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COMPLETE MODULES AND TORSION MODULES

By W. G. DWYER and J. P. C. GREENLEES

Abstract. Suppose that R is a ring and that A is a chain complex over R. Inside the derived category
of differential graded R-modules there are naturally defined subcategories of A-torsion objects and of
A-complete objects. Under a finiteness condition on A, we develop a Morita theory for these subcat-
egories, find conceptual interpretations for some associated algebraic functors, and, in appropriate
commutative situations, identify the associated functors as local homology or local cohomology.
Some of the results are suprising even in the case R = Z and A = Z/p.

1. Introduction. Let R be a ring and R-mod the derived category of chain
complexes of left R-modules (see Section 1.2). We choose a fixed complex A
which is perfect, in other words, isomorphic in R-mod to a complex of finite
length in which the entries are finitely generated projective R-modules. We de-
clare another complex N to be A-trivial if HomR(A, N) ∼= 0, where HomR(·, ·)
denotes the chain complex of morphisms in R-mod. Going further, we say that
X is A-torsion if HomR(X, N) ∼= 0 for all A-trivial N, and that X is A-complete if
HomR(N, X) ∼= 0 for all A-trivial N. We then study the category Ators of A-torsion
complexes and the category Acomp of A-complete complexes (both of these are
triangulated full subcategories of R-mod). It turns out that these categories are
equivalent to one another, and also equivalent to the derived category of dif-
ferential graded modules over the endomorphism complex of A. We construct
approximation functors CellA: R-mod → Ators and (–)ˆ

A: R-mod → Acomp. For
an object M of R-mod, the complex CellA(M) is a kind of A-cellular approxi-
mation to M, in the sense that it is the best approximation to M which can be
cobbled together from A and its suspensions; the complex Mˆ

A is the Bousfield
localization of M with respect to a homology theory on R-mod derived from A.
We provide algebraic formulas for the functors, and find that the functors are
related in interesting ways, one of which involves an arithmetic square. We also
show that if CellA(R) has certain finite-dimensionality properties, then an object
M of R-mod is A-torsion or A-complete if and only if the homology groups HiM
individually satisfy appropriate torsion or completeness conditions.

Suppose now that R is a commutative ring, that I ⊂ R is a finitely generated
ideal, that A = R/I, and that K is the associated Koszul complex. The complex A
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200 W. G. DWYER AND J. P. C. GREENLEES

is not necessarily perfect (i.e., R/I does not necessarily have a finite projective
resolution over R), but K is, and it turns out that an object of R-mod is A-trivial
if and only if it is K-trivial, and hence A-torsion (resp. A-complete) if and only
if it is K-torsion (resp. K-complete). We can therefore use our techniques to
study functors CellA = CellK and (–)ˆ

A = (–)ˆ
K , and we identify these functors

respectively in terms of local cohomology and local homology. One remarkable
aspect of the theory we describe is how much can be said in general. In fact,
the general case seems to shed some light on local homology and cohomology,
and on the meaning of torsion and completeness: the local cohomology of M is
a universal R/I-torsion object mapping to M, and the local homology of M is
a universal R/I-complete object accepting a map from M (see Section 6). The
first is a cellular approximation, the second a Bousfield localization. Moreover,
the question of whether a chain complex is R/I-torsion or R/I-complete can be
settled by examining its homology groups one at at time; for instance, a chain
complex is R/I-torsion if and only if each element of its homology is annihilated
by some power of I.

We emphasize that we assume almost everywhere that A is perfect; the one
exception is Section 6, where in any case A = R/I is immediately replaced by
the Koszul complex K. It is easy to see that a complex A is perfect if and only
if it is small in the sense that HomR(A, –) commutes with arbitrary coproducts.
Complexes like this could just as well be called finite R-complexes, since they
represent the elements of R-mod which can be built in a finite number of steps
from R itself by taking suspensions, cofibration sequences, and retracts. They are
the analogs in R-mod of finite complexes in the stable homotopy category.

Acknowledgments. The authors are grateful to MIT for its hospitality in May
1999 when this work was begun, and the second author thanks J. D. Christensen
for useful conversations.

1.1. Organization of the paper. In Section 2 we develop a Morita theory
which shows that Ators and Acomp are both equivalent to the derived category of
modules over the endomorphism algebra of A; in particular, Ators and Acomp are
equivalent to one another. Section 3 describes some special cases of this Morita
theory, and in particular a striking one with R = Z and A = Z/p. Section 4 estab-
lishes new notation for some of the functors from Section 2 and interprets these
functors in terms of standard constructions: cellular approximations, homology
localizations, and periodicizations. The functors fit into a homotopy fibre square
(Proposition 4.13) which generalizes the arithmetic square of abelian group the-
ory (4.2). The next section establishes conditions under which the question of
whether or not a chain complex belongs to Ators or Acomp can be answered by
examining its homology groups. Finally, Section 6 specializes to the case in which
R is commutative, I ⊂ R is a finitely generated ideal, and A = R/I. As explained
above, a device involving the Koszul complex allows the previous theory to be
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applied, even though R/I is not necessarily perfect. The functors from Section 4
in this case turn out to be classical local cohomology, or its dual local homology,
at the ideal I; a chain complex M belongs to Ators or Acomp if and only if its
homology groups are I-torsion or I-complete in an appropriate sense.

1.2. Notation and terminology. The derived category R-mod is obtained
from the category of unbounded chain complexes of R-modules by formally
inverting the maps which induce isomorphisms on homology. See [18], [2], or
[19, §10] for algebraic ways to look at this, and [14] for a topological approach.
Note that the differentials in our chain complexes always lower degree by one.
The statements in this paper are expressed almost exclusively in terms of such
derived categories. In particular, Hom is the derived homomorphism complex
(sometimes written RHom) considered as an object of the appropriate derived
category, and ⊗ refers to the left derived tensor product (sometimes written ⊗L).
The convention of working in the derived category has some startling effects and
should not be forgotten.

There is one exception to our convention. If A is an object of R-mod, then
EndR(A) denotes the actual differential graded algebra obtained by taking a cofi-
brant (projective) model for A and forming the usual DGA of endomorphisms of
this model (see [19, 2.7.4], but re-index so that all of the differentials reduce de-
gree by one). We will use this construction only when A is perfect, in which case
picking a cofibrant model amounts to chosing a finite projective resolution of A;
in a more general situation, it would be necessary to find a “K-projective” reso-
lution in the sense of [18]. Up to multiplicative homology equivalence, EndR(A)
does not depend upon the choice of cofibrant model.

The significance of the above exception can be explained by a topological
analogy. The category R-mod is like the homotopy category Ho(Sp) of spectra; the
derived homomorphism complex HomR(M, N) is then like the derived mapping
spectrum Map (X, Y), which assigns to two spectra X and Y the object of Ho(Sp)
obtained by taking a cofibrant model for X, a fibrant model for Y and forming
a mapping spectrum. In particular Map (X, X), since it belongs to Ho(Sp), is a
ring spectrum up to homotopy; there is no good theory of modules over such an
object. To improve matters one could find a model X′ for X which is both fibrant
and cofibrant, form the (structured, strict, A∞, . . .) endomorphism ring spectrum
End(X′), and call it End(X) for convenience. This ring spectrum does have a
good module theory associated to it. The spectrum Map (X, X) then represents
an object in the homotopy category of End(X)-module spectra (in fact, in the
homotopy category of (End(X), End(X))-bimodule spectra) which is isomorphic
in this homotopy category to the object derived from the strict action of End(X)
on itself. In the same way, EndR(A) is a (strict) DGA, and HomR(A, A) represents
an object in the derived category of (EndR(A), EndR(A))-bimodules which is iso-
morphic in this derived category to the object derived from the multiplicative
action of EndR(A) on itself.
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Remark 1.3. This paper is intended to establish a framework and introduce
some terminology in a simple but relatively general setting. With little change,
our key arguments can be extended to cover a number of important categorically
similar cases. For instance, R could be replaced by a graded ring (this comes up in
some examples from Section 3), a differential graded algebra, or a ring spectrum;
with some adjustments in terminology R could even be replaced by a ring with
many objects, or a ring spectrum with many objects [17]. These extensions are
important in constructing an algebraic model for rational equivariant cohomology
theories. The framework provided here is also the starting point for our study with
Iyengar [6] of various duality properties in algebra and topology.

Some of the results in this paper, especially in Section 6, are related to results
in [8], but here we take a different point of view. In the setting of commutative
rings (or even schemes), the authors of [1] have already shown that Ators and
Acomp are equivalent categories; their approach does not involve the category of
modules over End(A). In the commutative ring case this result appears in [12] as
well. In [1] there is an interpretation of local homology as a Bousfield localization
functor; in a sense this way of looking at local homology goes back to [10].

2. Morita theory. Recall that A is a perfect object of R-mod. In this section
we show that the categories Ators and Acomp are equivalent, by relating them to a
third category which is at least as interesting as the other two. Let E = EndR(A).
This is a differential graded ring (Section 1.2), and there is a derived category
mod -E of right E-modules formed as usual by taking differential graded E-
modules and inverting homology isomorphisms. We may define a functor

E: R- mod −→ mod -E E(M) = HomR(A, M).

Note here that A is naturally a left E-module; this left module structure commutes
with the action of R on A and passes to a right E-module structure on HomR(A, M).
Let

(·)�: R-mod −→ mod-R

be the duality functor defined by M� = HomR(M, R), and note that A� is an object
of mod-E , as well as an object of mod-R. Define functors

T: mod-E −→ R-mod T(X) = X ⊗E A,

C: mod-E −→ R-mod C(X) = HomE (A�, X).

Here the left R-structure on T(X) is obtained from the left R-structure on A, and
the left R-structure on C(X) from the right R-structure on A�. The main result of
this section is the following theorem.
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THEOREM 2.1. Let A be a perfect complex of R-modules, and let E = EndR(A).
Then the above functors E, T, and C give two pairs of adjoint equivalences of
categories

Ators

T
←−−−
−−−→

E
mod-E

E
←−−−
−−−→

C
Acomp

(where the left adjoints are displayed above the right ones).

Remark 2.2. If R is a commutative ring, then in the situation of Theorem 2.1
it has already been shown by Hovey, Palmieri, and Strickland [12, 3.3.5] that
Ators and Acomp are equivalent categories. See also [1].

Remark 2.3. Theorem 2.1 is a variant of Morita theory. Since A is perfect it is
small, in the sense that HomR(A, ·) commutes with arbitrary coproducts. Ordinary
Morita theory implies that if A is a small generator of R-mod (e.g., A = Rn for
some n > 0) then the category of modules over E = EndR(A) is equivalent to
R-mod itself. Theorem 2.1 states that if A is small but not necessarily a generator,
then the category of modules over E is equivalent both to the subcategory Ators

and the subcategory Acomp of R-mod. This is particularly plausible in the case of
Ators, since this is just the category of chain complexes which can be built from
A (Section 4.5).

Before beginning with the proof of Theorem 2.1, it is useful to point out a
few simple facts.

2.4. A-equivalences. It is convenient to say that a map M → N in R-mod
is an A-equivalence if its cofibre is A-trivial, or equivalently if E(M) ∼= E(N). We
leave it to the reader to check that an A-equivalence between A-torsion objects of
R-mod is an isomorphism, and that an A-equivalence between A-complete objects
of R-mod is an isomorphism. This is formal: for instance, the cofibre of an A-
equivalence between A-torsion objects is both A-torsion and A-trivial, and hence
is trivial.

2.5. Adjunctions. Note that for each left R-module M and right E-module
X there is an adjunction isomorphism

HomE (X, HomR(A, M)) ∼= HomR(X ⊗E A, M).

The unit map

X −→ HomR(A, X ⊗E A)(2.6)
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is obtained by applying the functor · ⊗E A to pass from X ∼= HomE (E , X) to
HomR(A, X ⊗E A). The counit map

HomR(A, M)⊗E A −→ M(2.7)

is obtained from evaluation. Similarly, for any left R-module M and right E-
module X there is an adjunction isomorphism

HomR(M, HomE (A�, X)) ∼= HomE (A� ⊗R M, X).(2.8)

2.9. Maps and tensors. Finally, note that since A is perfect there are iso-
morphisms

HomR(A, N) ∼= A� ⊗R N and in particular E ∼= A� ⊗R A.

This last is an isomorphism inside the derived category of either left or right
E-modules (see Section 1.2), with E acting on the left on A� ⊗R A via its action
on A, and on the right via its action on A�.

2.10. The left side of Theorem 2.1. We begin by observing that for any
right E-module X, the module T(X) = X⊗E A is in fact an object of Ators. In fact,
one can use 2.5 to calculate that for any A-trivial N,

HomR(T(X), N) = HomR(X ⊗E A, N) = HomE (X, HomR(A, N)) ∼= 0.

Note that this is an isomorphism in the derived category Z-mod. This adjunction
shows that T is left adjoint to E.

We now need to show that the unit map (2.6) is always an equivalence, and
that the counit (2.7) is an equivalence if M is an object of Ators. The unit is a
natural map and preserves both cofibre sequences and coproducts (since A is small
(Section 2.3)) and therefore it suffices to check the result for X = E , where it is
clear. The counit is a natural map and its domain is A-torsion. In order to prove
that it is an isomorphism if its range is A-torsion, it is enough (Section 2.4) to
show that the counit map is always an A-equivalence. To prove this, we calculate

HomR(A, TE(M)) = A� ⊗R (HomR(A, M)⊗E A)

∼= HomR(A, M)⊗E (A� ⊗R A)

∼= HomR(A, M).

The first equivalence comes from the fact that the action of R on HomR(A, M)⊗E A
comes from an action of R on A which commutes with the action of E ; the second
equivalence from Section 2.9.
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2.11. The right side of Theorem 2.1. First we show that C(X) = HomE (A�, X)
belongs in fact to Acomp. Suppose that N is A-trivial. We may use (2.8) and 2.9
to calculate

HomR(N, C(X)) = HomR(N, HomE (A�, X))

∼= HomE (A� ⊗R N, X)

∼= HomE (HomR(A, N), X) ∼= 0.

This reasoning also shows that C is right adjoint to E.
We now have to show that the counit map EC(X) → X is an isomorphism

for all right E-modules X. This follows from 2.5 and 2.9:

EC(X) = HomR(A, HomE (A�, X)) ∼= HomE (A� ⊗R A, X) ∼= X.

Finally, we have to check that the unit map M → CE(M) is an isomorphism for
each A-complete left R-module M. Since the target of this map is A-complete, it is
enough by Section 2.4 to verify that the map itself is always an A-equivalence, i.e.,
becomes an isomorphism when the functor E is applied. But as above, EC(X) ∼=
X, so ECE(M) ∼= E(M).

Remark 2.12. It is useful to note that even when A is not perfect, the functor
C: mod-E → R-mod given by C(X) = HomE (A�, X) is right adjoint to the functor
E′: R-mod→ mod-E given by E′(N) = A� ⊗R N.

3. Sample applications of the Morita theory. We describe three situations
in which Theorem 2.1 holds.

3.1. The paradoxical case of Z/p. This simplest nontrivial application of
Theorem 2.1 is already very striking. Let R = Z and A = Z/p, this last considered
as a chain complex concentrated in degree 0. The complex A is perfect because
it is isomorphic in Z-mod to the resolution Z

p→ Z. An object N of Z-mod is
A-trivial if and only if all of its homology groups are uniquely p-divisible, or
equivalently if and only if the natural map N → Z[1/p]⊗ZN is an isomorphism.
From this and the isomorphism

HomZ(X, Z[1/p]⊗Z Y) ∼= HomZ(Z[1/p]⊗Z X, Z[1/p]⊗Z Y)

it is easy to see that Ators is the subcategory of Z-mod consisting of objects X
with Z[1/p] ⊗Z X ∼= 0, i.e., objects X which have p-primary torsion homology
groups. By inspection E is a DG algebra whose homology algebra is isomorphic to
Ext∗
Z

(Z/p, Z/p); from a multiplicative point of view this homology is an exterior
algebra over Z/p on one generator of dimension (−1). (Recall that all of our chain
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complexes have lower indices, so that the differentials decrease degree by one;
the group Ext1

Z
(Z/p, Z/p) corresponds to H−1HomZ(Z/p, Z/p).) Theorem 2.1

says that the functor E gives an equivalence between the category Ators and the
category of E-modules.

For instance, E(Z/p∞) = Z/p. Accordingly, it follows that

H0HomE (Z/p, Z/p) = H0HomZ(Z/p∞, Z/p∞) = Zp̂.

This seems very difficult to believe, since the identity map of Z/p has additive
order p.

The issue, though, revolves around what “additive order” means. Although
p times the identity map of Z/p is null-homotopic as a Z-map, it is not null-
homotopic as an E-map. To calculate E = EndZ(Z/p) as a strict DGA we have to
replace the abelian group Z/p by the above resolution M = (Z

p−→ Z). Viewing
an element of M as a column vector with the top entry recording the copy of
Z in homological degree 0, we may view E = EndZ(M) as the algebra of 2 × 2
matrices (appropriately graded). One then calculates

d

(
1 0
0 0

)
0

=

(
0 p
0 0

)
−1

d

(
0 1
0 0

)
−1

= 0

d

(
0 0
1 0

)
1

=

(
p 0
0 p

)
0

d

(
0 0
0 1

)
0

=

(
0 −p
0 0

)
−1

.

The elements of M� are row vectors, with Eacting on the right. The map p: M� −→
M� is indeed the boundary of right multiplication by ( 0

1
0
0 ). However this ma-

trix is not a central element of E and therefore right multiplication by it does
not represent an E-map. In fact, the identity map of M has infinite order as an
E-map.

We may also give a constructive interpretation. Observe that the usual con-
struction of an Adams spectral sequence gives a conditionally convergent spectral
sequence

Exts,t
H∗E (H∗(Z/p), H∗(Z/p))⇒ Ht−sEndE (Z/p).

This may be identified as an unravelled Bockstein spectral sequence. The gener-
ator of H−1E is a Bockstein operator, and the multiplication-by-p map described
above is represented by an element of bidegree (1, 1) which a stable homotopy
theorist would denote h0. In effect we may regard the category mod-E as en-
coding Bockstein spectral sequences for both p-torsion and p-complete modules,
and Theorem 2.1 as stating that the Bockstein spectral sequence determines a
p-torsion or a p-complete module.
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Example 3.2. Let T be the circle group (“T” stands for “torus”; in the follow-
ing discussion T is not related to the functor of the same name from Section 2).
This second example suggests an approach to studying T-equivariant rational co-
homology theories. We content ourselves here with sketching an analogy which
is refined elsewhere to a theorem and proved in greater generality.

We take R = k[c], where k is a field, c is of degree −2, I = (c), and A = R/I.
If k = Q it is natural to think of R/I = k as analogous to the free T-cell T+. Thus
E is analogous to the DGA of self-maps of T+, and mod-E to the category of free
rational T-spectra. The left-hand equivalence of Theorem 2.1 is then analogous
to the theorem of [7] stating

(c)-torsion-Q[c]-mod  free rational T-spectra.

From this point of view, the great attraction of the equivalence is that the category
of torsion Q[c]-modules is of injective dimension 1, whilst that of E-modules
is of infinite homological dimension. The analogue of the Adams spectral se-
quence in Example 3.1 is the descent spectral sequence. Generally speaking this
is much less useful than the Adams spectral sequence based on the torsion module
k[c, c−1]/k[c], which collapses to a short exact sequence.

Example 3.3. The third example is connected with chromatic stable homotopy
theory [16]. One might take R = Z[v1, v2, . . . , vn−1, vn, v−1

n ], I = (p, v1, . . . , vn−1),
and A = R/I. The category of I-primary torsion modules is analogous to the nth
monochromatic category, whilst the category of I-complete modules is analogous
to the category of Bousfield K(n)-complete modules. For topological purposes it
is better to take A to be a small Ln(S0)-module Bousfield equivalent to K(n). The
proof of Theorem 2.1 then gives the equivalence [13, 6.19]

nth monochromatic category  K(n)-complete spectra,

with the intermediate category of E-modules being the category of modules over
the ring spectrum of self-maps of A. We plan to investigate this example in more
detail in [6].

4. Cellular approximations and homology localizations. We work in the
setting of Section 2, but in order to organize the results more clearly we will
introduce some new notation. For an object M of R-mod, let CellA(M) stand
for TE(M) and Mˆ

A for CE(M). There is a natural A-equivalence (Section 2.4)
M → MÂ. There is also a natural A-equivalence CellA(M) → M, and we will
denote the cofibre (which is A-trivial) by M1/A.

It follows easily from the arguments in Section 2 that the functor CellA(·)
is idempotent and is right adjoint to the inclusion Ators → R-mod. Similarly,
the completion functor (·)Â is idempotent and is left adjoint to the inclusion
Acomp → R-mod.
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4.1. Another look at Z/p. One way to get some insight into these construc-
tions is to consider the special case R = Z, A = Z/p; this can be analyzed either
by direct calculation (Section 3.1) or by applying the results of Section 6. We
describe the situation in this case, using terminology and results which will be
explained below. For simplicity, write Cellp(·), (·)1/p, and (·)p̂, for CellA(·), (·)1/A,
and (·)Â when A = Z/p. For any object M of Z-mod, there are isomorphisms

Cellp(M) ∼= Σ−1Z/p∞ ⊗Z M

M1/p
∼= Z[1/p]⊗Z M

Mp̂
∼= HomZ(Σ−1Z/p∞, M).

The map Cellp(M) → M is cellular approximation (Section 4.5) with respect to
Z/p (i.e., gives the universal p-torsion approximation to M). The map M → Mp̂

is Bousfield localization (Section 4.7) with respect to the homology theory on
Z-mod given by M �→ H∗(Z/p⊗Z M) (the complex Mp̂ is sometimes called the
Ext-p-completion of M.) . The map M → M1/p is nullification (Section 4.10) with
respect to Z/p. Since Z/p is perfect, this is a smashing localization [15], and so
M → M1/p is also Bousfield localization with respect to the homology theory
M �→ H∗(Z[1/p]⊗Z M). Finally, there is a homotopy fibre square

M −−−→ Mp̂� �
M1/p −−−→ (Mp̂)1/p

.(4.2)

The square is obtained by applying the natural map X → X1/p to the upper row.
The goal of this section is to obtain the above results in the general case. We

assume as usual that A is a perfect object of R-mod.

PROPOSITION 4.3. For any object M of R-mod, there are natural isomorphisms

CellA(M) ∼= CellA(R)⊗R M

M1/A
∼= R1/A ⊗R M

MÂ
∼= HomR(CellA(R), M).

Remark 4.4. Implicit in the above formulas is the fact that CellA(R) and R1/A

can be constructed as objects in the derived category of R-bimodules. This is a
consequence of the fact that R itself is an R-bimodule. It is easier to explain this
in a slightly more general setting. Suppose that M is a left module over R and
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a right module over S, in such a way that the two actions commute. Recall the
formula

CellA(M) = HomR(A, M)⊗E A.

The extra right action of S on M persists to a right action of S on HomR(A, M).
This S-action commutes with the action of E on HomR(A, M) (because the action
of E works on the A variable) and so passes through the tensor product to give a
right action of S on CellA(M) which commutes with the normal left action of R.
Applying this in the special case M = R and S = R gives the R-bimodule structure
on CellA(R). The bimodule structure on R1/A is obtained similarly.

If R is commutative, these bimodules are obtained from ordinary modules by
taking the action on one side to be the same as the action on the other.

Proof. For the first isomorphism we use the chain

CellA(M) = HomR(A, M)⊗E A

∼= (A� ⊗R M)⊗E A

∼= (A� ⊗E A)⊗R M,

where the last isomorphism comes from the fact that the action of E on A�⊗R M
is induced by an action of E on A� which commutes with the right action of R.
Now note that A�⊗E A is CellA(R). For the second, use a naturality argument and
tensor the exact triangle

CellA(R)→ R→ R1/A

over R with M. For the third, use the adjunction argument

MÂ = HomE (A�, HomR(A, M))

∼= HomR(A� ⊗E A, M) = HomR(CellA(R), M).

4.5. Cellular approximation. An object M of R-mod is said to be A-cellular
if M is built from A in the sense that it belongs to the smallest triangulated sub-
category of R-mod which contains A and is closed under arbitrary coproducts
(i.e., it belongs to the localizing subcategory of R-mod generated by A). If M is
A-cellular then any A-equivalence (Section 2.4) X → Y induces an isomorphism
HomR(M, X) → HomR(M, Y) (in particular, M is A-torsion). A map M′ → M
is said to be an A-cellular approximation map if M′ is A-cellular and the map
M′ → M is an A-equivalence. A formal argument shows that A-cellular approxi-
mations are unique, if they exist; the arguments of Dror-Farjoun show that they
do exist [5].
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PROPOSITION 4.6. The objects of Ators are exactly the A-cellular objects of
R-mod. For any object M of R-mod, the natural map CellA(M) → M is an A-
cellular approximation map.

Proof. We noted above that any A-cellular object of R-mod belongs to Ators.
If M is A-torsion, we can choose an A-cellular approximation map M′ → M. This
is an A-equivalence between A-torsion complexes, and so it is an isomorphism.
Therefore, M is A-cellular.

The second statement is proved by observing that CellA(M) is A-torsion,
hence A-cellular, and that the map CellA(M)→ M is an A-equivalence (2.10).

4.7. Homology localization. For our purposes a homology theory on R-mod
is a functor S∗ from R-mod to graded abelian groups determined by the recipe

S∗(M) = H∗(S⊗R M)

for some object S in the derived category of right R-modules. An object M is
said to be S∗-acyclic if S∗(M) = 0. A map M → M′ is an S∗-equivalence if
it induces an isomorphism S∗(M) ∼= S(M′), or equivalently if its cofibre is S∗-
acyclic. An object M is S∗-local if HomR(N, M) ∼= 0 for each S∗-acyclic N. An
S∗-localization of M is an S∗-equivalence M → M′ with the property that M′ is
S∗-local. A formal argument shows that S∗-localizations are unique, if they exist;
Bousfield’s arguments show that in fact they do exist [3] [4] [5].

PROPOSITION 4.8. For any object M of R-mod, the natural map M → MÂ is an
S∗-localization map for S = A�.

Proof. It is necessary to show that MÂ is S∗-local and that M → MÂ is a
S∗-equivalence. Given that A� ⊗R M ∼= HomR(A, M), it is clear than an object of
R-mod is S∗-acyclic if and only if it is A-trivial in the sense of Section 1. Thus
the first statement follows from the fact that MÂ is A-complete, and the second
from the arguments of Section 2.11.

PROPOSITION 4.9. For any object M of R-mod, the natural map M → M1/A is
an S∗-localization map for S = R1/A.

Proof. In this case S ⊗R M ∼= M1/A (Proposition 4.3), so it is enough to
show that (M1/A)1/A

∼= M1/A (i.e., that M → M1/A is an S∗-equivalence), and
that if N1/A

∼= 0, then HomR(N, M1/A) ∼= 0 (i.e., that M1/A is S∗-local). The
first statement follows from the fact that CellA(CellAM) ∼= CellA(M), so that
(CellAM)1/A

∼= 0. The second follows from the fact that if N1/A
∼= 0 then N ∼=

CellAN, i.e., N is A-torsion, so that HomR(N, K) ∼= 0 for any A-trivial object K,
in particular, for K = M1/A.

4.10. Nullification. Suppose that W is an object of R-mod. An object N of
R-mod is said to be W-null if HomR(W, N) ∼= 0. A map M → M′ is a W-null
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equivalence if it induces an isomorphism HomR(M′, N)→ HomR(M, N) for each
W-null object N. A map f : M → M′ is a W-nullification of M if M′ is W-null
and f is a W-null equivalence. A formal argument shows that W-nullifications
are unique up to isomorphism if they exist; the arguments of Bousfield and Dror-
Farjoun show that in fact they do exist [5].

PROPOSITION 4.11. For any object M of R-mod, the map M → M1/A is a W-
nullification of M for W = A.

Proof. Note that for W = A, “W-null” is the same as “A-trivial.” The object
M1/A is A-trivial because CellA(M) → M is an A-equivalence. The map M →
M1/A is a W-null equivalence because its fibre CellA(M) is A-torsion, and so
HomR(CellA(M), N) ∼= 0 for any A-trivial N.

4.12. An arithmetic square. For our purposes, the term “homotopy fibre
square” means a commutative square which can be completed in such a way as
to induce an isomorphism between the fibre of the right vertical map and the
fibre of the left vertical map.

PROPOSITION 4.13. For any object M of R-mod, there is a homotopy fibre square

M −−−→ MÂ� �
M1/A −−−→ (MÂ)1/A

.

Proof. Since M → MÂ is an A-equivalence, it induces an isomorphism
CellA(M) → CellA(MÂ). This is the required isomorphism between the fibres.

5. Homology groups. In this section we identify conditions on R under
which it is possible to determine whether an object of R-mod is A-torsion or A-
complete by examining its homology groups one by one. As always, we assume
that A is perfect.

We emphasize that in this section an R-module, as opposed to an object of
R-mod, is an ordinary classical left R-module. Of course, an R-module M can
be viewed as a chain complex concentrated in degree 0, and thus treated as an
object of R-mod.

Definition 5.1. An R-module M is homotopically A-complete if the natural
map M → MÂ is an isomorphism in R-mod. An R-module M is homotopically
A-torsion if the natural map CellA(M)→ M is an isomorphism in R-mod.

The main results of this section are the following: Recall that CellA(R) =
A�⊗E A can be considered to be an object of the derived category of R-bimodules
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(Remark 4.4). For the statements, we will say that a chain complex is essentially
concentrated between dimensions i and j (i ≤ j) if it is isomorphic in the appro-
priate derived category to a chain complex of projective modules which vanishes
except between dimension i and dimension j.

PROPOSITION 5.2. Suppose there exists an n ≥ 0 such that as an object of
R-mod the complex CellA(R) is essentially concentrated between dimensions −n
and 0. Then an object X of R-mod is A-complete if and only if each homology group
Hi(X) is homotopically A-complete.

PROPOSITION 5.3. Suppose there exists an n ≥ 0 such that as an object of
mod-R the complex CellA(R) is essentially concentrated between dimensions −n
and 0. Then an object X of R-mod is A-torsion if and only if each homology group
Hi(X) is homotopically A-torsion.

Remark 5.4. The hypotheses in the previous two propositions may seem un-
motivated. Of course, the hypotheses are needed for the proofs. But we are
particularly interested in these conditions because they apply when R is a com-
mutative ring, I ⊂ R is a finitely generated ideal, and A is the associated Koszul
complex (the perfect surrogate for R/I).

5.5. Some initial observations. Somewhat surprisingly, an R-module M is
homotopically A-complete if and only if Hi(MÂ) = 0 for i < 0 and the natural
map M → H0(MÂ) is an isomorphism. The surprise is that under these conditions
the groups Hi(MÂ) vanish for i > 0. For suppose the conditions are satisfied. Let
X be the quotient of MÂ obtained by dividing out by the cycles in dimension 1
and by all elements in dimensions > 1. Then X ∼= M, and the composite

M → MÂ → X

exhibits M as a retract of the A-complete complex MÂ. It follows that M is A-
complete, so that MÂ

∼= M and M is homotopically A-complete. It is useful to
note that (by Proposition 4.3) the condition Hi(MÂ) = 0 for i < 0 is automatically
satisfied under the assumptions of Proposition 5.2.

A similar argument shows that M is homotopically A-torsion if and only if
HiCellA(M) vanishes for i > 0 and the map H0CellA(M)→ M is an isomorphism.
Again, it is useful to note that (by Proposition 4.3) the condition HiCellA(M) = 0
for i > 0 is automatically satisfied under the assumptions of Proposition 5.3.

Proof of Proposition 5.2. Let C = CellA(R), which can be taken to be a pro-
jective chain complex supported between dimension (− n) and 0. For any object
X of R-mod, XÂ is isomorphic to HomR(C, X) (see Proposition 4.3). Suppose
that the homology groups of X are homotopically A-complete. Let X〈i, j〉 (i ≤ j)
be the subquotient of X which agrees with X between dimensions i and j, has
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Xj+1/cycles in dimension j + 1, has ∂(Xi) in dimension i− 1, and has zero else-
where. In particular, the homology groups of X〈i, j〉 agree with the homology
groups of X between dimensions i and j and are otherwise zero. The cofibre
sequences

X〈 j + 1, j + 1〉 → X〈i, j + 1〉 → X〈i, j〉

allow X〈i, j〉 to be pieced together inductively out of complexes with only one
nonzero homology group. By assumption, each of these complexes is A-complete.
It follows that X〈i, j〉 is A-complete, and hence that the (evident) complexes
X〈i,∞〉 are A-complete, since

HomR(C, X〈i,∞〉) ∼= HomR(C, holimj X〈i, j〉)
∼= holimj HomR(C, X〈i, j〉)
∼= holimj X〈i, j〉 ∼= X〈i,∞〉.

The identification X〈i,∞〉 ∼= holimj X〈i, j〉 is made by noting that before passing
to the derived category the tower {X〈i, j〉}j≥i of chain complexes is a tower of
epimorphisms with inverse limit X〈i,∞〉. Since C is concentrated in a finite
number of dimensions, an easy connectivity argument shows that

HomR(C, X) ∼= HomR(C, colimi X〈i,∞〉) ∼= colimi HomR(C, X〈i,∞〉).

The point is that the direct system {X〈i,∞〉} is convergent in the sense that the
homology groups above any given dimension stabilize after a certain point. It
follows that X is A-complete.

Suppose on the other hand that X is A-complete. We need to show that for
any k, the R-module Hk(X) is homotopically A-complete. By the dimensional
assumption on C there are isomorphisms

HkHomR(C, X〈k − n− 1,∞〉) ∼= HkHomR(C, X) = Hk(X)

and so after replacing X by the complex on the left, it is possible to assume that the
homology groups of X vanish below a certain point. We now show by ascending
induction on k that Hi(X) is homotopically A-complete for i ≤ k. This is true for
k� 0, because in that case the groups all vanish. Suppose that the claim is true
for k−1; we must show that the module M = Hk(X) is homotopically A-complete.
By the inductive assumption, X〈−∞, k− 1〉 is a complex with homology groups
that are homotopically A-complete, and so, as above, this complex is A-complete.
The cofibre sequence

X〈k,∞〉 → X → X〈−∞, k − 1〉
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shows that X〈k,∞〉 is A-complete. Since C vanishes in positive dimensions and
the map X〈k,∞〉 → X〈k, k〉 ∼= ΣkM is an isomorphism on homology up through
dimension k, the induced map

M ∼= HkHomR(C, X〈k,∞〉)→ H0HomR(C, M)

is also an isomorphism. By 5.5, M is homotopically A-complete.

The proof of Proposition 5.3 is exactly parallel to the one above, with the op-
posite orientation (upward induction replaced by downward induction). It depends
on the tensor product formula for CellA(X) from Proposition 4.3.

6. Commutative rings. In this section, we assume that R is commutative
and that I ⊂ R is a finitely generated ideal. We wish to study the A-complete and
A-torsion objects of R-mod in the special case A = R/I, but the theory from the
rest of the paper does not immediately apply, because R/I need not be perfect,
i.e., R/I need not have a finite length resolution by finitely generated projective R-
modules. To get around this problem we construct an associated perfect complex
K with the property that an object M of R-mod is K-torsion, K-complete, or K-
trivial if and only if M is R/I-torsion, R/I-complete, or R/I-trivial. Elaborating
a little on the construction of Kleads to explicit formulas for the torsion functor
CellK(·) and the completion functor (·)K̂ ; these turn out to be identical to the usual
local cohomology and local homology functors with respect to the ideal I. This,
for instance, gives an interpretation of local homology with respect to I as the
Bousfield localization functor on the category R-mod associated to the homology
theory M �→ H∗(R/I ⊗R M).

The Koszul complex. For an element r in R, let K•(r) denote the chain
complex r: R → R, with the two copies of R in dimensions 0 and ( − 1),
respectively. For a sequence r = (r1, . . . ,rn), let K•(r) be the tensor product
K•(r1)⊗R · · · ⊗R K•(rn). This is the Koszul complex associated to r.

Recall from Section 4.5 that if A and B are two objects of R-mod, then
B is said to be built from A if B is in the smallest localizing subcategory of
R-mod which contains A, i.e., B is in the smallest full subcategory of R-mod
which contains A and is closed under isomorphisms, desuspensions, coproducts,
and cofibre sequences. If B is built from A then the class of B-trivial objects
in R-mod contains the class of A-trivial objects. If A and B can each be built
from one another, then the classes of A-trivial and B-trivial objects coincide, and
it follows immediately that the classes of A-torsion and B-torsion objects also
coincide, as do the classes of A-complete and B-complete objects.

The following is the property of K•(r) which interests us.

PROPOSITION 6.1. Suppose that R is a commutative ring and that I ⊂ R is an
ideal generated by the sequence r = (r1, . . . ,rn). Then the two objects R/I and K•(r)
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of R-mod can each be built from one another.

Remark 6.2. Given Proposition 6.1 the results in the previous sections can
be applied with A = K•(r) to give conclusions involving R/I. It follows from
Theorem 2.1, for instance, that the category of R/I-torsion objects of R-mod is
equivalent to mod-E , where E = EndR(K•(r)). The same is true of the category
of R/I-complete objects of R-mod. Note that E is a matrix algebra of rank 2n

over R, graded so as to lie between dimensions −n and n, and provided with a
suitable differential.

Remark 6.3. Suppose that R is a noetherian ring. The argument below easily
shows that if R/I is a field (or more generally R/I is a regular ring) then K•(r) can
be built from R/I and its suspensions by a finite number of cofibration sequences,
i.e., K•(r) is in the thick subcategory of R-mod generated by R/I. On the other
hand, R/I is in the thick subcategory of R-mod generated by K•(r) only if R
itself is regular.

Convention. Suppose that R is a commutative ring and that I ⊂ R is an
ideal generated by the finite sequence r. For the rest of this section we will
write CellR/I(·) and (·)̂R/I instead of CellK(·) and (·)K̂ with K = K•(r). These
objects are defined in terms of K (Section 2) but, in view of Proposition 6.1
and the results of Section 4, easy to interpret in terms of R/I. For instance, it
follows from Proposition 4.6 that the natural map CellR/I(M) → M is an R/I-
cellular approximation map. There is a corresponding interpretation of (M)̂R/I in
Proposition 6.14.

Proof of Proposition 6.1. Let K = K•(r). Any object M of R-mod can be built
out of R, and it follows immediately that K ⊗R M can be built out of K. Since
K⊗R (R/I) is a direct sum of shifted copies of R/I, we conclude that R/I can be
built from K.

Conversely, note that for each i the map ri: K → K is chain homotopic to
zero, because ri: K•(ri)→ K•(ri) is chain homotopic to zero. It follows that the
homology groups of K are modules over the ring R/I. Any module M over R/I
can be built out of R/I as an object in the derived category of R/I, and the same
recipe will build M out of R/I in the category R-mod. In the notation of the proof
of Proposition 5.2, there are cofibre sequences

K〈 j, j〉 → K〈−∞, j〉 → K〈−∞, j− 1〉.

As just noted, each one of the fibres is built from R/I. The fact that K itself
is built from R/I follows from a finite induction, beginning with the fact that
K〈−∞,−(n + 1)〉 ∼= 0 and ending with the fact that K〈−∞, 0〉 = K.
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The dual Koszul complex. If r∈ R, let K•(r) denote the chain complex
r: R → R, with the two copies of R in dimensions 1 and 0, respectively.
Clearly K•(r) = ΣK•(r) ∼= K•(r)�. For a sequence r = (r1, . . . ,rn), let K•(r) denote
K•(r1)⊗R · · · ⊗R K•(rn). Then K•(r) = ΣnK•(r) ∼= K•(r)�. Since K•(r) and K•(r)
are suspensions of one another, the following proposition is a consequence of
Proposition 6.1.

PROPOSITION 6.4. Suppose that R is a commutative ring and I ⊂ R is an ideal
generated by the sequence r = (r1, . . . ,rn). Then the two objects R/I and K•(r) of
R-mod can each be built from one another.

As a consequence we obtain the following.

PROPOSITION 6.5. Suppose that R is a commutative ring and I ⊂ R is an ideal
generated by the sequence r = (r1, . . . ,rn). Then for an object M of R-mod the
following four conditions are equivalent:

(1) R/I ⊗R M ∼= 0,

(2) K•(r)⊗R M ∼= 0,

(3) HomR(K•(r), M) ∼= 0, and

(4) HomR(R/I, M) ∼= 0.

Proof. The first and second are equivalent by Proposition 6.1, the third and
fourth by Proposition 6.4, the second and third because K•(r) = K•(r)�.

Remark 6.6. It is a little surprising that the first and fourth conditions of
Proposition 6.5 are equivalent in such generality.

Local cohomology. For r∈ R, the commutative diagram

R
=

−−−→ R

rk

� �rk+1

R
r

−−−→ R

(6.7)

gives a map K•(rk)→ K•(rk+1). Let K•(r∞) denote colimk K•(rk); this is just the
flat complex r: R→ R[1/r]. It is easy to see that K•(r∞) is isomorphic in R-mod
to a free chain complex over R with nonzero groups only in dimensions 0 and
−1; this can be taken to be the chain complex

d: ⊕i≥0R→ ⊕i≥0R

d(x0, x1, x2, . . .) = (x0 − x1, rx1 − x2, rx2 − x3, . . .).

If r = (r1, . . . ,rn) is a sequence of elements in R, we let rk denote (rk
1, . . . ,rk

n).
Tensoring together the maps from (6.7) gives a map K•(rk) → K•(rk+1). Let
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K•(r∞) denote colimk K•(rk), so that in R-mod there is an isomorphism

K•(r∞) ∼= K•(r∞1 )⊗R · · · ⊗R K•(r∞n ).(6.8)

The following result is clear.

LEMMA 6.9. If r = (r1, . . . , rn), then K•(r∞) is isomorphic in R-mod to a free
chain complex over R which is concentrated between dimensions (−n) and 0.

Suppose that I ⊂ R is the ideal generated by r. If M is an (ordinary) R-
module, the local cohomology of M at I (see [11] or [9]) is denoted H∗

I (M) and
defined by the formula

Hk
I (M) = H−k(K•(r∞)⊗R M).

In line with this, if M is an arbitrary object of R-mod we define HI(M) =
K•(r∞) ⊗R M and call HI(M) the derived local cohomology of M at I. There
is a Kunneth spectral sequence

E2
p,q = H−p

I (Hq(M))⇒ Hp+q(HI(M)).

This converges strongly because K•(r∞) is a flat chain complex concentrated in
a finite range of dimensions.

PROPOSITION 6.10. Suppose that R is a commutative ring and that I ⊂ R is the
ideal generated by the sequence r = (r1, . . . , rn). Then CellR/I(R) is isomorphic as
an object of R-mod to K•(r∞).

Proof. Let K = K•(r) and K∞ = K•(r∞). There is a natural map K∞ → R
which amounts to taking a quotient by the elements in K∞of strictly negative
dimension. We have to show that K∞is K-torsion, i.e., built from K (see Propo-
sition 4.6) and that the map K∞ → R becomes an isomorphism when HomR(K, ·)
is applied.

Fix k, and consider an ordinary R-module M on which the elements rk
1, . . . , rk

n
act trivially. Such a module is annihilated by the ideal Ink and so has a finite
filtration {IjM} such that the associated graded modules are annihilated by I. In
particular, each subquotient {IjM/Ij+1M} is a module over R/I and so, as in the
proof of Proposition 6.1, can be built from R/I. The cofibre sequences

IjM/Ij+1M → M/I j+1M → M/IjM

allow for an inductive proof that the quotient modules M/IjM, and hence also
the module M itself, are built from R/I. Since each homology group of K•(rk)
is annihilated by rk

1, . . . , rk
n, it now follows from the argument in the proof of
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Proposition 6.1 that K•(rk) can be built from R/I. Passing to a directed (homo-
topy) colimit shows that K∞can be built from R/I and hence (Proposition 6.1)
from K.

To finish the proof, it is enough, by Proposition 6.5, to show that tensoring
the above map K∞ → R with R/I gives an equivalence

R/I ⊗R K∞ → R/I ⊗R R = R/I.

However, K∞ is given as a flat chain complex (6.8) and so we can compute
the derived tensor product on the left as an ordinary tensor product. In this
interpretation, the displayed map is an actual isomorphism of chain complexes,
since R[1/ri]⊗R R/I = 0 for i = 1, . . . , n.

The following proposition is a consequence of Propositions 6.10 and 4.3.

PROPOSITION 6.11. Suppose that R is a commutative ring and that I ⊂ R is a
finitely generated ideal. Then local cohomology at I computes R/I-cellular approx-
imation, in the sense that for any object M of R-mod there is a natural isomorphism
HI(M) ∼= CellR/I(M).

We can now apply the results of Section 5 to give a simple characterization
of the R/I-cellular objects of mod-R. An ordinary R-module M is said to be an
I-power torsion module if for each x ∈ M there is a k such that Ikx = 0.

PROPOSITION 6.12. Suppose that R is a commutative ring and that I ⊂ R is a
finitely generated ideal. Then an object M of R-mod is R/I-cellular if and only if
each homology group of M is an I-power torsion module.

Proof. Let r be a finite sequence of generators for I, and K = K•(r). It follows
from Propositions 4.6 and 6.1 that an object M of R-mod is R/I-cellular if and
only if M is K-cellular, or, equivalently, K-torsion.

It is easy to argue from the definitions that if M is built from K then the
homology groups of M are I-power torsion modules. Suppose that the homology
groups of M are I-power torsion modules. Let K∞ = K•(r∞). The argument in
the proof of Proposition 6.10 shows immediately that K∞ ⊗R Hi(M) ∼= Hi(M)
for all i, so by Proposition 6.10 CellK(HiM) ∼= HiM. In other words, all of the
homology groups of M are homotopically K-torsion. In view of Lemma 6.9 and
Proposition 5.3, M is K-torsion.

Local homology. Suppose that I ⊂ R is an ideal generated by the finite
sequence r. If M is an (ordinary) R-module, the local homology of M at I (see
[9]) is denoted HI

∗(M) and defined by the formula

HI
k(M) = HkHomR(K•(r∞), M).
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In line with this, if M is an arbitrary object of R-mod we define HI(M) =
HomR(K•(r∞), M) and call HI(M) the derived local homology of M at I. It
is easy to construct a spectral sequence

E2
p,q = HI

p(Hq(M))⇒ Hp+q(HI(M)).

This converges strongly because K•(r∞) is equivalent to a projective chain com-
plex of finite length.

The following proposition is a consequence of Propositions 6.10 and 4.3.

PROPOSITION 6.13. Suppose that R is a commutative ring and that I ⊂ R is a
finitely generated ideal. Then local homology at I computes R/I-completion, in the
sense that for any object M of R-mod there is a natural isomorphism HI(M) ∼= MR̂/I .

Note that under the isomorphism of Proposition 6.13, the natural completion
map M → MR̂/I is obtained by applying HomR(–, M) to the map K•(r∞) → R
mentioned at the beginning of the proof of Proposition 6.10.

According to Proposition 4.8, the natural map M → MK̂ is a Bousfield local-
ization map for the homology theory on R-mod given by M �→ H∗(K�⊗R M). By
Proposition 6.4, this homology theory has the same acyclic objects as the theory
given by M �→ H∗(R/I⊗R M), and thus the same notion of localization. We have
obtained the following interpretation of (·)̂R/I , and hence of local homology.

PROPOSITION 6.14. Suppose that R is a commutative ring and that I ⊂ R is a
finitely generated ideal. Then the natural map M → MR̂/I is a Bousfield localization
map for the homology theory on R-mod given by M �→ H∗(R/I⊗R M). In particular,
since HI(M) ∼= MR̂/I , local homology at I computes Bousfield localization with
respect to the homology theory determined by R/I.

Finally, along the lines of Proposition 6.12 we obtain the following char-
acterization of the objects of R-mod which are local with respect to the above
homology theory. It depends on combining Proposition 5.2 and Section 5.5 with
the above observation that these local objects are exactly the objects which are
K-complete.

PROPOSITION 6.15. Suppose that R is a commutative ring and that I ⊂ R is a
finitely generated ideal. Then an object M of R-mod is local with respect to the
homology theory on R-mod given by M �→ H∗(R/I ⊗R M) if and only if for each
integer k the natural map Hk(M)→ HI

0(HkM) is an isomorphism.
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[14] I. Křı́ž and J. P. May, Operads, algebras, modules and motives, Astérisque (1995), iv+145pp.
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