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Abstract

Local appearance models in the neighborhood of salient image features, together with local and/or

global geometric constraints, serve as the basis for several recent and effective approaches to 3D

object recognition from photographs. However, these techniques typically either fail to explic-

itly account for the strong geometric constraints associated with multiple images of the same 3D

object, or require a large set of training images with much overlap to construct relatively sparse

object models. This thesis proposes a simple new method for automatically constructing 3D object

models consisting of dense assemblies of small surface patches and affine-invariant descriptions

of the corresponding texture patterns from a few (7 to 12) stereo pairs. Similar constraints are

used to effectively identify instances of these models in highly cluttered photographs taken from

arbitrary and unknown viewpoints. Experiments with a dataset consisting of 80 test images of 9

objects, including comparisons with a number of baseline algorithms, demonstrate the promise of

the proposed approach.
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Chapter 1

Introduction

This work addresses the problem of recognizing three dimensional (3D) objects in photographs

taken from arbitrary viewpoints. Recently, object recognition approaches based on local view-

point invariant feature matching ([16], [8], [10], [9]) have become increasingly popular. The local

nature of these features provides tolerance to occlusions and their viewpoint invariance provides

tolerance to changes in object pose. Most methods (for example [7],[3]) match each of the training

images of the object to the test image independently and use the highest matching score to detect

the presence/absence of the object in the test image. This essentially reduces object recognition to

a wide-baseline stereo matching problem. Only a few previous approaches ([8], [2], [14]) exploit

the relationships among the model views. Lowe [8] clusters the training images into model views

and links matching features in adjacent clusters. Each test image feature matched to some feature

f in a model view v votes for v and its neighbors linked to f . This helps to model feature appear-

ance variation since different model views provide slightly different pictures of the features they

share, yet features’ votes do not get dispersed among competing model views. Ferrari et al. [2]

integrate the information contained in successive images by constructing region tracks consisting

of the same region of the object seen in multiple views. They introduce the notion of a group

of aggregated matches (GAM) which is a collection of matched regions on the same surface of

the object. The region tracks are then used to transfer matched GAMs from one model view to

another, and their consistency is checked using a heuristic test. The problem with this (as with

all other methods that do not explicitly exploit 3D constraints) is that geometric consistency can

only be loosely enforced. Also, for both [8] and [2] there is no way to determine consistency

among matched regions which are not seen together in any model view. Rothganger et al. [14]
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use multiple images to build a model encoding the 3D structure of the object, and the much tighter

constraints associated with the 3D projection of the model patches are used to guide matching

during recognition. In this case, the 3D model explicitly integrates the various model views, but

the determination of the 3D position and orientation of a patch on the object requires it to be visi-

ble in three or more training images [14], and hence requires a large number of closely separated

training images for modeling the object. Also, [14] only makes use of patches centered at interest

points, so the model constructed is sparse and does not encode all the available information in the

training images. We tackle these issues by using calibrated stereo pairs to construct partial 3D

object models and then register these models together to form a full model.1 This allows the use of

a sparse set of stereo training views (7 to 12 pairs in our experiments) for the modeling. We also

extend to 3D object models the idea proposed in [3] in the image matching domain, and augment

the model patches associated with interest points of [14] (called primary patches from now on)

with more general secondary patches. This allows us to cover the object densely, utilize all the

available texture information in the training images, and effectively handle clutter and occlusion

in recognition tasks.

1.1 Overview of Our Approach

Our approach consists of three key steps.

1. Detection and description of affine invariant interest points (affine regions) that provide a

normalized, viewpoint independent description of local image appearance.

2. Calibrated stereo matching and 3D reconstruction of the primary and secondary patches on

the left and right images of the training stereo pairs to construct partial 3D models. Combin-

ing the partial 3D models for the different stereo views into full 3D models of the objects.

3. Employing both photometric and geometric consistency constraints to match groups of
1This is for modeling only of course; individual photographs are used for recognition.
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patches during recognition.

We follow a scheme similar to [15] for the detection and description of affine regions. Chapter 2

(adapted from [15]) provides the necessary background and specific details of the implementation.

As was mentioned previously, we use a set of calibrated stereo views for determining the 3D

structure and building a model of the object. Potential primary matches between the affine regions

found in each stereo pair are first filtered using photometric and geometric consistency constraints,

and then augmented with additional secondary matches for a dense coverage of the object, as

proposed in [3] for the 2D case. The 3D location and shape of the patches is determined using a

standard stereo algorithm to generate partial models which are later combined to form a complete

model of the object. The 3D patches that correspond to primary (or secondary) matches are called

primary (or secondary) model patches.

A similar scheme is followed during recognition. First, the primary patches in the model are

matched to the affine regions found in the test image. These primary patches are then used as

guides for matching nearby secondary patches. The recognition decision is based on the number

of matched patches.

The thesis is organized as follows. Chapter 2 describes the detection and representation of

affine invariant patches. The construction of the partial models and their inter-registration to gen-

erate the full model is explained in chapter 3. The details of the recognition algorithm are provided

in chapter 4. In chapter 5 we show recognition results using the proposed approach and discuss

future extensions of this work.
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Chapter 2

Affine Regions

The construction of local invariant models of object appearance involves two steps, the detection

of salient image regions, and their description. Ideally, the regions found in two images of the

same object should be the projections of the same surface patches. Therefore, they must be covari-

ant, with regions detected in the first picture mapping onto those found in the second one via the

geometric and photometric transformations induced by the corresponding viewpoint and illumina-

tion changes. In turn, detection must be followed by a description stage that constructs a region

representation invariant under these changes. This chapter presents the approach to the detection

and description of affine regions used in our implementation. Most of the material in this chapter

is adapted from [15].

2.1 Detection

Our work uses a form of the affine-covariant region detector developed by Mikolajczyk and Schmid

[10]. This algorithm depends on a separate interest point detector to provide a set of points along

with their initial scales. A study by Mikolajczyk et al. [11] concludes that no single detector out-

performs the others on all types of scenes and image transformations. Therefore, in the absence

of prior knowledge about the type of scene, it is beneficial to use a battery of complementary

detectors. The primary detectors we use are the Harris-Laplacian detector and the difference-of-

Gaussians (DoG) operator [1, 6, 17]. The Harris detector tends to find corners and points at which

significant intensity changes occur (considered to be regions of “high information content” [10])

while the DoG detector is in general attracted to the centers of roughly uniform regions (blobs).
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Figure 2.1: (After [15].) Affine-adapted patches found by the Harris-Laplacian (left) and the DoG
(right) detector.

Figure 2.1 shows examples of the outputs of these two detectors. We modify the affine adapta-

tion procedure proposed by Mikolajczyk and Schmid by also computing an orientation for each

patch. The standard output of affine adaptation are elliptical-shaped patches. It is easy to show that

any ellipse can be mapped onto a unit circle centered at the origin using a one-parameter family

of affine transformations separated from each other by arbitrary orthogonal transformations (in-

tuitively, this follows from the fact that circles are unchanged by rotations and reflections about

their centers). This ambiguity can be resolved by determining the dominant gradient orientation

of the image region, turning the corresponding ellipse into a parallelogram and the unit circle into

a square (Figure 2.2). Thus, the output of the detection process is a set of image regions in the

shape of parallelograms. Each parallelogram shaped patch is completely defined by the rectifying

transformation R that maps the parallelogram onto a “unit” square centered at the origin or equiv-

alently by the inverse rectification transformation S = R−1 that maps the rectified unit square into

the parallelogram in the image (Figure 2.3(b)).

5



Figure 2.2: (After [15]) Normalizing patches. The left two columns show a patch from image 1
of Krystian Mikolajczyk’s graffiti dataset. The right two columns show the matching patch from
image 4. The first row shows the region of the original image. The second row shows the ellipse
determined by affine adaptation. This normalizes the shape, but leaves a rotation ambiguity, as
illustrated by the normalized circles in the center. The last row shows the same patches with
orientation determined by the gradient at about twice the characteristic scale.

2.2 Description

A rectified affine region is a normalized representation of the local surface appearance, invari-

ant under planar affine transformations. Under affine (orthographic, weak-perspective, or para-

perspective) projection models, this representation is invariant under arbitrary viewpoint changes.

For Lambertian patches and distant light sources, it can also be made invariant to changes in il-

lumination (ignoring shadows) by subtracting the mean patch intensity from each pixel value and

normalizing the Frobenius norm of the corresponding image array to one. Equivalently, normal-

ized correlation can be used to compare rectified patches, irrespective of viewpoint and (affine)

illumination changes. Maximizing correlation is equivalent to minimizing the squared distance

between feature vectors formed by mapping every pixel value onto a separate vector coordinate.
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(a) Affine regions found in an image of a teddy
bear. Only a subset of the patches detected is
shown for clarity.

c(0,0)

v

h

2

2 S

R

(b) (After [15]) The inverse transformation S maps the
rectified square associated with an affine region back
onto the image.

Figure 2.3: Affine regions and inverse rectification.

Other feature spaces may of course be used as well. In particular, the SIFT descriptor introduced

by Lowe [7] has been shown to provide superior performance in image retrieval tasks [12]. Briefly,

the SIFT description of an image region is a three-dimensional histogram over the spatial image

dimensions and the gradient orientations, with the original rectangular area broken into 16 smaller

ones, and the gradient directions quantized into 8 bins (Figure 2.4), and it can thus be represented

by a 128-dimensional feature vector [6]. Following [15] we combine the SIFT feature vector with

a color histogram in the YUV color space. The histogram is two-dimensional (typically 10 × 10)

and built only from the chroma component, that is, the U and V values. Figure 2.4 shows an

example of the color histogram.
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Figure 2.4: (After [15]) Two (rectified) matching patches found in two images of a teddy bear,
along with the corresponding SIFT and color descriptors. The orientation histogram values associ-
ated with each spatial bin are depicted by lines of different lengths for each one of the 8 quantized
gradient orientations. As recommended in [6], we scale the feature vectors associated with SIFT
descriptors to unit norm, and compare them using the Euclidean distance.
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Chapter 3

Stereo Modeling

We start by acquiring a few (7 to 12) stereo pairs that are roughly equally spaced around the equa-

torial ring of the object for modeling. The stereo views are taken against a uniform background

to allow for easy segmentation. Then, a standard stereo matching algorithm that searches for

matching patches along corresponding epipolar lines is used to determine an initial set of tentative

matches. We use a combination of SIFT [7] and the color histogram descriptor described in [15]

to compute the initial matches. The matches are then refined to obtain the correct alignment of the

patches in the left and right images. Only matches with normalized correlation greater than a pre-

refinement threshold (kept at 0.75) are considered for the refinement step for efficiency reasons.

The refinement process employs nonlinear optimization to affinely deform the right image patch

until the correlation with its match in the left image is maximized. Matches with normalized corre-

lation greater than a post-refinement threshold (equal to 0.9 for this work) are kept for subsequent

processing.

The matches are filtered by using a neighborhood constraint which removes a match if its

neighbors are not consistent with it. More precisely, for every match m we look at its K closest

neighbors in the left image (K = 5 in our implementation) and, for every triple out of these,

we calculate the barycentric coordinates of the center of the left and right patches of m with

respect to the triangle formed by the centers of the patches of the triple in the left and right images

respectively. We then count the number of triples for which these barycentric coordinates agree

(the sum of squared differences is smaller than a tolerance limit L = 0.5). We repeat the process

using the K closest neighbors of m in the right image and add up both the counts. Finally, the

matches with a count smaller than a threshold T are dropped. Setting T = 2
(

K−1

3

)

ensures that a
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Left Image Right Image

Li

Lj
Rj

Ri

Use T

Compute T

Existing Match

Figure 3.1: Expansion during initial matching.

correct match with one bad nearby match out of the K still survives after this test. This gives us a

set Γ of reliable matches. Note that these matches are based only on the primary patches associated

with salient affine regions detected in the stereo training images and hence, only cover the object

sparsely. To get a dense coverage of the object we use an expansion technique similar to [3] to

spread these initial matches in Γ.

3.1 Expansion Technique

We use the fact that the training views are taken against a uniform background to segment the

object and cover it with a grid Ω of partially overlapping square-shaped patches in the left image

(Fig. 3.2(a)). For every match mi in Γ, we compute the affine transformation T = SRi
S−1

Li
between

the corresponding patches Li and Ri in the left and right images. Here SLi
and SRi

are the inverse

rectification matrices for Li and Ri respectively. We use T to predict the location SRj
= T SLj

of

the right matches of the yet unmatched patches Lj in Ω that are close to (within one side length of)

the center of Li. This process is shown diagramatically in figure 3.1. Then, a refinement process

is used to align the predicted patch correctly in the right image. Again, if the match has sufficient
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correlation after refinement, it is accepted as a valid match and added to Γ. Since the patches

that form these matches are not associated with interest points, we call these secondary matches.

The expansion process iterates by expanding around the newly added matches to Γ until no more

matches can be added. This process usually covers the entire object surface densely with matches.

Figure 3.2(c) shows the secondary patches on a partial model of the dragon constructed from a

single stereo pair.

We then use the secondary matches to locate additional primary matches associated with salient

affine regions. Even though the corresponding part of the object surface may already be covered

(with secondary matches), this is useful because it is the primary matches that can be repeatably

detected, and will later be required for the initial matching to the test image as well as for the

alignment of the partial models. This is accomplished by finding unmatched affine regions in

the left (respectively right) image, and using close-by secondary matches to predict the position

of the corresponding patches in the right (respectively left) image. Again, a refinement process

is used to adjust the alignment of the right (respectively left) image patch. If there is sufficient

correlation (again 0.9) between the left and right patches, the match is added to Γ. Figures 3.2(d)

and 3.2(e) respectively show the expanded primary patches and the union of the primary and

secondary patches in the partial model of the dragon.

3.2 Model Construction

The dense matches constructed as discussed above are used for building partial 3D models (one

for each stereo pair). First, we solve for the patch centers in 3D by using standard calibrated

triangulation techniques. Then we reconstruct the edges of the corresponding parallelograms using

a first-order approximation to the perspective projection equations in the vicinity of the patch

centers as proposed by Rothganger [15]. We provide a brief sketch (adapted from [15]) of the

algorithm below.

Consider the homogeneous projection equation
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(a) (b)

(c) (d) (e)

Figure 3.2: (a) Left image in a stereo pair, covered with a grid of patches (three of the overlapping
patches are shown in black for clarity). (b) Partial model constructed from primary matches before
expansion. (c) Model constructed using only the secondary patches found during expansion. (d)
Model containing the primary patches after expansion. (e) Model containing all the patches after
expansion.
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is the perspective projection matrix, A is a 2 × 3 sub-matrix of M, p is the non-homogeneous

coordinate vector for the point in the image, and P is the non-homogeneous coordinate vector of
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the point in 3D. We can write the perspective projection mapping as

p = f(P ) =
1

a3 · P + 1

(AP + b),

and a Taylor expansion of order 1 of the function f in P yields f(P + δP ) = p + δp = f(P ) +

f ′(P )δP , or

δp = f ′(P )δP

=
A(a3 · P + 1) − (AP + b)aT

3

(a3 · P + 1)2

δP

=
1

a3 · P + 1
(A− paT

3
)δP .

The basis vectors H and V of the 3D patch are essentially small changes around the patch center

C, so they play the role of δP . Let h and v be the projections of H and V into the image. The

linearized projection equations for the patch can be written as follows.

h = f ′(C)H,

v = f ′(C)V

We stack up 4 equations (2 for the left and 2 for the right camera of the stereo pair) for each of H

and V and solve them using linear least squares to obtain the basis vectors and hence determine

the 3D location of the parallelogram patch. Doing this for all the matches gives us a partial 3D

model of the object for each stereo pair. The next task is to combine these partial models into a

complete model.

3.3 Registration of Partial Models

Algorithm 1 gives a concise description of the steps involved in registering the partial models
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Figure 3.3: Expansion during registration.

together. The first step in combining the models is to find appearance-based matches between the

primary model patches in adjacent partial models. Again, SIFT and color histogram descriptors

are used to facilitate the initial matching.

3.3.1 Match Expansion

A variant of the 2D expansion scheme described earlier is used to propagate these initial matches

between 3D patches to neighboring model patches as follows (Fig. 3.3). Let the two partial models

being registered be MP and MQ. For each initial match Mi between the 3D patches Pi in MP and

Qi in MQ, we consider the 2D patch pi (resp. qi) corresponding to Pi (resp. Qi) in the left stereo

image of MP (resp. MQ). We calculate the affine transformation T that maps the patch pi onto qi.

Then, we consider the yet unmatched patches Pj in MP whose 2D projection pj in the left stereo

image lies within a small distance limit of the center of pi. These patches pj are then projected to

qj in the left stereo image of MQ using T . A non-linear match refinement process (similar to the

14



Input: A set of partial models SM = {M1, . . .MK}.
Output: A combined model M.

for all pairs of consecutive partial models Mi,Mj ∈ SM do
Step 1: Appearance based selection of potential matches
• Use SIFT and color-histogram descriptors to match the primary patches between Mi and
Mj to produce a set Tij of tentative matches.
• Use the non-linear match refinement process to update the match parameters to optimize
the normalized correlation. Remove matches with normalized correlation < τ from Tij .
Step 2: Match expansion
• Expand the matches Tij using the method described in section 3.3.1
Step 3: RANSAC
• Use RANSAC to robustly estimate the rigid transformation Rij between Mi and Mj and
determine a large subset Sij ⊂ Tij consistent with Rij .

end for
Step 4: Refinement
• Use Rij’s initialize the position and orientation PMi

of all the partial models Mi in the
coordinate frame attached to the first partial model.
repeat

for all partial models Mi do
• Let the neighboring partial models of Mi be Mj and Mk.
• Update the position PMi

of Mi so as to minimize the sum of squared errors between
the centers of the matched patches for all the matches in Sij and Sik using the algorithm of
section 3.3.3

end for
until convergence

Algorithm 1: Registration of partial models.

one described earlier) is then used to align the projected patch qj correctly. The match is removed

from consideration if the final correlation between pj and qj’s normalized representation is less

than a threshold (again kept at 0.9). If the match passes this test we find the patch Qk in MQ whose

projection qk into the left stereo image of MQ is closest to qj’s center point. An estimate of the

position of the 3D patch Qj that corresponds to the 2D patch qj can then be obtained, assuming

that Qj lies on the same plane πk as Qk. An affine transformation S that maps the 2D patch qk

to the 3D patch Qk on πk is calculated and then Qj is estimated by projecting qj onto πk using

S. This new match between Pj and Qj is then added to the set of matches and is used for finding

other matches. This expansion step has proven to be very useful while registering models with

small overlap.
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(a) Partial models

(b) Complete model
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Figure 3.4: Registration of partial models.

3.3.2 RANSAC

All the matches generated above are filtered through a classical RANSAC procedure that finds the

matches consistent with a rigid transformation. RANSAC [4] is a robust estimation algorithm that

considers candidate correspondences consistent with a small set of seed matches as inliers to be

retained in a fitting process, while matches exceeding some inconsistency threshold are considered

as outliers and rejected. Briefly, RANSAC iterates over two steps: In the sampling stage, a (usually,

but not always) minimal set of matches is chosen randomly, and this “seed” set is used to estimate

the geometric parameters of the fitting problem at hand. The consensus stage then adds to the

initial seed all the candidate matches that are consistent with the estimated geometry. The process

iterates until a sufficiently large consensus set is found, and the geometric parameters are finally

re-estimated.
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In our particular case we aim to estimate the rigid transformation that best aligns the two

consecutive partial models. In each iteration a set of 3 matches are randomly chosen and used to

estimate the rigid transformation that minimizes the sum of squared distances among the matched

patch centers after alignment. The matches consistent with this transformation are collected to

form a consensus set and the largest consensus set in all the iterations is finally used to estimate

the parameters of the rigid transformation.

3.3.3 Refinement

The above RANSAC procedure provides an estimate of the pairwise rigid transformations. Since

these pairwise estimates may not in general be consistent with each other (the product of the rota-

tions between the consecutive models must be the identity), we use a process similar to [13] to find

a consistent solution: It is initialized using the pairwise transformation estimates and these esti-

mates are refined by looping through all the partial models and updating the position of the current

model to align it best with its neighbors. More formally, we search for the rigid transformation that

minimizes the sum of squared distances between the centers of the matched patches in the current

model and its neighbors. The positions of these neighbors are kept fixed while the position of the

current partial model is calculated via linear least squares using quaternions [5]. In the following,

we briefly describe the mathematics involved (adapted from [5]).

Note that when we modify the position of some partial model M, the other partial models are

kept fixed and hence the problem is one of finding a rigid transformation R, t that minimizes

E =

n
∑

i=1

|x′

i − Rxi − t|2

where xi are the center points of the parallelogram patches of M and x′
i are the center points of

the matching patches in neighboring models of M. The value of t minimizing E can be obtained
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by setting the partial derivative ∂E
∂t

= 0 which gives,

t = x̄′ − Rx̄ where x̄ =
1

n

n
∑

i=1

xi and x̄′ =
1

n

n
∑

i=1

x′

i

We can remove t from the minimization by changing variables to centered points yi = xi − x̄

and y′
i = x′

i − x̄′. This gives us,

E =
n

∑

i=1

|y′

i − Ryi|
2

Let q denote the quaternion associated with the matrix R. See [5] for an explaination of quate-

rions and their properties. Using |q|2 = 1 we can write

E =
n

∑

i=1

|y′

i − qyiq̄|
2|q|2 =

n
∑

i=1

|y′

iq − qyi|
2

where q̄ is the conjugate quaternion of q. If we represent q by a 4-vector whose first element is

the real part of q and last 3 elements are the imaginary part we can rewrite E = qTBq where

B =
∑n

i=1
AT

i Ai and

Ai =







0 yT
i − y′T

i

y′
i − yi [yi + y′

i]×







Minimizing E in this form under the constraint that |q|2 = 1 is now easy and the optimal q is

just the eigenvector of B corresponding to its smallest eigenvalue.

The above process is iterated until the sum of squared errors between all the matches between

all the pairs of consectutive partial models converges to some local minimum. Figure 3.4(c) shows

a plot of the mean squared error after each iteration of the refinement process for three of the

models used for experimentation. Finally the rigid transformations estimated are used to bring all

the partial models into a common euclidean coordinate frame and a complete model is constructed

by taking the union of these transformed partial models. The partial models and the complete

model formed after registration for a teddy bear are shown in Figs. 3.4(a) and 3.4(b) respectively.
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Chapter 4

Recognition

The first part of the recognition process is similar to [14] in which the repeatable primary patches

in the 3D model are matched to the interest points detected in the test image and the matches with

high appearance similarity are selected. Again, we use both SIFT descriptors and color histograms

to characterize the appearance of the patches and compute the initial matches. The refinement

process is then employed to maximize the correlation between the matched test image patch and

the corresponding model patch. Matches that have sufficient correlation (again taken as 0.9) after

the refinement step are accepted and the others are dropped before further processing. These

matches are then used as seeds for the subsequent match expansion stage. Algorithm 2 provides a

summary of the entire recognition algorithm.

4.1 Expansion Process

This process is similar in spirit to the expansion technique used during the initial modeling but

the expansion here happens on the surface of the 3D model instead of the stereo images. For this,

we first preprocess the model M to build an undirected graph GM that represents the adjacency

information of the patches in M . We add an edge e between two patches if their centers lie within a

distance limit of each other. This limit is set to be such that the average degree of a vertex is around

20. We now spread the matches along the edges of this graph using the following expansion steps.

• Expansion using images (Fig. 4.1(a)): This step is used at the start when the matches have

not been filtered through a geometric consistency check so the test image camera cannot be

estimated reliably. This works similar to the modeling case, and for each previously matched
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Input: A model M and a set of affine regions T on the test image.
Output: A set S of trusted matches.

• Match the primary patches in M to the affine regions in T using SIFT and color-histogram
descriptors to produce a set of putative matches P .
• Run non-linear match refinement on the matches in P and keep only those with normalized
correlation ≥ τ .
• Use the image-based expansion step to add matches to P .
repeat
• Run the geometric consistency test described in section 4.2 on P and update P with the set
of consistent matches
• Set C to the estimated camera.
• Run the camera-based expansion step using the camera estimate C and add the new matches
to P

• Use C to project all the primary patches in M into the test image and match to nearby affine
regions detected in the image. Add the obtained matches to P .

until cardinality of P stops increasing
Algorithm 2: Recognition algorithm

model patch P we calculate the affine transformation S that maps its projection in the left

training image of the stereo pair from which it originates into the test image. Then we look

at every unmatched neighbor Q of P that is part of the same partial model (and so shares

the same left stereo image) and use S to predict its location in the test image. This predicted

position is then refined as before and the match is accepted if the correlation is sufficiently

large (again compared to 0.9). This expansion scheme does not allow expanding matches

from one partial model to another.

• Expansion using the camera (Fig. 4.1(b)): This step is used after the matches have been

filtered through a geometric consistency check and the camera A associated with the test

image has been estimated. A is used to project a base 3D patch P (which is already matched

to a patch p in the test image) and some adjacent patch Q into the test image. Let the 2D

projected patches be p′ and q′ respectively. A correcting affine transformation τ is computed

that aligns the projection p′ of the base 3D match exactly with its correct location p. τ is

then applied to the projection q′ of the adjacent patch to obtain a corrected prediction q of
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Figure 4.1: Expansion during recognition.

its position. The prediction is then refined as before to maximize the normalized correla-

tion between the rectified patches corresponding to the match and accepted only if it has

high correlation (greater than 0.9). This expansion step allows for moving smoothly from

one partial model to another and hence provides an advantage over the pure 2D expansion

technique of [3].

The two expansion steps also allow us to reject false matches by simply removing those that do

not have enough support. More precisely, if the expansion step from a base match tries to expand

to a large number of neighbors and none of these succeeds in forming an acceptable match, the

base match is removed.

4.2 Geometric Consistency Test

A “greedy” RANSAC-like algorithm 3 is used to extract a set of geometrically consistent matches.

The camera of the test image is approximated by a weak-perspective camera with zero skew and
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Input: A set M of possible matches.
Output: A set S of trusted matches, camera for the test image C

for i = 1 to N do
• Pick a match mi ∈ M at random.
• Select the most compatible match m′

i ∈ M \ {mi} to mi.
• Initialize Si = {mi, m

′
i} and Ci to the camera estimated using Si.

• Set mbest ∈ M \ Si to the match with minimum reprojection error Ebest using Ci

while |Si| < K and Ebest < τ do
• Si ⇐ Si ∪ {mbest}.
• Update Ci with the camera estimated using Si

• Set mbest ∈ M \ Si to the match with minimum reprojection error Ebest using Ci

end while
• Add all matches m ∈ M \ Si with reprojection error Em < τ to Si.

end for
• Set S to the Si with the largest cardinality.
• Estimate the camera C for the test image using S.

Algorithm 3: Geometric consistency check.

square pixels. The algorithm starts by picking a match mi at random and searches among all the

other matches for the most compatible one, say m′
i. The compatibility is checked by first using the

two matches to estimate the camera for the test image and then computing the reprojection error

for the two matches. The algorithm then creates a set of matches Si compatible with this pair as

follows: Si is initialized as Si = {mi, m
′
i}. The algorithm greedily adds to Si the most compatible

match (the one with the least reprojection error) out of all the matches not yet included in Si. This

iterative process continues until either the size of Si exceeds K = 10, or the smallest reprojection

error itself exceeds a threshold τ . The estimate of the camera is updated after each addition to Si

during these iterations. If the size of Si reaches K, the current estimate of the camera is used to

reproject the 3D patches for all the matches into the test image and those with reprojection error

less than τ are added to Si. The algorithm iterates a fixed number of times, each time picking

a random match mk and computing the set of consistent matches Sk. Finally the set S with the

largest size is chosen as the set of consistent matches.

The recognition algorithm starts by using the image-based expansion step to grow the initial

appearance based primary matches. Then the geometric consistency check is run to extract con-
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sistent matches and estimate the camera for the test image and more matches are added using the

camera based expansion step. For extending matches to parts of the object that are not directly

connected to the initial matches in the test image (possibly due to occlusion) the reconstructed test

camera is used to project unmatched primary patches from the model into the test image. Affine

regions detected in the test image close to these projected positions are then matched to the cor-

responding model patch. Again, if the correlation after refinement is sufficiently high, the match

is accepted. The geometric consistency check and the following expansion steps are iterated until

the number of matches does not increase any more.
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Chapter 5

Results

We have evaluated the proposed method on a dataset consisting of 9 objects and 80 test images.

The object models, constructed from 7 to 12 stereo views each, are shown in Fig. 5.1. The objects

vary from simple shapes (e.g., the salt container) to quite complex ones (e.g., the two dragons and

the chest buster model).

The test images (shown in Figure 5) contain the objects in different orientations and under

varying amounts of occlusion and clutter. The total number of occurrences of the objects in the

test image dataset is 129 since some images contain more than one object. Figure 5.4(a) shows

the ROC plot between the true positive (detection) rate and the false positive rate. To asses the

value of the expansion step of our approach, we have simply removed the secondary patches and

the extra primary patches added during this stage of modeling from our models, and used these

sparse models for recognition (this is similar in spirit to the algorithm proposed by Rothganger et

al. [14], but includes the expansion step during the recognition phase which was absent in [14]).

The corresponding recognition performance is depicted by the blue ROC curve. Our experiments

clearly demonstrate the benefit of using dense models as opposed to sparse ones for our dataset.

We have also implemented recognition as wide-baseline stereo matching to assess the power of

using explicit 3D constraints as opposed to simple epipolar ones. Each test image is matched

to all the 168 training images (both left and right images for each stereo pair) for every object

separately, making a total of 168 × 80 = 13440 image pairs to be compared. The maximum

number of matches corresponding to each object is recorded and used to construct the ROC curve.

As expected, our method clearly outperforms this simple baseline approach. The detection rates

for zero false positives and the equal error rates for the different methods are shown in Fig. 5.
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Method Detection Rate (zero false positives) Equal Error Rate
Proposed Approach 86.8% 89.1%

Primary patches only 69.8% 84.9%
Wide Baseline 58.1% 77.1%

Table 5.1: Error rate comparison.

The proposed approach also performs well on the highly complex geometric objects like the

dragons and the chest buster model. Figure 5.4(b) shows the comparison of the ROC plots on

the dataset restricted to only these 3 models. The variation in appearance of the features due to

small viewpoint changes is larger for these models since the surface of the models is not smooth.

Because the proposed approach combines the different views of the features together (when the

different partial models are merged) its performance is less severely affected on the restricted

dataset. On the other hand, the performance of the wide-baseline matching scheme drops by a

significant amount.

Our current implementations of the modeling and recognitions algorithms runs quite slowly.

The modeling was done on an 3 GHz, Intel Pentium 4 machine with 1 GB of RAM. The con-

struction of the partial models for each stereo pair takes about 15 to 20 minutes. The registration

of all the partial models into a full model takes approximately another 1 to 2 hours. Most of the

time during modeling process is spent in the non-linear match refinement procedure. The recog-

nition experiments took varying amounts of time based on whether the object being recognized

was actually found in the image. In cases when very few (< 10) matches were found between the

object model and the test image the program took less than 30 minutes. But, in cases when a large

number of matches were found the program could take as long as 3 hours. Since, it would have

taken a very long time to run experiments on a single machine the program was run on a cluster of

machines to speedup the experimentation process.

Finally, Figures 5.3 and 5.5 give a qualitative illustration of the performance of our algorithm

with a gallery of recognition results on some test images which contain the objects under heavy

occlusion, viewpoint and scale variation, as well as extensive clutter.
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5.1 Conclusions and Summary

We have proposed an approach to efficiently build dense 3D euclidean models of objects from

stereo views and use them for recognizing these objects in cluttered photographs taken from arbi-

trary viewpoints. At this point there are many directions for future work.

• Extending the approach to handle non rigid deformations

• Recognizing objects in a cluttered scene using a pair of calibrated stereo images of the scene.

• Collaboration among different cameras looking at the same scene for recognizing the objects

in the scene.

Also, it would be desirable to do a comparison with the native implementations of other state-

of-the-art recognition methods such as those proposed by Ferrari et al. [2], Lowe [8], and Roth-

ganger et al. [14].
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(a) Bournvita (8 pairs) (b) Ball (12 pairs)

(c) Yogurt (8 pairs) (d) Vase (8 pairs)

(e) Bear (8 pairs) (f) Small Dragon (12 pairs)

(g) Salt (8 pairs) (h) Chest Buster (7 pairs) (i) Dragon (12 pairs)

Figure 5.1: Object models.
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Figure 5.2: The test image dataset.
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Figure 5.3: Left column: test image. Center column: matched patches. Right column: predicted
location.
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(a) ROC (all models).
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Figure 5.4: Comparison ROC plots.

Figure 5.5: Left column: test image. Center column: matched patches. Right column: predicted
location.
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