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ABSTRACT
Writes via unchecked pointer dereferences rank high among
vulnerabilities most often exploited by malicious code. The
most common attacks use an unchecked string copy to cause
a buffer overrun, thereby overwriting the return address in
the function’s activation record. Then, when the function
“returns”, control is actually transferred to the attacker’s
code. Other attacks may overwrite function pointers, setjmp
buffers, system-call arguments, or simply corrupt data to
cause a denial of service.

A number of techniques have been proposed to address
such attacks. Some are limited to protecting the return ad-
dress only; others are more general, but have undesirable
properties such as having a high runtime overhead, requir-
ing manual changes to the source code, or forcing program-
mers to give up control of data representations and memory
management.

This paper describes the design and implementation of
a security tool for C programs that addresses all these is-
sues: it has a low runtime overhead, does not require source
code modification by the programmer, does not report false
positives, and provides protection against a wide range of at-
tacks via bad pointer dereferences, including but not limited
to buffer overruns and attempts to access previously freed
memory. The tool uses static analysis to identify potentially
dangerous pointer dereferences, and memory locations that
are legitimate targets of these pointers. Dynamic checks are
then inserted; if at runtime the target of an unsafe derefer-
ence is not in the legitimate set, a potential security violation
is reported, and the program is halted.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis; K.6.5 [Man-

agement of Computing and Information Systems]:
Security and Protection
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1. INTRODUCTION
Writes via unchecked pointer dereferences rank high

among vulnerabilities most often exploited by malicious
code. The most common attacks use an unchecked string
copy to cause a buffer overrun [33]. For example, consider
a procedure that uses a pointer to copy an input string into
a buffer stored on the stack, incrementing the pointer af-
ter copying each character without checking whether the
pointer is past the end of the buffer. An attacker can pro-
vide a long string that causes the procedure to write past the
end of the buffer, overwriting other locations on the stack,
including the procedure’s return address. In this way, the
attacker can replace the procedure’s return address with the
address of code written by the attacker (stored, for example,
in the string buffer that was overwritten, or in an environ-
ment variable), so that when the procedure returns, control
is transferred to the attacker’s code. Details about this kind
of attack, commonly known as “stack smashing”, have been
documented by many authors (e.g., [29]).

A number of techniques have been proposed to address
this vulnerability. StackGuard [10, 30] and StackShield [31]
add code to a compiled program to detect attacks on the re-
turn address. StackShield also implements range checks on
the addresses used by calls via function pointers to guard
against attacks on those pointers. The advantages of these
approaches are that they require no changes to the source
code and introduce very little overhead; however, they do
not address attacks on other vulnerable locations, such as
system-call arguments or setjmp buffers. Because they do
not provide general protection against bad pointer derefer-
ences, sophisticated attackers will find ways to get around
the protections that they provide.

A more general technique for protecting against attacks
via bad pointer dereferences is the use of “fat pointers”. At
runtime, extra information is maintained for every pointer1:
the address and size of the object to which it points. Ev-
ery pointer dereference is instrumented to use that informa-

1In this paper, arrays are considered to be pointers, and an
array-index expression such as A[k] is treated as the equiv-
alent pointer dereference *tmp, where tmp has been assigned
the value A+k.



tion to check whether the current value of the pointer is in
bounds; if not, an error is reported.

The fat-pointers approach has several weaknesses: It re-
quires a change of data representation, which may be un-
acceptable to some applications, and it incurs a relatively
high runtime overhead. Two ongoing projects address these
limitations:

1. Cyclone [17] is a programming language based on C
that prevents bad pointer dereferences while still giv-
ing programmers the same control over data represen-
tations and memory management that C does. How-
ever, to gain the benefits of this approach, existing
C programs must be converted to Cyclone programs,
which is an important barrier to widespread use.

2. The CCured [23, 9] system uses fat pointers, but cuts
down on overhead by using static analysis to remove
some instrumentation. Experiments in [23] reported
that instrumented program ran up to 2 1

2
times slower

than the uninstrumented version. However, there are
some problems with CCured: it relies on the use of
garbage collection (which may be a problem for appli-
cations such as real-time applications that depend on
programmer-controlled memory management), it ter-
minates the execution of some correct programs, and
although the goal is to apply it to existing C programs,
some modifications to the source code are required in
some cases.

This paper describes a security-enforcement tool for C
programs that provides protection against a wide range of
attacks through unchecked pointer dereferences, including
buffer overruns and attempts to access or free unallocated
memory. The runtime overhead is low, no false positives
are reported, no programmer annotations or modifications
to existing source code are required, and the programmer
maintains control over data representations and memory
management. The core idea involves using static analysis
to identify unsafe pointers in the program, as well as the
memory locations that can be the legitimate targets of these
pointers. The program is then instrumented so that at run-
time each byte of memory is tagged to indicate if it is an
appropriate location that can be pointed to by an unsafe
pointer. Instrumentation is also used to check each write
via an unsafe pointer dereference and each call to free; if
the location being written or freed is not tagged appropri-
ate, then an error message is issued to indicate a potential
security violation, and the program is halted.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our security-enforcement tool in more de-
tail. Section 3 describes experiments to demonstrate the
effectiveness of the tool in detecting attacks, while Section 4
presents experimental results to measure the performance of
the tool. Section 5 discusses several techniques that can be
used to improve the coverage and performance of the tool.
Section 6 discusses related work.

2. THE SECURITY-ENFORCEMENT TOOL
The approach of our tool stems from the same underlying

insight used in the fat-pointers approach: At a given mo-
ment during program execution, each pointer has an “appro-
priate” set of referents (locations that are part of the object
whose address was most recently written into the pointer),

and a bad pointer dereference is one where the dereferenced
pointer points outside its appropriate set. However, instead
of keeping track of the appropriate set for each pointer in-
dividually, as is done by fat pointers, the idea is to keep
track of a single set of appropriate pointer targets: those
locations that may be pointed to by an unsafe pointer. This
is implemented at runtime by associating extra information
with the pointed-to locations rather than with the pointers.
Specifically, we maintain a “mirror” of the memory used by
the program, with one bit in the mirror for every byte in
memory. That bit specifies whether or not the location is
an appropriate target of some unsafe pointer. At runtime,
when an unsafe pointer is dereferenced for writing, the mir-
ror of the pointed-to location is checked; if the bits indicate
that the location is not an appropriate target, a bad pointer
dereference is reported (indicating a possible security viola-
tion) and the program is halted.

For example, consider the code shown in Figure 1. The
function f copies a user-supplied string (pointed to by src)
into a local array (buf) with no bounds-checking. An at-
tacker could cause a buffer overrun by supplying a src string
longer than 512 bytes in size, to overwrite the function
pointer p, or the return address field in the function’s acti-
vation record, with the address of the attacker’s code. Both
attacks would be detected by our security-enforcement tool:
At runtime, the locations that correspond to the buf ar-
ray would be tagged appropriate (because the array is the
appropriate target of the pointer dst), while all other loca-
tions would be tagged inappropriate (as shown in the fig-
ure). When the loop executes, if the dst pointer goes out of
bounds, the first attempt to write into an inappropriate lo-
cation would be detected, and the program would be halted.

Our tool first performs static analysis to identify the un-
safe pointers and the locations they might legitimately point
to; these locations are called tracked locations. It then in-
struments the program to perform the following actions at
runtime:

• Initially, all locations are tagged inappropriate in the
mirror.

• Tracked globals are marked appropriate prior to the
top-level call to main.

• Every allocation of a tracked location (on the stack or
in the heap) is instrumented to change its tag from
inappropriate to appropriate; a tracked static variable
is marked appropriate the first time its declaration is
encountered at runtime.

• Every deallocation of a tracked location is instrumented
to set its tag to inappropriate.

• Every write via an unsafe pointer dereference and ev-
ery call to free is instrumented to check the tag of
the pointed-to location. If the tag is inappropriate an
error is reported and the program is halted.

2.1 Static Analysis

2.1.1 Motivation
The static analysis that identifies unsafe pointers and

tracked locations serves two purposes: minimizing overhead,
and maximizing the likelihood of detecting an attack via a
bad pointer dereference. If no static analysis were done,



do

*dst++ = *src;

while (*src++ != ’\0’)

*p();
}

char *dst = buf;

char buf[512];

FN_PTR p = ...

void f(char *src) {

. . . . . .. . .p ret. . . buf . . .dst

appropriate inappropriate

Vulnerable Code At Runtime

stack: bu
f[0

]

bu
f[5

11
]

mirror:

Figure 1: Security violation example.

every memory allocation and free, and every write via a
pointer dereference, would have to be instrumented. As this
would cause unacceptable overhead, we avoid instrumenting
pointer dereferences that are guaranteed never to refer to
invalid memory. A pointer is called unsafe if it may refer
to invalid memory, and is dereferenced for writing or free-
ing. We use a static analysis to identify the set of unsafe
pointers in a program, and only writes via unsafe pointers
are instrumented to check for appropriateness.

Furthermore, if all active local variables and heap-allocated
memory were tagged appropriate, an attack via a bad pointer
dereference would only be detected if it involved an attempt
to write to non-allocated storage, or to an inappropriate lo-
cation on the stack (e.g., the return address). While this
would still detect stack-smashing attacks, it could miss at-
tacks on other memory locations, (e.g., on a function pointer,
a system-call argument, or a setjmp buffer). Therefore, we
also use static analysis to determine the set of tracked lo-
cations: those that may be appropriate targets of an un-
safe pointer. Since only writes via unsafe pointer derefer-
ences are instrumented, only the tracked locations need to
be tagged appropriate at runtime. Every other location is
always tagged inappropriate; thus, a write via an unsafe
pointer that points to any untracked location will cause an
error. This allows our tool to detect an attempt to overwrite
vulnerable locations such as function pointers, system-call
arguments, and setjmp buffers, as long as they are not ap-
propriate targets of some unsafe pointer.

Example: In the example code of Figure 1, the function
pointer p is not itself the target of any pointer; thus, it is
not a tracked location, it is tagged inappropriate at runtime,
and an attempt to write into p via a dereference of dst is
detected by our security tool as an error.

If p were the target of a safe pointer (e.g., a pointer that
only points to p), it would still be an untracked location
tagged inappropriate, and an attempt to write into p via
dst would still be detected as an error.

Only if p were the legitimate target of an unsafe pointer
would it be tagged appropriate, causing our tool to miss an
overwrite via a different unsafe pointer such as dst. 2

2.1.2 The Analysis
The static analysis consists of three steps:

Step 1: Do extended points-to analysis.

Step 2: Identify the unsafe pointers.

Step 3: Identify the tracked locations.

Step 1: Extended Points-to analysis. The first step is
to perform a slightly non-standard, flow-insensitive points-
to analysis. The results of the points-to analysis are used in
Step 2 to identify unsafe pointers, and in Step 3 to identify
the tracked locations.

The goal of (standard) flow-insensitive points-to analysis
is to determine, for each variable v, the set of locations that v
may point to at some time during program execution. (Note
that since C allows casting, values can be copied from a
pointer to a non-pointer and vice versa. Therefore, points-
to sets must be computed for all variables, not just pointers.
For example, consider the following code fragment:

int x, y;

int *p, *q = &x;

y = (int)q;

p = (int *)y;

If no points-to set is computed for y, then x might be erro-
neously omitted from p’s points-to set.)

The non-standard aspect of our points-to analysis is that
a special “bottom” location (⊥) is in v’s points-to set if v

may contain a numeric value other than zero2 or a computed
value (i.e., a value that is the result of applying an arithmetic
or bitwise operator to one or more operands). For example,
⊥ is added to v’s points-to set as a result of analyzing any
of the following: v = 3, v++, v = a+b, v = a|b.

2Note that in the context of security, our only concern is
to prevent overwriting inappropriate locations. Location
zero can never be written into; therefore, a dereference of
a pointer that might be NULL (i.e., might have the value
zero) does not need to be instrumented, and so zero is con-
sidered a valid value for a pointer.



Note that the points-to analysis algorithm will take care of
propagating the ⊥ location from one points-to set to another
as a result of assignments. For example, assume that ⊥ is in
p’s points-to set, and that p is in q’s points-to set. Given the
assignments a=p and b=*q, points-to analysis will determine
that ⊥ is also in the points-to sets of both a and b.

Our implementation uses the near-linear-time points-to
analysis defined in [11], extended to handle the special ⊥
value. Other points-to analyses could be used as well; in gen-
eral, a more precise points-to analysis requires more time,
but would permit smaller sets of unsafe pointers and tracked
locations to be identified, thus leading to lower overhead and
better coverage.

Example: For the code fragment in Figure 1, points-to
analysis would determine that the points-to sets of both src

and dst include ⊥, because of the expressions dst++ and
src++. It would also determine that buf is in the points-to
set of dst. 2

Step 2: Identify unsafe pointers. The second step of
the static analysis uses the results of points-to analysis to
identify unsafe pointers. A pointer variable p is unsafe if:

1. p may refer to invalid memory at runtime, and

2. (a) p is dereferenced for writing, or

(b) free(p) is called.

Criterion 1 is satisfied by any variable whose points-to set
includes ⊥, or includes either a stack variable or a heap loca-
tion that is freed (i.e., p may be a dangling pointer). Crite-
rion 2(a) involves finding assignments in the program where
the top-level operator for the left-hand side is a dereference,
and 2(b) involves finding calls to free in the program. In
both cases, the results of points-to analysis are used as nec-
essary to handle multiple levels of dereference. For example,
assume that q points to r. Given the assignments *p = x

and **q = *s, this step would determine that both p and r

(but neither q nor s) are dereferenced for writing.
Note that since an array-index expression A[k] is treated

as the equivalent pointer dereference *tmp, where tmp has
been assigned the value A+k, the + operator makes tmp an
unsafe pointer; thus, all writes via array-index expressions
are considered to be unsafe dereferences. The number of
such unsafe dereferences could be reduced by using a more
sophisticated analysis, such as array-bounds analysis (see
Section 5).

Example: In the running example, dst is identified as the
only unsafe pointer. (The pointer src may also contain an
invalid pointer value, but is only dereferenced for reading.)

2

Step 3: Identify tracked variables. This step identi-
fies the set of tracked variables: variables that may be, at
some point during execution, an appropriate target of some
unsafe pointer. This is simply the union of the points-to sets
of the unsafe pointers.

Example: In the running example, buf would be identified
as a tracked variable because it is in the points-to set of the
unsafe pointer dst. 2

2.2 Runtime Checks
Once static analysis has identified the set of unsafe pointer

dereferences and tracked locations, the tool instruments the
program with calls to routines that update and check the
tags in the mirror. These routines perform the following
tasks:

• At each tracked location’s allocation site (local vari-
able declaration or malloc callsite), the mirror for
each byte in that location is marked appropriate. For
tracked globals, the mirror is marked prior to the top-
level call to main.

• At each deallocation site of a tracked location (an exit
point of a variable’s scope, or a call to free), the mirror
for each byte of that location is marked inappropriate.

• Prior to each write via an unsafe pointer dereference
and each call to free, the mirror of the pointed-to
location is checked; if it is tagged inappropriate, then
an error message is issued and the program is halted.

The instrumentation engine is implemented as a source-
to-source transformer using Ckit [8], a C front end written
in ML. Instrumenting at the source level makes our tool
portable, as an instrumented source file can be compiled on
any platform that supports C.

The runtime routines to set and check tags are imple-
mented as C macros and functions. In our prototype imple-
mentation, the mirror consists of 128 KB pages (each page
mirroring 1 MB of user memory) which are allocated as the
amount of memory in use by the program increases. Point-
ers to these pages are stored in a table indexed by the most
significant 12 bits of the user-space address, so accessing a
location’s tag is fast. An unallocated mirror page means
that the locations mapped to it are all inappropriate, so ini-
tially (at the start of program execution), with no mirror
pages allocated, all memory is inappropriate by default.

Example: In the running example, with unsafe pointer dst
and tracked location buf, instrumentation would be added
to perform the following tasks:

• When function f starts executing, the tags of the ele-
ments in the buf array would be set to appropriate.

• Just before the statement *dst++ = *src executes, the
tag of the location pointed to by dst would be checked;
if the tag is inappropriate an error message would be
issued and the program halted.

• When function f returns, the tags of the elements in
the buf array would be set to inappropriate.

2

2.3 Handling Library Functions
Most programming environments include library functions,

which may be written in a different language, or for which
source code may be unavailable. Our tool supports the arbi-
trary linking of instrumented modules with uninstrumented
ones, though in such cases (i) security violations occurring
within the uninstrumented module will not be detected, and
(ii) the tool may possibly report false positives (and thus
terminate prematurely), if an unsafe pointer dereference in
an instrumented module accesses a location allocated in an
uninstrumented module. To overcome these problems, a
wrapper function and a static model can be supplied for
an uninstrumented function to simulate the memory alloca-
tion and pointer-access behavior of the function. A wrapper
function performs runtime operations to update or check the
mirror for appropriateness, while a static model is needed
for the static analysis to determine which pointers are unsafe
and which locations should be tracked. In general, memory



management functions (malloc-like functions) and functions
returning a pointer to a static buffer must be simulated and
modeled to avoid false positives (problem (ii)). Functions
that write to a buffer, like memcpy, should also be simulated
and modeled to ensure that buffer overruns can be detected
(problem (i)).

We have written wrappers and models for the stan-
dard C library functions that perform memory management
(malloc, calloc, free, etc.), write into buffers (memcpy,
strcpy, etc.), or return pointers to static buffers (e.g.,
ctime, gethostbyname).

For example, consider the function memcpy(p1,p2,n),
which copies n bytes of memory from the location pointed
to by p2 to the location pointed to by p1. Calls to memcpy

are replaced by a call to the memcpy wrapper function, which
checks at runtime the mirror for the first n bytes of the lo-
cation pointed to by p1. If any of those n bytes is tagged
inappropriate, an error message is issued and the program
is halted; otherwise, memcpy itself is called.

When performing static analysis for memcpy, the analy-
sis needs to identify all of the locations in parameter p1’s
points-to set as tracked (because those are the locations
whose tags will be checked at runtime by the wrapper func-
tion). The model for memcpy consists of the single assign-
ment *p1++ = *p2++: The increment ensures that ⊥ is in
p1’s points-to set, and the use of *p1 on the left-hand-side
of the assignment ensures that it is identified as being deref-
erenced for writing; thus, p1 is correctly identified as an
unsafe pointer, and all locations in its points-to set will be
(correctly) identified as tracked.

By including wrappers and static models for C library
functions, our tool can be applied directly and automati-
cally in normal programming environments that only use
the standard C libraries. In environments that use custom
library modules and components, the user can extend the
coverage of the tool by writing wrapper functions and static
models for uninstrumented modules.

3. EXPERIMENTS: DETECTING ATTACKS
To demonstrate the efficacy of our tool, we instrumented

two Linux (RedHat 6.2) programs with known vulnerabili-
ties and exploits. The first program, cfingerd, has a typical
buffer-overrun bug vulnerable to stack-smashing; the second
program, traceroute, has a more subtle bug involving free-
ing unallocated memory, with an exploit that overwrites an
entry in the Global Offset Table (GOT) to gain control of
the program. In both cases, our instrumented program de-
tected the erroneous behavior when running the exploit, and
halted execution before the exploit was able to gain control
of the program. Our instrumented program also ran reliably
(reporting no false errors) during normal (non-erroneous)
executions.

A description of the two vulnerable programs and exploits
follows. Exploits were obtained from the Packet Storm web-
site [25].

3.1 Buffer Overrun in cfingerd 1.4.2

cfingerd [7] is a configurable finger daemon that allows
each user to turn on or off the ability for others to look
up information about them. A user can supply a generic
message in a file .nofinger in their home directory that
will be displayed by cfingerd.

Versions 1.4.2 and earlier of cfingerd have a buffer over-

run bug in the function that processes the data in the
.nofinger file: the data is read into an 80-byte buffer with
no bounds-checking. An attacker can thus use a string
longer than 80 characters in their .nofinger file to over-
write the function’s return address; when the function re-
turns, control is transferred to the attacker’s code, which
can also be part of the string in the .nofinger file. Since
by default the cfingerd daemon is executed as root, this
vulnerability allows an attacker to gain root privileges on
the system.

When running a copy of cfingerd instrumented with our
tool, the attempted attack failed with our tool detecting and
reporting an out-of-bounds array write, and halting before
the return address could be overwritten.

3.2 Erroneous free intraceroute 1.4a5

traceroute is a utility for collecting information about
the path a packet takes when traveling through the inter-
net to its destination. Certain command-line arguments are
saved using a function that callocs one large buffer B and
returns sub-pieces of memory from B. For example, if given
two arguments the function returns p1 and p2 pointing to
sub-pieces of B containing the two arguments:

B Argument 1

p1

Argument 2

p2

After each argument is processed, the program erroneously
tries to free the corresponding individual sub-piece: first, it
calls free(p1) which unintentionally frees all of B, then it
calls free(p2), which usually causes a runtime error. How-
ever, this flaw can be exploited by adjusting the values in the
memory locations immediately preceding p2 (the so-called
“malloc chunk”) to fool free(p2) into thinking p2 points to
allocated memory. In this case, instead of causing a run-
time error, free(p2) can be used to copy an arbitrary value
into an arbitrary location in memory. This is a very subtle
attack that relies on the way the GNU C library version of
free implements coalescing of free blocks.

The specific exploit we tested uses this mechanism to
copy the address of malicious shell-code (supplied as part of
the command-line arguments) into the Global Offset Table
(GOT), which is a table used to dynamically resolve library
function addresses. In particular, it writes the shell-code
address into the GOT entry for free, so that a subsequent
call to free (which occurs on the next line in the program,
immediately after the exploited free(p2) call) will transfer
control to the shell-code. Since traceroute is run with se-
tuid as root, the attacker gains root access to the system.

This vulnerability is detected by our tool because the
pointers p1 and p2 are unsafe (as determined by our static
analysis), so each write via p1 or p2 is instrumented to check
that it refers to appropriate memory. Since B is tracked, the
mirror of B is marked appropriate when it is allocated, and
inappropriate when it is freed (via the call free(p1)); after
B is freed, the program attempts to write via p2 (while pro-
cessing Argument 2), which is detected as an error by our
tool.



lines of exec time (sec.) slow- % locs % unsafe derefs compile time (sec.) executable size (KB)
code orig. inst. down tracked static dynamic orig inst slowd orig inst bloat

Program (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)
Cyclone
aes 1822 2.48 3.86 1.53 3.51 97.1 99.6 5.8 18.5 3.20 26.2 91.1 3.48
cacm 340 3.19 4.02 1.18 3.51 92.3 100.0 1.0 6.2 6.51 16.7 55.1 3.30
cfrac 4218 5.26 11.04 2.08 5.28 98.2 99.7 11.7 79.9 6.84 53.8 151.1 2.81
grobner 4737 2.06 5.88 2.83 9.84 68.1 98.1 13.6 69.6 5.12 51.0 152.7 3.00
matxmult 1377 2.08 3.94 1.84 0.95 100.0 100.0 0.6 3.2 5.26 14.5 59.6 4.12
ppm 1421 1.57 2.49 1.58 4.71 100.0 100.0 4.8 11.6 2.42 31.3 77.3 2.47
tile 4880 1.10 4.87 4.22 1.52 100.0 100.0 5.1 22.2 4.34 41.0 111.6 2.73
Olden
bh 3200 8.97 20.58 2.25 3.07 74.2 99.9 3.1 17.0 5.56 21.4 80.1 3.74
bisort 690 3.74 6.29 1.68 1.86 76.5 94.9 2.1 10.6 5.08 18.2 70.2 3.85
em3d 538 6.54 9.11 1.39 1.93 100.0 100.0 1.9 12.1 6.38 17.3 65.7 3.79
health 706 4.95 8.17 1.63 0.33 74.1 97.9 2.4 15.3 6.41 17.7 65.1 3.68
mst 610 5.45 6.05 1.11 0.61 88.2 100.0 2.0 12.1 6.20 16.9 71.3 4.22
perimeter 472 0.97 0.98 1.00 0.00 0.0 0.0 2.0 8.6 4.35 17.5 55.1 3.14
power 867 7.52 8.80 1.17 1.25 47.5 100.0 2.8 15.1 5.36 20.2 68.5 3.40
treeadd 375 1.55 1.61 1.03 0.00 0.0 0.0 1.1 7.5 6.80 15.2 52.7 3.47
tsp 684 5.22 5.73 1.10 0.32 79.6 60.0 2.4 12.6 5.23 19.2 67.9 3.54
Spec 95
compress 3900 21.94 31.55 1.42 3.91 100.0 100.0 2.4 13.7 5.72 86.0 136.6 1.59
gcc 205106 4.69 11.13 2.18 22.24 84.2 96.3 419.0 2151.9 5.14 1347.2 2328.1 1.73
go 29629 9.34 21.60 2.29 6.92 96.9 98.2 72.2 276.0 3.82 318.2 641.2 2.02
ijpeg 31215 2.20 3.32 1.39 5.05 92.7 100.0 66.8 493.2 7.38 177.2 549.9 3.10
li 7630 2.77 4.90 1.76 17.51 98.7 100.0 25.4 181.7 7.16 86.0 248.0 2.88
m88ksim 19227 1.31 2.05 1.47 17.77 90.8 98.2 60.1 559.8 9.32 178.2 384.9 2.16
perl 26872 9.51 76.74 8.02 36.84 97.6 98.7 100.7 297.6 2.95 288.0 571.3 1.98
vortex 67219 8.53 29.37 3.13 19.11 85.7 83.0 171.6 1093.8 6.38 671.3 1471.0 2.19
Spec2000
ammp 13483 46.94 112.45 2.38 2.93 77.8 99.6 46.5 216.5 4.66 132.0 326.8 2.48
art 1270 62.30 65.15 1.04 2.86 81.1 100.0 5.1 11.9 2.34 30.1 96.2 3.20
bzip2 4650 2.98 8.35 2.77 3.91 92.9 99.2 12.8 32.9 2.56 62.7 143.4 2.29
crafty 20545 2.28 3.63 1.54 7.14 92.5 98.3 77.6 308.3 3.97 277.9 519.3 1.87
equake 1513 5.94 9.75 1.63 8.26 92.1 95.2 5.4 20.3 3.73 32.8 111.3 3.39
gzip 8605 4.16 5.73 1.36 5.85 94.7 100.0 15.1 64.0 4.22 67.5 158.9 2.35
mcf 2412 1.07 1.70 1.57 1.72 78.6 99.9 8.0 51.7 6.47 25.9 103.5 4.00
parser 11391 7.46 14.00 1.90 29.80 98.4 100.0 46.0 161.8 3.52 155.3 337.3 2.17
twolf 20461 1.10 2.41 2.02 3.25 98.8 100.0 92.4 489.3 5.29 216.3 521.6 2.41
vpr 17730 2.99 4.44 1.48 6.66 95.8 99.4 46.9 173.7 3.70 162.8 311.1 1.91

Table 1: Experimental Results

4. PERFORMANCE OF THE TOOL
To evaluate the performance of our tool, we instrumented

programs in the SPEC 95, SPEC 2000, and Olden bench-
mark suites, as well as some of the programs used to evaluate
Cyclone [17]. The programs were compiled with gcc’s -O3

optimization, and executed on a 333MHz Pentium II with
128MB RAM, running Linux. The running times of the in-
strumented programs were compared with those of the orig-
inal uninstrumented program, and data about the amount
of instrumentation (both static and dynamic), compilation
time, and code bloat were gathered. Results are presented
in Table 1.

Column (a) gives the sizes of the benchmarks in lines of
code. Note that we are able to handle large programs; in par-
ticular, gcc (the largest program we tried) has over two hun-
dred thousand lines of code. Columns (b) and (c) give the
running times (elapsed time, in seconds) of the original pro-

gram and the instrumented program, each averaged over five
runs. Column (d) gives the slowdown factor of the instru-
mented program compared to the original program. These
slowdown factors are graphed in Figure 2, with the bench-
marks sorted in order of increasing size (lines of code). On
average, the instrumented programs ran about 1.97 times
slower than the original program. Note that the slowdown
factor is independent of program size and execution time.

Figure 3 gives a comparison of the execution time slow-
down of our tool compared to Cyclone (version 0.5) and
CCured (version 1.1.2), for the Cyclone benchmarks. All
were compiled with -O3 optimization, and executed on the
same machine on the same inputs. For Cyclone, we used the
version of the source code that had been translated (man-
ually) to Cyclone, so the better performance (average 1.4×
slowdown) may be due in part to the fact that a human
was involved in identifying pointers that should be made
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Figure 2: Runtime Overhead
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fat pointers. For CCured, we changed the source code only
minimally to get the benchmarks to compile and run with-
out reporting errors, i.e., while a few changes were needed
to eliminate compile-time errors and false positives at run-
time, we ignored compile-time warnings, effectively relying
on CCured’s type-inference scheme to assign (possibly con-
servative) pointer annotations. The average slowdown is
4.7×, which incidentally is much higher than the slowdowns
reported in their papers [23, 9].

Column (e) gives the percentage of tracked locations in
the program. Each statically-declared object and dynamic-
allocation callsite (i.e., each call to malloc or one of its rel-
atives) is counted as one location; on average, about 7% of
all locations are tracked, which means the remaining 93% of
the locations are always marked inappropriate, so that mali-
cious accesses that write to those locations will be detected
by programs instrumented with our tool.

Columns (f) and (g) give the percentage of writes via
dereferences that were instrumented because the derefer-
enced pointer was identified as unsafe: column (f) reports
static instances, while column (g) reports dynamic occur-
rences. Except for two small programs (perimeter and
treeadd, in which our static analysis was able to determine
that all pointers were safe, so that no instrumentation was
added), a high percentage of writes via dereferences were in-

Static Analysis

Total Slowdown
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Figure 4: Compilation-Time Slowdown

strumented: on average, about 84% of the static writes and
about 91% of the dynamic writes were instrumented.

Columns (h) to (j) give an indication of the compile-time
overhead incurred by using our tool: on average, it took five
times as long to analyze, instrument, and compile a program
with our tool as it does to compile the program uninstru-
mented. These slowdown factors are shown in Figure 4,
again sorted by lines of code, with the black areas indicat-
ing the proportion of the compilation time spent in perform-
ing static analysis (including points-to analysis). Note that
both the static analysis and the overall compilation time
scale well to large programs.

Finally, columns (k) to (m) provide information about
code bloat: On average, our instrumented executable is 2.9
times3 the size of the uninstrumented executable (compared
to about 8× for both Cyclone and CCured).

5. IMPROVEMENTS AND FUTURE WORK
It is not clear whether the slowdown introduced by our

tool is acceptable for deployed code. Therefore, one im-
portant direction of future work is to investigate ways to
improve performance. The main direction of possible im-
provement is in the static analysis that identifies unsafe and
tracked locations; improvements in this regard would be re-
flected both in reduced overhead and increased security.

One possibility is to use a more precise points-to anal-
ysis, including flow-sensitive and context-sensitive analyses
(e.g., [1, 19, 34, 35]). Greater precision will result in fewer
unsafe pointers and tracked locations, but scalability issues
might then prevent the tool from being applicable to large
programs.

Another possibility is to use flow-sensitive analysis to iden-
tify redundant checks that can be safely eliminated: if a
pointer is dereferenced for writing several times with no
intervening change to its value, instrumentation is needed
only for the first dereference. We have implemented an
intra-procedural dataflow analysis to detect such redundant
checks, where a check of the dereference expression *e is re-
dundant at control-flow graph node n if every path from the

3Note that expressing the code bloat in this way is some-
what misleading, as the instrumented program size includes
a constant component of about 54KB for our tool’s runtime
library, including wrappers for library functions. The bloat
factor is thus smaller for larger programs.
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Figure 5: Percentage Array Dereferences

control-flow graph’s enter node to n includes a node m such
that:

• *e is checked at m, and

• no path from m to n changes the l-value of ∗e or deal-
locates the location pointed to by e.

However, the results of this optimization were disappoint-
ing: marginal performance improvements (less than 4%)
were achieved in only a few of the benchmarks.

An analysis with more potential for improvements is array-
bounds checking elimination. Recall that an array indexing
expression is treated as an unsafe pointer dereference by
our tool, so all writes via array index expressions are instru-
mented, and all arrays that are written to are tracked. If we
can statically determine that an array access is guaranteed
never to be out of bounds, then the check associated with
that access can be eliminated, and if all accesses to a given
array are safe, then the array need not be tracked.

The detection and elimination of unnecessary array-
bounds checks in Java and other safe languages has been
studied extensively (e.g., [32, 22, 15, 18, 5, 21]), yielding
good results: for example, Gupta’s dataflow analysis [15]
eliminated 40%-100% of array-bounds checks on some small
benchmarks; Kolte and Wolfe [18] eliminated 60%-90% of
dynamic checks in Fortran benchmarks; and the algorithm
of Bodik et al. [5] eliminated about 31% of static upper-
bound checks in Java benchmarks. Figure 5 gives the per-
centage of unsafe pointer dereferences (both static and dy-
namic instances) in our instrumented programs that were
array-indexing expressions. As both percentages are quite
high (over 90% for many of the benchmarks), it suggests
that array-bounds analysis can greatly reduce the number
of unsafe pointer dereferences that are instrumented.

5.1 Instrumenting Reads
Another direction of improvement is to increase the scope

of detected errors. Note that our tool only checks writes
via dereferences, and not reads. We chose to do this partly
for performance: as programs typically perform more reads
than writes, the runtime overhead of instrumenting reads
is significantly higher. Further, most important classes of
vulnerabilities can only be exploited via malicious writes,

so a security tool that monitors only writes is sufficient to
detect most attacks.

However, checking reads through unsafe pointer derefer-
ences may be desirable if the user is concerned about an
attacker gaining read access to confidential data. Such a
tool may also be useful for debugging purposes, as an in-
valid read indicates a programming error that should be
corrected. The modification to our tool needed to do this
is minimal. While the runtime overhead will increase (since
many more pointer dereferences will be instrumented) the
redundant-check analysis that we have implemented might
be more effective in this context (since multiple reads from
the same memory location are more common than multiple
writes).

5.2 Function Pointers
One class of likely targets of attacks are function point-

ers. In the benchmarks we tested, there were 101 function
pointers (mostly in the SPEC95 benchmarks gcc, ijpeg,
and perl). Our current implementation identified only 2 of
these function pointers as tracked (both in vortex). This
means that an attack that tries to overwrite the value of
any of the 99 untracked function pointers would be detected
by our tool. This indicates that our tool is effective at pro-
tecting against attacks via function pointers.

Nonetheless, the two tracked function pointers remain vul-
nerable, and there may be other programs for which our
static analysis will not identify as many untracked function
pointers. Since function pointers are considered dangerous
targets of potential attacks, it may be worthwhile to handle
them specially: the set of appropriate targets of function
pointers could be tracked separately from the appropriate
targets of unsafe pointer dereferences. This tracked set could
be identified as the set of all defined functions, or more pre-
cisely, the set of functions whose addresses are taken. At
runtime, each function call via a function pointer would be
checked against this set of appropriate functions. A call to a
function not in the appropriate function set would indicate
a security violation, and the program would be halted. For
space efficiency, because the set of appropriate functions is
relatively small and sparsely distributed, this set could be
stored in a hash table rather than a mirror of memory.



Note that, like the current approach, this approach
can handle arbitrary manipulation and passing of function
pointer values, including via callbacks and indirection tables;
runtime overhead would be incurred only when a function
is called via a function pointer.

6. RELATED WORK
Dynamic techniques can be used in deployed software to

prevent security attacks, and can also be used during soft-
ware development to find bad pointer dereferences. In both
cases, the program is instrumented to permit runtime moni-
toring; however, the difference in when the analyses are used
leads to importance differences in how they handle errors,
and also in their design goals:

• In the context of debugging, erroneous behaviors are
reported, but execution continues (so that as many er-
rors as possible can be found during one run of the pro-
gram). In the context of security checking, erroneous
behavior that indicates a potential security violation
causes program execution to be terminated.

• For the purposes of debugging, a fair amount of over-
head can be tolerated. When an analysis is intended
for use in deployed software, the more execution is
slowed down, the less likely it is that the analysis will
actually be used. Therefore, efficiency is one of the
most important goals.

Examples of dynamic tools intended for deployed code are
StackGuard [10, 30] and StackShield [31], described in the
Introduction. They achieve low overhead at the expense of
generality (StackGuard only detects attacks on the return
address, while StackShield only detects attacks on the return
address and function pointers). In contrast, the security
tool discussed in this paper is designed to detect a wide
range of security attacks, including simple denial-of-service
attacks that only corrupt data, without wresting control of
the program.

Another facility for preventing attacks in deployed code
is to make the stack space non-executable [24]. This elimi-
nates the ability for attackers to introduce their own code for
execution, but also limits the flexibility of certain program-
ming techniques (e.g., “trampolines”), and does not prevent
attacks via system-call arguments or other data-corruption
attacks.

Cyclone [17] and CCured [23, 9] are the two dynamic tools
that are most closely related to our tool. They both use
static analysis to identify unsafe pointers, and use fat point-
ers to detect out-of-bounds pointer accesses. As they are
both new languages, they suffer from porting issues (while
they include facilities for importing existing C programs,
these facilities disallow certain programs), while our tool
works for all ANSI C programs, and can be applied directly
to legacy code.

Purify [16] is a dynamic tool that is effective at detecting
buffer overruns, memory leaks, and other errors. It instru-
ments object code, thus it does not require source code, but
is platform-specific and not portable. Since it is designed as
a debugging tool, it suffers from a high overhead (about 15×
slowdown) which is impractical for use in deployed code.
Valgrind [28] checks for similar violations by interpreting
the executable binary on a “synthetic CPU”; thus, it has an
even higher runtime overhead (about 40× slowdown), but

does not require any compile-time actions. The memcheck

component of Valgrind associates each byte of memory with
a valid-address bit, similar in meaning to our appropriate tag
(additionally, each byte is associated with eight valid-value
bits to detect uses of uninitialized memory). Insure++ [26]
likewise is designed as a relatively heavyweight debugging
tool rather than for use in deployed code; it detects a num-
ber of common sources of program errors, including out-of-
bounds array accesses and null-pointer dereferences.

Safe-C [3, 27] uses fat pointers, and includes a multi-
processor optimization, in which instrumentation operations
are performed in a “shadow” process on a separate proces-
sor. It does not distinguish between “safe” and “unsafe”
pointer dereferences, but does use dataflow analysis to elim-
inate redundant checks. The Runtime Type-checker [20] is
a debugging tool that detects a broader class of errors, by
tracking the runtime types of values in the program, and
reporting an error when a value of one type is used in the
context of an incompatible type. The approach described
in this paper is derived from the Runtime Type-checker,
and has a much lower runtime overhead, while detecting a
smaller class of errors.

Static error-detection techniques [2, 4, 6, 12, 13, 14, 33]
analyze a program without executing it to find errors or se-
curity holes. The main benefit of static techniques is that
they can detect errors in portions of the program that are
infrequently executed. Unfortunately, precise static tech-
niques are expensive, and thus do not scale to large pro-
grams. To improve performance, either the user must supply
annotations (as in LCLint [14] and ESC [12]), or a less pre-
cise analysis must be performed (which may lead to missing
some potential problems, or to reporting false positives), or
the scope of the analysis must be limited, either by checking
only certain paths (like PREfix [6]), or to work intraproce-
durally, leaving more “global” problems undetected.

7. CONCLUSION
We have presented a security tool for C that instruments

programs to check at runtime for invalid pointer derefer-
ences that may be vulnerable to malicious attack. It uses
static analysis to identify unsafe pointers and their legiti-
mate targets, and at runtime maintains a tag for each mem-
ory location to indicate whether it is an appropriate target of
an unsafe pointer. The tool is fully automatic (it does not
require programmer annotations), and is compatible with
ANSI C (it is portable, and does not limit the flexibility
provided by the C language). While the instrumented pro-
gram is not guaranteed to prevent all attacks, it will detect
attempts to exploit a large class of vulnerabilities, from the
popular stack smashing to more subtle attacks, and it does
not report false positives. The execution-time overhead is
relatively low, and we believe it can be improved with more
aggressive static analysis.
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