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MASLOV DEQUANTIZATION, IDEMPOTENT AND TROPICAL MATHEMATICS:
A BRIEF INTRODUCTION
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This paper is a brief introduction to idempotent and tropical mathematics. Tropical mathematics can be treated as
the result of the so-called Maslov dequantization of the traditional mathematics over numerical fields as the Planck
constant � tends to zero taking imaginary values. Bibliography: 187 titles.
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Green, P. Del Moral, W. H. Fleming, J. S. Golan, M. Gondran, I. Itenberg, Y. Katsov, V. N. Kolokoltsov,
P. Loreti, Yu. I. Manin, G. Mascari, W. M. MacEneaney, G. Panina, E. Pap, M. Pedicini, H. Prade, A. A. Pu-
halskii, J.-P. Quadrat, M. A. Roytberg, G. B. Shpiz, I. Singer, and O. Viro for useful contacts and references.
Special thanks are due to V. P. Maslov for his crucial help and support and to A. N. Sobolevskii for his great
help including, but not limited to, three pictures presented below.

1. Some basic ideas

Idempotent mathematics is based on replacing the usual arithmetic operations with a new set of basic opera-
tions (such as maximum or minimum), i.e., on replacing numerical fields by idempotent semirings and semifields.
Typical examples are given by the so-called max-plus algebra Rmax and the min-plus algebra Rmin. Let R be
the field of real numbers. Then Rmax = R ∪ {−∞} with the operations x ⊕ y = max{x, y} and x � y = x + y.
Similarly, Rmin = R ∪ {+∞} with the operations ⊕ = min, � = +. The new addition ⊕ is idempotent, i.e.,
x ⊕ x = x for all elements x.

Many authors (S. C. Kleene, S. N. N. Pandit, N. N. Vorobjev, B. A. Carré, R. A. Cuninghame-Green, K. Zim-
mermann, U. Zimmermann, M. Gondran, F. L. Baccelli, G. Cohen, S. Gaubert, G. J. Olsder, J.-P. Quadrat,
and others) used idempotent semirings and matrices over these semirings for solving some applied problems in
computer science and discrete mathematics, starting from the classical paper by S. C. Kleene [88]. The modern
idempotent analysis (or idempotent calculus, or idempotent mathematics) was founded by V. P. Maslov and his
collaborators in the 1980s in Moscow; see, e.g., [96, 119–124]. Some preliminary results are due to E. Hopf and
G. Choquet, see [24, 71].

Idempotent mathematics can be treated as the result of a dequantization of the traditional mathematics over
numerical fields as the Planck constant � tends to zero taking imaginary values. This point of view was presented
by G. L. Litvinov and V. P. Maslov [102–104], see also [110, 111]. In other words, idempotent mathematics is
an asymptotic version of the traditional mathematics over the fields of real and complex numbers.

The basic paradigm is expressed in terms of an idempotent correspondence principle. This principle is closely
related to the well-known correspondence principle of N. Bohr in quantum theory. Actually, there exists a
heuristic correspondence between important, interesting, and useful constructions and results of the traditional
mathematics over fields and analogous constructions and results over idempotent semirings and semifields (i.e.,
semirings and semifields with idempotent addition).

A systematic and consistent application of the idempotent correspondence principle leads to a variety of results,
often quite unexpected. As a result, in parallel with the traditional mathematics over fields, its “shadow,”
idempotent mathematics, appears. This “shadow” stands approximately in the same relation to traditional
mathematics as classical physics does to quantum theory (see Fig. 1).
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Fig. 1. Relations between idempotent and traditional mathematics.

In many respects, idempotent mathematics is simpler than the traditional one. However, the transition from
traditional concepts and results to their idempotent analogs is often nontrivial.

2. Semirings, semifields, and dequantization

Consider a set S equipped with two algebraic operations: addition ⊕ and multiplication �. It is said to be a
semiring if the following conditions are satisfied:

• the addition ⊕ and the multiplication � are associative;
• the addition ⊕ is commutative;
• the multiplication � is distributive with respect to the addition ⊕:

x � (y ⊕ z) = (x � y) ⊕ (x � z) and (x ⊕ y) � z = (x � z) ⊕ (y � z)

for all x, y, z ∈ S.
A unit of a semiring S is an element 1 ∈ S such that 1� x = x� 1 = x for all x ∈ S. A zero of a semiring S

is an element 0 ∈ S such that 0 �= 1 and 0⊕ x = x, 0 � x = x � 0 = 0 for all x ∈ S. A semiring S is called an
idempotent semiring if x⊕ x = x for all x ∈ S. A semiring S with neutral elements 0 and 1 is called a semifield
if every nonzero element of S is invertible. Note that diöıds in the sense of [9, 67, 68], quantales in the sense of
[147, 148], and inclines in the sense of [84] are examples of idempotent semirings.

Let R be the field of real numbers and R+ be the semiring of all nonnegative real numbers (with respect
to the usual addition and multiplication). The change of variables x �→ u = h lnx, h > 0, defines a map
Φh:R+ → S = R ∪ {−∞}. Let the addition and multiplication operations be mapped from R to S by Φh, i.e.,
let u ⊕h v = h ln(exp(u/h) + exp(v/h)), u � v = u + v, 0 = −∞ = Φh(0), 1 = 0 = Φh(1). Thus S obtains the
structure of a semiring R(h) isomorphic to R+ (see Fig. 2).

It can easily be checked that u ⊕h v → max{u, v} as h → 0 and that S forms a semiring with respect to the
addition u⊕ v = max{u, v} and the multiplication u� v = u + v with zero 0 = −∞ and unit 1 = 0. Denote this
semiring by Rmax; it is idempotent, i.e., u⊕u = u for all its elements. The semiring Rmax is actually a semifield.
The analogy with quantization is obvious; the parameter h plays the role of the Planck constant, so R+ can be
viewed as a “quantum object” and Rmax as the result of its “dequantization.” A similar procedure (for h < 0)
leads to the semiring Rmin = R∪{+∞} with the operations ⊕ = min, � = +; in this case, 0 = +∞, 1 = 0. The
semirings Rmax and Rmin are isomorphic. This passage to Rmax or Rmin is called the Maslov dequantization. It
is clear that the corresponding passage from C or R to Rmax is generated by the Maslov dequantization and the
map x �→ |x|; we will also call this passage the Maslov dequantization. Connections with physics and the meaning
of imaginary values of the Planck constant are discussed below (see Sec. 6) and in [110, 111]. The idempotent
semiring R∪ {−∞}∪ {+∞} with the operations ⊕ = max, � = min can be obtained as the result of a “second
dequantization” of C, R, or R+. Dozens of interesting examples of nonisomorphic idempotent semirings may
be cited, as well as a number of standard methods of deriving new semirings from these (see, e.g., [26, 64, 66–70,
104, 110]). The so-called idempotent dequantization is a generalization of the Maslov dequantization; this is a
passage from fields to idempotent semifields and semirings in mathematical constructions and results.

The Maslov dequantization is related to the well-known logarithmic transformation that was used, e.g., in the
classical papers by E. Schrödinger [153] and E. Hopf [71]. The term “Cole–Hopf transformation” is also used.
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Fig. 2. Deformation of R+ to R(h). Inset: same for a small value of h.

The subsequent progress of E. Hopf’s ideas has culminated in the well-known vanishing viscosity method and
the method of viscosity solutions, see, e.g., [10, 19, 54, 122, 125, 149, 167].

3. Terminology: Tropical semirings and tropical mathematics

The term “tropical semirings” was introduced in computer science to denote discrete versions of the max-
plus algebra Rmax or min-plus algebra Rmin and their subalgebras; (discrete) semirings of this type were called
tropical semirings by Dominic Perrin in honor of Imre Simon (who is a Brazilian mathematician and computer
scientist) because of his pioneering activity in this area, see [140].

More recently, the situation and terminology have changed. For the most part of modern authors, “tropical”
means “over Rmax (or Rmin)” and tropical semirings are the idempotent semifields Rmax and Rmin. The terms
“max-plus” and “min-plus” are often used in the same sense. Now the term “tropical mathematics” usually
means “mathematics over Rmax or Rmin,” see, e.g., [7, 11, 12, 14, 39, 41, 55, 56, 59, 60, 72–78, 85, 86, 126–129,
131, 132, 134, 135, 146, 155, 156, 161–165, 169–171]. The terms “tropicalization” and “tropification” (see, e.g.,
[87]) mean exactly dequantization and quantization in our sense. In any case, tropical mathematics is a natural
and very important part of idempotent mathematics. Some well-known constructions and results of idempotent
mathematics were repeated in the framework of tropical mathematics (and especially tropical linear algebra).

Note that in the papers [174–176], N. N. Vorobjev developed a version of idempotent linear algebra (with
important applications, e.g., to mathematical economics) and predicted many aspects of the future extended
theory. He used the terms “extremal algebras” and “extremal mathematics” for idempotent semirings and
idempotent mathematics. Unfortunately, N. N. Vorobjev’s papers and ideas were forgotten for a long period, so
his remarkable terminology is not in use any more.

4. Idempotent algebra and linear algebra

The first known paper on idempotent linear algebra is due to S. Kleene [88]. Systems of linear algebraic
equations over the exotic idempotent semiring of all formal languages over a fixed finite alphabet are examined
in this work; however, S. Kleene’s ideas are very general and universal. Since then, dozens of authors investigated
matrices with coefficients belonging to an idempotent semiring and the corresponding applications to discrete
mathematics, computer science, computer languages, linguistic problems, finite automata, optimization problems
on graphs, discrete event systems and Petry nets, stochastic systems, evaluation of computer performance,
computational problems, etc. This subject is very well known and well presented in the corresponding literature,
see, e.g., [9, 17, 18, 21, 25, 28–30, 44, 62, 64–70, 84, 93, 96, 102, 104–107, 114, 115, 122, 174–177, 187].

Idempotent abstract algebra is not yet so well developed (on the other hand, from a formal point of view,
lattice theory and the theory of ordered groups and semigroups are parts of idempotent algebra). However, there
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are many interesting results and applications, presented, e.g., in [29–31, 81, 147, 148, 154].
In particular, an idempotent version of the main theorem of algebra holds [31, 154] for radicable idempotent

semifields (a semiring A is called radicable if the equation xn = a has a solution x ∈ A for any a ∈ A and any
positive integer n). It is proved that Rmax and other radicable semifields are algebraically closed in a natural
sense [154].

Over the last years, tropical algebraic geometry has attracted a lot of attention. This subject will be briefly
discussed below (see Sec. 11).

5. Idempotent analysis

Idempotent analysis was initially constructed by V. P. Maslov and his collaborators and then developed by
many authors. The subject is presented in the book by V. N. Kolokoltsov and V. P. Maslov [96] (a Russian
version of this book [122] was published in 1994).

Let S be an arbitrary semiring with idempotent addition ⊕ (which is always assumed to be commutative),
multiplication �, zero 0, and unit 1. The set S is endowed with the standard partial order 
: by definition,
a 
 b if and only if a⊕ b = b. Thus all elements of S are nonnegative: 0 
 a for all a ∈ S. Due to the existence
of this order, idempotent analysis is closely related to lattice theory, the theory of vector lattices, and the theory
of ordered spaces. Moreover, this partial order allows one to model a number of basic “topological” concepts and
results of idempotent analysis at the purely algebraic level; this line of reasoning was examined systematically
in [108–112] and [26].

Calculus deals mainly with functions whose values are numbers. The idempotent analog of a numerical
function is a map X → S, where X is an arbitrary set and S is an idempotent semiring. Functions with values
in S can be added, multiplied by each other, and multiplied by elements of S pointwise.

The idempotent analog of a linear functional space is a set of S-valued functions that is closed under addition of
functions and multiplication of functions by elements of S, or an S-semimodule. Consider, e.g., the S-semimodule
B(X, S) of all functions X → S that are bounded in the sense of the standard order on S.

If S = Rmax, then the idempotent analog of integration is defined by the formula

I(ϕ) =
∫ ⊕

X

ϕ(x) dx = sup
x∈X

ϕ(x), (1)

where ϕ ∈ B(X, S). Indeed, a Riemann sum of the form
∑
i

ϕ(xi)·σi corresponds to the expression
⊕
i

ϕ(xi)�σi =

max
i

{ϕ(xi) + σi}, which tends to the right-hand side of (1) as σi → 0. Of course, this is a purely heuristic
argument.

Formula (1) defines the idempotent (or Maslov) integral not only for functions taking values in Rmax, but also
in the general case, provided that any bounded (from above) subset of S has the least upper bound.

An idempotent (or Maslov) measure on X is defined by mψ(Y ) = sup
x∈Y

ψ(x), where ψ ∈ B(X, S), Y ⊆ X. The

integral with respect to this measure is defined by the formula

Iψ(ϕ) =
∫ ⊕

X

ϕ(x) dmψ =
∫ ⊕

X

ϕ(x) � ψ(x) dx = sup
x∈X

(ϕ(x) � ψ(x)). (2)

Obviously, if S = Rmin, then the standard order 
 is opposite to the conventional order ≤, so in this case
Eq. (2) assumes the form

∫ ⊕

X

ϕ(x) dmψ =
∫ ⊕

X

ϕ(x) � ψ(x) dx = inf
x∈X

(ϕ(x) � ψ(x)),

where inf is understood in the sense of the conventional order ≤.
Note that the so-called pseudo-analysis (see, e.g., the survey paper by E. Pap [138]) is related to a special

part of idempotent analysis; however, this pseudo-analysis is not a proper part of idempotent mathematics in
the general case. Some generalizations of Maslov measures are discussed in [89, 137].
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6. The superposition principle and linear problems

Basic equations of quantum theory are linear; this is the superposition principle in quantum mechanics. The
Hamilton–Jacobi equation, the basic equation of classical mechanics, is nonlinear in the conventional sense.
However, it is linear over the semirings Rmax and Rmin. Similarly, different versions of the Bellman equation,
the basic equation of optimization theory, are linear over suitable idempotent semirings; this is V. P. Maslov’s
idempotent superposition principle, see [119–123]. For instance, the finite-dimensional stationary Bellman equa-
tion can be written in the form X = H � X ⊕ F , where X, H, and F are matrices with coefficients in an
idempotent semiring S and the unknown matrix X is determined by H and F [29]. In particular, standard
problems of dynamic programming and the well-known shortest path problem correspond to the cases S = Rmax

and S = Rmin, respectively. In [20], it was shown that principal optimization algorithms for finite graphs cor-
respond to standard methods for solving systems of linear equations of this type (over semirings). Specifically,
Bellman’s shortest path algorithm corresponds to a version of Jacobi’s algorithm, Ford’s algorithm corresponds
to the Gauss–Seidel iterative scheme, etc.

The linearity of the Hamilton–Jacobi equation over Rmin and Rmax, which is the result of the Maslov de-
quantization of the Schrödinger equation, is closely related to the (conventional) linearity of the Schrödinger
equation and can be deduced from this linearity. Thus it is possible to borrow standard ideas and methods of
linear analysis and apply them to a new area.

Consider a classical dynamical system, specified by the Hamiltonian

H = H(p, x) =
N∑

i=1

p2
i

2mi
+ V (x),

where x = (x1, . . . , xN) are generalized coordinates, p = (p1, . . . , pN) are generalized momenta, mi are masses,
and V (x) is a potential. In this case, the Lagrangian L(x, ẋ, t) has the form

L(x, ẋ, t) =
N∑

i=1

mi
ẋ2

i

2
− V (x),

where ẋ = (ẋ1, . . . , ẋN), ẋi = dxi/dt. The value function S(x, t) of the action functional has the form

S =
∫ t

t0

L(x(t), ẋ(t), t) dt,

where the integration is performed along the factual trajectory of the system. The classical equations of motion
are derived as the stationarity conditions for the action functional (the Hamilton principle or the least action
principle).

For fixed values of t and t0 and arbitrary trajectories x(t), the action functional S = S(x(t)) can be regarded
as a function taking the set of curves (trajectories) to the set of real numbers, which can be treated as elements
of Rmin. In this case, the minimum of the action functional can be viewed as the Maslov integral of this
function over the set of trajectories, or an idempotent analog of the Euclidean version of the Feynman path
integral. The minimum of the action functional corresponds to the maximum of e−S , i.e., the idempotent
integral

∫ ⊕
{paths} e−S(x(t))D{x(t)} with respect to the max-plus algebra Rmax. Thus the least action principle

can be regarded as an idempotent version of the well-known Feynman approach to quantum mechanics. The
representation of a solution to the Schrödinger equation in terms of the Feynman integral corresponds to the
Lax–Oleinik solution formula for the Hamilton–Jacobi equation.

Since ∂S/∂xi = pi, ∂S/∂t = −H(p, x), the following Hamilton–Jacobi equation holds:

∂S

∂t
+ H

(
∂S

∂xi
, xi

)
= 0. (3)

Quantization (see, e.g., [48]) leads to the Schrödinger equation

−�

i

∂ψ

∂t
= Ĥψ = H(p̂i, x̂i)ψ, (4)
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where ψ = ψ(x, t) is the wave function, i.e., a time-dependent element of the Hilbert space L2(RN), and Ĥ
is the energy operator obtained by the substitution of the momentum operators p̂i = �

i
∂

∂xi
and the coordinate

operators x̂i: ψ �→ xiψ for the variables pi and xi in the Hamiltonian function, respectively. This equation is linear
in the conventional sense (the quantum superposition principle). The standard procedure of limit transition from
the Schrödinger equation to the Hamilton–Jacobi equation is to use the following ansatz for the wave function:
ψ(x, t) = a(x, t)eiS(x,t)/�, and to keep only the leading-order term as � → 0 (the “semiclassical” limit).

Instead of doing this, we switch to imaginary values of the Planck constant � by the substitution h = i�,
assuming h > 0. Thus the Schrödinger equation (4) turns into the following generalized heat equation:

h
∂u

∂t
= H

(
−h

∂

∂xi
, x̂i

)
u, (5)

where the real-valued function u corresponds to the wave function ψ (or rather to |ψ|). A similar idea (the switch
to imaginary time) is used in Euclidean quantum field theory (see, e.g., [130]); recall that time and energy are
dual quantities.

The linearity of Eq. (4) implies the linearity of Eq. (5). Thus if u1 and u2 are solutions of (5), then so is their
linear combination

u = λ1u1 + λ2u2. (6)

Let S = h lnu or u = eS/h as in Sec. 2 above. It can easily be checked that Eq. (5) then turns into

∂S

∂t
= V (x) +

N∑
i=1

1
2mi

(
∂S

∂xi

)2

+ h
n∑

i=1

1
2mi

∂2S

∂x2
i

. (7)

Thus we have passed from (4) to (7) by means of the change of variables ψ = eS/h. Note that |ψ| = eReS/h, where
ReS is the real part of S. Now let us regard S as a real variable. Equation (7) is nonlinear in the conventional
sense. However, if S1 and S2 are its solutions, then so is the function

S = λ1 � S1⊕hλ2 � S2

obtained from (6) by means of our substitution S = h lnu. Here the generalized multiplication � coincides with
the ordinary addition, and the generalized addition ⊕h is the image of the conventional addition under the above
change of variables. As h → 0, we obtain the operations of the idempotent semiring Rmax, i.e., ⊕ = max and
� = +, and Eq. (7) turns into the Hamilton–Jacobi equation (3), since the third term in the right-hand side of
(7) vanishes.

Thus it is natural to regard the limit function S = λ1 � S1 ⊕ λ2 � S2 as a solution of the Hamilton–Jacobi
equation and to expect that this equation can be treated as linear over Rmax. This argument (clearly, a heuristic
one) can be extended to equations of a more general form. For a rigorous treatment of (semiring) linearity
for these equations, see [52, 96, 122, 123] and also [120]. Note that if h is replaced by −h, then the resulting
Hamilton–Jacobi equation becomes linear over Rmin.

The idempotent superposition principle indicates that there exist important nonlinear (in the traditional
sense) problems that are linear over idempotent semirings. Linear idempotent functional analysis (see below) is
a natural tool for the investigation of those nonlinear infinite-dimensional problems that possess this property.

7. Convolution and the Fourier–Legendre transform

Let G be a group. Then the space B(X,Rmax) of all bounded functions G → Rmax (see above) is an
idempotent semiring with respect to the following analog � of the usual convolution:

(ϕ(x) � ψ)(g) =
∫ ⊕

G

ϕ(x) � ψ(x−1 · g) dx = sup
x∈G

(ϕ(x) + ψ(x−1 · g)).

Of course, it is possible to consider other “function spaces” (and other basic semirings instead of Rmax). In [96,
122], “group semirings” of this type are referred to as convolution semirings.

Let G = Rn, where Rn is regarded as a topological group with respect to the vector addition. The conventional
Fourier–Laplace transform is defined as

ϕ(x) �→ ϕ̃(ξ) =
∫

G

eiξ·xϕ(x) dx, (8)
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where eiξ·x is a character of the group G, i.e., a solution of the following functional equation:

f(x + y) = f(x)f(y).

The idempotent analog of this equation is

f(x + y) = f(x) � f(y) = f(x) + f(y),

so “continuous idempotent characters” are linear functions of the form x �→ ξ ·x = ξ1x1 + · · ·+ξnxn. As a result,
the transform in (8) assumes the form

ϕ(x) �→ ϕ̃(ξ) =
∫ ⊕

G

ξ · x � ϕ(x) dx = sup
x∈G

(ξ · x + ϕ(x)). (9)

The transform in (9) is nothing but the Legendre transform (up to notation) [121]; transforms of this kind
establish the correspondence between the Lagrangian and the Hamiltonian formulations of classical mechanics.
The Legendre transform generates an idempotent version of harmonic analysis for the space of convex functions,
see, e.g., [118].

Of course, this construction can be generalized to different classes of groups and semirings. Transformations
of this type convert the generalized convolution � to the pointwise (generalized) multiplication and possess
analogs of some important properties of the usual Fourier transform. For the case of semirings of Pareto sets,
the corresponding version of the Fourier transform reduces the multicriterial optimization problem to a family
of monocriterial problems [152].

The examples discussed in this section can be treated as fragments of an idempotent version of representation
theory, see, e.g., [111]. In particular, “idempotent” representations of groups can be treated as representations
of the corresponding convolution semirings (i.e., idempotent group semirings) in semimodules.

8. Correspondence to stochastics and duality between probability and optimization

Maslov measures are nonnegative (in the sense of the standard order), just as probability measures. The
analogy between idempotent and probability measures leads to important interplay between optimization theory
and probability theory. By now, idempotent analogs of many objects of stochastic calculus have been constructed
and investigated, such as max-plus martingales, max-plus stochastic differential equations, and others. These
results make it possible, for example, to transfer powerful stochastic methods to optimization theory. This
was noticed and examined by many authors (G. Salut, P. Del Moral, M. Akian, J.-P. Quadrat, V. P. Maslov,
V. N. Kolokoltsov, P. Bernhard, W. A. Fleming, W. M. McEneaney, A. A. Puhalskii, and others), see the survey
paper by W. A. Fleming and W. M. McEneaney [53] and [1, 6, 13, 28, 35–38, 50–52, 69, 122, 141, 143, 144]. For
relations and applications to large deviations, see [1, 35–38, 142] and especially the book by A. A. Puhalskii [141].

9. Idempotent functional analysis

Many other idempotent analogs may be given, in particular, for basic constructions and theorems of functional
analysis. Idempotent functional analysis is an abstract version of idempotent analysis. For the sake of simplicity,
take S = Rmax and let X be an arbitrary set. The idempotent integration can be defined by formula (1), see
above. The functional I(ϕ) is linear over S, and its values correspond to limiting values of the corresponding
analogs of Lebesgue (or Riemann) sums. An idempotent scalar product of functions ϕ and ψ is defined by the
formula

〈ϕ, ψ〉 =
∫ ⊕

X

ϕ(x) � ψ(x) dx = sup
x∈X

(ϕ(x) � ψ(x)).

Thus it is natural to suggest idempotent analogs of integral operators in the form

ϕ(y) �→ (Kϕ)(x) =
∫ ⊕

Y

K(x, y) � ϕ(y) dy = sup
y∈Y

{K(x, y) + ϕ(y)}, (10)

where ϕ(y) is an element of a space of functions defined on a set Y , and K(x, y) is an S-valued function on
X × Y . Expressions of this type are known to be standard in optimization problems.
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Recall that the definitions and constructions described above can be extended to the case of idempotent
semirings that are conditionally complete in the sense of the standard order. Using the Maslov integration,
one can construct various function spaces as well as idempotent versions of the theory of generalized functions
(distributions). For some concrete idempotent function spaces, it was proved that every “good” linear operator
(in the idempotent sense) can be presented in the form (10); this is an idempotent version of the kernel theorem
of L. Schwartz; results of this type were proved by V. N. Kolokoltsov, P. S. Dudnikov and S. N. Samborskii,
I. Singer, M. A. Shubin, and others, see, e.g., [44, 96, 122, 123, 158]. Thus a “good” linear functional can be
presented in the form ϕ �→ 〈ϕ, ψ〉, where 〈·, ·〉 is an idempotent scalar product.

In the framework of idempotent functional analysis, results of this type can be proved in a very general
situation. In [108–112], an algebraic version of idempotent functional analysis is developed; this means that
basic (topological) notions and results are simulated in purely algebraic terms. This treatment covers the
subject from basic concepts and results (e.g., idempotent analogs of the well-known Hahn–Banach, Riesz, and
Riesz–Fisher theorems) to idempotent analogs of A. Grothendieck’s concepts and results on topological tensor
products, nuclear spaces and operators. An abstract version of the kernel theorem is formulated. Note that the
passage from the usual theory to idempotent functional analysis may be very nontrivial; for example, there are
many nonisomorphic idempotent Hilbert spaces. Important results on idempotent functional analysis (duality
and separation theorems) are recently published by G. Cohen, S. Gaubert, and J.-P. Quadrat [26]; see also a
finite-dimensional version of the separation theorem in [183]. Idempotent functional analysis has received much
attention in the last years, see, e.g., [2–5, 27, 68, 105, 113, 149, 158, 159, 178] and the works cited above.

10. The dequantization transform and a generalization of the Newton polytopes

In this section, we briefly discuss the results proved in [113]. For functions defined on Cn almost everywhere
(a.e.), it is possible to construct a dequantization transform f → f̂ generated by the Maslov dequantization. If f

is a polynomial, then the subdifferential ∂f̂ of f̂ at the origin coincides with the Newton polytope of f . For the
semiring of polynomials with nonnegative coefficients, the dequantization transform is a homomorphism of this
semiring to the idempotent semiring of convex polytopes with respect to the well-known Minkowski operations.
These results can be generalized to a wide class of functions and convex sets.

10.1. The dequantization transform. Let X be a topological space. For functions f(x) defined on X, we say
that a certain assertion is valid almost everywhere (a.e.) if it is valid for all elements x of an open dense subset
of X. Assume that X is Cn or Rn; denote by Rn

+ the set x = { (x1, . . . , xn) ∈ X | xi ≥ 0 for i = 1, 2, . . . , n}.
For x = (x1, . . . , xn) ∈ X, we set exp(x) = (exp(x1), . . . , exp(xn)); so if x ∈ Rn, then exp(x) ∈ Rn

+.
Denote by F(Cn) the set of all functions defined and continuous on an open dense subset U ⊂ Cn such that

U ⊃ Rn
+. In all the examples below we consider even more regular functions, which are holomorphic in U . It

is clear that F(Cn) is a ring (and an algebra over C) with respect to the usual addition and multiplication of
functions.

For f ∈ F(Cn), let us define a function f̂h by the following formula:

f̂h(x) = h log |f(exp(x/h))|, (11)

where h is a (small) real parameter and x ∈ Rn. Set

f̂(x) = lim
h→0

f̂h(x) (12)

if the right-hand side of (12) exists almost everywhere. We say that the function f̂(x) is the dequantization of the
function f(x) and the map f(x) �→ f̂(x) is the dequantization transform. By construction, f̂h(x) and f̂(x) can
be treated as functions taking their values in Rmax. Note that in fact f̂h(x) and f̂(x) depend on the restriction
of f to Rn

+, so in fact the dequantization transform is constructed for functions defined on Rn
+ only. It is clear

that the dequantization transform is generated by the Maslov dequantization and the map x �→ |x|. Of course,
similar definitions can be given for functions defined on Rn and Rn

+.
Denote by V the set Rn treated as a linear Euclidean space (with the scalar product (x, y) = x1y1 + x2y2 +

· · ·+ xnyn) and set V+ = Rn
+. We say that a function f ∈ F(Cn) is dequantizable whenever its dequantization

f̂(x) exists (and is defined on an open dense subset of V ). Let D(Cn) denote the set of all dequantizable
functions and D̂(V ) denote the set { f̂ | f ∈ D(Cn) }. Recall that functions from D(Cn) (and D̂(V )) are defined
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almost everywhere and f = g means that f(x) = g(x) a.e., i.e., for x ranging over an open dense subset of Cn

(respectively, of V ). Denote by D+(Cn) the set of all functions f ∈ D(Cn) such that f(x1, . . . , xn) ≥ 0 if xi ≥ 0
for i = 1, . . . , n; so f ∈ D+(Cn) if the restriction of f to V+ = Rn

+ is a nonnegative function. Denote by D̂+(V )
the image of D+(Cn) under the dequantization transform. We say that functions f, g ∈ D(Cn) are in general
position whenever f̂(x) �= ĝ(x) for x running through an open dense subset of V .

For functions f, g ∈ D(Cn) and any nonzero constant c, the following equations are valid:

(1) f̂g = f̂ + ĝ;

(2) |f̂ | = f̂ ; ĉf = f ; ĉ = 0;

(3) (f̂ + g)(x) = max{f̂(x), ĝ(x)} a.e. if f and g are nonnegative on V+ (i.e., f, g ∈ D+(Cn)) or f and g are in
general position.

The left-hand sides of these equations are well defined automatically.
The set D+(Cn) has a natural structure of a semiring with respect to the usual addition and multiplication

of functions taking values in C. The set D̂+(V ) has a natural structure of an idempotent semiring with respect
to the operations (f ⊕ g)(x) = max{f(x), g(x)}, (f � g)(x) = f(x) + g(x); elements of D̂+(V ) can be naturally
treated as functions taking values in Rmax. The dequantization transform generates a homomorphism from
D+(Cn) to D̂+(V ).

10.2. Simple functions. For any nonzero number a ∈ C and any vector d = (d1, . . . , dn) ∈ V = Rn, we set
ma,d(x) = a

∏n
i=1 xdi

i ; we call functions of this kind generalized monomials. Generalized monomials are defined
a.e. on Cn and on V+, but not on V unless the numbers di take integer or suitable rational values. We say that a
function f is a generalized polynomial whenever it is a finite sum of linearly independent generalized monomials.
For instance, Laurent polynomials are examples of generalized polynomials.

As usual, for x, y ∈ V we set (x, y) = x1y1 + · · ·+xnyn. It is easy to prove that if f is a generalized monomial
ma,d(x), then f̂ is the linear function x �→ (d, x). If f is a generalized polynomial, then f̂ is a sublinear function.

Recall that a real function p defined on V = Rn is called sublinear if p = supα pα, where {pα} is a collection
of linear functions. Sublinear functions defined everywhere on V = Rn are convex, therefore continuous. We
discuss sublinear functions of this kind only. Assume that p is a continuous function defined on V ; then p is
sublinear whenever

(1) p(x + y) ≤ p(x) + p(y) for all x, y ∈ V ;
(2) p(cx) = cp(x) for all x ∈ V , c ∈ R+.
So if p1 and p2 are sublinear functions, then p1 + p2 is a sublinear function.
We say that a function f ∈ F(Cn) is simple if its dequantization f̂ exists and coincides a.e. with a sublinear

function; we denote this (uniquely defined everywhere on V ) sublinear function by the same symbol f̂ .
Recall that simple functions f and g are in general position if f̂(x) �= ĝ(x) for all x belonging to an open dense

subset of V . In particular, generalized monomials are in general position whenever they are linearly independent.
Denote by Sim(Cn) the set of all simple functions defined on V and denote by Sim+(Cn) the set Sim(Cn) ∩

D+(Cn). Let Sbl(V ) denote the set of all (continuous) sublinear functions defined on V = Rn and Sbl+(V )
denote the image Ŝim+(Cn) of Sim+(Cn) under the dequantization transform.

The set Sim+(Cn) is a subsemiring of D+(Cn), and Sbl+(V ) is an idempotent subsemiring of D̂+(V ). The
dequantization transform generates an epimorphism of Sim+(Cn) onto Sbl+(V ). The set Sbl(V ) is an idempotent
semiring with respect to the operations (f ⊕ g)(x) = max{f(x), g(x)}, (f � g)(x) = f(x) + g(x).

It is clear that polynomials and generalized polynomials are simple functions.
We say that functions f, g ∈ D(V ) are asymptotically equivalent whenever f̂ = ĝ; any simple function f is an

asymptotic monomial whenever f̂ is a linear function. A simple function f is called an asymptotic polynomial
whenever f̂ is the sum of a finite collection of nonequivalent asymptotic monomials. Every asymptotic polynomial
is a simple function.

Example. Generalized polynomials, logarithmic functions of (generalized) polynomials, and products of polyno-
mials and logarithmic functions are asymptotic polynomials. This follows from our definitions and formula (11).

10.3. Subdifferentials of sublinear functions and Newton sets of simple functions. It is well known
that all convex compact subsets in Rn form an idempotent semiring S with respect to the Minkowski operations:
for A, B ∈ S, the sum A ⊕ B is the convex hull of the union A ∪ B, and the product A � B is defined as
A � B = { x | x = a + b, where a ∈ A, b ∈ B }. In fact, S is an idempotent linear space over Rmax (see, e.g.,
[110]). Clearly, the Newton polytopes in V form a subsemiring N in S.
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We will use some elementary results from convex analysis. These results can be found, e.g., in [118].
For any function p ∈ Sbl(V ), we set

∂p = { v ∈ V | (v, x) ≤ p(x) for all x ∈ V }.

It is well known from convex analysis that for any sublinear function p the set ∂p is exactly the subdifferential
of p at the origin. The following proposition is also known in convex analysis.

Proposition 1. Assume that p1, p2 ∈ Sbl(V ); then

∂(p1 + p2) = ∂p1 � ∂p2 = { v ∈ V | v = v1 + v2, where v1 ∈ ∂p1, v2 ∈ ∂p2 };

∂(max{p1(x), p2(x)}) = ∂p1 ⊕ ∂p2.

Let p ∈ Sbl(V ). Then ∂p is a nonempty convex compact subset of V .

Corollary 1. The map p �→ ∂p is a homomorphism of the idempotent semiring Sbl(V ) to the idempotent
semiring S of all convex compact subsets of V .

For any simple function f ∈ Sim(Cn), denote by N(f) the set ∂(f̂). We call N(f) the Newton set of the
function f . It follows from this proposition that for any simple function f , its Newton set N(f) is a nonempty
convex compact subset of V .

Theorem. Assume that f and g are simple functions. Then

(1) N(fg) = N(f) �N(g) = { v ∈ V | v = v1 + v2 with v1 ∈ N(f), v2 ∈ N(g)};
(2) N(f +g) = N(f)⊕N(g) if f1 and f2 are in general position or f1, f2 ∈ Sim+(Cn) (recall that N(f)⊕N(g)

is the convex hull of N(f) ∪ N(g)).

Corollary 2. The map f �→ N(f) generates a homomorphism from Sim+(Cn) to S.

Proposition 2. Let f = ma,d(x) = a
∏n

i=1 xdi
i be a generalized monomial, where d = (d1, . . . , dn) ∈ V = Rn

and a is a nonzero complex number. Then N(f) = {d}.

Corollary 3. Let f =
∑

d∈D mad,d be a generalized polynomial. Then N(f) is the polytope ⊕d∈D{d}, i.e., the
convex hull of the finite set D.

This assertion follows from the theorem and Proposition 2. Thus in this case N(f) is the well-known classical
Newton polytope of the polynomial f .

The following corollary is obvious.

Corollary 4. Let f be a generalized or asymptotic polynomial. Then its Newton set N(f) is a convex polytope.

Example. Consider the one-dimensional case (i.e., V = R) and assume that f1 = anxn + an−1x
n−1 + · · ·+ a0

and f2 = bmxm + bm−1x
m−1 + · · · + b0 with nonzero an, bm, a0, b0. Then N(f1) is the segment [0, n] and

N(f2) is the segment [0, m]. Thus the map f �→ N(f) corresponds to the map f �→ deg(f), where deg(f) is
the degree of a polynomial f . In this case, the theorem means that deg(fg) = deg f + deg g and deg(f + g) =
max{deg f, deg g} = max{n, m} if ai ≥ 0, bi ≥ 0 or f and g are in general position.

11. Dequantization of geometry

An idempotent version of real algebraic geometry was discovered in the report of O. Viro for the Barcelona
Congress [172]. Starting from the idempotent correspondence principle, O. Viro constructed a piecewise linear
geometry of polyhedra of a special kind in finite-dimensional Euclidean spaces as the result of the Maslov
dequantization of real algebraic geometry. He indicated important applications in real algebraic geometry (e.g.,
in the framework of Hilbert’s 16th problem about constructing real algebraic varieties with prescribed properties
and parameters) and relations to complex algebraic geometry and amoebas in the sense of I. M. Gelfand,
M. M. Kapranov, and A. V. Zelevinsky (see their book [61], and [173]). Later, complex algebraic geometry was
dequantized by G. Mikhalkin, and the result turned out to be the same; this new “idempotent” (or asymptotic)
geometry is now often called tropical algebraic geometry, see, e.g., [47, 72, 126–129, 146, 155, 164, 166].
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There is a natural relation between the Maslov dequantization and amoebas. Assume that (C∗)n is a complex
torus, where C∗ = C\{0} is the group of nonzero complex numbers under multiplication. For z = (z1, . . . , zn) ∈
(C∗)n and a positive real number h, denote by Logh(z) = h log(|z|) the element

(h log |z1|, h log |z2|, . . . , h log |zn|) ∈ Rn.

Let V ⊂ (C∗)n be a complex algebraic variety; denote by Ah(V ) the set Logh(V ). If h = 1, then the set
A(V ) = A1(V ) is called the amoeba of V in the sense of [61], see also [7, 126, 128, 129, 139, 155, 161, 173]; the
amoeba A(V ) is a closed subset of Rn with a nonempty complement. Note that this construction depends on
our coordinate system.

For the sake of simplicity, assume that V is a hypersurface in (C∗)n determined by a polynomial f . Then
there is a deformation h �→ fh of this polynomial generated by the Maslov dequantization, and fh = f for h = 1.
Let Vh ⊂ (C∗)n be the zero set of fh and set Ah(Vh) = Logh(Vh). Then there exists a tropical variety Tro(V )
such that the subsets Ah(Vh) ⊂ Rn tend to Tro(V ) in the Hausdorff metric as h → 0, see [126, 151]. The tropical
variety Tro(V ) is the result of a deformation of the amoeba A(V ) and the Maslov dequantization of the variety
V . The set Tro(V ) is called the skeleton of A(V ).

Example [126]. For the line V = { (x, y) ∈ (C∗)2 | x+y+1 = 0 }, the piecewise linear graph Tro(V ) is a tropical
line, see Fig. 3(a). The amoeba A(V ) is represented in Fig. 3(b), while Fig. 3(c) demonstrates the corresponding
deformation of the amoeba.

Fig. 3. A tropical line and amoebas.

In the important paper [80] (see also [47, 126, 128, 146]), tropical varieties appeared as amoebas over non-
Archimedean fields. In 2000, M. Kontsevich noted that it is possible to use non-Archimedean amoebas in
enumerative geometry, see [126, Sec. 2.4, Remark 4]. In fact, methods of tropical geometry lead to remarkable
applications to algebraic enumerative geometry, Gromov–Witten and Welschinger invariants, see [59, 72–75,
126–129, 155, 156]. In particular, G. Mikhalkin presented and proved in [127, 129] a formula enumerating curves
of arbitrary genus on toric surfaces. See also the papers [60, 72, 73, 131, 155].

Recently, many other papers on tropical algebraic geometry and its applications to the conventional (e.g.,
complex) algebraic geometry and other areas appeared, see, e.g., [7, 55, 56, 76, 131, 134, 135, 168, 169, 171]. The
thing is that some difficult traditional problems can be reduced to their tropical versions which are hopefully
not so difficult.

Note that tropical geometry is closely related to the well-known program of M. Kontsevich and Y. Soibelman,
see, e.g., [98, 99].

There is an introductory paper [146] (see also [166]) on tropical algebraic geometry. However, on the whole,
only first steps in idempotent/tropical geometry have been made, and the problem of systematic construction of
idempotent versions of algebraic and analytic geometries is still open.

12. The correspondence principle for algorithms and their computer implementations

There are many important applied algorithms of idempotent mathematics, see, e.g., [9, 18, 21, 30, 31, 49, 52,
53, 67–69, 72, 84, 87, 93, 96, 102, 104, 106, 107, 114–116, 127, 129, 146, 150, 166, 174–176, 179, 186, 187].

The idempotent correspondence principle is valid for algorithms as well as for their software and hardware
implementations [102–104, 106, 107]. In particular, due to the superposition principle, analogs of linear algebra
algorithms are especially important. It is well known that algorithms of linear algebra are convenient for parallel
computations; their idempotent analogs also admit parallelization. This is a regular way to use parallel computa-
tions for many problems including basic optimization problems. It is convenient to use universal algorithms that
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do not depend on a specific semiring and its concrete computer model. Software implementations for universal
semiring algorithms are based on object-oriented and generic programming; program modules can deal with
abstract (and variable) operations and data types, see [102, 104, 106, 107, 116].

The most important and standard algorithms have many hardware implementations in the form of technical
devices or special processors. These devices often can be used as prototypes for new hardware units generated
by the replacement of the usual arithmetic operations with their semiring analogs, see [102, 104, 107]. Good
and efficient technical ideas and decisions can be transposed from prototypes into new hardware units. Thus the
correspondence principle generates a regular heuristic method for hardware design.

13. Idempotent interval analysis

An idempotent version of the traditional interval analysis is presented in [114, 115]. Let S be an idempotent
semiring equipped with the standard partial order. A closed interval in S is a subset of the form x = [x, x̄] =
{x ∈ S | x 
 x 
 x̄}, where the elements x 
 x̄ are called the lower and the upper bounds of the interval
x. The weak interval extension I(S) of the semiring S is the set of all closed intervals in S endowed with the
operations ⊕ and � defined as x ⊕ y = [x⊕ y, x̄⊕ ȳ], x� y = [x� y, x̄� ȳ]; the set I(S) is a new idempotent
semiring with respect to these operations. It is proved that basic interval problems of idempotent linear algebra
are polynomial, whereas in the traditional interval analysis, problems of this kind are generally NP-hard. Exact
interval solutions for the discrete stationary Bellman equation (see the matrix equation discussed in Sec. 8
above) and for the corresponding optimization problems are constructed and examined by G. L. Litvinov and
A. N. Sobolevskii in [114, 115]. Similar results are presented by K. Cechlárová and R. A. Cuninghame-Green
in [22].

14. Relations to the KAM theory and optimal transport

The subject of the Kolmogorov–Arnold–Moser (KAM) theory may be formulated as the study of invariant
subsets in the phase spaces of nonintegrable Hamiltonian dynamical systems where the dynamics displays the
same degree of regularity as in integrable systems (quasiperiodic behavior). Recently, a considerable progress has
been made via a variational approach, where the dynamics is specified by the Lagrangian rather than Hamiltonian
function. The corresponding theory was initiated by S. Aubry and J. N. Mather and recently dubbed weak KAM
theory by A. Fathi (see his monograph Weak KAM Theorems in Lagrangian Dynamics, in preparation, and also
[82, 83, 159, 160]). The minimization of a certain functional along trajectories of moving particles is a central
feature of another subject, optimal transport theory, which also has undergone a rapid recent development. This
theory dates back to G. Monge’s work on cuts and fills (1781). A modern version of the theory is known now
(after the work by L. Kantorovich [79]) as the Monge–Ampère–Kantorovich (MAK) optimal transport theory.
There is a similarity between the two theories, and there are relations to problems of idempotent functional
analysis (e.g., the problem of eigenfunctions for “idempotent” integral operators, see [159]). Applications of
optimal transport to data processing in cosmology are presented in [15, 58].

15. Relations to logic, fuzzy sets, and possibility theory

Let S be an idempotent semiring with neutral elements 0 and 1 (recall that 0 �= 1, see Sec. 2 above). Then
the Boolean algebra B = {0, 1} is a natural idempotent subsemiring of S. Thus S can be treated as a generalized
(extended) logic with logical operations ⊕ (disjunction) and � (conjunction). Ideas of this kind are discussed in
many books and papers on generalized versions of logic and especially quantum logic, see, e.g., [42, 64, 90, 147,
148].

Let Ω be the so-called universe consisting of “elementary events.” Denote by F(S) the set of functions defined
on Ω and taking values in S; then F(S) is an idempotent semiring with respect to the pointwise addition and
multiplication of functions. We say that elements of F(S) are generalized fuzzy sets, see [64, 100]. We obtain
the well-known classical definition of fuzzy sets (L. A. Zadeh [180]) if S = P, where P is the segment [0, 1] with
the semiring operations ⊕ = max and � = min. Certainly, functions from F(P) with values in the Boolean
algebra B = {0, 1} ⊂ P correspond to traditional sets from Ω, and the semiring operations correspond to the
standard operations for sets. In the general case, functions from F(S) taking their values in B = {0, 1} ⊂ S
can be treated as traditional subsets in Ω. If S is a lattice (i.e., x � y = inf{x, y} and x ⊕ y = sup{x, y}), then
generalized fuzzy sets coincide with L-fuzzy sets in the sense of J. A. Goguen [63]. The set I(S) of intervals is
an idempotent semiring (see Sec. 11), so elements of F(I(S)) can be treated as interval (generalized) fuzzy sets.
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It is well known that the classical theory of fuzzy sets is a basis for the theory of possibility [43, 181]. It is also
possible to develop a similar generalized theory of possibility starting from generalized fuzzy sets, see, e.g., [43,
90, 100]. Generalized theories can be noncommutative; they seem to be more qualitative and less quantitative
compared to the classical theories presented in [180, 181]. We see that idempotent analysis and the theories of
(generalized) fuzzy sets and possibility have the same objects, i.e., functions with values in semirings. However,
basic problems and methods may be different for these theories (like for the measure theory and the probability
theory).

16. Relations to other areas and miscellaneous applications

Many relations and applications of idempotent mathematics to various theoretical and applied areas of math-
ematical sciences are discussed above. Needless to say that optimization and optimal control problems form a
very natural field for applications of ideas and methods of idempotent mathematics. There is a very good survey
paper [93] by V. N. Kolokoltsov on the subject, see also [9, 18, 21, 25, 28–31, 35, 37, 38, 50–53, 67–69, 102, 104,
114, 115, 117, 119–124, 144, 174–176, 179, 186, 187].

There are many applications to differential equations and stochastic differential equations, see, e.g., [50–53,
69, 91, 92, 94, 96, 119–123, 138, 159, 160].

Applications to game theory are discussed, e.g., in [95, 96, 122]. There are interesting applications in biology
(bioinformatics), see, e.g., [49, 135, 150]. Applications and relations to mathematical morphology are examined in
the paper [38] by P. Del Moral and M. Doisy and especially in the extended preprint version of this article. There
are many relations and applications to physics (quantum and classical physics, statistical physics, cosmology,
etc.), see, e.g., Sec. 6 above and [23, 92, 96, 110, 111, 117, 133, 145].

There exist important relations and applications to purely mathematical areas. The so-called tropical combi-
natorics is discussed in the large survey paper [87] by A. N. Kirillov, see also [18, 187]. Interesting applications of
tropical semirings to the traditional representation theory are presented in [11, 12, 87]. Tropical mathematics is
closely related to the very attractive and popular theory of cluster algebras founded by S. Fomin and A. Zelevin-
sky, see their survey paper [57]. In both cases, there are relations with the traditional representation theory of
Lie groups and related topics. For important relations with convex analysis and discrete convex analysis, see,
e.g., [2, 27, 30, 32, 40, 113, 118, 123, 157, 183–185]. Some results on the complexity of idempotent/tropical
calculations can be found, e.g., in [86, 114, 115, 170]. Interesting applications of tropical algebra to the theory
of braids and the Yang–Baxter mappings (in the sense of [16]) can be found in [34, 45, 46].

Starting from the classical papers by N. N. Vorobjev [174–176], many authors examine, explicitly or not,
relations and applications of idempotent mathematics to mathematical economics, see, e.g., [33, 95, 123, 182,
187].

This work has been supported by the RFBR grant 05–01–00824 and the Erwin Schrödinger International
Institute for Mathematical Physics (ESI).
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15. Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee, and A. Sobolevskii, “Reconstruction

of the early Universe as a convex optimization problem,” Mon. Not. R. Astron. Soc., 346, 501–524 (2003).
16. V. M. Bukhshtaber, “The Yang–Baxter mappings,” Uspekhi Mat. Nauk, 53, 241–242 (1998).
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