. (Ins, In, R)
and Wiffw =W\ {p} U {p1} implies Ep;(W) C Ep(W).

5. Implementation

The basic methodology presented so far has been par-
tially implemented in the preliminary prototype GVERDI-
R (Graphical Verification and Rewriting for Debugger In-
ternet sites), which is written in Haskell (GHC v6.2.2)
and publicly available together with a set of examples
at http://www.dsic.upv.es/users/elp/GVerdi. The system
worked in a very satisfactory way on our experiments, in-
cluding all the examples in this paper. We are currently cou-
pling the system with appropriate constraint solvers in order
to help the user to input correct value assignments under the
“Correctness through Change” strategy.

6. Conclusions

Maintaining contents of Web sites is an open and urgent
problem since outdated, incorrect and incomplete informa-
tion is becoming very frequent in the World Wide Web.
In this paper, we presented a semi—automatic methodology
for repairing Web sites which has a number of advantages
over other potential approaches (and hence can be used as
a useful complement to them): 1) in contrast to the active
database Web management techniques, we are able to pre-
dict whether a repair action can cause new errors to appear
and assist the user in reformulating the action; 2) by solving
the constraint satisfaction problem associated to the condi-
tions of the Web specification rules, we are also able to aid
users to fix erroneous information by suggesting ranges of
correct values; 3) our methodology smoothly integrates on
top of existing rewriting-based web verification frameworks
such as [1, 2], which offer the expressiveness and compu-
tational power of functions and allow one to avoid the en-
cumbrances of DTDs and XML rule languages.

Let us conclude by discussing further work. For the ben-
efit of the user who prefers not to express himself in a formal
language, we are currently working on a graphical notation
for rules and for the repair actions, which will be automat-
ically translated into our formalism. Moreover, to increase
the level of automation of our repair method, we are work-
ing on possible correction strategies which minimize both

the amount of information to be changed and the number of
repair actions to be executed.

References

[1] M. Alpuente, D. Ballis, and M. Falaschi. Automated Verifi-
cation of Web Sites Using Partial Rewriting. Software Tools
for Technology Transfer, 2006. Accepted for publication. To
appear.

[2] M. Alpuente, D. Ballis, and M. Falaschi. A Rewriting-based
Framework for Web Sites Verification. ENTCS, 124(1),
2005.

[3] K. Apt. Principles of Constraint Programming. Cambridge
University Press, 2003.

[4] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[5] L. Bertossi and J. Pinto. Specifying Active Rules for
Database Maintenance. In Proc. of FMLDO ’99, LNCS
1773, pp. 112-129. Springer, 1999.

[6] M. Bezem. TeReSe, Term Rewriting Systems, chapter Math-
ematical background (Appendix A). Cambridge University
Press, 2003.

[7] L. Capra, W. Emmerich, A. Finkelstein, and C. Nentwich.
XLINKIT: a Consistency Checking and Smart Link Gener-
ation Service. ACM TOIT, 2(2):151-185, 2002.

[8] N. Dershowitz and D. Plaisted. Rewriting. Handbook of
Automated Reasoning, 1:535-610, 2001.

[9] Imagiware. Doctor HTML.

Available at: http://www.doctor-html.com/.

[10] J. Klop. Term Rewriting Systems. In Handbook of Logic
in Computer Science, vol. I, pp. 1-112. Oxford University
Press, 1992.

[11] M. Leuschel. Homeomorphic Embedding for Online Termi-
nation of Symbolic Methods. In The Essence of Computa-
tion, LNCS 2566, pp. 379-403. Springer, 2002.

[12] E. Mayol and E. Teniente. A Survey of Current Methods
for Integrity Constraint Maintenance and View Updating. In
Proc. of ER 99, LNCS 1727, pp. 62—73. Springer, 1999.

[13] C.Nentwich, W. Emmerich, and A. Finkelstein. Consistency
Management with Repair Actions. In Proc. of ICSE '03.
IEEE Computer Society, 2003.

[14] S. Nesbit. HTML Tidy: Keeping it clean, 2000. Available
athttp://tidy.sourceforge.net.

[15] J. Scheftczyk, , U. M. B. P. Rodig, and L. Schmitz. S-dags:
Towards efficient document repair generation. In Proc. of
CCCT ’04, vol. 2, pp. 308-313, 2004.

[16] J. Scheffczyk, U. M. Borghoff, P. Rddig, and L. Schmitz.
Consistent document engineering: formalizing type-safe
consistency rules for heterogeneous repositories. In Proc.
of DocEng ’03, pp. 140-149. ACM Press, 2003.

[17] J. Scheffczyk, P. Rodig, U. M. Borghoff, and L. Schmitz.
Managing inconsistent repositories via prioritized repairs. In
Proc. of DocEng 04, pp. 137-146. ACM Press, 2004.

[18] WWW Consortium (W3C). Extensible Markup Language
(XML) 1.0, second edition, 1999.

[19] WWW Consortium (W3C). Extensible HyperText Markup
Language (XHTML), 2000.

