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A new class of cylindrically symmetric inhomogeneous cosmological models for per-
fect fluid distribution with electromagnetic field is obtained in the context of Lyra’s
geometry. We obtained two types of solutions by considering the uniform as well
as time dependent displacement field. The source of the magnetic field is due to an
electric current produced along the z-axis. Only F12 is a non-vanishing component
of the electromagnetic field tensor. To get the deterministic solution, it has been
assumed that the expansion θ in the model is proportional to the shear σ. It has
been found that the solutions are consistent with the recent observations of type
Ia supernovae and that the displacement vector β(t) affects entropy. Physical and
geometric aspects of the models are also discussed in the presence and absence of
magnetic field.
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1. Introduction and motivations

The inhomogeneous cosmological models play a significant role in the under-
standing of some essential features of the universe such as the formation of galaxies
during the early stages of evolution and the process of homogenization. The early at-
tempts at the construction of such models have been done by Tolman [1] and Bondi
[2] who considered spherically symmetric models. Inhomogeneous plane-symmetric
models were considered by Taub [3, 4] and later by Tomimura [5], Szekeres [6],
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Collins and Szafron [7], Szafron and Collins [8]. Senovilla [9] obtained a new class of
exact solutions of Einstein’s equations without the big-bang singularity, represent-
ing a cylindrically symmetric, inhomogeneous cosmological model filled with perfect
fluid which is smooth and regular everywhere, satisfying energy and causality condi-
tions. Later, Ruiz and Senovilla [10] examined a fairly large class of singularity-free
models through a comprehensive study of general cylindrically symmetric metric
with separable function of r and t as metric coefficients. Dadhich et al. [11] estab-
lished a link between the FRW model and the singularity-free family by deducing
the latter through a natural and simple inhomogenization and anisotropization of
the former. Recently, Patel et al. [12] presented a general class of inhomogeneous
cosmological models filled with non-thermalized perfect fluid, assuming that the
background space-time admits two space-like commuting Killing vectors and has
separable metric coefficients. Singh, Mehta and Gupta [13] obtained inhomoge-
neous cosmological models of perfect fluid distribution with electromagnetic field.
Recently, Pradhan et al. [14] investigated cylindrically-symmetric inhomogeneous
cosmological models in various contexts.

The occurrence of magnetic field on galactic scale is a well-established fact
today, and its importance for a variety of astrophysical phenomena is generally
acknowledged as pointed out by Zeldovich et al. [15]. Also Harrison [16] suggested
that magnetic field could have a cosmological origin. As a natural consequence, we
should include magnetic fields in the energy-momentum tensor of the early universe.
The choice of anisotropic cosmological models in Einstein’s system of field equations
leads to the cosmological models more general than the Robertson-Walker model
[17]. The presence of primordial magnetic field in the early stages of the evolution
of the universe is discussed by many [18]−[27]. Strong magnetic field can be created
due to the adiabatic compression in clusters of galaxies. Large-scale magnetic field
gives rise to anisotropies in the universe. The anisotropic pressure created by the
magnetic fields dominates the evolution of the shear anisotropy and decays slowly
as compared to the case when the pressure is held isotropic [28, 29]. Such fields can
be generated at the end of an inflationary epoch [30]−[34]. Anisotropic magnetic
field models have a significant contribution in the evolution of galaxies and stellar
objects. Bali and Ali [35] obtained a magnetized cylindrically symmetric universe
with an electrically neutral perfect fluid as the source of matter. Pradhan et al. [36]
investigated magnetized cosmological models in various contexts.

In 1917 Einstein introduced the cosmological constant into his field equations
of general relativity in order to obtain a static cosmological model since, as is well
known, without the cosmological term his field equations admit only non-static
solutions. After the discovery of the red-shift of galaxies and explanation thereof
Einstein regretted for the introduction of the cosmological constant. Recently, there
has been much interest in the cosmological term in the context of quantum field
theories, quantum gravity, super-gravity theories, Kaluza-Klein theories and the
inflationary-universe scenario. Shortly after Einstein’s general theory of relativity,
Weyl [37] suggested the first so-called unified field theory based on a generalization
of Riemannian geometry. With its backdrop, it would seem more appropriate to
call Weyl’s theory a geometrized theory of gravitation and electromagnetism (just
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as the general theory was a geometrized theory of gravitation only), instead a
unified field theory. It is not clear as to what extent the two fields have been
unified, even though they acquire (different) geometrical significance in the same
geometry. The theory was never taken seriously in as much as it was based on the
concept of non-integrability of length transfer; and, as pointed out by Einstein,
this implies that spectral frequencies of atoms depend on their past histories and
therefore have no absolute significance. Nevertheless, Weyl’s geometry provides an
interesting example of non-Riemannian connections, and recently Folland [38] has
given a global formulation of Weyl manifolds clarifying thereby considerably many
of Weyl’s basic ideas.

In 1951 Lyra [39] proposed a modification of Riemannian geometry by intro-
ducing a gauge function into the structureless manifold, as a result of which the
cosmological constant arises naturally from the geometry. This bears a remarkable
resemblance to Weyl’s geometry. But in Lyra’s geometry, unlike that of Weyl, the
connection is metric preserving as in Remannian; in other words, length transfers
are integrable. Lyra also introduced the notion of a gauge and in the “normal”
gauge the curvature scalar identical to that of Weyl. In consecutive investigations,
Sen [40], Sen and Dunn [41] proposed a new scalar-tensor theory of gravitation and
constructed an analog of the Einstein’s field equations based on Lyra’s geometry. It
is, thus, possible [40] to construct a geometrized theory of gravitation and electro-
magnetism much along the lines of Weyl’s “unified” field theory, however, without
the inconvenience of non-integrability of length transfer.

Halford [42] pointed out that the constant vector displacement field φi in Lyra’s
geometry plays the role of the cosmological constant Λ in the normal general rel-
ativistic treatment. It was shown by Halford [43] that the scalar-tensor treatment
based on Lyra’s geometry predicts the same effects within observational limits of
the Einstein’s theory. Several authors, Sen and Vanstone [44], Bhamra [45], Karade
and Borikar [46], Kalyanshetti and Wagmode [47], Reddy and Innaiah [48], Bee-
sham [49], Reddy and Venkateswarlu [50], Soleng [51], studied cosmological models
based on Lyra’s manifold with a constant displacement field vector. However, this
restriction of the displacement field to be constant is merely one for convenience and
there is no a priori reason for it. Beesham [52] considered FRW models with time
dependent displacement field. He has shown that by assuming the energy density of
the universe to be equal to its critical value, the models have the k = −1 geometry.
Singh and Singh [53]− [56], Singh and Desikan [57] studied Bianchi-type I, III,
Kantowaski-Sachs and a new class of cosmological models with the time-dependent
displacement field and made a comparative study of Robertson-Walker models with
constant deceleration parameter in Einstein’s theory with cosmological term and
in the cosmological theory based on Lyra’s geometry. Soleng [51] pointed out that
the cosmologies based on Lyra’s manifold with constant gauge vector φ will either
include a creation field and be equal to Hoyle’s creation field cosmology [56]− [60]
or contain a special vacuum field, which together with the gauge vector term, may
be considered as a cosmological term. In the latter case, the solutions are equal to
the general relativistic cosmologies with a cosmological term.

Recently, Pradhan et al. [61], Casama et al. [62], Rahaman et al. [63], Bali and
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Chandnani [64], Kumar and Singh [65], Singh [66] and Rao, Vinutha and Santhi [67]
studied cosmological models based on Lyra’s geometry in various contexts. With
these motivations, in this paper, we obtained exact solutions of Einstein’s mod-
ified field equations in cylindrically-symmetric inhomogeneous space-time within
the frame work of Lyra’s geometry in the presence and absence of magnetic field
for uniform and time varying displacement vector. This paper is organized as fol-
lows. In Section 1 the motivation for the present work is discussed. The metric
and the field equations are presented in Section 2, in Section 3 the solution of
field equations, the Section 4 contains the solution of uniform displacement field
(β = β0, constant). The Section 5 deals with the solution with time varying dis-
placement field (β = β(t)). Subsections 5.1, 5.2 and 5.3 describe the solutions of
empty universe, Zeldovich universe and radiating universe with the physical and
geometric aspects of the models respectively. The solutions in absence of magnetic
field are given in Section 6. Sections 7 and 8 deal with the solutions for uniform and
time dependent displacement field. Finally, in Section 9, discussion and concluding
remarks are given.

2. The metric and field equations

We consider the cylindrically symmetric metric in the form

ds2 = A2(dx2 − dt2) +B2dy2 + C2dz2, (1)

where A is the function of t alone and B and C are functions of x and t. The energy
momentum tensor is taken as

T j
i = (ρ+ p)uiu

j + pgji + Ej
i , (2)

where ρ and p are, respectively, the energy density and pressure of the cosmic fluid,
and ui is the fluid four-velocity vector satisfying the conditions

uiui = −1, uixi = 0. (3)

In Eq. (2), Ej
i is the electromagnetic field given by Lichnerowicz [68]

Ej
i = µ̄

[

hlh
l

(

uiu
j +

1

2
gji

)

− hih
j

]

, (4)

where µ̄ is the magnetic permeability and hi the magnetic flux vector defined by

hi =
1

µ̄
∗Fjiu

j , (5)

where the dual electromagnetic field tensor ∗Fij is defined by Synge [69]

∗Fij =

√−g
2

ǫijklF
kl. (6)
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Here Fij is the electromagnetic field tensor and ǫijkl is the Levi-Civita tensor den-
sity.

The co-ordinates are considered to be co-moving so that u1 = 0 = u2 = u3 and
u4 = 1/A. If we consider that the current flows along the z-axis, then F12 is the
only non-vanishing component of Fij . The Maxwell’s equations

Fij;k + Fjk;i + Fki;j = 0, (7)

[

1

µ̄
F ij

]

;j

= 0 , (8)

require that F12 is the function of x-alone. We assume that the magnetic perme-
ability is the functions of x and t both. Here the semicolon represents a covariant
differentiation.

The field equations (in gravitational units c = 1, G = 1), in normal gauge for
Lyra’s manifold, were obtained by Sen [40] as

Rij −
1

2
gijR+

3

2
φiφj −

3

4
gijφkφ

k = −8πTij , (9)

where φi is the displacement field vector defined as

φi = (0, 0, 0, β), (10)

where β is either a constant or a function of t. The other symbols have their usual
meaning as in Riemannian geometry.

For the line-element (1), the field Eq. (9) with Eqs. (2) and (10) lead to the
following system of equations

1

A2

[

−B44

B
− C44

C
+
A4

A

(

B4

B
+
C4

C

)

− B4C4

BC
+
B1C1

BC

]

− 3

4
β2

= 8π

(

p+
F 2
12

2µ̄A2B2

)

, (11)

1

A2

(

A2
4

A2
− A44

A
− C44

C
+
C11

C

)

− 3

4
β2 = 8π

(

p+
F 2
12

2µ̄A2B2

)

, (12)

1

A2

(

A2
4

A2
− A44

A
− B44

B
+
B11

B

)

− 3

4
β2 = 8π

(

p− F 2
12

2µ̄A2B2

)

, (13)

1

A2

[

−B11

B
− C11

C
+
A4

A

(

B4

B
+
C4

C

)

− B1C1

BC
+
B4C4

BC

]

+
3

4
β2
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= 8π

(

ρ+
F 2
12

2µ̄A2B2

)

, (14)

B14

B
+
C14

C
− A4

A

(

B1

B
+
C1

C

)

= 0, (15)

where the subscript indices 1 and 4 at A, B, C and elsewhere denote ordinary
differentiation with respect to x and t, respectively.

3. Solution of field equations

Equations (11) – (15) are five independent equations in seven unknowns A, B,
C, ρ, p, β and F12. For the complete determinacy of the system, we need two extra
conditions which are narrated hereinafter. The research on exact solutions is based
on some physically reasonable restrictions used to simplify the field equations.

To get a determinate solution, we assume that the expansion θ in the model is
proportional to the shear σ. This condition leads to

A =

(

B

C

)n

, (16)

where n is a constant. The motive behind this condition is explained with reference
to Thorne [70]. The observations of the velocity-red-shift relation for extragalactic
sources suggest that Hubble expansion of the universe is isotropic today within
≈ 30 per cent [71, 72]. To put more precisely, red-shift studies place the limit

σ

H
≤ 0.3

on the ratio of shear, σ, to Hubble constant, H, in the neighbourhood of our Galaxy
today. Collins et al. [73] pointed out that for spatially homogeneous metric, the
normal congruence to the homogeneous expansion satisfies that the condition σ/θ
is constant.

From Eqs. (11)-(13), we have

A44

A
− A2

4

A2
+
A4B4

AB
+
A4C4

AC
− B44

B
− B4C4

BC
=
C11

C
− B1C1

BC
= K(constant) (17)

and
8πF 2

12

µ̄B2
= −C44

C
+
C11

C
+
B44

B
− B11

B
. (18)

We also assume that

B = f(x)g(t),
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C = f(x)k(t). (19)

Using Eqs. (16) and (19) in (15) and (17) one obtains

k4
k

=
(2n− 1)

(2n+ 1)

g4
g
, (20)

(n− 1)
g44
g

− n
k44
k

− g4
g

k4
k

= K, (21)

ff11 − f21 = Kf2. (22)

Equation (20) leads to

k = cgα, (23)

where α = (2n − 1)/(2n + 1) and c is the constant of integration. From Eqs. (21)
and (23), we have

g44
g

+ ℓ
g24
g2

= N, (24)

where

ℓ =
nα(α− 1) + α

n(α− 1) + 1
, N =

K

n(1− α)− 1
.

Equation (22) leads to

f = exp

(

1

2
K(x+ x0)

2

)

, (25)

where x0 is an integrating constant. Equation (24) leads to

g =
(

c1e
bt + c2e

−bt
)1/(ℓ+1)

, (26)

where b =
√

(ℓ+ 1)N and c1, c2 are integrating constants. Hence from (23) and
(26), we have

k = c
(

c1e
bt + c2e

−bt
)α/(ℓ+1)

. (27)

Therefore we obtain

B = exp

(

1

2
K(x+ x0)

2

)

(

c1e
bt + c2e

−bt
)1/(ℓ+1)

, (28)

C = exp

(

1

2
K(x+ x0)

2

)

c
(

c1e
bt + c2e

−bt
)α/(ℓ+1)

, (29)
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A = a
(

c1e
bt + c2e

−bt
)n(1−α)/(ℓ+1)

, (30)

where a = c3/c, c3 being a constant of integration.

After using suitable transformation of the coordinates, the model (1) reduces
to the form

ds2=a2(c1e
bT+c2e

−bT )2n(1−α)/(ℓ+1)(dX2−dT 2)+eKX2

(c1e
bT+c2e

−bT )2/(ℓ+1)dY 2

+eKX2

(c1e
bT + c2e

−bT )2α/(ℓ+1)dZ2, (31)

where x+ x0 = X, t = T , y = Y , cz = Z.

For the specification of the displacement vector β within the framework of Lyra
geometry and for realistic models of physical importance, we consider the following
two cases described in Sections 4 and 5.

4. When β is a constant i.e. β = β0 (constant)

Using Eqs. (28), (29) and (30) in Eqs. (11) and (14), the expressions for pressure
p and density ρ for the model (31) are given by

8πp =
1

a2ψ
2n(1−α)/(ℓ+1)
2

[

K2X2 − 2(3 + α)b2c1c2
(ℓ+ 1)ψ2

2

− (2nα2 + α2 + 2α− 2n+ 3)b2

2(ℓ+ 1)2
ψ2
1

ψ2
2

]

− 3

4
β2
0 , (32)

8πρ =
1

a2ψ
2n(1−α)/(ℓ+1)
2

[

−3K2X2 − 2K +
2b2(α− 1)c1c2

(ℓ+ 1)ψ2
2

− (2nα2 − α2 − 2α− 2n+ 1)b2

2(ℓ+ 1)2
ψ2
1

ψ2
2

]

+
3

4
β2
0 , (33)

where

ψ1 = c1e
bT − c2e

−bT ,

ψ2 = c1e
bT + c2e

−bT .

From Eq. (18) the non-vanishing component F12 of the electromagnetic field tensor
is obtained as

F 2
12 =

µ̄

8π

b2(1− α)

(ℓ+ 1)2
eKX2

ψ
2/(ℓ+1)
2

[

4(ℓ+ 1)c1c2 + (1 + α)ψ2
1

ψ2
2

]

. (34)
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From the above equation, it is observed that the electromagnetic field tensor in-
creases with time.

The reality conditions (Ellis [74])

(i)ρ+ p > 0, (ii)ρ+ 3p > 0,

lead to
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

− 4b2c1c2
(ℓ+ 1)ψ2

2

> K(KX2 + 1), (35)

and
b2(4n− 4nα2 − α2 − 2α− 5)

(ℓ+ 1)2
ψ2
1

ψ2
2

− 4b2(α+ 5)c1c2
(ℓ+ 1)ψ2

2

> 2K +
3

2
β2
0a

2ψ
2n(1−α)/(ℓ+1)
2 , (36)

respectively.

The dominant energy conditions (Hawking and Ellis [75])

(i) ρ− p ≥ 0, (ii) ρ+ p ≥ 0,

lead to

b2(α+ 1)2

(ℓ+ 1)2
ψ2
1

ψ2
2

+
4b2(α+ 1)c1c2

(ℓ+ 1)ψ2
2

+
3

2
β2
0a

2ψ
2n(1−α)/(ℓ+1)
2 ≥ 2K(2KX2 + 1), (37)

and
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

− 4b2c1c2
(ℓ+ 1)ψ2

2

≥ K(KX2 + 1), (38)

respectively. The conditions (36) and (37) impose a restriction on the constant
displacement vector β0.

5. When β is a function of t i.e. β = β(t)

In this case, to find the explicit value of displacement field β(t), we assume that
the fluid obeys an equation of state of the form

p = γρ, (39)

where γ (0 ≤ γ ≤ 1) is a constant. Using Eqs. (28) – (30) and (39) in equations
(11) and (14), we obtain

4π(1 + γ)ρ =
1

a2ψ
2n(1−α)/(ℓ+1)
2

[

−K2X2 −K − 4b2c1c2
(ℓ+ 1)ψ2

2

− b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

]

,

(40)
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and

(1+γ)β2(t)=
4

3a2ψ
2n(1−α)/(ℓ+1)
2

[

K2X2(1+γ)+2Kγ+
2b2c1c2{(1−α)(1−γ)−4}

(ℓ+ 1)ψ2
2

+
b2

(ℓ+ 1)2
{(2nα2 − α2 − 2α− 2n+ 1)(1 + γ)− 2(nα2 − n+ 1)}ψ

2
1

ψ2
2

]

. (41)

Here we consider the three cases of physical interest in following Subsections 5.1,
5.2 and 5.3.

5.1. Empty universe

Putting γ = 0 in (39) reduces to p = 0. Thus, from Eqs. (40) and (41), we
obtain the expressions for physical parameters ρ and β2(t)

4πρ =
1

a2ψ
2n(1−α)/(ℓ+1)
2

[

−K2X2 −K − 4b2c1c2
(ℓ+ 1)ψ2

2

+
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

]

, (42)

β2(t) =
4

3a2ψ
2n(1−α)/(ℓ+1)
2

[

K2X2 − 2b2(α+ 4)c1c2
(ℓ+ 1)ψ2

2

− b2(α+ 1)2

(ℓ+ 1)2
ψ2
1

ψ2
2

]

. (43)

From Eqs. (42) and (43), we observe that ρ > 0 and β2(t) > 0 according to

b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1 −K(KX2 + 1)ψ2

2 >
4b2c1c2
(ℓ+ 1)

, (44)

and

K2X2ψ2
2 −

b2(α+ 1)2

(ℓ+ 1)2
ψ2
1 >

2b2(α+ 4)c1c2
(ℓ+ 1)

, (45)

respectively.

Halford [6] has pointed out that the displacement field φi in Lyra’s geometry
plays the role of the cosmological constant Λ in the normal general relativistic
treatment. From Eq. (43), it is observed that the displacement vector β(t) is a
decreasing function of time which is corroborated with Halford as well as with
the recent observations [76, 77] leading to the conclusion that Λ(t) is a decreasing
function of t.
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5.2. Zeldovich universe

Putting γ = 1 in Eq. (39) reduces to ρ = p. In this case the expressions for
physical quantities are given by

β2(t) =
4

3a2ψ
2n(1−α)/(ℓ+1)
2

[

K2X +K − 4b2c1c2
(ℓ+ 1)ψ2

2

− b2(α+ 1)2

(ℓ+ 1)2
ψ2
1

ψ2
2

]

, (46)

8πp=8πρ=
1

a2ψ
2n(1−α)/(ℓ+1)
2

[

−K2X2−K− 4b2c1c2
(ℓ+ 1)ψ2

2

+
b2(n−nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

]

. (47)

The reality condition (Ellis [74])

(i) ρ+ p > 0, (ii) ρ+ 3p > 0,

lead to
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1 −K(KX2 + 1)ψ2

2 >
4b2c1c2
(ℓ+ 1)

. (48)

5.3. Radiating universe

Putting γ = 1
3 in Eq. (39) reduces to p = 1

3ρ. In this case the expressions for
β(t), p and ρ are obtained as

β2(t) =
2

3a2ψ
2n(1−α)/(ℓ+1)
2

[

2K2X2 +K +
2b2(α+ 5)c1c2

(ℓ+ 1)ψ2
2

+
b2(nα2 − 2α2 − 4α− n− 1)

3(ℓ+ 1)2
ψ2
1

ψ2
2

]

, (49)

8πp =
1

2a2ψ
2n(1−α)/(ℓ+1)
2

[

−K2X2 −K − 4b2c1c2
(ℓ+ 1)ψ2

2

+
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

]

, (50)

8πρ =
3

2a2ψ
2n(1−α)/(ℓ+1)
2

[

−K2X2 −K − 4b2c1c2
(ℓ+ 1)ψ2

2

+
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1

ψ2
2

]

. (51)

From Eq. (49), it is observed that the displacement vector β is a decreasing function
of time and therefore it behaves as the cosmological term Λ.

The reality conditions (Ellis [74])

(i) ρ+ p > 0, (ii) ρ+ 3p > 0,
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are satisfied under the condition (48).

The dominant energy conditions (Hawking and Ellis[75])

(i) ρ− p ≥ 0, (ii) ρ+ p ≥ 0,

lead to
b2(n− nα2 − 1)

(ℓ+ 1)2
ψ2
1 −K(KX2 + 1)ψ2

2 ≥ 4b2c1c2
(ℓ+ 1)

. (52)

Some geometric properties of the model

The expressions for the expansion θ, shear scalar σ2, deceleration parameter q
and proper volume V 3 for the model (31) are given by

θ =
b{n(1− α) + (1 + α)}
(ℓ+ 1)aψ

n(1−α)/(ℓ+1)
2

ψ1

ψ2
, (53)

σ2 =
b2

[

{n(1− α) + (1 + α)}2 − 3n(1− α)(1 + α)− 3α
]

3(ℓ+ 1)2a2ψ
2n(1−α)/(ℓ+1)
2

ψ2
1

ψ2
2

, (54)

q = −1− 6c1c2(ℓ+ 1)

n(1− α2) (c1ebT − c2e−bT )
2 , (55)

V 3 =
√−g = a2ψ

2n(1+α)(1−α)/(ℓ+1)
2 eKX2

. (56)

From Eqs. (53) and (54) we obtain

σ2

θ2
=

{n(1− α) + (1 + α)}2 − 3n(1− α2)− 3α

3{n(1− α) + (1 + α)}2 = constant. (57)

The rotation ω is identically zero.

The rate of expansion Hi in the directions of x, y and z are given by

Hx =
A4

A
=
nb(1− α)

(ℓ+ 1)

ψ1

ψ2
,

Hy =
B4

B
=

b

(ℓ+ 1)

ψ1

ψ2
,

Hz =
C4

C
=

bα

(ℓ+ 1)

ψ1

ψ2
. (58)

Generally, the model (31) represents an expanding, shearing and non-rotating uni-
verse in which the flow vector is geodetic. The model (31) starts expanding at T > 0
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and goes on expanding indefinitely when n(1−α)/(ℓ+1) < 0. Since σ/θ = constant,
the model does not approach isotropy. As T increases, the proper volume also in-
creases. The physical quantities p and ρ decrease as F12 increases. However, if
n(1 − α)/(β + 1) > 0, the process of contraction starts at T > 0 and at T = ∞
the expansion stops. The electromagnetic field tensor does not vanish when b /= 0,
and α /= 1. It is observed from Eq. (55) that q < 0 when c1 > 0 and c2 > 0,
which implies an accelerating model of the universe. Recent observations of type
Ia supernovae [76, 77] reveal that the present universe is in accelerating phase and
deceleration parameter lies somewhere in the range −1 < q ≤ 0. It follows that our
models of the universe are consistent with recent observations. Either when c1 = 0
or c2 = 0, the deceleration parameter q approaches the value (−1) as in the case of
de-Sitter universe.

6. Solution in the absence of magnetic field

In the absence of magnetic field, the field Eq. (9) with Eqs. (2) and (10) for
metric (1) read as

1

A2

[

−B44

B
− C44

C
+
A4

A

(

B4

B
+
C4

C

)

− B4C4

BC
+
B1C1

BC

]

= 8πp+
3

4
β2, (59)

1

A2

(

A2
4

A2
− A44

A
− C44

C
+
C11

C

)

= 8πp+
3

4
β2, (60)

1

A2

(

A2
4

A2
− A44

A
− B44

B
+
B11

B

)

= 8πp+
3

4
β2, (61)

1

A2

[

−B11

B
− C11

C
+
A4

A

(

B4

B
+
C4

C

)

− B1C1

BC
+
B4C4

BC

]

= 8πρ− 3

4
β2, (62)

B14

B
+
C14

C
− A4

A

(

B1

B
+
C1

C

)

= 0. (63)

Eqs. (60) and (61) lead to

B44

B
− B11

B
− C44

C
+
C11

C
= 0. (64)

Eqs. (19) and (64) lead to

g44
g

− k44
k

= 0. (65)
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Eqs. (23) and (65) lead to

g44
g

+ α
g24
g2

= 0, (66)

which on integration gives

g = (c4t+ c5)
1/(α+1), (67)

where c4 and c5 are constants of integration. Hence from (23) and (67), we have

k = c(c4t+ c5)
α/(α+1). (68)

In this case Eq. (22) again leads to

f = exp

(

1

2
K(x+ x0)

2

)

. (69)

Therefore, we have

B = exp

(

1

2
K(x+ x0)

2

)

(c4t+ c5)
1/(α+1), (70)

C = exp

(

1

2
K(x+ x0)

2

)

c(c4t+ c5)
α/(α+1), (71)

A = a(c4t+ c5)
n(1−α)/(1+α), (72)

where a is already defined in previous section.
After using suitable transformation of the co-ordinates, the metric (1) reduces to
the form

ds2 = a2(c4T )
2n(1−α)/(1+α)(dX2 − dT 2) + eKX2

(c4T )
2/(α+1)dY 2

+eKX2

(c4T )
2α/(α+1)dZ2, (73)

where x+ x0 = X, y = Y , cz = Z, t+ c5/c4 = T .

For the specification of the displacement field β(t) within the framework of Lyra
geometry and for realistic models of physical importance, we consider the following
two cases given in Sections 7 and 8.
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7. When β is a constant i.e. β = β0 (constant)

Using Eqs. (70) – (72) in Eqs. (59) and (62) the expressions for pressure p and
density ρ for the model (73) are given by

8πp =
1

a2(c4T )2n(1−α)/(1+α)

[

{

n(1− α2) + α

(α+ 1)2

}

1

T 2
+K2X2

]

− 3

4
β2
0 , (74)

8πρ =
1

a2(c4T )2n(1−α)/(1+α)

[

{

n(1− α2) + α

(α+ 1)2

}

1

T 2
−K(2+ 3KX2)

]

+
3

4
β2
0 , (75)

The dominant energy conditions (Hawking and Ellis [75])

(i) ρ− p ≥ 0, (ii) ρ+ p ≥ 0,

lead to
3

4
β2
0a

2(c4T )
2n(1−α)/(1+α) ≥ K(1 + 2KX2), (76)

and
{

n(1− α2) + α

(1 + α)2

}

1

T 2
≥ K(1 +KX2), (77)

respectively.

The reality conditions (Ellis [74])

(i) ρ+ p > 0, (ii) ρ+ 3p > 0,

lead to
{

n(1− α2) + α

(1 + α)2

}

1

T 2
> K(1 +KX2), (78)

and
2[n(1− α2) + α]

(1 + α)2
1

T 2
> K +

3

4
β2
0(c4T )

2n(1−α)/(1+α). (79)

The conditions (76) and (79) impose a restriction on β0.

8. When β is a function of t

In this case, to find the explicit value of displacement field β(t), we assume that
the fluid obeys an equation of state given by (39). Using Eqs. (70) – (72) and (39)
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in Eqs. (59) and (62), we obtain expressions for ρ(t) and β(t) given by

8π(1+ γ)ρ =
1

a2(c4T )2n(1−α)/(1+α)

[

{

n(1− α2) + α

(α+ 1)2

}

2

T 2
− 2K(1+KX2)

]

, (80)

(1 + γ)β2(t) =
4

3a2(c4T )2n(1−α)/(1+α)

[

{

n(1− α2) + α

(α+ 1)2

}

(1− γ)

T 2

+2Kγ +KX2(1 + 3γ)

]

. (81)

It is observed that ρ > 0 and β2(t) > 0 according to

{

n(1− α2) + α

(α+ 1)2

}

1

T 2
> K(1 +KX2), (82)

and
{

n(1− α2) + α

(α+ 1)2

}

1

T 2
> K2X2, (83)

respectively.

It is worth mentioning here that by putting γ = 0, 1, 13 in Eqs. (80) and (81),
one can derive the expressions for energy density ρ(t) and displacement vector β(t)
for empty universe, Zeldovich universe and radiating universe, respectively. It is
also observed that these three types of models have similar properties as we have
already discussed above. Therefore, we have not mentioned the expressions for
physical quantities of these models.

Some geometric properties of the model

The expressions for the expansion θ, Hubble parameter H, shear scalar σ2,
deceleration parameter q and proper volume V 3 for the model (73) in absence of
magnetic field are given by

θ = 3H =
n(1− α) + (1 + α)

a(1 + α)c
n(1−α)/(1+α)
4

1

T {n(1−α)+(1+α)}/(1+α)
, (84)

σ2 =
{n(1− α) + (1 + α)}2 − 3n(1− α2)− 3α

3a2(1 + α)2c
n(1−α)/(1+α)
4

1

T {2n(1−α)+2(1+α)}/(1+α)
, (85)

q = −1 +
3(α+ 1)

2n(1− α) + 2(1 + α)
, (86)
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V 3 =
√−g = a2eKX2

(c4T )
{2n(1−α)+(1+α)}/(1+α). (87)

From Eqs. (84) and (85) we obtain

σ2

θ2
=

{n(1− α) + (1 + α)}2 − 3n(1− α2)− 3α

3{n(1− α) + (1 + α)}2 = constant. (88)

The rotation ω is identically zero.

The rate of expansion Hi in the direction of x, y and z are given by

Hx =
A4

A
=
n(1− α)

(1 + α)

1

T
,

Hy =
B4

B
=

1

(1 + α)

1

T
,

Hz =
C4

C
=

α

(1 + α)

1

T
. (89)

The model (73) starts expanding with a big bang at T = 0 and it stops expanding
at T = ∞. It should be noted that the universe exhibits initial singularity of the
point-type at T = 0. The space-time is well behaved in the range 0 < T < T0.
In the absence of magnetic field, the model represents a shearing and non-rotating
universe in which the flow vector is geodetic. At the initial moment T = 0, the
parameters ρ, p, β, θ, σ2 and H tend to infinity. So the universe starts from an
initial singularity with infinite energy density, infinite internal pressure, infinitely
large gauge function, infinite rate of shear and expansion. Moreover, ρ, p, β, θ, σ2

and H are monotonically decreasing toward a non-zero finite quantity for T in the
range 0 < T < T0 in the absence of magnetic field. Since σ/θ = constant, the model
does not approach isotropy. As T increases, the proper volume also increases. It is
observed that for all three models, i.e., for empty universe, Zeldovice universe and
radiating universe, the displacement vector β(t) is a decreasing function of time
and, therefore, it behaves like the cosmological term Λ. It is observed from Eq. (86)
that q < 0 when α < (2n− 1)/(2n+ 1) which implies an accelerating model of the
universe. When α = −1, the deceleration parameter q approaches the value (−1)
as in the case of the de-Sitter universe. Thus, also in the absence of magnetic field,
our models of the universe are consistent with recent observations.

9. Discussion and concluding remarks

In this paper, we have obtained a new class of exact solutions of Einstein’s
modified field equations for cylindrically symmetric space-time with perfect fluid
distribution within the framework of Lyra’s geometry, both in presence and absence
of magnetic field. The solutions are obtained using the functional separability of
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the metric coefficients. The source of the magnetic field is due to an electric current
produced along the z-axis. F12 is the only non-vanishing component of electromag-
netic field tensor. The electromagnetic field tensor is given by Eq. (34), µ̄ remains
undetermined as function of both x and t. The electromagnetic field tensor does
not vanish if b /= 0 and α /= 1. It is observed that in the presence of magnetic field,
the rate of expansion of the universe is faster than that in the absence of magnetic
field. The idea of primordial magnetism is appealing because it can potentially
explain all large-scale fields seen in the universe today, specially those found in re-
mote proto-galaxies. As a result, the literature contains many studies examining the
role and the implications of magnetic fields for cosmology. In presence of magnetic
field, the model (31) represents an expanding, shearing and non-rotating universe
in which the flow vector is geodetic. But in the absence of magnetic field, the model
(73) is found that in the universe all matter and radiation are concentrated at the
big-bang epoch and the cosmic expansion is driven by the big-bang impulse. The
universe has singular origin and it exhibits a power-law expansion after the big-
bang impulse. The rate of expansion slows down and finally stops at T → ∞. In
the absence of magnetic field, the pressure, energy density and displacement field
become zero, whereas the spatial volume becomes infinitely large as T → ∞.

It is possible to discuss entropy in our universe. In thermodynamics, the expres-
sion for entropy is given by

dS = d(ρV 3) + p(dV 3), (90)

where V 3 = A2BC is the proper volume in our case. To solve the entropy problem
of the standard model, it is necessary to treat dS > 0 for at least a part of evolution
of the universe. Hence Eq. (90) reduces to

TdS = ρ4 + (ρ+ p)

(

2
A4

A
+
B4

B
+
C4

C

)

> 0. (91)

The conservation equation T j
i:j = 0 for (1) leads to

ρ4 + (ρ+ p)

(

A4

A
+
B4

B
+
C4

C

)

+
3

2
ββ4 +

3

2
β2

(

2
A4

A
+
B4

B
+
C4

C

)

= 0. (92)

Therefore, Eqs. (91) and (92) lead to

3

2
ββ4 +

3

2
β2

(

2
A4

A
+
B4

B
+
C4

C

)

< 0, (93)

which gives to β < 0. Thus, the displacement vector β(t) affects entropy because
for entropy dS > 0 leads to β(t) < 0.

In spite of the homogeneity at large scale, our universe is inhomogeneous at
small scale, so physical quantities being position-dependent are more natural in
our observable universe if we do not go to super high scale. This result shows this
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kind of physical importance. It is observed that the displacement vector β(t) coin-
cides with the nature of the cosmological constant Λ which has been supported by
the work of several authors as discussed in the physical behaviour of the model in
Sections 5 and 8. In recent time Λ-term has attracted theoreticians and observers
for many a reason. The nontrivial role of the vacuum in the early universe generates
a Λ-term that leads to inflationary phase. Observationally, this term provides an
additional parameter to accommodate conflicting data on the values of the Hubble
constant, the deceleration parameter, the density parameter and the age of the
universe (for example, see Refs. [78] and [79]). Assuming that Λ owes its origin to
vacuum interaction, as suggested particularly by Sakharov [80], it follows that it
would, in general, be a function of space and time coordinates, rather than a strict
constant. In a homogeneous universe, Λ will be at most time dependent [81]. In
the case of inhomogeneous universe, this approach can generate Λ that varies both
in space and time. In considering the nature of local massive objects, however, the
space dependence of Λ cannot be ignored. For details, reference may be made to
Refs. [82], [83], [84]. In recent past, there is an upsurge of interest in scalar fields in
general relativity and alternative theories of gravitation in the context of inflation-
ary cosmology [85, 86, 87]. Therefore, the study of cosmological models in Lyra’s
geometry may be relevant for inflationary models. Also, the space dependence of
the displacement field β is important for inhomogeneous models for the early stages
of evolution of the universe. In the present study, we also find β(t) as both space and
time dependent which may be useful for a better understanding of the evolution of
universe in cylindrically symmetric space-time within the framework of Lyra’s ge-
ometry. There seems a good possibility of Lyra’s geometry to provide a theoretical
foundation for relativistic gravitation, astrophysics and cosmology. However, the
importance of Lyra’s geometry for astrophysical bodies is still an open question. In
fact, it needs a fair trial by experiment.
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NEHOMOGEN SVEMIR S PERFEKTNOM TEKUĆINOM I
ELEKTROMAGNETSKIM POLJEM U LYRINOJ GEOMETRIJI

Našli smo novu klasu cilindrično-simetričnih nehomogenih kozmoloških modela za
perfektnu raspodjelu tekućine i s elektromagnetskim poljem u okviru Lyrine ge-
ometrije. Postigli smo dvije vrste rješenja razmatrajući jednoliko i vremenski ovisno
posmično polje. Magnetsko se polje proizvodi električnom strujom duž z-osi. Tako
je prisutna jedino sastavnica F12 elektromagnetskog tenzora polja. Radi postizanja
odred–enosti rješenja, u modelu se pretpostavlja razmjernost širenja θ s posmikom
σ. Našli smo da su rješenja u skladu s nedavnim opažanjima Ia supernova te da
posmični vektor β(t) utječe na entropiju. Raspravljaju se fizička i geometrijska
svojstva modela uz i bez prisutnosti magnetskog polja.
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