
M*: A Complete Multirobot Path Planning Algorithm with Performance
Bounds

Glenn Wagner, Howie Choset

Abstract— Multirobot path planning is difficult because the
full configuration space of the system grows exponentially with
the number of robots. Planning in the joint configuration space
of a set of robots is only necessary if they are strongly coupled,
which is often not true if the robots are well separated in
the workspace. Therefore, we initially plan for each robot
separately, and only couple sets of robots after they have been
found to interact, thus minimizing the dimensionality of the
search space. We present a general strategy called subdimen-
sional expansion, which dynamically generates low dimensional
search spaces embedded in the full configuration space. We
also present an implementation of subdimensional expansion
for robot configuration spaces that can be represented as a
graph, called M*, and show that M* is complete and finds
minimal cost paths.

I. INTRODUCTION

Multirobot systems are attractive for surveillance, search
and rescue, and warehouse automation applications. Unfor-
tunately, the flexibility and redundancy that make multirobot
systems attractive also make planning for such systems
difficult. Handling a high dimensional configuration space
is the fundamental problem of multirobot path planning.

Multirobot path planning algorithms can be divided into
two categories: coupled and decoupled [15]. A coupled
algorithm seeks to find a path in the full configuration
space of a system [1][3][7]. While the full configuration
space contains all possible paths, it grows exponentially with
the number of robots in the system. As a result, coupled
planners may be guaranteed to find an optimal path, but are
computationally infeasible for systems of many robots.

On the other hand, decoupled algorithms search one or
more low dimensional search spaces which represent a
portion of the full configuration space [6][9][16][18][21].
Searching a lower dimensional representation reduces the
computational cost of finding a path, but the representation
may not capture some or all of the solutions to the planning
problem. As a result, decoupled algorithms generally produce
results more quickly, but the quality or existence of the
solution is not guaranteed.

This paper presents an approach that shares the benefits
of both coupled and decoupled approaches, which we term
subdimensional expansion. Subdimensional expansion ini-
tially uses decoupled planning to generate a low-dimensional
search space. As robot-robot collision are found in the
search space, the local dimensionality of the space is locally

Glenn Wagner is a graduate student at the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, 15213
gswagner@andrew.cmu.edu

Howie Choset is an associate professor at the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, 15213 choset@cs.cmu.edu

(a)

(b) (c)

Fig. 1: A conceptual visualization of a variable dimensionality search space
for five robots (a). Initially each robot is constrained to its individually
optimal path, represented by a single line, but when robots 1 and 2 collide
(b), the local dimensionality of the search space must be increased, as
represented by a square. When three robots collide while following their
individually optimal paths (c), the local dimensionality of the search space
must be increased further, represented by the cube, to include all local paths
of the three robots.

increased to construct a search space of minimal size that
contains a path with the desired properties.

We implement subdimensional expansion for configuration
spaces which can be represented as graphs, using A* as the
underlying path planning algorithm. We name the resulting
algorithm M*. We prove that M* is complete and optimal,
then show in simulation that M* requires dramatically less
time than A* to find paths for multirobot systems.

II. PRIOR WORK

A number of algorithms exist that dynamically vary how
robots are coupled for planning purposes. Krishna et al.
developed an approach for decentralized dynamic coupling

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 3260

of robots for velocity planning [13]. In their algorithm, robots
first try to resolve a potential collision by independently
altering their velocity. If this does not succeed, the robots
involved in the collision cooperate to find a safe velocity
schedule. If this also fails, they recruit uninvolved robots to
alter their velocities to allow for a solution to be found. This
approach will never change the spatial path the robots follow,
and thus is neither complete nor optimal.

Clark et al. introduced dynamic networks, which explicitly
search configuration spaces of varying sizes[5]. Joint plans
are computed for groups of robots capable of mutual com-
munication. Paths are replanned whenever a new robot joins
the group. This approach will lead to unnecessary coupling,
as not all robots that can communicate need to cooperate to
find a safe path, and only considers local interactions.

Van den Berg et al. [23] developed a planning time
algorithm to find a coupling strategy that minimizes the size
of the largest set of coupled robots needed to guarantee
that a solution will be found. The robots are constrained
to move sequentially, which induces constraints on which
robots must move before or after other robots. Cycles in
these constraints can be used to find sets of robots for which
coupled planning is necessary. This approach is non-ideal
due to the restrictions it places on robot motion, which results
in non-optimal paths, and the global nature of the coupling
it performs.

There has also been work in the machine learning commu-
nity to determine when coupling multiple robots is necessary.
Kok et al. [11] presented an approach which performs Q-
learning for robots individually, but stores statistics for the
reward of the joint actions that are explored. If these statistics
indicate that coordinating actions at a specific space is ben-
eficial, then the algorithm starts learning coordinated actions
at that state. This approach has the benefit of being able to
handle tasks besides basic path planning, such as capturing
targets that required coordinated action by multiple pursers.
Melo and Veloso [19] developed a Q-learning algorithm that
adds a ‘coordinate’ action to the set of actions available to
each robot, which uses the state of the nearest neighboring
robot to help choose the action to perform. Coordination
between robots then only occurs when a robot learns to take
the coordinate action. Our work focuses on dynamic coupling
in the context of search, rather than reinforcement learning.

III. SUBDIMENSIONAL EXPANSION

A. Problem Statement

We seek to find an optimal, collision free path for a set of n
robots in a common workspace W , from a specified initial
configuration to a goal configuration. We index the robots
ri with the set I = {1, . . . , n}. For brevity, we conflate
robots with their indices. We use superscripts to indicate
which robots are described by a set, space, or element, while
subscripts indicate a specific position in a space or a specific
element of a set.

Each robot ri has an obstacle free configuration space Qi.
The full system has an obstacle free configuration space Q =∏
i∈I Q

i, although states that result in robot-robot collisions
remain in Q. We will deal with subspaces frequently, so

we use the notation QΩ =
∏
i∈ΩQ

i, to denote the joint
configuration space of the subset of robots Ω ⊂ I . The same
notation is used to describe paths of subsets of robots, the
location of a subset of robots, and so forth.

Since each point qk ∈ Q simultaneously describes the
position of every robot, a path in Q implicitly provides
temporal coordination. Time can be added as an element
of the robot state if the cost function depends on time.
Doing so results in a minimal performance penalty, since
all robots have the same time dynamics. Therefore, the time
dimensions of each robot will collapse into a single effective
dimension when we search Q.

We use π(qk, ql) to represent the set of points along a path
from qk ∈ Q to ql ∈ Q, and π∗(qk, ql) to denote a collision
free path that minimizes a specified cost function. Our goal
is to find π∗(qI , qF), a optimal collision free path from the
initial configuration qI to the goal configuration qF .

We wish to minimize the cost function f(π(qk, ql)). We
assume that the cost of the path in the full configuration
space is the sum of the costs of the paths of the individual
robots1

f(π(.)) =
∑
i∈I

f i(πi(.)) πi(.) ⊂ Qi (1)

The form of (1) ensures that the cost function can be
decomposed into a separate cost function for each robot.
Furthermore, no path π(qI , qF) ⊂ Q can be cheaper than
the path formed by separately optimizing the path of each
individual robot. While such a path almost certainly contains
at least one robot-robot collision, it is still useful for guiding
the search for a collision free path.

To ensure that any path of finite cost has finite length, we
further require that

∃ ε > 0 s.t. f i(πi(qik, q
i
l)) > ε qik, q

i
l ∈ Qi (2)

for all paths which do not always remain at qiF .
We define a collision function Ψij for i 6= j ∈ I .

Ψij(qi, qj) =

{
{i, j}, A(qi) ∩A(qj) 6= ∅
∅, otherwise (3)

where A(qi) is the subset ofW occupied by ri when located
at qi ∈ Qi. We define a global collision function Ψ : Q→ I ,
which is the union of all pairwise collision functions.

Ψ(q) =
⋃

i6=j∈I

Ψij(qi, qj) (4)

The form of (4) means for qk and q′k formed from qk
by changing the coordinates of one or more robots not in
Ψ(qk), any robot that is in collision with another robot at
qk will remain in collision at q′k, i.e. Ψ(qk) ⊂ Ψ(q′k). As
a result, if the robots ri and rj collide along some path
π(.), the paths of ri or rj must be altered to produce a
collision free path. We “overload” the collision function to
apply to paths, Ψ(π(.)) =

⋃
q∈π(.) Ψ(q). The constraint

that π∗(qI , qF) must be collision free can be expressed as
Ψ(π∗(qI , qF)) = ∅.

1We further assume that the cost of a path from qk does not depend on
the path taken to qk . If this would be violated, we can add path history to
the state of the robots.

3261

B. Approach
Subdimensional expansion exploits the natural decoupling

of robots in systems which satisfy (1) and (4) to construct a
sufficient low dimensional search space Q# embedded in Q.
We use a path planning algorithm, referred to as the planner,
to search Q#. As the planner searches Q#, it will find
information about robot-robot collisions, which is then used
to locally augment the dimensionality of Q#. In this manner,
we tailor the search space to the structure of the problem at
hand, allowing us to search a low dimensional space, while
guaranteeing that the desired path will eventually exist within
the search space.

For each robot, we define an individually optimal policy
φi : Qi → TQi which maps the position of a robot to its
motion. We choose φi such that the path induced by obeying
φi from any point qik ∈ Qi is an optimal path to qiF ∈ Qi.
We denote such a path πφ

i

(qik, q
i
F).

We use the notation φΩ(qΩ) =
∏
i∈Ω φ

i(qi) to denote the
individually optimal policy for a subset of robots Ω, and
use φ(q) =

∏
i∈I φ

i(qi) when Ω = I . We use πφ
Ω

(qΩ, qΩ
F)

and πφ(q, qF) to denote the paths induced by φΩ and φ
respectively. We term such paths individually optimal paths.
We note that by the form of (1), f(πφ(qk, qF)) is a lower
bound on the costs of all paths π(qk, qF).

At each instant during the search, we take the optimistic
view that the individually optimal path from qk will be
collision free, unless we have specific information to the
contrary. We maintain a collision set Ck for each qk ∈ Q,
which is the set of robots for which the optimistic view at
qk has been invalidated. Let Π(qk) be the set of paths the
planner has searched that pass through qk. Then Ck is defined
as

Ck =
⋃

π∈Π(qk)

Ψ(π) (5)

The collision set Ck thus consists of all robots ri for which
the planner has found a path from qk to a collision containing
ri (Figure 2).

We wish to restrict the set of robots for which we maintain
the optimistic view, C̄k = I\Ck, to their individually optimal
path, in line with our optimistic belief that this path is
collision free. However, we will place no such restriction
on the robots in Ck, as we already know that the optimistic
view point does not hold. We encode these constraints in the
geometry of the search space Q# by proper choice of the
tangent space TqkQ

of Q# at qk.

TqkQ
= tC̄(qk)×

∏
j∈Ck

Tqjk
Qj (6)

We restrict the subset of robots C̄k to move in the direction
of the vector tC̄(qk) which is tangent to the individually
optimal path for that subset of robots, πφ

C̄k (qC̄k

k , qC̄k

F), at qk.
This locally restricts the robots in C̄k to their individually
optimal paths. We need to perform exhaustive search for all
robots in Ck, and thus must consider the set of all directions
in which such ri can move, TqikQ

i.
We can now construct Q# by starting at qI and using

the definition of the tangent space to differentially grow

Fig. 2: Representation of a search tree and resultant collision sets. Ovals
represent configurations in Q. Arrows represent searched path from the
higher configuration to the lower configuration. If there is a robot-robot
collision at a state, the oval is gray. The set contained inside the oval
represents the collision set. Since there is a searched path from qk to qn, qo,
and qp, Ck contains all robots which collide at the aforementioned state.
Since subdimensional expansion has not found a path from qq to any state
with a collision, Cq is empty

Q#. Initially, Q# will be πφ(qI , qF), and will then grow
along various subspaces as the planner discovers robot-robot
collisions.

IV. M*

A. Description

M* is an implementation of subdimensional expansion for
cases where the configuration space of each robot ri can be
represented by a directed graph Gi = {V i, Ei}. V i is the set
of vertices in Gi that represent positions in Qi, while Ei is
the set of directed edges eikl which represent valid transitions
connecting vik ∈ V i to vil ∈ V i. We make no assumption
about the representation used, so Gi may be an approximate
cellular decomposition, a generalized Voronoi diagram, or
other graph representation of the configuration space. We
represent the full configuration space of the system with the
graph G = {V,E} =

∏
i∈I G

i. The Cartesian product of
two graphs, Gi × Gj , has the vertex set V i × V j , and the
edge ekl is in the edge set if eikl ∈ Ei and ejkl ∈ Ej . The
vertex in G which represents the initial configuration of the
system is denoted vI , while the goal configuration is denoted
vF .

Representing the configuration space as a graph converts
the path planning problem into a graph search problem. This
allows us to base M* on A*, a complete and optimal graph
search algorithm [8]. Recall that A* maintains an open list of
vertices vk to explore. These are sorted based on the sum of
the cost of the cheapest path π(vI , vk) and a heuristic cost,
which is a lower bound on the cost of any path π(vk, vF). At
each iteration, the most promising vertex, vk, is taken from
the open list and expanded. For each neighbor vl of vk, A*
checks whether reaching vl via vk is the cheapest path found
thus far to vl. If so, vl is added to the open list. This continues
until vF is expanded, indicating that an optimal path to the
goal has been found.

3262

Algorithm 1 backprop(vk, Cl,open):
vk- vertex in the backpropagation set of vl
Cl- the collision set of vl
open- the open list for M*

if Cl 6⊂ Ck then
Ck ← Ck

⋃
Cl

if ¬(vk ∈ open) then
open.append(vk) {If the collision set changed, we
will need to re-expand vk}

for vm ∈ vk.back set do
{Iterate over the backpropagation set}
backprop(vm, Ck,open)

M* is similar to A*. However, in the expansion step, M*
only considers the limited neighbors of vk, a subset of the
neighbors of vk in G, determined by Ck. The set of limited
neighbors V̂k is the set of vertices vl which can be reached
from vk while moving each robot ri ∈ C̄k according to its
individually optimal policy φi(vik), where vik is the position
of ri when the system is at vk. Conversely, the robots rj ∈
Ck are allowed to move to any neighbor of vjk in Qj

V̂k =

{
vl|∀i ∈ I, vil s.t.

{
eikl ∈ Ei, i ∈ Ck

vil = φi(vik), i /∈ Ck

}
(7)

If Ψ(vk) 6= ∅, we set V̂k = ∅, to prevent M* from considering
paths which pass through collisions.

We need an efficient method for keeping the collision sets
updated, which is achieved by passing information about
a collision back along all searched paths that reach the
collision. To do this, we maintain a backpropagation set for
each vertex vk, which is the set of all vertices vl which were
expanded while vk was in V̂l. The backpropagation set is
thus the set of neighbors of vk through which the planner
has found a path to vk We propagate information about a
collision at vk by adding Ck = Ψ(vk) to Cl for each vl
in the backpropagation set of vk. We then add Cl to the
collision set of each vertex in the backpropagation set of vl,
and repeat this process until a collision set is encountered
which contains Ck. Since V̂l is dependent on Cl, changing
Cl adds new paths through vl to the search space. As a result,
vl must to be added back to the open list so that these new
paths can be searched (See algorithm 1).

Finally, we note that since f(πφ(vk, vF)) is a lower bound
on the cost of all paths π(vk, vF), it is an obvious choice for
use as the heuristic function for M*. We denote the heuristic
function

h(vk) = f(πφ(vk, vF)) ≤ f(π∗(vk, vF)) (8)

M* is described in algorithm 2.

B. Graph-Centric Description

The description of M* given in IV-A provides a local de-
scription of the search process. We now present an alternate
description which better captures the global properties of M*,
but is not suited to implementation.

Algorithm 2 Pseudocode for M*

for all vk ∈ V do
vk.cost ← MAXCOST
Ck ← ∅

vI .cost ← 0
vI .back ptr = ∅
open = {vI}
while True do

open.sort() {Sort in ascending order by v.cost + h(v)}
vk = open.pop(0)
if vk = vI then
{We have found a solution}
return back track(vk) {Reconstruct the optimal path
by following vk.back ptr}

if Ψ(vk) 6= ∅ then
CONTINUE {Skip vertices in collision}

for vl ∈ V̂k do
vl.back set.append(vk) {Add vk to the back propaga-
tion list}
Cl ← Cl

⋃
Ψ(vl)

{Update collision sets, and add vertices whose colli-
sion set changed back to open}
backprop(vk, Cl,open)
if vk.cost+f(ekl) < vl.cost then
{We have found a cheaper path to vl}
vl.cost ← vk.cost+f(ekl)
vl.back ptr ← vk {Keep track of the best way to
get here}

return No path exists

When examining algorithm 2, we see that M* differs from
A* only in the existence of the backprop function, and the
use of V̂k in the place of all neighbors of vk in G when
exploring paths from vk. The backprop function only has a
non-trivial result when a new path to one or more collisions
is found. Therefore, M* behaves exactly like A* running
on a graph G# where the neighbors of vk in G# are the
vertices in V̂k, until A* finds a new robot-robot collision.
By thinking of M* as alternating between running A* on
G# and updating G# based on the search results, we can
exploit the optimality and completeness properties of A* to
prove similar properties of M*.
G# consists of three subgraphs: G′, Ĝ, and Gφ. G′ is the

portion of G# which has been searched by M*, Ĝ represents
the limited neighbors of the vertices in G′, and Gφ connects
the vertices in Ĝ to vF by obeying φ.

The portion of G which has been searched by M* is
represented by the graph G′ = {V ′, E′}. V ′ is the set of
vertices which have been added to the open list. E′ consists
of the directed edges ekl connecting each vertex vk which
has been expanded by M* to the vertices vl ∈ V̂k. Since G′

represents all paths which have been searched by the planner,
we can use G′ to define the collision set

Ck =

{
Ψ(vk)

⋃
vl s.t. ∃π(vk,vl)⊂G′ Ψ(vl) vk ∈ G′

∅ vk /∈ G′
(9)

If vk /∈ G′, then M* has never visited vk, and we have never

3263

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: The above figure shows how G′ and G# evolve in the configuration
space of two, one-dimensional robots. Vertices are represented as circles,
with arrows representing directed edges. G′ is denoted by solid lines, while
G#\G′ is shown as dashed lines. G\G# is represented by dotted lines,
with edges suppressed for clarity. A vertex is given a bold outline when it
is expanded, while filled circles represent vertices with known robot-robot
collisions. vI is in the upper left, while vF is in the bottom right. In (a),
(b) and (c), the most promising vertex in the open list is expanded, until a
collision is found. Ĝ is updated to reflect the new collision sets in (d). Gφ
is then updated in (e). In (f) a vertex is re-expanded, having been added
back to the open list when its collision set was changed. (g), (h) and (i) see
the most promising vertices in the open list expanded, until vF is expanded,
indicating that a path has been found.

computed Ψ(vk). Until M* actually visits vk, we take the
optimistic view that vk and πφ(vk, vF) are collision free,
and thus set Ck = ∅ and V̂k = φ(vk).

We represent the portion of the graph which will be
explored when vk is expanded by the graph Ĝk, which is
the graph formed from vk, its limited neighbors V̂k, and
the edges connecting vk to the vertices in V̂k. Let Ĝ =⋃
vk∈G′ Ĝk.
Since Ck = ∅ for all vk which are not in G′,, we know

that the search from vk will be constrained to πφ(vk, vF) as
long as this path lies entirely outside of G′. Let the graph Gφk
represent the portion of πφ(vk, vF) from vk to the first vertex
along the path in G′, or vF if πφ(vk, vF) never reenters G′.

We can now define G# as

G# = G′
⋃

vk∈G′

Ĝk ⋃
vl∈Ĝk\G′

Gφl

 (10)

As a result of our definitions of G′, Ĝ and Gφ, vertices and
edges shift from Gφ to Ĝ, and from Ĝ to G′ as M* searches
G#. See Figure 3 for an illustration of how the subgraphs
change over time. However, G# as a whole only changes
when the collision set of a vertex in G# changes.

V. COMPLETENESS AND COST-OPTIMALITY

A path planning algorithm is complete if it is guaranteed
to either find a path or to determine that no path exists,
in finite time [4]. We also wish to prove that M* is cost
optimal, meaning that M* will find a path that minimizes a
cost function. As demonstrated in IV-B, we can treat M* as
alternating between running A* search on a graph G# and
modifying G# based on the results of the A* search. Since
A* is complete and cost optimal, we can prove that M* is
complete and cost optimal if we demonstrate that G# will
contain π∗(vI , vF) after a finite number of modifications or,
if π∗(vI , vF) does not exist, G# will be modified at most a
finite number of times.

We first assume that no solution exists, and show that M*
will terminate in finite time without finding a path. G# is
only modified when the collision set of at least one vertex in
G# is modified. One or more robots are added to a collision
set whenever it is modified, so each collision set can be
modified at most n−1 times, since the fist modification must
add at least two robots. Therefore, G# can be modified at
most (n − 1) ∗ |G| times. We know that A* will expand
each vertex of a given graph at most once [8]. Therefore,
M* will process each iteration of G# in finite time, so M*
will terminate in finite time.
G# may contain a path π(.) that has a robot-robot collision

at vk. This can only occur if vk /∈ G′, as otherwise a vertex
which contains a robot-robot collision will not have any out-
neighbors. However, before M* can return such a path, vk
will be added to the open list, and thus to G′. As a result,
G# will be modified to remove the out-neighbors of vk, thus
removing the invalid path. Therefore, M* will never return
a path containing a collision. We can conclude that if no
solution exists, M* will determine that no valid path exists
in finite time.

Next, assume that a path from vI to vF exists. We will
first show that if one of two cases is always true, M* will
find an optimal, collision free path. We will then show that
one of these two cases must always hold. Assume that G#

always contains either

Case 1: an optimal, collision free path, π∗(vI , vF)
Case 2: a path π(vI , vk) s.t. f(π(vI , vk)) + h(vk) ≤
f(π∗(vI , vF)), and ∃ vl ∈ π(vI , vk) s.t. Ψ(vk) 6⊂ Cl

If case 1 holds, running A* on G# will find π∗(vI , vF),
unless there exists a cheaper path π̃(vI , vF) ⊂ G#.
If f(π̃(vI , vF)) < f(π∗(vI , vF)) then by the definition
of π∗(.), there must be a vertex vk ∈ π̃(vI , vF) such
that Ψ(vk) 6= ∅. By Eq (8), f(π̃(vI , vk)) + h(vk) <
f(π̃(vI , vF)) < f(π∗(vI , vF)). vk must be in G#\G′, as
otherwise vk would have no out-neighbors, and thus no path
could pass through vk. Since vk is not in G′, Ck = ∅, and
therefore Ψ(vk) 6⊂ Ck. As a result, vk fulfills the role of both
vl and vk in case 2, so case 2 is satisfied. We can conclude
that if case 1 holds, then M* will find π∗(vI , vF) unless case
2 also holds.

If case 2 holds, then vk will be added to G′ before A*
finds any path to vF that costs more than f(π∗(vI , vF)) [8].

3264

Adding vk to G′ will cause Cl to be modified, changing G#

to reflect the new V̂l, and restarting A* search. Therefore,
M* will never return a suboptimal path as long as case 2
holds. For case 2 to hold, there must be at least one vertex
vl such that Cl is a strict subset of I . G# can be modified
at most (n−1)∗ |G| times before all collision sets are equal
to I . Therefore, case 2 can only hold for a finite number
of modifications of G#. Since either case 1 or case 2 hold
by hypothesis, after finite time only case 1 will hold. Since
M* will always find π∗(vI , vF) if only case 1 holds, and
cannot find a suboptimal path if case 2 holds, M* will find
π∗(vI , vF) in finite time.

We will now show that case 1 or case 2 must always
hold. We proceed by showing that we can always find a
path π(vk, vF) which costs no more than π∗(vk, vF) by
exhaustively searching the configuration space of the robots
in Ck, while the robots in C̄k obey φC̄k .

We first note that, by the form of of (4), if Ψ(π(vk, vl)) =
∅, then the path taken by a subset of robots Ω ⊂ I must be a
collision free path in QΩ. Therefore, if π∗(vk, vF) exists, we
can find an optimal collision free path π∗Ω(vΩ

k , v
Ω
F) ⊂ QΩ for

any subset Ω of robots, where π∗Ω(vΩ
k , v

Ω
F) is not necessarily

the path taken by the robots ri ∈ Ω along π∗(vk, vF). We
can therefore construct a path π′k(vk, vF) = π∗Ck(vk, vF)×
πφ

C̄k (vk, vF), which costs no more than f(π∗(vk, vF)).

f(π′k(vk, vF)) = fCk(π∗Ck(vk, vF))

+
∑
j∈C̄k

f j(πφ
j

(vk, vF)) (11)

= minΨ(πCk (vk,vF))=∅f
Ck(πCk(vk, vF))

+ min
∑
j∈C̄k

f j(πj(vk, vF)) (12)

= minπ(vk,vF) s.t. Ψ(πCk (vk,vF))=∅f(π(vk, vF)) (13)

≤ minπ(vk,vF) s.t Ψ(πCl (vk,vF))=∅,Ck⊂Cl
f(π(vk, vF)) (14)

≤ minπ(vk,vF) s.t.Ψ(π(vk,vF))=∅f(π(vk, vF)) (15)
≤ f(π∗(vk, vF)) (16)

We know that the successor vl of vk along π′k(vk, vF) is in
V̂k by (7). Furthermore, we know that Cl ⊂ Ck by (9), so
by (14) and (15)

f(π′k(vk, vl)) + f(π′l(vl, vF)) ≤ f(π′k(vk, vF))

≤ f(π∗(vk, vF)) (17)

Using the above two facts, we can construct a path
π′′(vI , vF) ∈ G# which either satisfies case 1 or case 2.
We construct π′′(vI , vF) by starting at vI , and choosing
the m’th vertex vm in π′′(vI , vF) to be the neighbor of
vm−1 on π′(vm−1, vI). Applying (17) backwards from the
last vertex from vF to vI guarantees that f(π′′(vI , vF)) ≤
f(π′I(vI , vF)) ≤ f(π∗(vI , vF)). If π′′(vI , vF) = π∗(vI , vF)
then case 1 is satisfied. Otherwise, there is a vertex vk ∈
π′′(vI , vF) such that Ψ(vk) 6= ∅. By construction, Ψ(vk) 6⊂
Cl, where vl is the predecessor of vk. By (8), f(π′′(vI , vk))+
h(vk) ≤ f(π′′(vI , vF)) ≤ f(π∗(vI , vF)), so case 2 is

Fig. 4: In this example, 3 robots move from their initial positions S1, S2,
and S3, to their goal positions, G1, G2, and G3. The world is a 4-connected
grid, and the robots try to minimize the total distance traveled. Robot 1 has
multiple optimal paths, but can safely be fully decoupled from robots 2
and 3. Therefore, only one of the optimal paths for robot 1 needs to be
considered. A* is unable to recognize this decoupling, and for any joint
path of robots 2 and 3, must consider all optimal paths for robot 1.

satisfied. 2 We have now shown that case 1 or case 2 must
always hold. We can therefore conclude that M* will find
π∗(vI , vF), if it exists, in finite time. Since M* is guaranteed
to find the optimal collision free path, or to determine that no
valid path exists in finite time, M* is complete and optimal
with respect to f(π(.)).

VI. BENEFITS COMPARED TO A*
While the worst case computational cost of M* grows

exponentially with the number of robots, as does the cost
of A*, M* has two substantial advantages in the average
case. First of all, unlike A*, M* does not need to add
every neighbor to the open list. Doing so quickly becomes
prohibitive for A*, as a vertex in a system of 13 robots
on four-connected grids has over one billion neighbors.
Secondly, A* must consider all regions of the configuration
space for which f(π∗(vI , vk))+h(vk) < f(π∗(vI , vF)). M*
can safely ignore such regions when they represent alternate
paths for robots that aren’t involved in collisions. Consider
the case in Figure 4. Robot 1 can safely be decoupled from
the planning for robots 2 and 3, but has multiple optimal
paths. As a result, subdimensional expansion can safely
constrain robot 1 to a single optimal path, and plan for robots
2 and 3 separately. A* cannot recognize this decoupling, and
so must consider all optimal paths for robot 1 along with any
joint paths for robots 2 and 3 it considers.

VII. VARIANTS

A. Inflated M*
One problem with the basic M* implementation is that

every time a new robot is found to be involved in a collision,
it is added to the collision set of vI . Unless f(π∗(vI , vF)) =
f(πφ(vI , vF)), vI must then be re-expanded at a com-
putational cost that is exponential in the total number of

2If π′′(vI , vF) exits G′, it may reenter G′ at vk such that Ψ(vk) 6= ∅. In
this case, vk has no out neighbors so π∗(vI , vF) will terminate at vk and
not reach vF . However, the predecessor of vk is not in G′, so its collision
set is ∅ 6⊂ Ck . Therefore, case 2 will hold

3265

robots that have been found to collide. One improvement
comes from the existing literature on A*. If the heuristic is
multiplied by some ε > 1, A* will find a path which costs
no more than ε ∗ f(π∗(vI , vF)), and generally will find a
path more quickly [2], [12], [20]. The logic in section V can
be extended to show that M* has the same sub-optimality
bound when used with an inflated heuristic.

The inflated heuristic biases the search towards the leaves
of the search tree close to the goal, where a solution is more
likely to be found quickly. In addition, these vertices will
generally have a smaller collision set, resulting in a lower
dimensional search space.

B. Recursive M*

Another area where M* can be improved is in the han-
dling of multiple physically separated but simultaneously
interacting sets of robots. Basic M* must couple the plan-
ning between all such sets of robots, even though they
may have no mutual interaction. We can extend equations
(11)-(15) from dealing with coupled planning for a single
subset of robots to separately planning for multiple disjoint
subsets of robots, Ck, . . . , Co. The resulting path, π′(.) =
π∗Ck(.)× . . .×π∗Co(.)×πφI\(Ck

⋃
...

⋃
Co)(.), maintains the

critical property, f(π′(.)) ≤ f(π∗(.)). Therefore, we can
find a path for each independent set of interacting robots,
and use the resulting paths to constrain exploration in the
same manner that individually optimal policies are used to
constrain exploration for individual robots. Doing so results
in worst case computational cost that is exponential in the
size of the largest set of mutually colliding robots, instead
of the total number of colliding robots. We term this variant
recursive M*, or rM*.

Implementing recursive M* requires comparatively few
modifications. First of all, the collision set now consists
of the largest disjoint sets that can be formed from the
collisions that can be reached from vk. For example, if the
collisions {1, 2}, {2, 3}, {4, 5} can be reached from vk, then
Ck = {{1, 2, 3}, {4, 5}}. If ri is not in any element of Ck,
then it obeys φi. Otherwise, ri follows the optimal path for
the subset of robots Ĉ ∈ Ck to which it belongs. This path is
found by recursively using rM* to find paths for these sub-
problems. The successor of vk on the paths for each subset
of robots in Ck are combined with φC̄k(vC̄k) to generate
a single successor for vk. The exception is if Ck = I , in
which case V̂k is computed as usual for M*, using Ĉ as the
collision set. This functions as the base case of the recursive
calls to rM*.

VIII. RESULTS

We tested M* in simulations run on a Core i7 computer
at 2.80 GHz with 12 Gb of RAM. All simulations were
implemented in unoptimized python. We chose to use a
square, four-connected grid with a density of 104 cells per
robot as our workspace. Scaling the workspace with the
number of robots kept the density of robots in the workspace
constant, allowing us to vary the number of robots without
also changing how crowded the robots were. Each cell in the
workspace had an independent 35% chance of being marked

Fig. 5: A typical configuration for a 40 robot test run. Circles represent initial
positions of the robots, squares represent obstacles, and crosses represent
goal positions. We tested 100 such randomly generated environments for
each number of robots.

as an obstacle. Initial and goal positions for each robot were
chosen randomly, but were chosen such that there was always
a path from the initial position of a robot to its goal position
(Figure 5). Each robot incurred a cost of one when not in its
individual goal state, and no cost when in its goal state. Each
trial was given at most five minutes to find a solution. We
tested 100 random envrionments for each number of robots.

We ran A*, M* and rM* with both the uninflated heuristic,
and the heuristic inflated by a factor of 2. We recorded
the percentage of trials which found a solution within five
minutes, as well as the time required to find a solution by
the 10’th, 50’th, and 90’th percentile of trials. Run times are
plotted on semi-log plots, where exponential growth with the
number of robots will appear as straight lines (Figure 6).

A* was unable to find any paths for problems involving
seven or more robots, due to the cost of adding all of
the neighbors of each expanded vertex to the open list.
The time required to find solutions shows the expected
exponential growth with the number of robots. M* and rM*
both show performance substantially superior to that of A*.
rM* has roughly three times the success rate of M* for
the uninflated case at 10 robots, but shows even an even
greater performance increase when the heuristic function is
inflated. Using an inflated heuristic, rM* has run times of
approximately one and a half orders of magnitude less than
basic M* for systems of 20 robots, and scales to twice
as many robots with reasonable success rates (Figure 6).
Most importantly, the time to solution plots for inflated rM*
are clearly sublinear on the logarithmic axis. This indicates
that for the enviornments we investigated, the average case

3266

Fig. 6: We plot the percent of trials in which each algorithm was able to
find a solution within 5 minutes, and the 10’th, 50’th, and 90’th percentile
of times required to find a solution for A*, M*, and recursive M* with both
uninflated and inflated heuristics. The plateauing that is apparent many of
the time plots are the result of the algorithm timing out in increasingly large
percentages of trials. We only simulated A* and inflated A* to 8 robots,
because they always timed out for 7 or more robots. To allow A*, M*, and
rM* to be plotted over similar domains, we assumed that A* and inflated
A* would always timeout for systems of 9 and 10 robots. Inflated M* and
inflated rM* were able to solve 20 and 40 robot problems respectively, so
their plots reflect these domains.

computational cost of rM* grows sub-exponentially with the
number of robots.

Increasing the time limit to 25 minutes, we were able to
plan for 100 robots with a 83% success rate and a median
time to solution of 54 seconds. However, M* is heavily
memory limited, we cannot substantially increase the run
times to handle tougher problems.

IX. FUTURE WORK

One weakness of M* is that a search will fail if a sufficient
number of robots are concentrated at a single choke point, as
this will force M* to search an excessively large space. The
cost of expanding a node grows in a predictable manner,
so it is comparatively easy to determine when a vertex
has a collision set that is ‘too big’. A possible solution
for rM* would be to use a priority planner [6] instead of
recursive calls to M* to generate the policy for sets of robots
that are deemed ‘too large’. While doing so would cause
the loss of completeness and optimality guarantees, it may
allow for a path to be found within the memory and time
constraints when not otherwise possible. Signaling the user
that optimality can not be guaranteed would be trivial in
those cases when this approach is necessary.

Subdimensional expansion can be applied to path planning
algorithms besides A*. We intend to explore using D* [22],
and Anytime A* [17] as the planner for subdimensional
expansion in discrete worlds. We will apply M* to more
complex envrionments by using a PRM to generate the graph
representing the individual robot configuration space [10].
Systems with kineodynamic constraints can be handled by
implementing subdimensional expansion using RRTs [14] as
the planner. This can be done by modifying how the RRT
expands towards a sample. Only the robots in the collision

set will actually move towards the coordinates specified by
the sample. All other robots will obey their individual policy.

REFERENCES

[1] N. Ayanian and V. Kumar. Decentralized feedback controllers for
multi-agent teams in environments with obstacles. In Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on,
pages 1936–1941, May 2008.

[2] Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5 – 33, 2001.

[3] S. Carpin and E. Pagello. On parallel RRTs for multi-robot systems.
In Proc. 8th Conf. Italian Association for Artificial Intelligence, pages
834–841. Citeseer, 2002.

[4] H.M. Choset. Principles of robot motion: theory, algorithms, and
implementation. The MIT Press, 2005.

[5] C. M. Clark, S. M. Rock, and J. C. Latombe. Motion planning for
multiple robot systems using dynamic networks. In Proceedings of
IEEE International Conference on Robotics and Automation, pages
4222–4227, 2003.

[6] M. Erdmann and T. Lozano-Perez. On multiple moving objects.
Algorithmica, 2(1):477–521, 1987.

[7] Robert W Ghrist and Daniel E Koditschek. Safe cooperative robot
dynamics on graphs. SIAM Journal on Control and Optimization,
40(5), 2002.

[8] P.E. Hart, N. J. Nilsson, and B Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2), July 1968.

[9] K. Kant and S.W. Zucker. Toward efficient trajectory planning: The
path-velocity decomposition. The International Journal of Robotics
Research, 5(3):72, 1986.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configurations
spaces. IEEE Transactions on Robotics and Automation, 12:566–580,
June 1996.

[11] Jelle R. Kok, Pieter Jan ’t Hoen, Bram Bakker, and Nikos Vlassis.
Utile coordination: Learning interdependencies among cooperative
agents. In Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005.

[12] Richard E. Korf. Linear-space best-first search. Artificial Intelligence,
62(1):41 – 78, 1993.

[13] K. Madhava Krishna, Henry Hexmoor, and Srinivas Chellappa. Reac-
tive navigation of multiple moving agents by collaborative resolution
of conflicts. Journal of Robotic Systems, pages 249–269, 2005.

[14] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
In Proceedings IEE International Conference on Robotics and Au-
tomation, 1999.

[15] S.M. LaValle. Planning algorithms. Cambridge Univ Pr, 2006.
[16] Stephane Leroy, Jean-Paul Laumond, and Thierry Siméon. Multiple

path coordination for mobile robots: A geometric algorithm. In IJCAI
’99: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, pages 1118–1123, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[17] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* search
with provable bounds on sub-optimality. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Proceedings of Conference on Neural
Information Processing Systems (NIPS). MIT Press, 2003.

[18] Ryan Malcom. Multi-robot path-planning with subgraphs. In Aus-
tralasian Conference on Robotics and Automation, 2006.

[19] Francisco S. Melo and Manuela Veloso. Learning of coordination:
Exploiting sparse interactions in multiagent systems. In ’Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems, May 2009.

[20] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Welsley, 1984.

[21] M. Saha and P. Isto. Multi-robot motion planning by incremental
coordination. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, pages 5960–5963, Oct. 2006.

[22] Anthony Stentz. Optimal and efficient path planning for unknown
and dynamic environments. International Journal of Robotics and
Automation, 10:89–100, 1993.

[23] Jur van den Berg, Jack Snoeyink, Ming Lin, and Dinesh Manocha.
Centralized path planning for multiple robots: Optimal decoupling into
sequential plans. In Proc. Robotics: Science and Systems - RSS’09,
2009.

3267

