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Abstract

Nearest neighbor search, a problem that asks for a nearest point in the
database given a query, is a problem in areas of computer science such as
information retrieval, pattern recognition, image, and text processing. There
is still ongoing research toward the improvement of the performance. De-
spite that, there is no comparison between methods proposed. We have no
idea whether a method could work in high dimension or not, or how about
the time and space complexity, or what about the results returned by specific
method. In this paper, I compare six of them here, they are Exhaustive, Van-
tage Point, Random Projection Matrix, Random Projection Tree (RP Tree),
Random Ball Cover (RBC), and Locality-Sensitive Hashing (LSH). This pa-
per consists of comparisons between each method mentioned so that readers
could see some characteristics of these methods to solve nearest neighbor
search problem. In this paper, I use two distance metrics, that is Euclidean
and Cosine Similarity, to compare the performance of each method.
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Chapter 1

Introduction

Nearest neighbor search is a problem in areas of computer science such as
information retrieval, image processing, data mining, pattern recognition,
and text processing. There are methods proposed during the last few years
that attempts to improve the performance so as to solve the problem. Yet
research continues since 1970, signalling its importance.

Usually, the objects of interest in each of these fields are represented as
points that lie in R? dimensional spaces. Then, using distance metric to
calculate the distance between points, the focus of the inquiry now becomes
searching the object that is similar to the query (nearest neighbor search).
An example for this representation is when we do document processing where
we can represent each word as a dimension, and the number of occurrences
as the value in that respective dimension. Then, using cosine similarity as
the distance metric, we can find the most similar document to the document
that is in query. If a person read a certain document (query document), then
it is likely that he will be interested in reading similar document. Since we
already have that similar document, we can suggest him to read it as well.

Nearest ‘:/Query
Neighbor .

Figure 1.1: Example of nearest neighbor search in 2D space



Here are some methods that I compare in this paper:

e Prune search space:
Some methods try to prune out the search space based on certain con-
dition(s). So, for the given query we do not have to compare all points
to find the nearest one. Example of methods compared in this paper
that uses this approach are:

— Vantage Point; and
— Random Ball Cover (RBC).

e Data structure:

Some other methods try to construct a data structure using given
database. There will be some overheads in constructing the data struc-
ture from the database, but the resulting efficiency for the search will
pay off. Examples that belong to this category mostly attempt to build
a tree, using certain criteria to split off the points to the branches.
Then, by applying that criteria to the query, we find out whether we
need to visit a branch or not. A method that belongs to this criteria
that is compared in this paper is the Random Projection Tree (RP
Tree).

e Random subspace:
There are methods that rely on the randomized subspace property,
that is, we can embed a point in high dimensional space to random
lower dimensional subspaces while preserving the distance. Example of
methods compared in this paper that uses this approach are:

— Random Projection Matrix; and

— Random Projection Tree (RP Tree).

e Hashing:

In recent years, several researchers have proposed methods for over-
coming the running time bottleneck by using approximation. In this
formulation, the algorithm is allowed to return a point which is close
enough from the query to be considered "nearest neighbor”. The ap-
peal for this approach is that, in many cases, an approximate nearest
neighbor is almost as good as the exact one [6] i.e. we do not really
need the nearest point possible. It is acceptable as long as the point
returned is close enough. A method that belongs to this category which
is described in this report is the Locality-Sensitive Hashing (LSH).



With so many available methods out there, one could easily drown in infor-
mation about methods to solve a nearest neighbor problem. Furthermore,
if we are to work in a high-dimensional problem, there is a possibility that
we choose a method which does not work in that environment. That is the
main goal for this paper, to provide comparison between methods to give a
sense to readers about which one to choose.

The rest of the paper is organized as follows : Section 2 gives the descrip-
tion of how the method works for each method I compare. The experiment
results and comparison between methods will be presented in the Section 3.
Following that section will be conclusions. The comparison in Section 3 will
be using these control variables:

e the size of dataset
e the number of dimension
and compare them to these metrics:
e time
e space (memory usage)

® CITOr



Chapter 2

Background

Nearest neighbor search is a problem comprising a collection of points in
the database, in which we try to return the nearest point(s) for given query
that lies in the same space. If only one returned point is required, then the
problem is called nearest neighbor. But if there are more than one returned
points required, then the problem is called k-nearest neighbor where k is
the number of returned points required. The point can lie in an arbitrary
number of dimensions and any space. But to be considered an instance of
this problem, those points must have the same distance metric and the same
number of dimensions. For a distance to be a metric, it has to satisfy the
following conditions [1]:

- d(xz,y) 20, and d(z,y) =0 if and only if x = y

- it is symmetric : d(z,y) = d(y,z) (The distance between z and y is
the same in either direction).

- it satisfies the triangle inequality : d(z, z) < d(z,y) + d(y, z)

The distance metric is then used to calculate the distance / similarity be-
tween points.

Formally, the nearest neighbor problem is defined as follows : Given a col-
lection of points DB and a point ¢ that lies in RY, find argmin(dist(p,q)),p €
DB where argmin(.) is a function that returns the index of the minimum
value in the list given as parameter and dist(.,.) is the distance between any
two points that is calculated using distance metric (euclidean or cosine sim-

ilarity). For euclidean, the distance is given as dist(a,b) = /X% (a; — b;)? and
d,. .
for cosine similarity, the distance is given as dist(a, b) = ”a“l"ﬁb” = \/Ed(zi ;I;X;d(b i
i (@i) " X2 (0

And then we can extend this definition to k-nearest neighbor by finding by
modifying argmin(.) to return k indices.
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The first thing that comes to mind when we are discussing about nearest
neighbor search is the exhaustive search. This method of searching compares
the query point(s) with each of the points in the database. And usually, the
distance metric is using the whole dimension. So, the complexity of exhaus-
tive search is O(n.d) where n is the number of points in the database and
d the number of dimensions of the problem. Now, we are going to discuss
about some other methods to solve nearest neighbor problems.

2.1 Prune State Space Search

Basically, the techniques that falls in this category attempt to prune the
search state space so that we do not have to explore the whole database
when we search the nearest neighbor. The way to prune the state is different
for each technique, but there is something in common between the methods I
compare in that we choose representative(s), then we prune the search state
space based on the distance of the query and the representative(s). There are

two techniques from this category compared in this paper : Vantage Point
and Random Ball Cover (RBC).

2.1.1 Vantage Point

Vantage Point is initialized by choosing a random point in the database
(including origin) as the Vantage Point. After the reference point is chosen,
the points in the database is sorted based on the distance to the reference
point. Then, for every incoming query, the distance of the query to the
Vantage Point is calculated. This distance is then used as a reference to find
the point in database which has the most similar distance to Vantage Point.

The searching then goes to left and right of that similar point in the sorted
database. The search then stops if the minimum distance to the query we
found so far has already within the largest difference in distance to Vantage
Point. Graphical representation of what is happening in this algorithm is
shown in Figure 2.1.

The algorithm is given as follows:

Algorithm 1 Vantage Point initialization

vp < random point in database (including origin)
distlist < all points sorted according to dist(p,vp), where dist(.,.) is the
distance function between any two points and p is each point accordingly




Algorithm 2 Vantage Point searching

dist < distance from query to vp
ref < search distlist for point with the most similar value to dist
d < 0 // distance of the query to ref
€ < dist // minimum distance we found so far
while € > § do
now < index of right / left in distlist with min(abs(value —
distlist[ref].value)), where min(.) is a function that returns the mini-
mal value in the list given as parameter and abs(.) is the absolute value
of the parameter.
§ « distlist[now|.value — ref
if € > distlist[now].value then
€ < distlist[now].value
ID <+ distlist[now|.ID
end if
end while
return /D

(a) stopping condition for (b) Random Ball Cover
Vantage Point

Figure 2.1: Graphical representation of the methods

2.1.2 Random Ball Cover [2]

Random Ball Cover is initialized by choosing a number of random repre-
sentatives. After we initialize the representatives, we construct the lists to
indicate the points that belong to each of the representatives. Then, for each
of the query that comes, we calculate the distance to each of the representa-
tives using the exhaustive search. There are two variances of this algorithm,
though the difference lies only in the way they do the search based on the
distance to representatives. The first one is called One-Shot algorithm. The
way it works is to take the nearest representative, then an exhaustive search
is done for the points that belongs to this representative. This one is not
guaranteed to return the nearest point possible as there is a probability that



the nearest point belongs to another representative.

The other variance is called Exact algorithm, and this is the one that I
use in the comparison. This one works by trying to prune as many repre-
sentatives as possible instead of taking the nearest one as in the One-Shot
algorithm. Then, an exhaustive search is done for the points that belongs
to the representative(s) that can not be pruned. Let  to be distance to the
closest representative, then for a representative to be included in the list of
searching, the representative must lie within 3~ from the query. The algo-
rithm is given as follows:

Algorithm 3 Random Ball Cover initialization

Require: n : number of representatives
R <+ list of n random points in database chosen as representatives
L, < list of points that belongs to representative r € R

Algorithm 4 Random Ball Cover Ezact searching

Require: : ¢ : query point

v < min(dist(q,r)),r € R, where min(.) is a function that returns the
minimal value in the list given as parameter and dist(.,.) is the distance
between any two points.
X < empty list
for r € R do

if d(q,r) < 37 then

X+ X+ 1L,

end if
end for
ID «+ L,[argmin(dist(q,z))],x € X, where argmin(.) is a function that
returns the index of the minimal value in the list given as parameter.
return 7D

In this paper, I used the code that Lawrence Cayton (the author of the
paper) provided in [3]. I slightly modified the code though to add the func-
tionality of measuring the memory usage. Because the code does not support
the cosine similarity distance metric, this algorithm is not included in the
comparison for the cosine similarity. But it is still included in the compari-
son for the euclidean distance metric.



2.2 Random Projection

Techniques that falls to this category is using Johnson-Lindenstrauss theorem
that says for any n point subset of Euclidean space can be embedded in
k = O(logn/e?) dimensions without distorting the distances between any
pair of points by more than a factor of (1 &+ ¢), for any 0 < e < 1 [4]. This
will imply that for any pair of points, if they were close in the original space,
they will remain close in projected space.

Here in this paper, I am going to compare two techniques that falls to this
category. One is by constructing a projection matrix to project the database
and the query to the lower dimension. The other one is Random Projection
Tree (RP Tree), tree based structure that splits the database depending on
the resulting projection on a randomly created vector.

2.2.1 Random Projection Matrix

Initially pick £ << d as the target dimension. We then proceed by creating
a k x d-matrix whose entries are random values, and each of the columns is a
unit vector. After we create the matrix, we project (by doing matrix multi-
plication) the database which originally lies in d-dimension to k-dimension.
Then, for each of the incoming query, we just need to project the query point
to k-dimension, after which we can use any technique that works in low di-
mension to find the nearest neighbor. For implementation of this approach
in this paper, I used exhaustive search to find the nearest neighbor after
the projection because exhaustive search is guaranteed to return the nearest
neighbor.
The algorithm implemented in this paper is described as follows :

Algorithm 5 Random Projection Matriz initialization

Require: d : original dimension, k : desired dimension, DB : d X n-matrix
projM <— a matrix of k x d random values
make each of projM column-entries to be unit vector
projDB + projM x DB

10



Algorithm 6 Random Projection Matriz searching

Require: ¢ : query point
proj@Q < projM X q
ID « projDBlargmin(dist(projQ,p))],p € projDB, where argmin(.) is
a function that returns the index of the minimal value in the list given as
parameter and dist(.,.) is the distance between any two points..
return 7D

2.2.2 Random Projection Tree [5]

Random Projection Tree works just like other tree-based techniques, that is,
recursively splits the points in the database to the child nodes depending
on certain criteria. There are two variants that Sanjoy Dasgupta and Yoav
Freund (the authors) provide, but in this paper I only implement the first
variant. The splitting criteria for Random Projection Tree is initialized by
creating a random unit vector (a direction is chosen at random from the
unit sphere). After we have the random unit vector, all the points in this
particular node is projected to that vector. After we have finished with the
splitting of the database, the random unit vector still can not be thrown
away because it is used to project the incoming query.

A point will then go to the left child node if its projection length is less
than the median value, or otherwise go to the right child node. We have to
store the median value as well, to decide whether we will need to inspect
the left child node or the right child node for a given query. There is a
slight difference with the original algorithm though, in that I do not add the
perturbation as criteria to split the database. We stop splitting the database
if the number of points is small enough (in this implementation, I stopped
at 5), or if there is a child node which has no point.

For every query against the database, the point is first projected against
the random unit vector in the inspected node (initially the root). Then,
based on the length of the projection, we will inspect the left child node if
its length is less than the median, or the right child node otherwise. We do
this inspection recursively until we reach a leaf node. Then we can use the
exhaustive search to find the nearest neighbor as the number of points in the
leaf node is already small enough.

The algorithm implemented in this paper is described as follows :

11



Algorithm 7 MakeT'ree
Require: S : list of points
Le ft Points, Right Points < empty list
if |S| < MinSize then
return Leaf
end if
v < random unit vector (splitter)
median < median(dot(s,v)),s € S, where median(.) is a function that
returns the median value of the list given as parameter and dot(.,.) is a
function that returns the dot product of two vectors.
for p € S do
if p.v < median then
LeftPoints < LeftPoints + p
else
RightPoints < RightPoints + p
end if
end for
LeftTree < MakeTree(LeftPoints)
RightTree < MakeTree(Right Points)

*Notes) Originally, the condition is p.v < median +  instead of p.v <
median, where ¢ is defined as follows : pick a point y € S farthest from
p, then choose ¢ uniformly at random in [~1,1].6 || p —y || VD

Algorithm 8 RP Tree searching
Require: ¢ : query point
if |S| < MinSize then
ID < nearest neighbor by calling BF(q, S)
return 1D
end if
if g.v < median then
1D <+ do search on left branch
else
1D < do search on right branch
end if
return D

12
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(a) Split points to left or right child node (b) RP Tree data structure

Figure 2.2: Graphical representation of the RP Tree

2.3 Hashing [6, 7]

The hashing algorithm that I compared in this paper called Locality-Sensitive
Hashing (LSH). The key idea is to hash the points using several hash func-
tions to ensure that for each function the probability of collision is much
higher for objects that are close to each other than for those that are far
apart. Then, one can determine near neighbors by hashing the query point
and retrieving elements stored in buckets containing that point.

This algorithm relies on existence of locality-sensitive hash functions. Let
H be a family of hash functions mapping R¢ to some universe U. For any
two points p and ¢, consider a process in which we choose a function A from
H uniformly at random, and analyze the probability that h(p) = h(q). The
family H is called locality sensitive (with proper parameters) if it satisfies
the following condition.

Definition 2.3 (Locality-sensitive hashing). A family H is called (R, cR, Py, Ps)-
sensitive if for any two points p, ¢ € R

o if | p—gq[I< R then Pry[h(q) = h(p)] = P,
o if | p—q||> cR then Pry[h(q) = h(p)] < P,

In order for a locality-sensitive hash(LSH) family to be useful, it has to sat-
isty P, > Ps.

Usually, the gap between P; and P; is quite small. So we need an am-
plification process to achieve the desired probabilities of collision. We can

13



amplify this gap between P; and P, by concatenating several functions. So,
when we choose function to hash the point, we are not choosing one partic-
ular function. Instead, we choose L hash functions g; = (hyj, ..., hx ;) which
consists of independent and uniform randomly selected hash functions h; ;
from H where 1 < i < k,1 <7 < L. The details of how choosing k and L is
described in the papers.

In this paper, I used a package called E?LSH which is developed by Alex
Andoni. I get the code by asking him through the address that is located in
LSH home page[8]. I slightly modified the code to print the memory usage
(the variable is already there in the code). As the code uses euclidean as the
distance metric, the comparison for this algorithm is only for the euclidean,
not the cosine similarity.

The algorithm described by the author as follows :

Algorithm 9 LSH initialization

for j € L do
gj < (h1j,haj, ..., g ;) where hq 4, ..., hy; are chosen at random from
the LSH family H
hashtable; < dataset points hashed using the function g;

end for

Algorithm 10 LSH searching

for j € L do
P < points from the bucket g;(¢) in the hashtable;
for p e P do
compute the distance from ¢ to it, and report the point if it is a correct
answer

(optional) Stop as soon as the number of reported points is more than
L'. This require additional parameter L’
end for
end for

14



Chapter 3

Evaluation and Analysis

The data set used for the experiment in this paper is a collection of text
documents in the form of XML format. Each document will be a vector /
point in the database, with the value taken from the text contained within
each document. Each word that appears in the whole document will be a
dimension in itself, and the occurrence(s) of that particular word in each of
the document will be the value in that respective dimension. The resulting
vector will be a very sparse vector. For the purpose of testing against the
number of dimensions, I will first find the most frequent words from all doc-
uments. Then, I will iterate through all the points to remove the dimension
that is not included as the most frequent words.

Here are the things that I measured as the comparison of performance
between each methods:

e Time: It is measured as metric = average(queryTime), where average(n)
= E‘T"‘[’] The metric time included in the comparison is measured by
the average time in seconds to do the searching. This does not include
the overhead time in preprocessing the database and the query. There
are some cases that the time measured is smaller than the resolution.
For these cases, the time is set to 1071° for the purpose of plotting the

result in the graph.

e Memory : It is measured as metric = preprocessing+average(queryMemory).
The metric memory included in the comparison is measured for average
memory used to store the data and memory used to do the searching.

. . lats .
e Error: It is measured as metric = 5= ion(error) where accumulation(n)
1MeNnSston

= ¥;n[i] and the error is measured differently between nearest neighbor
and k-nearest neighbor:

15



— Nearest Neighbor : It is measured as error = dist(r,q)—dist(rE, q),
where r = point returned by a method, rE = point returned by
exhaustive method, and ¢ = query point. The exhaustive search
is used as a benchmark, and then the error rate is measured as
the distance between query and the returned point by each of the
methods compared to the distance of query and the point returned
by exhaustive search.

— k-Nearest Neighbor : It is measured as error = dist(kr,q) —
dist(krE,q), where kr = the farthest (k-th) point returned by
a method, krE = the farthest (k-th) point returned by exhaus-
tive method, and ¢ = query point. The exhaustive search is used
as a benchmark, and then the error rate is measured as the dis-
tance between query and the farthest point returned by each of
the methods compared to the distance of query and the farthest
point returned by exhaustive search. In this experiment, I used

k = 10.

For RBC and LSH I used the code provided by the authors, and for the input,
I generated an input file of dense vectors obtained by iterating the dimension
in sparse vector representation. For this reason, it is not compared for the
full dimension (but only included up to 1,000 dimensions) as the resulting file
that contains the dense vectors is too large. As for the rest of the methods
I mentioned, I implemented using Java as I am quite familiar with Java and
Java has already provided the class to deal with sparse vectors. I represented
the dimension as a mapping from word to a number, and each of the vector as
a mapping from dimension number to value (total occurrences in a particular
document).

This section will be divided into two : testing against increasing size
of dataset with a fixed number of dimension and testing against increasing
number of dimension with a fixed size of dataset. Note that apply through the
experiments : for Random Projection Matrix, the dimension of the problem
will be projected to a subspace with 20% of its original number of dimension.
As for RP Tree, the result is only for nearest neighbor.

16



3.1 Performance of the methods against in-

creasing size of dataset with fixed num-
ber of dimension

Here in this section I will provide the experiment result I have gathered so
far for the increasing size of dataset. The fixed number of dimension used in
this experiment is 1,000. Their performance is gathered against the dataset
size of 100, 500, 1,000, 5,000, and 10,000.

3.1.1 Time

log(Time) in seconds

Nearest Neighbor (See Figure 3.1)

Time vs. Size Time vs. Size

3.0

L S 250

log(Time) in seconds

— Exhaustive 0.0
— Simple VP

— RBC — RPTree

— RPTree — Exhaustive
Random Projection —0.5¢ — Simple VP

— LSH Random Projection

.0 25 3.0 35 4.0 _1'3.0 25 3.0 35
log(Size) log(Size)

(a) Euclidean (b) Cosine Similarity

Figure 3.1: Nearest Neighbor measured Time against Size

Mostly the methods are behaving in almost the same way, that is, the
time required to do the query is increasing along with the increasing
size of dataset at almost the same rate. But there are two methods
which behaves quite differently. RP Tree is the fastest in terms of
time, and it seems not much affected by increasing size of the dataset
(there is still an increase). Then, we have RBC which growing rate is
slower than the other four methods.

k-Nearest Neighbor (See Figure 3.2)

Exhaustive, Vantage Point, Random Projection Matrix, and LSH have
almost the same growth rate, that is, their growth in the time required
to do the query against an increasing size of dataset are almost the
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log(Time) in seconds

Time vs. Size Time vs. Size
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— LSH Random Projection
_1'8.0 25 3.0 35 4.0 0'8.0 25 3.0 35 4.0
log(Size) log(Size)
(a) Euclidean (b) Cosine Similarity

Figure 3.2: k-Nearest Neighbor measuring Time against Size

same. LSH is the fastest method when we are dealing with k-nearest
neighbor problems. But, since its growing rate is faster than RBC,
RBC possibly performs better if we are to work with larger dataset.

3.1.2 Space

log(Memory) in bytes

e Nearest Neighbor (See Figure 3.3)

Memory vs. Size Memory vs. Size

9.0 : : 9.5 : :
8.5F 9.0r
8.5F
8.0F
n
b
> 8.0
2
7.5¢ c
T 7sf
5
7.00 é
S 7.0F
°
6.5F
Exhaustive 6.5F
— Simple VP
— RP Tree — Exhaustive
6.0 Random Projection| | 6.0 — Simple VP
— RBC — RPTree
— LSH Random Projection
>30 2.5 3.0 35 4.0 >3%0 25 3.0 3.5 4.0
log(Size) log(Size)
(a) Euclidean (b) Cosine Similarity

Figure 3.3: Nearest Neighbor measured Memory against Size
Although Random Projection Matrix memory usage also grows along
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log(Memory) in bytes

9.0

with the increase of the size of dataset, but it is at a slower rate than the
other methods. On the other hand, LSH is using the smallest memory
initially, but it is growing at a faster rate than the other methods. As
for the other four methods, the memory usage are growing at a similar
rate.

k-Nearest Neighbor (See Figure 3.4)

Memory vs. Size Memory vs. Size

log(Memory) in bytes
~ ~ =
=3 o] o
T T

o
o

o
=)

— Exhaustive
— Simple VP
Random Projection

5.3.

u
N
S

0 25 3.0 35 4.0 25 3.0 35
log(Size) log(Size)

(a) Euclidean (b) Cosine Similarity

Figure 3.4: k-Nearest Neighbor measuring Memory against Size

The result as we can see here is similar to that of nearest neighbor
in that the growth rate of the memory usage of Random Projection
Matrix is slower than the other methods, while LSH has faster growth
rate than the other methods.

3.1.3 Error

e Nearest Neighbor (See Figure 3.5)

Here, we do not see some of the methods because they yield no er-
ror. For exhaustive search, it yields no error because this method is
used as the benchmark to measure error rate. Except for Random
Projection Matrix and RP Tree, the other methods yield no error as
well. For Random Projection Matrix, when we are working with the
euclidean distance metric, the error rate is not much affected by the
size of dataset. But it is growing with the size of dataset when we are
working with the cosine similarity distance metric. On the other hand,
the error rate for RP Tree seems to be increasing along with the size
of the dataset both for the euclidean and the cosine similarity.
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Error vs. Size Error vs. Size

Error

Error
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Figure 3.5: Nearest Neighbor measured Error rate against Size
e k-Nearest Neighbor (See Figure 3.6)
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Figure 3.6: k-Nearest Neighbor measuring Error rate against Size

For k-nearest neighbor, the experiment result for measuring error rate
is similar to that of nearest neighbor as well. That is, we do not see
all of the methods plotted on the graph. Here, we can only see the
error of Random Projection Matrix because all the methods return the
same result as exhaustive search. The trend is similar as well, in that
the error rate measured for Random Projection Matrix is not much
affected by the size of the dataset for euclidean, but is increasing for
cosine similarity:.
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When dealing with nearest neighbor, RP Tree is the fastest. But Random
Ball Cover and LSH are able to deal with k-nearest neighbor as well and
performing well in terms of time. In terms of memory usage, LSH uses
the least memory initially, but since it is growing at faster rate, it may not
work well in much larger dataset. On the other hand Random Projection
Matrix will perform better as it is growing at a slower rate. But, Random
Projection Matrix and RP Tree should not be used if we want exact result,
as these methods do not return the nearest point possible.

3.2 Performance of the methods against in-
creasing number of dimension with fixed
size of dataset

Here in this section I will provide the experiment result I have gathered so
far for the increasing size of dataset. The fixed size of dataset used in this
experiment is 10,000. Its performance is gathered against the dimension
number of 10, 50, 100, 500, and 1,000.

3.2.1 Time
e Nearest Neighbor (See Figure 3.7)
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Figure 3.7: Nearest Neighbor measured Time against Dimension

Vantage Point and Random Projection Matrix work faster than ex-
haustive method when working on low dimensional problem. But with
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increasing number of dimensions, the performance gets worsened (for
Vantage Point, until it is similar to the performance of exhaustive
method). On the other hand, the required time to solve the prob-
lem for RP Tree and LSH approximately stays the same regardless the
change in the number of dimensions. As for exhaustive and RBC, the
time required to solve the problem is increasing along with the number
of dimensions with similar growth rate.

e k-Nearest Neighbor (See Figure 3.8)
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Figure 3.8: k-Nearest Neighbor measuring Time against Dimension

The trend I noticed for the result of k-nearest neighbor is similar to that
of nearest neighbor. Vantage Point and Random Projection Matrix
perform better in lower dimensional problem (better than exhaustive
method), but the performance get worsened with higher number of
dimensions. For LSH, the time required to solve the problem is not
much affected by the number of dimensions (there is an increase in
time required, but at a slower rate than other methods).

3.2.2 Space

e Nearest Neighbor (See Figure 3.9)
Only LSH behaviour is noticable here, that is, the memory usage is not
much affected by the number of dimensions. The rest of the methods
behave almost the same in that they are consuming more memory as
the number of dimensions is getting higher.
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Memory vs. Dimension
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e k-Nearest Neighbor (See Figure 3.10)
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Figure 3.10: k-Nearest Neighbor measuring Memory against Dimension

As with nearest neighbor problem, only LSH behaves differently than
other methods in that the memory usage is not much changing while
the rest of the methods grows in terms of memory usage for higher
number of dimensions.
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3.2.3 Error
e Nearest Neighbor (See Figure 3.11)
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Figure 3.11: Nearest Neighbor measured Error rate against Dimension

When we measure the error rate for nearest neighbor, we do not see all
of them in the figure because those methods give the same output as
exhaustive method give which is used as the benchmark. But here, we
see three methods that generate error: Random Projection Matrix, RP
Tree, and Vantage Point. As for Vantage Point, error only occurred
when we use cosine similarity as the distance metric in problems with
low dimension (no error for cosine similarity in problems with high
dimension). On the other hand, the error generated by Random Pro-
jection Matrix and RP Tree are going down with the increasing number
of dimensions.

e k-Nearest Neighbor (See Figure 3.12)

The behaviour of these methods are similar compared to that of the
result in nearest neighbor. Vantage Point only yields error when it is
working with problems in low dimension and use cosine similarity as its
distance metric. As for Random Projection Matrix and RP Tree, the
error rate are going down with the increasing number of dimensions,
regardless the distance metric they used (it is the same for euclidean
and cosine similarity).
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Error vs. Dimension
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Figure 3.12: k-Nearest Neighbor measuring Error rate against Dimension

When dealing with nearest neighbor, RP Tree is the fastest. But Random
Ball Cover and LSH are able to deal with k-nearest neighbor as well and
performing well in terms of time. In terms of memory usage, LSH uses the
most memory initially, but since it is growing at a slower rate, it will work
better than other methods in higher number of dimensions (the behaviour
is different compared to the result in 3.1). Random Projection Matrix and
RP Tree should not be used if we want exact result, as these methods do not
return the nearest point possible.
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Chapter 4

Conclusion

There were a total of six algorithms compared in this paper : Exhaustive,
Vantage Point, Random Ball Cover, Random Projection Matrix, RP Tree,
and LSH.

e Exhaustive : Exhaustive method is the naive ways of dealing with
the problem of nearest neighbor. The performance (time and memory
usage) is much affected by the number of dimensions and the size of
dataset. This method always returns the nearest point possible to the

query.

e Vantage Point : Vantage Point works well in low dimensional problems.
But, as the number of dimensions increase, the performance is worsened
until it is comparable to the exhaustive search. The reason is that
in high dimension, the algorithm has to explore most of the spaces
before it terminates. This method always returns the nearest point
possible to the query when dealing with euclidean metric. But when
we are dealing with low dimensional problem using the cosine similarity
distance metric, it seems that this method is not returning the nearest
point possible to the query.

e Random Ball Cover : Works well in both low dimension and high
dimension. This method always returns the nearest point possible to
the query.

e Random Projection Matrix : There is a trend noticable when working
with this method in high dimensional problem that the performance is
worse than exhaustive search because the projection resulted in a dense
vector, although originally it is a sparse vector problem. It is because
working in the dense vector is less advantageous than that in sparse
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vector as we do not have to access every dimension of the vector. In
addition, Random Projection Matrix is that the approximation to the
nearest point is better in high dimension as the performance from the
theory only depends on the number of points instead of dimensions.
This method is not guaranteed to return the nearest point possible to
the query.

RP Tree : This method is the fastest method in measured average
query time compared in this paper. This method works better in high
dimension than in low dimension as the error rate is going down along
with increasing number of dimension. However, this method is not
guaranteed to return the nearest point possible to the query.

LSH : In theory, this method is approximate in that we are not guaran-
teed to get the nearest point possible to the query. But in this experi-
ment, [ always get the nearest point possible to the query (the same as
Exhaustive). LSH has different noticable trait as well. It shows no sig-
nificant change in performance whether it is working on low dimension
or high dimension. But, the memory usage is considerably increased
along with the increase in number of points in the database.
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