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1. Introduction

In recent years, a large amount of work has been devoted to the problem
of solving large linear systems in saddle point form. The reason for this
interest is the fact that such problems arise in a wide variety of technical
and scientific applications. For example, the ever-increasing popularity of
mixed finite element methods in engineering fields such as fluid and solid
mechanics has been a major source of saddle point systems (Brezzi and
Fortin 1991, Elman, Silvester and Wathen 2005c). Another reason for this
surge in interest is the extraordinary success of interior point algorithms
in both linear and nonlinear optimization, which require at their heart the
solution of a sequence of systems in saddle point form (Nocedal and Wright
1999, Wright 1992, Wright 1997).

Because of the ubiquitous nature of saddle point systems, methods and
results on their numerical solution have appeared in a wide variety of books,
journals and conference proceedings, justifying a comprehensive survey of
the subject. The purpose of this article is to review many of the most prom-
ising solution methods, with an emphasis on iterative methods for large and
sparse problems. Although many of these solvers have been developed with
specific applications in mind (for example, Stokes-type problems in fluid
dynamics), it is possible to discuss them in a fairly general setting using
standard numerical linear algebra concepts, the most prominent being per-
haps the Schur complement. Nevertheless, when choosing a preconditioner
(or developing a new one), knowledge of the origin of the particular problem
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at hand is essential. Although no single ‘best’ method exists, very effective
solvers have been developed for some important classes of problems. We
therefore devote some space to a discussion of saddle point problems arising
in a few selected applications.

It is hoped that the present survey will prove useful to practitioners who
are looking for guidance in the choice of a solution method for their own
application, to researchers in numerical linear algebra and scientific com-
puting, and especially to graduate students as an introduction to this very
rich and important subject.

Notation. We have used boldface to denote vectors in sections describing
fluid dynamics applications, where this is traditional, but we have otherwise
followed the standard practice of numerical linear algebra and employed no
special notation.

1.1. Problem statement and classification

The subject of this paper is the solution of block 2× 2 linear systems of the
form

[

A BT
1

B2 −C

] [

x
y

]

=

[

f
g

]

, or Au = b, (1.1)

A ∈ R
n×n, B1, B2 ∈ R

m×n, C ∈ R
m×m with n ≥ m. (1.2)

It is obvious that, under suitable partitioning, any linear system can be cast
in the form (1.1)–(1.2). We explicitly exclude the case where A or one or
both of B1, B2 are zero. When the linear system describes a (generalized)
saddle point problem, the constituent blocks A, B1, B2 and C satisfy one
or more of the following conditions:

C1 A is symmetric: A = AT

C2 the symmetric part of A, H ≡ 1
2(A + AT ), is positive semidefinite

C3 B1 = B2 = B
C4 C is symmetric (C = CT ) and positive semidefinite
C5 C = O (the zero matrix)

Note that C5 implies C4. The most basic case is obtained when all
the above conditions are satisfied. In this case A is symmetric positive
semidefinite and we have a symmetric linear system of the form

[

A BT

B O

] [

x
y

]

=

[

f
g

]

. (1.3)

This system arises as the first-order optimality conditions for the following
equality-constrained quadratic programming problem:

min J(x) =
1

2
xT Ax − fT x (1.4)

subject to Bx = g. (1.5)

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir


4 M. Benzi, G. H. Golub and J. Liesen

In this case the variable y represents the vector of Lagrange multipliers.
Any solution (x∗, y∗) of (1.3) is a saddle point for the Lagrangian

L(x, y) =
1

2
xT Ax − fT x + (Bx − g)T y,

hence the name ‘saddle point problem’ given to (1.3). Recall that a saddle
point is a point (x∗, y∗) ∈ R

n+m that satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for any x ∈ R
n and y ∈ R

m,

or, equivalently,

min
x

max
y

L(x, y) = L(x∗, y∗) = max
y

min
x

L(x, y).

Systems of the form (1.3) also arise in nonlinearly constrained optimiz-
ation (sequential quadratic programming and interior point methods), in
fluid dynamics (Stokes’ problem), incompressible elasticity, circuit analysis,
structural analysis, and so forth; see the next section for a discussion of
applications leading to saddle point problems.

Another important special case is when conditions C1–C4 are satisfied,
but not C5. In this case we have a block linear system of the form

[

A BT

B −C

] [

x
y

]

=

[

f
g

]

. (1.6)

Problems of this kind frequently arise in the context of stabilized mixed fi-
nite element methods. Stabilization is used whenever the discrete variables x
and y belong to finite element spaces that do not satisfy the Ladyzhenskaya–
Babuška–Brezzi (LBB, or inf-sup) condition (Brezzi and Fortin 1991). An-
other situation leading to a nonzero C is the discretization of the equations
describing slightly compressible fluids or solids (Braess 2001, Chapter 6.3).
Systems of the form (1.6) also arise from regularized, weighted least-squares
problems (Benzi and Ng 2004) and from certain interior point methods in
optimization (Wright 1992, Wright 1997). Often the matrix C has small
norm compared to the other blocks.

In the literature, the phrase generalized saddle point problem has been
used primarily to allow for the possibility of a nonsymmetric matrix A in
(1.1). In such problems either A �= AT (with condition C2 usually satisfied),
or B1 �= B2, or both. The most important example is perhaps that of the
linearized Navier–Stokes equations, where linearization has been obtained
by Picard iteration or by some variant of Newton’s method. See Ciarlet Jr.,
Huang and Zou (2003), Nicolaides (1982) and Szyld (1981) for additional
examples. We note that our definition of generalized saddle point problem
as a linear system of the form (1.1)–(1.2), where the blocks A, B1, B2 and
C satisfy one or more of the conditions C1–C5, is the most general possible,
and it contains previous definitions as special cases.
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In the vast majority of cases, linear systems of saddle point type have
real coefficients, and in this paper we restrict ourselves to the real case.
Complex coefficient matrices, however, do arise in some cases; see, e.g.,
Bobrovnikova and Vavasis (2000), Mahawar and Sarin (2003) and Strang
(1986, page 117). Most of the results and algorithms reviewed in this paper
admit straightforward extensions to the complex case.

1.2. Sparsity, structure and size

Although saddle point systems come in all sizes and with widely different
structural and sparsity properties, in this paper we are mainly interested
in problems that are both large and sparse. This justifies our emphasis
on iterative solvers. Direct solvers, however, are still the preferred method
in optimization and other areas. Furthermore, direct methods are often
used in the solution of subproblems, for example as part of a preconditioner
solve. Some of the algorithms considered in this paper are also applicable
if one or more of the blocks in A happen to be dense, as long as matrix-
vector products with A can be performed efficiently, typically in O(n + m)
time. This means that if a dense block is present, it must have a special
structure (e.g., Toeplitz, as in Benzi and Ng (2004) and Jin (1996)) or it
must be possible to approximate its action on a vector with (nearly) linear
complexity, as in the fast multipole method (Mahawar and Sarin 2003).

Frequently, the matrices that arise in practice have quite a bit of struc-
ture. For instance, the A block is often block diagonal, with each diagonal
block endowed with additional structure. Many of the algorithms discussed
in this paper are able to exploit the structure of the problem to gain effi-
ciency and save on storage. Sometimes the structure of the problem suggests
solution algorithms that have a high degree of parallelism. This last aspect,
however, is not emphasized in this paper. Finally we mention that in most
applications n is larger than m, often much larger.

2. Applications leading to saddle point problems

As already mentioned, large-scale saddle point problems occur in many
areas of computational science and engineering. The following is a list of
some fields where saddle point problems naturally arise, together with some
references:

• computational fluid dynamics (Glowinski 1984, Quarteroni and Valli
1994, Temam 1984, Turek 1999, Wesseling 2001)

• constrained and weighted least squares estimation (Björck 1996, Golub
and Van Loan 1996)

• constrained optimization (Gill, Murray and Wright 1981, Wright 1992,
Wright 1997)
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• economics (Arrow, Hurwicz and Uzawa 1958, Duchin and Szyld 1979,
Leontief, Duchin and Szyld 1985, Szyld 1981)

• electrical circuits and networks (Bergen 1986, Chua, Desoer and Kuh
1987, Strang 1986, Tropper 1962)

• electromagnetism (Bossavit 1998, Perugia 1997, Perugia, Simoncini
and Arioli 1999)

• finance (Markowitz 1959, Markowitz and Perold 1981)
• image reconstruction (Hall 1979)
• image registration (Haber and Modersitzki 2004, Modersitzki 2003)
• interpolation of scattered data (Lyche, Nilssen and Winther 2002, Sib-

son and Stone 1991)
• linear elasticity (Braess 2001, Ciarlet 1988)
• mesh generation for computer graphics (Liesen, de Sturler, Sheffer,

Aydin and Siefert 2001)
• mixed finite element approximations of elliptic PDEs (Brezzi 1974,

Brezzi and Fortin 1991, Quarteroni and Valli 1994)
• model order reduction for dynamical systems (Freund 2003, Heres and

Schilders 2005, Stykel 2005)
• optimal control (Battermann and Heinkenschloss 1998, Battermann

and Sachs 2001, Betts 2001, Biros and Ghattas 2000, Nguyen 2004)
• parameter identification problems (Burger and Mühlhuber 2002, Haber

and Ascher 2001, Haber, Ascher and Oldenburg 2000).

Quite often, saddle point systems arise when a certain quantity (such as
the energy of a physical system) has to be minimized, subject to a set of
linear constraints. In this case the Lagrange multiplier y usually has a
physical interpretation and its computation is also of interest. For example,
in incompressible flow problems x is a vector of velocities and y a vector of
pressures. In the complementary energy formulation of structural mechanics
x is the vector of internal forces, y represents the nodal displacements of the
structure. For resistive electrical networks y represents the nodal potentials,
x being the vector of currents.

In some cases, such as fluid dynamics or linear elasticity, saddle point
problems result from the discretization of systems of partial differential
equations with constraints. Typically the constraints represent some ba-
sic conservation law, such as mass conservation in fluid dynamics. In other
cases, such as resistive electrical networks or structural analysis, the equa-
tions are discrete to begin with. Now the constraints may correspond to the
topology (connectivity) of the system being studied. Because saddle point
equations can be derived as equilibrium conditions for a physical system,
they are sometimes called equilibrium equations. See Strang (1986, 1988) for
a very nice discussion of equilibrium equations throughout applied math-
ematics. Another popular name for saddle point systems, especially in the
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optimization literature, is ‘KKT system’, from the Karush–Kuhn–Tucker
first-order optimality conditions; see Nocedal and Wright (1999, page 328)
for precise definitions, and Golub and Greif (2003) and Kjeldsen (2000) for
historical notes.

Systems of the form (1.1)–(1.2) also arise from non-overlapping domain
decomposition when interface unknowns are numbered last, as well as from
FETI-type schemes when Lagrange multipliers are used to ensure continuity
at the interfaces; see for instance Chan and Mathew (1994), Farhat and
Roux (1991), Hu, Shi and Yu (2004), Quarteroni and Valli (1999) and Toselli
and Widlund (2004).

It is of course not possible for us to cover here all these different ap-
plications. We choose instead to give some details about three classes of
problems leading to saddle point systems. The first comes from the field
of computational fluid dynamics, the second from least squares estimation,
and the third one from interior point methods in constrained optimization.

2.1. Incompressible flow problems

We begin with the (steady-state) Navier–Stokes equations governing the
flow of a Newtonian, incompressible viscous fluid. Let Ω ⊂ R

d (d = 2, 3) be
a bounded, connected domain with a piecewise smooth boundary Γ. Given
a force field f : Ω → R

d and boundary data g : Γ → R
d, the problem is to

find a velocity field u : Ω → R
d and a pressure field p : Ω → R such that

−ν∆u + (u · ∇)u + ∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

Bu = g on Γ, (2.3)

where ν > 0 is the kinematic viscosity coefficient (inversely proportional to
the Reynolds number Re), ∆ is the Laplace operator in R

d, ∇ denotes the
gradient, ∇· is the divergence, and B is some type of boundary operator
(e.g., a trace operator for Dirichlet boundary conditions). To determine p
uniquely we may impose some additional condition, such as

∫

Ω
p dx = 0.

Equation (2.1) represents conservation of momentum, while equation (2.2)
represents the incompressibility condition, or mass conservation. Owing to
the presence of the convective term (u · ∇)u in the momentum equations,
the Navier–Stokes system is nonlinear. It can be linearized in various ways.
An especially popular linearization process is the one based on Picard’s
iteration; see, e.g., Elman et al. (2005c, Section 7.2.2). Starting with an
initial guess u(0) (with ∇ · u(0) = 0) for the velocity field, Picard’s iteration
constructs a sequence of approximate solutions (u(k), p(k)) by solving the
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linear Oseen problem

−ν∆u(k) + (u(k−1) · ∇)u(k) + ∇p(k) = f in Ω, (2.4)

∇ · u(k) = 0 in Ω, (2.5)

Bu(k) = g on Γ (2.6)

(k = 1, 2, . . .). Note that no initial pressure needs to be specified. Under
certain conditions on ν (which should not be too small) and f (which should
not be too large in an appropriate norm), the steady Navier–Stokes equa-
tions (2.1)–(2.3) have a unique solution (u∗, p∗) and the iterates (u(k), p(k))
converge to it as k → ∞ for any choice of the initial velocity u(0). We
refer to Girault and Raviart (1986) for existence and uniqueness results
and to Karakashian (1982) for a proof of the global convergence of Picard’s
iteration.

Hence, at each Picard iteration one needs to solve an Oseen problem of
the form

−ν∆u + (v · ∇)u + ∇p = f in Ω, (2.7)

∇ · u = 0 in Ω, (2.8)

Bu = g on Γ (2.9)

with a known, divergence-free coefficient v. Discretization of (2.7)–(2.9)
using, e.g., finite differences (Peyret and Taylor 1983) or finite elements
(Elman et al. 2005c, Quarteroni and Valli 1994) results in a generalized
saddle point system of the form (1.6), in which x represents the discrete
velocities and y the discrete pressure. Here A = diag(A1, . . . , Ad) is a block
diagonal matrix, where each block corresponds to a discrete convection-
diffusion operator with the appropriate boundary conditions. Note that A
is nonsymmetric, but satisfies condition C2 when an appropriate (conser-
vative) discretization is used. The rectangular matrix BT represents the
discrete gradient operator while B represents its adjoint, the (negative) di-
vergence operator. A nonzero C may be present if stabilization is used.

The important special case v = 0 corresponds to the (steady-state) Stokes
equations:

−∆u + ∇p = f in Ω, (2.10)

∇ · u = 0 in Ω, (2.11)

Bu = g on Γ. (2.12)

Note that without loss of generality we have set ν = 1, since we can al-
ways divide the momentum equation by ν and rescale the pressure p and
the forcing term f by ν. The Stokes equations can be interpreted as the
Euler–Lagrange partial differential equations for the constrained variational
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problem

min J(u) =
1

2

∫

Ω
‖∇u‖2

2 dx −
∫

Ω
f · udx (2.13)

subject to ∇ · u = 0 (2.14)

(see, e.g., Gresho and Sani (1998, page 636)). Throughout this paper,
‖u‖2 =

√
u · u denotes the Euclidean norm of the vector u. Here the pres-

sure p plays the role of the Lagrange multiplier. The Stokes equations
describe the flow of a slow-moving, highly viscous fluid. They also arise
as subproblems in the numerical solution of the Navier–Stokes equations by
operator splitting methods (Glowinski 2003, Quarteroni and Valli 1994) and
as the first step of Picard’s iteration when the initial guess used is u(0) = 0.

Appropriate discretization of the Stokes system leads to a symmetric
saddle point problem of the form (1.3) where A is now a block diagonal
matrix, and each of its d diagonal blocks is a discretization of the Laplace
operator −∆ with the appropriate boundary conditions. Thus, A is now
symmetric and positive (semi-)definite. Again, a nonzero C may be present
if stabilization is used. Typical sparsity patterns for A are displayed in
Figure 2.1.

An alternative linearization of the Navier–Stokes equations can be derived
on the basis of the identity

(u · ∇)u =
1

2
∇(‖u‖2

2) − u × (∇× u).
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Figure 2.1. Sparsity patterns for two-dimensional Stokes problem
(leaky lid-driven cavity) using Q1-P0 discretization.
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See, for instance, Landau and Lifschitz (1959, page 5) or Chorin and Marsden
(1990, page 47) as well as the discussion in Gresho (1991) and Gresho and
Sani (1998). The corresponding linearized equations take the form

−ν∆u + w × u + ∇P = f in Ω, (2.15)

∇ · u = 0 in Ω, (2.16)

Bu = g on Γ, (2.17)

where, for the two-dimensional case,

• (w×) =
(

0 w
−w 0

)

• w = ∇× v = − ∂v1

∂x2
+ ∂v2

∂x1

• P = p + 1
2‖v‖2

2 (the so-called Bernoulli pressure)

Here the divergence-free vector field v again denotes the approximate ve-
locity from the previous Picard iteration. See Olshanskii (1999) for the
three-dimensional case. Note that when the ‘wind’ function v is irrota-
tional (∇ × v = 0), equations (2.15)–(2.17) reduce to the Stokes prob-
lem. It is worth stressing that the linearizations (2.7)–(2.9) and (2.15)–
(2.17), although both conservative (Olshanskii 1999, page 357), are not
mathematically equivalent. The so-called rotation form (2.15) of the mo-
mentum equations, although popular in fluid mechanics, has not been widely
known among numerical analysts until the recent work by Olshanskii and
co-workers (Lube and Olshanskii 2002, Olshanskii 1999, Olshanskii and
Reusken 2002), which showed its advantages over the standard (convect-
ive) form. We return to this in Section 10.3.

A related problem, also leading to large sparse linear systems in saddle
point form upon discretization, is the potential fluid flow problem in por-
ous media, often used to model groundwater contamination (Bear 1972,
Maryška, Rozložńık and Tůma 1995). This consists of a boundary value
problem for a system of first-order partial differential equations represent-
ing, respectively, Darcy’s Law for the velocity field u and the continuity
equation:

Ku + ∇p = 0 in Ω, (2.18)

∇ · u = q in Ω, (2.19)

p = pD on ΓD, u · n = uN on ΓN , (2.20)

where p is a piezometric potential (fluid pressure), K is the symmetric and
uniformly positive definite second-rank tensor of hydraulic permeability of
the medium, and q represents density of potential sources (or sinks) in the
medium. Here ΓD and ΓN are subsets of the boundary Γ of the bounded
connected flow domain Ω, with Γ = Γ̄D∪Γ̄N , ΓD �= ∅, and ΓD∩ΓN = ∅; n is
the outward normal vector defined (a.e.) on Γ. When discretized by mixed
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finite elements (Raviart–Thomas elements being a very popular choice for
this problem), a linear system of the type (1.3) is obtained. The symmet-
ric positive definite matrix A is now a discretization of the linear operator
‘multiplication by K’, a zeroth-order differential operator. The condition-
ing properties of A are independent of the discretization parameter h (for
most discretizations), and depend only on properties of the hydraulic per-
meability tensor K. The matrix −B represents, again, a discrete diver-
gence operator and BT a discrete gradient. We note that modelling the
interaction between surface and subsurface flows leads to coupled (Navier–)
Stokes and Darcy systems (Discacciati, Miglio and Quarteroni 2002, Dis-
cacciati and Quarteroni 2004). Problem (2.18)–(2.20) is just one example
of a first-order system formulation of a second-order linear elliptic PDE
(Brezzi and Fortin 1991). Saddle point systems also arise from mixed
formulation of fourth-order (biharmonic) elliptic problems (Glowinski and
Pironneau 1979).

In the course of this brief discussion we have restricted ourselves to
stationary (steady-state) problems. The unsteady (time-dependent) case
leads to sequences of saddle point systems when fully implicit time-stepping
schemes are used, for example when the time derivative ut is discretized
using backward Euler or Crank–Nicolson schemes; see, e.g., Turek (1999,
Chapter 2). In the case of Stokes and Oseen, the resulting semi-discrete sys-
tems are often referred to as generalized Stokes and Oseen problems. The
literature on numerical methods for incompressible flow problems is vast;
see, e.g., Elman et al. (2005c), Fortin (1993), Glowinski (2003), Gresho
and Sani (1998), Gunzburger (1989), Quarteroni and Valli (1994), Temam
(1984), Turek (1999) and Wesseling (2001).

2.2. Constrained and weighted least squares

Linear systems of saddle point type commonly arise when solving least
squares problems. Consider the following least squares problem with linear
equality constraints:

min
x

‖c − Gy‖2 (2.21)

subject to Ey = d, (2.22)

where c ∈ R
p, G ∈ R

p×m, y ∈ R
m, E ∈ R

q×m, d ∈ R
q and q < m. Problems

of this kind arise, for instance, in curve or surface fitting when the curve is
required to interpolate certain data points; see Björck (1996, Chapter 5).
The optimality conditions for problem (2.21)–(2.22) are





Ip O G
O O E
GT ET O









r
λ
y



 =





c
d
0



, (2.23)
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where Ip is the p × p identity matrix and λ ∈ R
q is a vector of Lagrange

multipliers. Clearly, (2.23) is a special case of the symmetric saddle point
problem (1.3).

Next we consider the generalized linear least squares problem

min
x

(f − Gx)T W−1(f − Gx), (2.24)

where f ∈ R
n, G ∈ R

n×m with m < n, and the (scaled) covariance matrix
W ∈ R

n×n is symmetric positive definite; see Björck (1996, Chapter 4). It
is readily seen that (2.24) is equivalent to a standard saddle point system
of the form (1.3) with A = W , B = GT and g = 0. This saddle point
formulation of the generalized least squares problem is often referred to
as the augmented system formulation. The matrix W is diagonal when the
errors in the observations are uncorrelated. When W = I (the n×n identity
matrix) we have the usual linear least squares problem. An advantage of
the augmented system formulation over the standard one is that the former
allows for the case in which W is singular, which is important in some
applications. In other words, W could be positive semidefinite rather than
definite. Some applications even lead to an indefinite weight matrix W ;
see Bojanczyk, Higham and Patel (2003), Chandrasekaran, Gu and Sayed
(1998), Hassibi, Sayed and Kailath (1996).

Finally, if the original problem is ill-posed and Tikhonov regularization is
applied, one obtains a saddle point system of the form (1.6) with C = γLT L
where γ > 0 is the regularization parameter and L is either the m × m
identity or some type of smoothing operator, such as a first-order finite
difference operator. See Benzi and Ng (2004) and Gonzales and Woods
(1992) for applications in image processing.

2.3. Saddle point systems from interior point methods

Here we show how saddle point systems arise when interior point methods
are used to solve constrained optimization problems. Our presentation is
based on the nice synopsis given in Bergamaschi, Gondzio and Zilli (2004).
Consider a convex nonlinear programming problem,

min f(x) (2.25)

subject to c (x) ≤ 0, (2.26)

where f : R
n → R and c : R

n → R
m are convex and twice differentiable.

Introducing a nonnegative slack variable z ∈ R
m, we can write the inequality

constraint as the system of equalities c (x) + z = 0, and we can introduce
the associated barrier problem:

min f(x) − µ
m

∑

i=1

ln zi (2.27)

subject to c (x) + z = 0. (2.28)
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The corresponding Lagrangian is

L(x, y, z; µ) = f(x) + yT (c (x) + z) − µ
m

∑

i=1

ln zi.

To find a stationary point of the Lagrangian we set

∇xL(x, y, z; µ) = ∇f(x) + ∇c (x)T y = 0, (2.29)

∇yL(x, y, z; µ) = c (x) + z = 0, (2.30)

∇zL(x, y, z; µ) = y − µZ−1e = 0, (2.31)

where Z = diag(z1, z2, . . . , zm) and e = [1 1 . . . 1]T . Introducing the diag-
onal matrix Y = diag(y1, y2, . . . , ym), the first-order optimality conditions
for the barrier problem become

∇f(x) + ∇c (x)T y = 0, (2.32)

c (x) + z = 0, (2.33)

Y Ze = µe, (2.34)

y, z ≥ 0. (2.35)

This is a nonlinear system of equations with nonnegativity constraints and
it can be solved by Newton’s method. The barrier parameter µ is gradually
reduced so as to ensure convergence of the iterates to the optimal solution
of problem (2.25)–(2.26). At each Newton iteration, it is necessary to solve
a linear system of the form





H(x, y) B(x)T O
B(x) O I

O Z Y









δx
δy
δz



 =





−∇f(x) − B(x)T y
−c (x) − z
µe − Y Ze



, (2.36)

where

H(x, y) = ∇2f(x) +
m

∑

i=1

yi∇2ci(x) ∈ R
n×n and B(x) = ∇c (x) ∈ R

m×n.

Here ∇2f(x) denotes the Hessian of f evaluated at x. The linear system
(2.36) can be reduced to one of smaller dimensions by using the third equa-
tion to eliminate δz = µY −1e − Ze − ZY −1δy from the second equation.
The resulting system is

[

−H(x, y) B(x)T

B(x) ZY −1

] [

δx
−δy

]

=

[

∇f(x) + B(x)T y
−c (x) − µY −1e

]

. (2.37)

Apart from the sign, (2.37) is a saddle point system of the form (1.6).
If the objective function f(x) and the constraints ci(x) are convex, the
symmetric matrix H(x, y) is positive semidefinite, and it is positive definite
if f(x) is strictly convex. The diagonal matrix ZY −1 is obviously posi-
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14 M. Benzi, G. H. Golub and J. Liesen

tive semidefinite. The coefficient matrix in (2.37) depends on the current
approximation (x, y), and it changes at each Newton step.

Similar linear systems arise when interior point methods are used to solve
linear and quadratic programming problems. Now the systems to be solved
at each Newton iteration are of the form

[

−H − D BT

B O

] [

δx
δy

]

=

[

ξ
η

]

,

where the n×n matrix H is symmetric positive semidefinite if the problem
is convex and D is a (positive) diagonal matrix. Now H and B remain
constant (H ≡ O in linear programming), while D changes at each Newton
iteration.

There are many interesting linear algebra problems arising from the use of
interior point methods; see in particular Bergamaschi et al. (2004), Czyzyk,
Fourer and Mehrotra (1998), Forsgren, Gill and Shinnerl (1996), Fourer and
Mehrotra (1993), Frangioni and Gentile (2004), Freund and Jarre (1996),
Gill, Murray, Ponceleón and Saunders (1992), Nocedal and Wright (1999),
Oliveira and Sorensen (2005), Wright (1992) and Wright (1997).

3. Properties of saddle point matrices

This section is devoted to establishing basic algebraic properties of the
saddle point matrix A such as existence of various factorizations, invert-
ibility, spectral properties, and conditioning. Knowledge of these properties
is important in the development of solution algorithms.

3.1. Block factorizations and the Schur complement

If A is nonsingular, the saddle point matrix A admits the following block
triangular factorization:

A =

[

A BT
1

B2 −C

]

=

[

I O
B2A

−1 I

] [

A O
O S

] [

I A−1BT
1

O I

]

, (3.1)

where S = −(C +B2A
−1BT

1 ) is the Schur complement of A in A. A number
of important properties of the saddle point matrix A can be derived on the
basis of (3.1): we do this in the next three subsections.

Also useful are the equivalent factorizations

A =

[

A O
B2 S

] [

I A−1BT
1

O I

]

(3.2)

and

A =

[

I O
B2A

−1 I

] [

A BT
1

O S

]

. (3.3)
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Numerical solution of saddle point problems 15

The assumption that A is nonsingular may appear to be rather restrict-
ive, since A is singular in many applications; see, e.g., Haber and Ascher
(2001). However, one can use augmented Lagrangian techniques (Fortin and
Glowinski 1983, Glowinski and Le Tallec 1989, Golub and Greif 2003, Greif,
Golub and Varah 2005) to replace the original saddle point system with an
equivalent one having the same solution but in which the (1, 1) block A is
now nonsingular. Hence, no great loss of generality is incurred. We shall
return to augmented Lagrangian techniques in Section 3.5.

Besides being useful for deriving theoretical properties of saddle point
matrices, the decompositions (3.1)–(3.3) are also the basis for many of the
most popular solution algorithms for saddle point systems, as we shall see.

3.2. Solvability conditions

Assuming A is nonsingular, it readily follows from any of the block decom-
positions (3.1)–(3.3) that A is nonsingular if and only if S is. Unfortunately,
very little can be said in general about the invertibility of the Schur com-
plement S = −(C + B2A

−1BT
1 ). It is necessary to place some restrictions

on the matrices A, B1, B2 and C.

Symmetric case

We begin with the standard saddle point system (1.3), where A is symmetric
positive definite, B1 = B2 and C = O. In this case the Schur complement
reduces to S = −BA−1BT , a symmetric negative semidefinite matrix. It is
obvious that S, and thus A, is invertible if and only if BT has full column
rank (hence, if and only if rank(B) = m), since in this case S is symmetric
negative definite. Then both problems (1.3) and (1.4)–(1.5) have a unique
solution: if (x∗, y∗) is the solution of (1.3), x∗ is the unique solution of
(1.4)–(1.5). It can be shown that x∗ is the A-orthogonal projection of the
solution x̂ = A−1f of the unconstrained problem (1.4) onto the constraint
set C = {x ∈ R

n |Bx = g}. Here A-orthogonal means orthogonal with
respect to the inner product 〈v, w〉A ≡ wT Av. We will discuss this in more
detail in Section 3.3.

Next we consider the case where A is symmetric positive definite, B1 =
B2 = B, and C �= O is symmetric positive semidefinite. Then again
S = −(C + BA−1BT ) is symmetric negative semidefinite, and it is neg-
ative definite (hence, invertible) if and only if ker(C) ∩ ker(BT ) = {0}.
Obvious sufficient conditions for invertibility are that C be positive definite
or that B have full row rank. We can summarize our discussion so far in
the following theorem.

Theorem 3.1. Assume A is symmetric positive definite, B1 = B2 = B,
and C is symmetric positive semidefinite. If ker(C) ∩ ker(BT ) = {0}, then
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16 M. Benzi, G. H. Golub and J. Liesen

the saddle point matrix A is nonsingular. In particular, A is invertible if B
has full rank.

Now we relax the condition that A be positive definite. If A is indefinite,
the following simple example shows that A may be singular, even if B has
full rank:

A =









1 0 −1
0 −1 1

−1 1 0









=

[

A BT

B O

]

.

However, A will be invertible if A is positive definite on ker(B). When A
is symmetric positive semidefinite, we have the following result (see, e.g.,
the discussion of quadratic programming in Hadley (1964) or Luenberger
(1984, page 424)). Although this is a well-known result, we include a proof
to make our treatment more self-contained.

Theorem 3.2. Assume that A is symmetric positive semidefinite, B1 =
B2 = B has full rank, and C = O. Then a necessary and sufficient condition
for the saddle point matrix A to be nonsingular is ker(A) ∩ ker(B) = {0}.

Proof. Let u =
[

x
y

]

be such that Au = 0. Hence, Ax + BT y = 0 and

Bx = 0. It follows that xT Ax = −xT BT y = −(Bx)T y = 0. Since A is
symmetric positive semidefinite, xT Ax = 0 implies Ax = 0 (see Horn and
Johnson (1985, page 400)), and therefore x ∈ ker(A) ∩ ker(B), thus x = 0.
Also, y = 0 since BT y = 0 and BT has full column rank. Therefore u = 0,
and A is nonsingular. This proves the sufficiency of the condition.

Assume now that ker(A) ∩ ker(B) �= {0}. Taking x ∈ ker(A) ∩ ker(B),

x �= 0 and letting u =
[

x
0

]

we have Au = 0, implying that A is singular.

Hence, the condition is also necessary.

Remark. It is clear from the proof of this theorem that the requirement
that A be positive semidefinite can be somewhat relaxed: it suffices that A
be definite on ker(B). In fact, all we need is that xT Ax �= 0 for x ∈ ker(B),
x �= 0. This implies that A is either positive definite or negative definite
on ker(B). In any case, the rank of A must be at least n − m for A to be
nonsingular.

How restrictive is the assumption that B has full rank? A rank deficient
B signifies that some of the constraints are redundant. It is generally easy
to eliminate this redundancy. For instance, in the Stokes and Oseen case,
where BT represents a discrete gradient, a one-dimensional subspace (con-
taining all the constant vectors) is often present. Hence A has one zero
eigenvalue, corresponding to the so-called hydrostatic pressure mode, due to
the fact that the pressure is defined up to a constant. A similar situation
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Numerical solution of saddle point problems 17

occurs with electric networks, where y, the vector of nodal potentials, is also
defined up to an additive constant. The rank deficiency in B can easily be
removed by ‘grounding’ one of the nodes, that is, by specifying the value
of the potential (or of the pressure) at one point. One problem with this
approach is that the resulting linear system may be rather ill-conditioned;
see Bochev and Lehoucq (2005). Fortunately, since the system Au = b is
consistent by construction, it may not be necessary to remove the singu-
larity of A. Iterative methods like GMRES (Saad and Schultz 1986) are
largely unaffected by the presence of a single eigenvalue exactly equal to
zero, at least when using a zero initial guess, u0 = 0. The reader is referred
to Elman et al. (2005c, Section 8.3.4) for a detailed discussion of this issue
in the context of fluid flow problems; see further the remarks in Olshanskii
and Reusken (2004, Section 4) and Zhang and Wei (2004, Section 4).

General case
When C = O, a necessary condition for invertibility is provided by the
following theorem, a slight generalization of a similar result for the case
B1 = B2: see Gansterer, Schneid and Ueberhuber (2003).

Theorem 3.3. If the matrix

A =

[

A BT
1

B2 O

]

is nonsingular, then rank(B1) = m and rank
(

A
B2

)

= n.

Proof. If rank(B1) < m then there exists a nonzero vector y ∈ R
m with

BT
1 y = 0. Therefore, letting u =

[

0
y

]

, we get Au = 0, a contradiction.

If rank
(

A
B2

)

< n then there exists a nonzero vector x ∈ R
n such that

(

A
B2

)

x = 0. Letting u =
[

x
0

]

, we get Au = 0, a contradiction.

It is easy to show that these conditions are not sufficient to ensure the
invertibility of A. Some additional conditions are needed. Recall that for
any matrix A ∈ R

n×n we can write A = H + K where H = 1
2(A + AT ) and

K = 1
2(A − AT ) are the symmetric and skew-symmetric part of A, respect-

ively. The following result provides a necessary and a sufficient condition
for A to be invertible when B1 = B2.

Theorem 3.4. Assume that H, the symmetric part of A, is positive semi-
definite, B1 = B2 = B have full rank, and C is symmetric positive semidef-
inite (possibly zero). Then

(i) ker(H) ∩ ker(B) = {0} ⇒ A invertible,

(ii) A invertible ⇒ ker(A) ∩ ker(B) = {0}.
The converses of (i)–(ii) do not hold in general.
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18 M. Benzi, G. H. Golub and J. Liesen

Proof. The proof of part (i) is similar to the sufficiency proof in The-
orem 3.1, and can be found in Benzi and Golub (2004, Lemma 1.1). The
proof of part (ii) is exactly as the necessity proof in Theorem 3.1.

Now we show that the converses of (i) and (ii) are false in general. To see
that the converse of (i) is not true in general, consider the matrix

A =













1 −1 0 0
1 0 0 0
0 0 0 1

0 0 1 0













=

[

A BT

B O

]

.

Here we have ker(H)∩ker(B) = span([0 1 0]T ) �= {0} and yet A is invertible.
To see that the converse of (ii) is not generally true, consider the matrix

A =









0 −1 0
1 1 1

0 1 0









=

[

A BT

B O

]

.

This matrix is manifestly singular, yet A is nonsingular and thus ker(A) ∩
ker(B) = {0}.

We note that when H is positive semidefinite, the inclusion ker(A) ⊂
ker(H) holds. For if x ∈ ker(A), then Ax = Hx + Kx = 0 and thus
xT Ax = xT Hx = 0. But since H is symmetric positive semidefinite the last
equality implies Hx = 0, and therefore x ∈ ker(H). That this is a proper
inclusion can be seen from the simple example

A =

[

0 1
−1 0

]

.

3.3. The inverse of a saddle point matrix

If A is nonsingular, then we know that A is invertible if and only if S =
−(C +B2A

−1BT
1 ) is nonsingular, and we have the following explicit expres-

sion for the inverse:

A−1 =

[

A BT
1

B2 −C

]−1

=

[

A−1 + A−1BT
1 S−1B2A

−1 −A−1BT
1 S−1

−S−1B2A
−1 S−1

]

. (3.4)

If A is singular but C is nonsingular, an analogous expression can be given
if we assume that the matrix A + BT

1 C−1B2, the Schur complement of C in
A, is nonsingular. However, such an expression is of limited interest in the
numerical solution of saddle point problems. See Lu and Shiou (2002) for
additional expressions for the inverse of a block 2 × 2 matrix.

An interesting special case arises when A is symmetric positive definite,
B1 = B2 = B, C = O, S = −BA−1BT is nonsingular, and g = 0. Then
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Numerical solution of saddle point problems 19

the explicit expression for A−1 shows that the solution (x∗, y∗) of (1.3) is
given by

[

x∗

y∗

]

=

[

(I + A−1BT S−1B)A−1f
S−1BA−1f

]

. (3.5)

It is easy to see that the matrix

Π ≡ −A−1BT S−1B = A−1BT (BA−1BT )−1B

satisfies Π2 = Π, i.e., Π is a projector. Moreover, the relations

Πv ∈ range(A−1BT ) and v − Πv ⊥ range(BT ), for all v ∈ R
n,

show that Π represents an (oblique) projector onto range(A−1BT ) and or-
thogonal to range(BT ). The first component in (3.5) can then be written as

x∗ = (I − Π) x̂,

where x̂ ≡ A−1f is the solution of the unconstrained problem (1.4). Hence
x∗ is orthogonal to range(BT ). Furthermore, x̂ = Πx̂ + x∗, which means
that the solution of the unconstrained problem is decomposed into a part
that is in range(A−1BT ) and a part that is orthogonal to range(BT ). By
the nature of Π, this decomposition generally is oblique, and is orthogonal
only when range(A−1BT ) = range(BT ) (the latter being true particularly
for A = I). Next note that since f − BT y∗ = Ax∗, and Bx∗ = 0,

0 = Bx∗ = (BA−1)(Ax∗) = (A−1BT )T (f − BT y∗). (3.6)

By assumption, A−1 is symmetric positive definite, so the function 〈v, w〉A−1

≡ wT A−1v is an inner product. Then (3.6) shows that the vector f−BT y∗ ∈
f + range(BT ) is orthogonal with respect to the A−1-inner product (A−1-
orthogonal) to the space range(BT ). But this means that y∗ is the solution
of the (generalized) least squares problem BT u ≈ f with respect to the
A−1-norm, ‖v‖A−1 ≡ (〈v, v〉A−1)1/2, i.e.,

‖f − BT y∗‖A−1 = min
u

‖f − BT u‖A−1 . (3.7)

The relation (3.7) is also derived in Benbow (1999, Section 2), where it is
used to compute the solution of the standard saddle point problem (1.3) with
g = 0 by first solving the generalized least squares problem with the matrix
BT and the right-hand side f (giving y∗), and then computing x∗ = A−1(f−
BT y∗). To solve the generalized least squares problem (3.7) numerically,
a generalized version of the LSQR method of Paige and Saunders (1982)
is developed in Benbow (1999). The numerical experiments in Benbow
(1999) show that this approach to computing y∗ is often superior to applying
the MINRES method (Paige and Saunders 1975) (see Section 9 below for
details about this method) to the (symmetric) Schur complement system
S y = BA−1f , which is the second component in (3.5).
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Another important special case arises when A and C are both symmetric
positive definite and B1 = B2 = B. Then the corresponding (symmet-
ric) saddle point matrix A is said to be quasidefinite, regardless of what
the rank of B may be (Vanderbei 1995). These matrices result from interior
point methods in constrained optimization; see the discussion in Section 2.3.
Properties of symmetric quasidefinite matrices have been studied, e.g., in
George, Ikramov and Kucherov (2000), Gill, Saunders and Shinnerl (1996)
and Vanderbei (1995). One of the basic properties is that if A is quasidefin-
ite, so is A−1 (under the same 2×2 block partitioning), as one can immedi-
ately see from (3.4). In George and Ikramov (2002), this property has been
extended to the class of invertible weakly quasidefinite matrices, in which A
and C are only assumed to be symmetric positive semidefinite.

An alternative expression of the inverse that does not require A to be
invertible is the following. Assume that B1 = B2 = B has full rank and
C = O. Denote by Z ∈ R

n×(n−m) any matrix whose columns form a basis for
ker(B). If H, the symmetric part of A, is positive semidefinite, then it is easy
to see that condition (i) in Theorem 3.4 implies that the (n−m)× (n−m)
matrix ZT AZ is invertible; indeed, its symmetric part ZT HZ is positive
definite. Letting W = Z(ZT AZ)−1ZT , we have the following expression for
the inverse of A:

A−1 =

[

A BT

B O

]−1

(3.8)

=

[

W (I − WA)BT (BBT )−1

(BBT )−1B(I − AW ) −(BBT )−1B(A − AWA)BT (BBT )−1

]

,

which can be easily proved keeping in mind that BT (BBT )−1B = I −ZZT ;
see Gansterer et al. (2003).

These explicit expressions for A−1 are of limited practical use, and their
interest is primarily theoretical. See, however, Powell (2004) for a situation
where the inverse of A is explicitly needed, and for a careful discussion
of the problem of updating the inverse of A when a few of its rows and
corresponding columns are modified.

It must be mentioned that in the finite element context the mere nonsin-
gularity of A is not sufficient to ensure meaningful computed solutions. In
order for the discrete problem to be well-posed it is essential that the saddle
point matrix remain uniformly invertible as h, the mesh size parameter, goes
to zero. This means that an appropriate (generalized) condition number of
A remains bounded as h → 0. Sufficient conditions for this to happen in-
clude the already-mentioned discrete LBB (or inf-sup) conditions; see Brezzi
(2002), Brezzi and Fortin (1991), Ciarlet Jr. et al. (2003) and Nicolaides
(1982). Some discussion of conditioning issues from a linear algebra stand-
point can be found in Section 3.5.
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Finally, we point out that singular saddle point systems have been studied
in Gansterer et al. (2003) and Wu, Silva and Yuan (2004); other relevant
references are Wei (1992a) and Zhang and Wei (2004). Explicit forms for
various generalized inverses of saddle point matrices arising in constrained
optimization can be found in Campbell and Meyer Jr. (1979, Section 3.5);
see also George and Ikramov (2002).

3.4. Spectral properties of saddle point matrices

In this section we collect a few facts on the spectral properties of saddle
point matrices which are relevant when solving the equations by iterative
methods. We also introduce an alternative formulation of the saddle point
equations leading to a (nonsymmetric) positive definite coefficient matrix.

Eigenvalues: The symmetric case

Assume that A is symmetric positive definite, B1 = B2 = B has full rank,
and C is symmetric positive semidefinite (possibly zero). Then from (3.1)
we obtain

[

I O
−BA−1 I

] [

A BT

B −C

] [

I −A−1BT

O I

]

=

[

A O
O S

]

(3.9)

where S = −(C + BA−1BT ) is symmetric negative definite. Hence A is

congruent to the block diagonal matrix
[

A O
O S

]

. It follows from Sylvester’s

Law of Inertia (see Horn and Johnson (1985, page 224)) that A is indefinite,
with n positive and m negative eigenvalues. The same is of course true if
B is rank deficient, as long as S remains negative definite. Clearly, in case
S is rank deficient, say rank(S) = m − r, A has n positive, m − r negative
and r zero eigenvalues. A simple limiting argument shows that this result
remains true if A is only assumed to be positive semidefinite, provided that
the usual condition ker(A) ∩ ker(B) = {0} is satisfied. We refer the reader
to Forsgren (2002), Forsgren and Murray (1993), Gill, Murray, Saunders
and Wright (1991) and Gould (1985) for additional results on the inertia of
symmetric saddle point matrices under various assumptions on A, B and
C. Generally speaking, unless m is very small (which is seldom the case in
practice), the matrix A is highly indefinite, in the sense that it has many
eigenvalues of both signs.

The following result from Rusten and Winther (1992) establishes eigen-
value bounds for an important class of saddle point matrices.

Theorem 3.5. Assume A is symmetric positive definite, B1 = B2 = B
has full rank, and C = O. Let µ1 and µn denote the largest and smallest
eigenvalues of A, and let σ1 and σm denote the largest and smallest singular
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values of B. Let σ (A) denote the spectrum of A. Then

σ (A) ⊂ I− ∪ I+,

where

I− =

[

1

2

(

µn −
√

µ2
n + 4σ2

1

)

,
1

2

(

µ1 −
√

µ2
1 + 4σ2

m

)

]

and

I+ =

[

µn,
1

2

(

µ1 +
√

µ2
1 + 4σ2

1

)

]

.

An extension of this result to the case where C �= O (with C symmet-
ric and positive semidefinite) can be found in Silvester and Wathen (1994),
while the case where A is positive semidefinite with ker(A) ∩ ker(B) = {0}
has been treated in Perugia and Simoncini (2000). These bounds can be used
to obtain estimates for the condition number of A in specific cases. In turn,
these estimates can be used to predict the rate of convergence of iterative
methods like MINRES (Paige and Saunders 1975); see Fischer, Ramage, Sil-
vester and Wathen (1998), Maryška, Rozložńık and Tůma (1996), Wathen,
Fischer and Silvester (1995) and Section 9 below. Eigenvalue bounds are
also important when assessing the (inf-sup) stability of mixed finite element
discretizations; see, e.g., Bitar and Vincent (2000) and Malkus (1981).

Eigenvalues: The general case

In the general case, not much can be said about the eigenvalues of A. How-
ever, in most cases of interest the convex hull of the eigenvalues of A contains
the origin. If we consider for example the case where A �= AT , B1 = B2 = B,
and C = CT (as in the Oseen problem, for example) then we have that the
symmetric part of A is

1

2
(A + AT ) =

[

H BT

B −C

]

,

where H is the symmetric part of A. If H is positive definite and C positive
semidefinite (as in the Oseen problem), then the symmetric part of A is
indefinite and therefore A has eigenvalues on both sides of the imaginary
axis. Figure 3.1(a) displays the eigenvalues of the discrete Oseen operator
obtained from a Q1-P0 finite element approximation of problem (2.7)–(2.9)
with ν = 0.01 and Ω = [0, 1] × [0, 1]. The matrix was generated using the
ifiss software package (Elman, Ramage, Silvester and Wathen 2005b).

Algorithms for solving both standard and generalized eigenvalue problems
for saddle point matrices have been studied in the literature, particularly
for investigating the stability of incompressible flows and in electromagnet-
ism. See Arbenz and Geus (2005), Arbenz, Geus and Adam (2001), Cliffe,
Garratt and Spence (1994), Graham, Spence and Vainikko (2003), Lehoucq
and Salinger (2001) and Meerbergen and Spence (1997).
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An alternative formulation

Eigenvalue distributions such as that shown in Figure 3.1(a) are gener-
ally considered unfavourable for solution by Krylov subspace methods and
indeed, without preconditioning, Krylov subspace methods tend to con-
verge poorly when applied to the corresponding linear system. It has been
observed by several authors (e.g., Benzi and Golub (2004), Fischer et al.
(1998), Polyak (1970) and Sidi (2003), in addition to Glowinski (1984,
page 20) and Quarteroni and Valli (1994, page 304)) that a simple transform-
ation can be used to obtain an equivalent linear system with a coefficient
matrix whose spectrum is entirely contained in the half-plane Re(z) > 0.
(Here we use Re(z) and Im(z) to denote the real and imaginary part of
z ∈ C.) Indeed, assuming that B1 = B2 = B, we can rewrite the saddle
point system in the equivalent form

[

A BT

−B C

] [

x
y

]

=

[

f
−g

]

, or Âu = b̂. (3.10)

Note that Â = JA where

J =

[

In O
O −Im

]

(3.11)

and therefore Â is nonsingular if A is. Moreover, we have the following
result.
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(a) indefinite form of A (b) positive definite form of A

Figure 3.1. Eigenvalues for two-dimensional Oseen problem
(leaky lid-driven cavity) using Q1-P0 discretization.
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Theorem 3.6. Let Â be the coefficient matrix in (3.10). Assume H =
1
2(A + AT ) is positive semidefinite, B1 = B2 = B has full rank, C = CT

is positive semidefinite, and ker(H) ∩ ker(B) = {0}. Let σ(Â) denote the

spectrum of Â. Then

(i) Â is positive semidefinite, in the sense that vT Âv ≥ 0 for all v ∈ R
n+m,

(ii) Â is positive semistable; that is, the eigenvalues of Â have nonnegative

real part: Re(λ) ≥ 0 for all λ ∈ σ(Â),

(iii) if in addition H = 1
2(A + AT ) is positive definite, then Â is positive

stable: Re(λ) > 0 for all λ ∈ σ(Â).

Proof. To prove (i) we observe that for any v ∈ R
n+m we have vT Âv =

vTHv, where

H ≡ 1
2(Â + ÂT ) =

[

H O
O C

]

is the symmetric part of Â. Clearly H is positive semidefinite, so vT Âv ≥ 0.
To prove (ii), let (λ, v) be an eigenpair of A, with ‖v‖2 = 1. Then v∗Âv =

λ and (v∗Âv)∗ = v∗ÂT v = λ̄. Therefore 1
2v∗(Â + ÂT )v = λ+λ̄

2 = Re(λ). To
conclude the proof, observe that

v∗(Â + ÂT )v = Re(v)T (Â + ÂT )Re(v) + Im(v)T (Â + ÂT )Im(v),

a real nonnegative quantity.

To prove (iii), assume (λ, v) is an eigenpair of Â with v =
[

x
y

]

. Then

Re(λ) = x∗Hx + y∗Cy

= Re(x)T HRe(x) + Im(x)T HIm(x)

+ Re(y)T CRe(y) + Im(y)T CIm(y).

This quantity is nonnegative, and it can be zero only if x = 0 (since H is
assumed to be positive definite) and Cy = 0. But if x = 0 then from the

first equation in the system Âv = λv we get BT y = 0, hence y = 0 since
BT has full column rank. Hence v = 0, a contradiction.

Figure 3.1(b) displays the eigenvalues of the matrix Â corresponding to
the same Oseen problem as before. As can be seen, all the eigenvalues
lie in the right half-plane. However, such distribution of eigenvalues is not
necessarily more favourable for Krylov subspace methods, and in fact Krylov
subspace methods without preconditioning perform just as poorly as they
do on the original problem. We revisit this topic repeatedly in the course
of this survey.
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When A = AT and C = CT the matrix A is symmetric indefinite whereas
Â is nonsymmetric positive (semi-)definite. Moreover, Â satisfies

J Â = ÂT J , (3.12)

with J defined as in (3.11); that is, Â is J -symmetric (or pseudosymmetric:

see Mackey, Mackey and Tisseur (2003)). In other words, Â is symmetric
with respect to the indefinite inner product defined on R

n+m by [v, w] ≡
wTJ v. Conversely, any J -symmetric matrix is of the form

[

A BT

−B C

]

for

some A ∈ R
n×n, B ∈ R

m×n, and C ∈ R
m×m with A = AT and C = CT .

Note that the set of all J -symmetric matrices

J =

{ [

A BT

−B C

]

∣

∣

∣
A = AT ∈ R

n×n, B ∈ R
m×n, C = CT ∈ R

m×m

}

is closed under matrix addition and under the so-called Jordan product,
defined as

F · G ≡ 1

2
(F G + G F).

The triple (J, +, ·) is a non-associative, commutative algebra over the reals.
It is known as the Jordan algebra associated with the real Lie group
O(n, m, R) of J -orthogonal (or pseudo-orthogonal) matrices, i.e., the group
of all matrices Q ∈ R

n+m that satisfy the condition QT J Q = J ; see Am-
mar, Mehl and Mehrmann (1999) and Mackey et al. (2003). The spectral
theory of these matrices has been investigated by several authors. A Schur-
like decomposition for matrices in J has been given in Ammar et al. (1999,
Theorem 8), and properties of invariant subspaces of J -symmetric matrices
have been studied in Gohberg, Lancaster and Rodman (1983).

Besides being mathematically appealing, these algebraic properties have
implications from the point of view of iterative methods: see for example
Freund, Golub and Nachtigal (1992, page 80), where it is shown how J -
symmetry can be exploited to develop transpose-free variants of basic Krylov
methods using short recurrences. This is of course not enough to justify
using the nonsymmetric form Â when A is symmetric, since in this case
one may as well use a symmetric Krylov solver on the original (symmet-
ric) formulation; see Fischer and Peherstorfer (2001), Fischer et al. (1998)
and Section 9 below. Nevertheless, there are some advantages in using the
transformed linear system Âv = b̂ instead of the original one, especially
when certain preconditioners are used; see Benzi and Golub (2004), Sidi
(2003) and Section 10.3 below. It can be shown that when A and C are

symmetric, at most 2m of the n + m eigenvalues of Â can have a nonzero
imaginary part (Simoncini 2004b); furthermore, in some important special

cases it turns out that the eigenvalues of Â are all real and positive. This
implies the existence of a nonstandard inner product on R

n+m with respect
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to which Â is symmetric positive definite, a desirable property from the
point of view of iterative methods. The following result gives a sufficient
condition (easily checked in many cases) for the eigenvalues of Â to be real.

Theorem 3.7. Assume that A is symmetric positive definite, B1 = B2 =
B has full rank, and C = O. Let S = BA−1BT , and let µn denote the
smallest eigenvalue of A. If µn ≥ 4‖S‖2, then all the eigenvalues of the

matrix Â in (3.10) are real and positive.

Proof. See Simoncini and Benzi (2005).

We note that the conditions expressed in Theorem 3.7 are satisfied, for in-
stance, for the stationary Stokes problem under a variety of finite differences
and finite element discretization schemes.

A more detailed analysis is available in the special situation that A = ηI,
where η > 0 is a positive scaling parameter, B1 = B2 = B, and C = O.
Denote the resulting usual saddle point matrix by A+

η , and the alternative

formulation with negative (2,1) block by A−
η , i.e.,

A±
η =

[

ηI BT

±B O

]

. (3.13)

The following theorem characterizes the influence of the choice of + or −
as well as η on the eigenvalues of the matrices A±

η .

Theorem 3.8. Suppose that the matrix B has rank m − r, and denote
the nonzero singular values of B by σ1 ≥ · · · ≥ σm−r.

1 The n + m eigenvalues of A+
η in (3.13) are given by

(i) zero with multiplicity r,

(ii) η with multiplicity n − m + r,

(iii) 1
2

(

η ±
√

4σ2
k + η2

)

for k = 1, . . . , m − r.

2 Furthermore, if σ1 ≥ · · · ≥ σt > η
2 ≥ σt+1 ≥ · · · ≥ σm−r, then the

n + m eigenvalues of A−
η in (3.13) are given by

(i) zero with multiplicity r,

(ii) η with multiplicity n − m + r,

(iii) 1
2

(

η ±
√

η2 − 4σ2
k

)

for k = t + 1, . . . , m − r,

(iv) 1
2

(

η ± i
√

4σ2
k − η2

)

for k = 1, . . . , t.

Proof. See Fischer et al. (1998, Section 2).

This result shows that the eigenvalues of the symmetric indefinite matrix
A+

η (except for the multiple eigenvalues zero and η) always lie in
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two intervals symmetric about the point η/2. Changing η only leads to
a scaling of these two intervals. On the other hand, the choice of η has a
significant effect on the eigenvalues of the nonsymmetric matrix A−

η . For

example, if η > 2σ1, then all eigenvalues of A−
η are real, while for η < 2σm−r

all eigenvalues (except zero and η) are purely imaginary. For intermediate
values of η, the eigenvalues (except zero and η) form a cross in the complex
plane with midpoint η/2. One is immediately tempted to determine what
eigenvalue distribution is the most favourable for the solution by Krylov
subspace methods; see Sidi (2003). We discuss this topic in Section 10.1,
where the matrices A±

η arise naturally as a result of block diagonal pre-
conditioning of a symmetric saddle point matrix A with A positive definite
and C = O.

3.5. Conditioning issues

Saddle point systems that arise in practice can be very poorly conditioned,
and care must be taken when developing and applying solution algorithms.
It turns out that in some cases the special structure of the saddle point
matrix A can be exploited to avoid or mitigate the effect of ill-conditioning.
Moreover, the structure of the right-hand side b in (1.1) also plays a role.
Indeed, it is frequently the case that either f or g in (1.1) is zero. For
instance, f = 0 in structural analysis (in the absence of dilation) and in
mixed formulations of Poisson’s equation, while g = 0 in incompressible
flow problems and weighted least-squares. So if g (say) is zero, the (1, 2)
and (2, 2) blocks in A−1 (see (3.4) and (3.8)) have no influence on the
solution u = A−1b. In particular, any ill-conditioning that may be present
in these blocks will not affect the solution, an important fact that should
be taken into account in the development of robust solution algorithms; see
Duff (1994), Gansterer et al. (2003) and Vavasis (1994).

Let us consider, for the sake of simplicity, a standard saddle point problem
where A = AT is positive definite, B1 = B2 = B has full rank, and C = O.
In this case A is symmetric and its spectral condition number is given by

κ (A) =
max |λ(A)|
min |λ(A)| .

From Theorem 3.5 one can see that the condition number of A grows un-
boundedly as either µn = λmin(A) or σm = σmin(B) goes to zero (assuming
that λmax(A) and σmax(B) are kept constant). For mixed finite element
formulations of elliptic PDEs, both µn and σm go to zero as h, the mesh
size parameter, goes to zero, and the condition number of A grows like
O(h−p) for some positive value of p; see, e.g., Maryška et al. (1996), Wa-
then et al. (1995). This growth of the condition number of A means that
the rate of convergence of most iterative solvers (like Krylov subspace meth-
ods) deteriorates as the problem size increases. As discussed in Section 10,
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preconditioning may be used to reduce or even eliminate this dependency
on h in many cases. Similar considerations apply to nonsymmetric saddle
point problems.

A different type of ill-conditioning is encountered in saddle point systems
from interior point methods. Consider, for instance, the case of linear pro-
gramming, where the (1, 1) block A is diagonal. As the iterates generated
by the interior point algorithm approach the solution, many of the entries
of A tend to zero or infinity, and thus A becomes very ill-conditioned (the
constraint matrix B remains constant throughout the iteration process). In
particular, the norm of the inverse Schur complement S−1 = −(BA−1BT )−1

goes to infinity. However, Stewart (1989) and Todd (1990) (see also Forsgren
(1996)) have shown that the norm of the matrices X = S−1BA−1 (a
weighted pseudo-inverse of BT ) and BT X (the associated oblique projector
onto the column space of BT ) are bounded by numbers that are independent
of A. This important observation has been exploited in a series of papers
by Vavasis and collaborators (Bobrovnikova and Vavasis 2001, Hough and
Vavasis 1997, Vavasis 1994, Vavasis 1996) to develop stable algorithms for
certain saddle point problems with a severely ill-conditioned (1, 1) block A.

When using direct methods based on triangular factorization, Björck
(1996, Sections 2.5.3 and 4.4.2) has noted the importance of scaling the
(1, 1) block A by a positive scalar quantity. Suitable tuning of this scaling
factor can be interpreted as a form of preconditioning and has a dramatic
impact on the accuracy attainable by sparse direct solvers (Arioli, Duff and
De Rijk 1989, Duff 1994). On the other hand, such scaling seems to have
little or no effect on the convergence behaviour of Krylov subspace methods
(Fischer et al. 1998).

Another possible approach for dealing with an ill-conditioned or even
singular (1, 1) block A is the augmented Lagrangian method; see Fortin
and Glowinski (1983), Glowinski and Le Tallec (1989), Hestenes (1969),
Powell (1969) and the more general treatment in Golub and Greif (2003)
and Greif et al. (2005). Here we assume that A = AT (possibly singular),
B1 = B2 = B has full rank, and C = O. The idea is to replace the saddle
point system (1.3) with the equivalent one

[

A + BT WB BT

B O

] [

x
y

]

=

[

f + BT Wg
g

]

. (3.14)

The m × m matrix W , to be suitably determined, is symmetric positive
semidefinite. The simplest choice is to take W = γI (γ > 0). In this
case the (1, 1) block in (3.14) is nonsingular, and indeed positive definite,
provided that A is positive definite on ker(B). The goal is to choose W so
that system (3.14) is easier to solve than the original one, particularly when
using iterative methods. When W = γI is used, the choice γ = ‖A‖2/‖B‖2

2

has been found to perform well in practice, in the sense that the condition
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number of both the (1, 1) block and of the whole coefficient matrix in (3.14)
are approximately minimized. This choice also results in rapid convergence
of classical iterative schemes like the method of multipliers; see Golub and
Greif (2003) and Section 8.2 below.

The conditioning of equality-constrained and weighted least squares prob-
lems has been studied in depth by several authors; see Gulliksson, Jin and
Wei (2002), Wei (1992b) and the references therein.

Conditioning properties of quasidefinite and saddle-point matrices arising
from interior-point methods in linear programming have also been investig-
ated in George and Ikramov (2000) and Korzak (1999). Finally, we mention
that a numerical validation method for verifying the accuracy of approxim-
ate solutions of symmetric saddle point problems has been presented in
Chen and Hashimoto (2003).

4. Overview of solution algorithms

Besides the usual (and somewhat simplistic) distinction between direct and
iterative methods, solution algorithms for generalized saddle point problems
can be subdivided into two broad categories, which we will call segregated
and coupled (or ‘all at once’) methods. Segregated methods compute the
two unknown vectors, x and y, separately; in some cases it is x to be com-
puted first, in others it is y. This approach involves the solution of two
linear systems of size smaller than n + m (called reduced systems), one for
each of x and y; in some cases a reduced system for an intermediate quantity
is solved. Segregated methods can be either direct or iterative, or involve
a combination of the two; for example, one of the reduced systems could
be solved by a direct method and the other iteratively. The main repres-
entatives of the segregated approach are the Schur complement reduction
method, which is based on a block LU factorization of A, and the null space
method, which relies on a basis for the null space for the constraints.

Coupled methods, on the other hand, deal with the system (1.1) as a
whole, computing x and y (or approximations to them) simultaneously and
without making explicit use of reduced systems. These methods include
both direct solvers based on triangular factorizations of the global matrix A,
and iterative algorithms like Krylov subspace methods applied to the entire
system (1.1), typically with some form of preconditioning. As we shall see,
preconditioning tends to blur the distinction between direct and iterative
solvers, and also that between segregated and coupled schemes. This is
because direct solvers may be used to construct preconditioners, and also
because preconditioners for coupled iterative schemes are frequently based
on segregated methods.

In the next sections we review a number of solution methods, starting with
direct solvers and continuing with stationary iterative methods, Krylov sub-
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space solvers, and preconditioners. We also include a brief discussion of mul-
tilevel methods, including multigrid and Schwarz-type algorithms. Within
each group, we discuss segregated as well as coupled schemes and the inter-
play between them. It is simply not possible to cover every method that has
been described in the literature; instead, we have striven to include, besides
all of the ‘classical’ algorithms, those among the more recent methods that
appear to be the most widely applicable and effective.

5. Schur complement reduction

Consider the saddle point system (1.1), or

Ax + BT
1 y = f, B2x − Cy = g.

We assume that both A and A are nonsingular; by (3.1) this implies that
S = −(C + B2A

−1BT
1 ) is also nonsingular. Pre-multiplying both sides of

the first equation by B2A
−1, we obtain

B2x + B2A
−1BT

1 y = B2A
−1f.

Using B2x = g + Cy and rearranging, we find

(B2A
−1BT

1 + C) y = B2A
−1f − g, (5.1)

a reduced system of order m for y involving the (negative) Schur complement
−S = B2A

−1BT
1 + C. Note that unless f = 0, forming the right-hand side

of (5.1) requires solving a linear system of the form Av = f .
Once y∗ has been computed from (5.1), x∗ can be obtained by solving

Ax = f − BT
1 y∗, (5.2)

a reduced system of order n for x involving the (1,1) block, A. Note that
this is just block Gaussian elimination applied to (1.1). Indeed, using the
block LU factorization (3.3) we get the transformed system

[

I O
−B2A

−1 I

] [

A BT
1

B2 −C

] [

x
y

]

=

[

I O
−B2A

−1 I

] [

f
g

]

,

that is,
[

A BT
1

O S

] [

x
y

]

=

[

f
g − B2A

−1f

]

.

Solving this block upper triangular system by block backsubstitution leads
to the two reduced systems (5.1) and (5.2) for y and x. These systems
can be solved either directly or iteratively. In the important special case
where A and −S are symmetric positive definite, highly reliable methods
such as Cholesky factorization or the conjugate gradient (CG) method can
be applied.
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The solution strategy outlined above is commonly used in the comple-
mentary energy formulation of structural mechanics, where it is known as
the displacement method, since the vector of nodal displacements y is com-
puted first; the reduction to the Schur complement system (5.1) is known as
static condensation, and the Schur complement itself is called the assembled
stiffness matrix (McGuire and Gallagher 1979). In electrical engineering it
is known as the nodal analysis method, and in optimization as the range-
space method (Vavasis 1994). In all these applications, A is symmetric
positive (semi)definite, B1 = B2, and C = O.

This approach is attractive if the order m of the reduced system (5.1) is
small and if linear systems with coefficient matrix A can be solved efficiently.
The main disadvantages are the need for A to be nonsingular, and the fact
that the Schur complement S = −(BA−1BT +C) may be completely full and
too expensive to compute or to factor. Numerical instabilities may also be a
concern when forming S, especially when A is ill-conditioned (Vavasis 1994).
Dense Schur complements occur in the case of Stokes and Oseen problems,
where A corresponds to a (vector) differential operator. Other examples
include problems from optimization when B contains one or more dense
columns. Note, however, that when B contains no dense columns and A−1

is sparse (e.g., A is diagonal or block diagonal with small blocks), then S is
usually quite sparse. In this case efficient (graph-based) algorithms can be
used to form S, and it is sometimes possible to apply the Schur complement
reduction recursively and in a way that preserves sparsity through several
levels, in the sense that the number of nonzeros to be stored remains nearly
constant throughout the successive reduction steps; see Maryška, Rozložńık
and Tůma (2000) for an example arising from the solution of groundwater
flow problems.

In cases where A is positive semidefinite and singular, Schur complement
reduction methods may still be applied by making use of augmented Lagran-
gian techniques (3.14), which replace the original saddle point system with
an equivalent one with a nonsingular (1,1) block. If S is too expensive to
form or factor, Schur complement reduction can still be applied by solving
(5.1) by iterative methods that do not need access to individual entries of
S, but only need S in the form of matrix-vector products

p = −Sy = (B2A
−1BT

1 + C)y.

The action of S on y can be computed by means of matrix-vector products
with BT

1 , B2 and C and by solving a linear system with matrix A. If the lat-
ter can be performed efficiently and the iteration converges sufficiently fast,
this is a viable option. The Schur complement system (5.1), however, may
be rather ill-conditioned, in which case preconditioning will be required.
Preconditioning the system (5.1) is nontrivial when S is not explicitly avail-
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able. Some options are discussed in Section 10.1 below, in the context of
block preconditioners.

6. Null space methods

In this section we assume that B1 = B2 = B has full rank and C = O. Fur-
thermore, we assume that ker(H)∩ker(B) = {0}, where H is the symmetric
part of A. The saddle point system is then

Ax + BT y = f, Bx = g.

The null space method assumes that the following are available:

(1) a particular solution x̂ of B x = g;

(2) a matrix Z ∈ R
n×(n−m) such that BZ = O, that is, range(Z) = ker(B)

(the columns of Z span the null space of B).

Then the solution set of Bx = g is described by x = Zv + x̂ as v ranges in
R

n−m. Substituting x = Zv + x̂ in Ax + BT y = f , we obtain A(Zv + x̂) =
f−BT y. Pre-multiplying by the full-rank matrix ZT and using ZT BT = O,
we get

ZT AZ v = ZT (f − Ax̂), (6.1)

a reduced system of order n−m for the auxiliary unknown v. This system is
nonsingular under our assumptions. Once the solution v∗ has been obtained,
we set x∗ = Zv∗ + x̂; finally, y∗ can be obtained by solving

BBT y = B(f − Ax∗), (6.2)

a reduced system of order m with a symmetric positive definite coefficient
matrix BBT . Of course, (6.2) is just the normal equations for the overde-
termined system BT y = f − Ax∗, or

min
y

‖(f − Ax∗) − BT y‖2,

which could be solved, e.g., by LSQR (Paige and Saunders 1982) or a sparse
QR factorization (Matstoms 1994). Just as the Schur complement reduction
method can be related to expression (3.4) for A−1, the null space method is
related to the alternative expression (3.8). It is interesting to observe that
when A is invertible, the null space method is just the Schur complement
reduction method applied to the dual saddle point problem

[

A−1 Z
ZT O

] [

w
v

]

=

[

−x̂
−ZT f

]

.

This strategy subsumes a whole family of null space methods, which differ
primarily in the way the matrix Z (often called a null basis) is computed;
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see the discussion below. Null space methods are quite popular in optimiz-
ation, where they are usually referred to as reduced Hessian methods; see
Coleman (1984), Fletcher (1987), Gill et al. (1981), Nocedal and Wright
(1999) and Wolfe (1962). In this setting the matrix A is the (n × n) Hes-
sian of the function to be minimized subject to the constraint Bx = g, and
ZT AZ is the reduced ((n−m)× (n−m)) Hessian, obtained by elimination
of the constraints. When Z has orthonormal columns, the reduced system
(6.1) can also be seen as a projection of the problem onto the constraint
set. The null space approach has been extensively used in structural mech-
anics where it is known under the name of force method, because x, the
vector of internal forces, is computed first; see, e.g., Berry and Plemmons
(1987), Heath, Plemmons and Ward (1984), Kaneko, Lawo and Thierauf
(1982), Kaneko and Plemmons (1984), Plemmons and White (1990) and
Robinson (1973). Other application areas where the null space approach is
used include fluid mechanics (under the somewhat misleading name of dual
variable method, see Amit, Hall and Porsching (1981), Arioli and Manzini
(2002, 2003), Arioli, Maryška, Rozložńık and Tůma (2001), Gustafson and
Hartmann (1983), Hall (1985), Sarin and Sameh (1998)) and electrical en-
gineering (under the name of loop analysis; see Chua et al. (1987), Strang
(1986), Tropper (1962), Vavasis (1994)).

The null space method has the advantage of not requiring A−1. In fact,
the method is applicable even when A is singular, as long as the condition
ker(H) ∩ ker(B) = {0} is satisfied. The null space method is often used in
applications that require the solution of a sequence of saddle point systems
of the type

[

Ak BT

B O

] [

x
y

]

=

[

fk

gk

]

, k = 1, 2, . . . ,

where the Ak submatrix changes with k while B remains fixed. This situ-
ations arises, for instance, in the solution of unsteady fluid flow problems,
and in the reanalysis of structures in computational mechanics; see, e.g.,
Batt and Gellin (1985), Hall (1985) and Plemmons and White (1990). An-
other example is the analysis of resistive networks with a fixed connectivity
and different values of the resistances. In all these cases the null basis matrix
Z needs to be computed only once.

Null space methods are especially attractive when n − m is small. If A
is symmetric and positive semidefinite, then ZT AZ is symmetric positive
definite and efficient solvers can be used to solve the reduced system (6.1).
If Z is sparse then it may be possible to form and factor ZT AZ explicitly,
otherwise iterative methods must be used, such as conjugate gradients or
others.

The method is less attractive if n − m is large, and cannot be applied
if C �= O. The main difficulty, however, is represented by the need for
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a null basis Z for B. We note that computing a particular solution for
Bx = g is usually not a difficult problem, and it can be obtained as a
byproduct of the computations necessary to obtain Z. In the case where g =
0 (arising for instance from the divergence-free condition in incompressible
flow problems), the trivial solution x̂ = 0 will do. Hence, the main issue
is the computation of a null basis Z. There are a number of methods that
one can use, at least in principle, to this end. In the large and sparse case,
graph-based methods invariably play a major role.

Let P denote a permutation matrix chosen so that BP =
[

Bb Bn

]

,
where Bb is m × m and nonsingular (this is always possible, since B is of
rank m). Then it is straightforward to verify that the matrix

Z = P

[

−B−1
b Bn

I

]

, (6.3)

where I denotes the identity matrix of order n − m, is a null basis for B.
This approach goes back to Wolfe (1962); a basis of the form (6.3) is called a
fundamental basis. Quite often, the matrix B−1

b Bn is not formed explicitly;
rather, an LU factorization of Bb is computed and used to perform opera-
tions involving B−1

b . For instance, if an iterative method like CG is used to
solve (6.1), then matrix-vector products with ZT AZ can be performed by
means of forward and backsubstitutions with the triangular factors of Bb,
in addition to matrix-vector products with Bn, BT

n , and A.
Since there are in principle many candidate submatrices Bb, (i.e., many

permutation matrices P ) it is natural to ask whether one can find a matrix
Bb with certain desirable properties. Ideally, one would like Bb to be easy to
factor, well-conditioned, and to satisfy certain sparsity requirements (either
in Bb, or in its factors, or in B−1

b Bn). Another desirable property could be
some kind of diagonal dominance. In the literature, this is known as the
nice basis problem. This is a very difficult problem in general. Consider
first the sparsity requirement. Unfortunately, not all sparse matrices admit
a sparse null basis. To see this, consider the matrix B =

[

I e
]

, where
e is the column vector all of whose components are equal to 1; clearly,
there is no explicit sparse representation for its one-dimensional null space
(Gilbert and Heath 1987). Moreover, even if a sparse null basis exists, the
problem of computing a null basis Z (fundamental or not) with minimal
number of nonzero entries has been shown to be NP-hard (Coleman and
Pothen 1986, Pothen 1984). In spite of this, there are important situations
where a sparse null basis exists and can be explicitly obtained. As we shall
see, there may be no need to explicitly factor or invert any submatrix of B.

An example of this is Kirchhoff’s classical method for finding the currents
in a resistive electrical network (Kirchhoff 1847). Our discussion closely
follows Strang (1986). For this problem, B is just the node–edge incidence
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matrix of the network, or directed graph, describing the connectivity of the
network. More precisely, if the network consists of m+1 nodes and n edges,
let B0 be the (m+1)×n matrix with entries bij given by −1 if edge j starts
at node i and by +1 if edge j ends at node i; of course, bij = 0 if edge j does
not meet node i. Hence, B0 behaves as a discrete divergence operator on
the network: each column contains precisely two nonzero entries, one equal
to +1 and the other equal to −1. Matrix B0 can be shown to be of rank
m; note that BT

0 e = 0. A full-rank matrix B can be obtained by dropping
the last row of B0; that is, by ‘grounding’ the last node in the network: see
Strang (1986, page 112).

A null space for B can be found using Kirchhoff’s Voltage Law, which
implies that the sum of the voltage drops around each closed loop in the
network must be zero. In other words, for current flowing around a loop
there is no buildup of charge. In matrix terms, each loop current is a solution
to By = 0. Since B has full rank, there are exactly n−m independent loop
currents, denoted by z1, z2, . . . zn−m. The loop currents can be determined
by a procedure due to Kirchhoff, which consists of the following steps.

(1) Find a spanning tree for the network (graph); this is a connected sub-
graph consisting of the m+1 nodes and just m edges, so that between
any two nodes there is precisely one path, and there are no loops. As
shown by Kirchhoff, there are exactly t = detBBT spanning trees in
the network (which is assumed to be connected).

(2) Once a spanning tree has been picked, the remaining n−m edges can
be used to construct the n − m loop currents by noticing that adding
any of these edges to the spanning tree will create a loop. For each of
these fundamental loops we construct the corresponding column zi of
Z by setting the jth entry equal to ±1 if edge j belongs to the loop,
and equal to 0 otherwise; the choice of sign specifies the orientation of
the edge.

The resulting Z = [z1, z2, . . . , zn−m] is then called an edge–loop matrix,
and is a basis for the null space of B. As a simple example, consider the
directed graph of Figure 6.1, with the spanning tree on the right. In this
example, m = 4 and n = 7. The node–edge incidence matrix B0 for this
graph is

B0 =













−1 −1 0 −1 0 0 0
0 1 1 0 0 0 0
1 0 0 0 −1 0 −1
0 0 −1 1 0 1 1
0 0 0 0 1 −1 0













.

Note that rank(B0) = 4; the matrix B obtained from B0 by grounding
node 5 (i.e., by dropping the last row of B0) has full row rank, equal to 4.
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Figure 6.1. A directed graph with one of its spanning trees.

Consider now the spanning tree on the right of Figure 6.1. By adding the
remaining edges (numbered 2, 4 and 7) to the tree we obtain, respectively,
the following loops:

(1) 1 → 3 → 5 → 4 → 2 → 1, for the edge sequence (1, 5, 6, 3, −2);

(2) 1 → 3 → 5 → 4 →1, for the edge sequence (1, 5, 6,−4);

(3) 3 → 5 → 4 → 3, for the edge sequence (5, 6, −7).

Note that an edge was given the negative sign whenever its orientation
required it. It follows that the edge–loop matrix for the network under
consideration is

Z =





















1 1 0
−1 0 0

1 0 0
0 −1 0
1 1 1
1 1 1
0 0 −1





















.

and it is straightforward to check that BZ = O.
It turns out that this elegant method is fairly general and can be applied

to other problems besides the analysis of resistive networks. An important
example is fluid dynamics, in particular the Darcy, Stokes and Oseen prob-
lems, where B represents a discrete divergence operator. In this case the
null basis Z is called a solenoidal basis, since the columns of Z span the
subspace of all discrete solenoidal (i.e., divergence-free) functions. In other
words, C can be regarded as a discrete curl operator (Chang, Giraldo and
Perot 2002). In the case of finite differences on a regular grid, B is just
the incidence matrix of a directed graph associated with the grid, and the
cycles (loops) in this graph can be used to construct a sparse Z; see Amit
et al. (1981), Burkardt, Hall and Porsching (1986), Chang et al. (2002), Hall
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(1985), Sameh and Sarin (2002) and Sarin and Sameh (1998). Note that
in this context, solving the system (6.2) for y amounts to solving a Poisson
equation. This methodology is not restricted to simple finite difference dis-
cretizations or to structured grids; see Alotto and Perugia (1999), Arioli and
Manzini (2002, 2003), Arioli et al. (2001), Hall, Cavendish and Frey (1991),
Sarin (1997) and Sarin and Sameh (2003) for applications to a variety of
discretization methods on possibly unstructured grids.

We note that no floating-point arithmetic is needed to form Z. Further-
more, the sparsity pattern of the matrix ZT AZ can be easily determined
and the matrix ZT AZ assembled rather cheaply, as long as it is sufficiently
sparse. The sparsity will depend on the particular spanning tree used to
form Z. Finding a tree that minimizes the number of nonzeros in Z is
equivalent to finding the tree for which the sum of all the lengths of the
fundamental loops is minimal, which is an NP-hard problem. Nevertheless,
many efficient heuristics have been developed; see Tarjan (1983) for the
fundamental concepts and algorithms. The relative size of n, m and n − m
depends on the discretization scheme used, and on whether the underlying
fluid flow problem is posed in 2D or 3D. For lowest-order discretizations in
2D, n−m and m are comparable, whereas n−m is much larger than m in
3D or for certain mixed finite element discretizations. If sparse direct solv-
ers are used to solve for the dual variable in (6.1), this makes the null space
approach not viable in 3D. In this case iterative solvers must be used, and
the spectral properties of ZT AZ determine the convergence rate. When the
matrix ZT AZ is not formed explicitly, finding appropriate preconditioners
for it requires some cleverness. Some work in this direction can be found in
Coleman and Verma (2001) and in Nash and Sofer (1996) for constrained
optimization problems. See also Saint-Georges, Notay and Warzée (1998)
for closely related work in the context of constrained finite element analyses,
and Barlow, Nichols and Plemmons (1988), James (1992) and James and
Plemmons (1990) for earlier work on the use of preconditioned CG methods
in the context of implicit null space algorithms – i.e., null space algorithms
in which the matrix Z is not formed explicitly.

For many mixed finite element formulations of second-order elliptic prob-
lems, A is symmetric positive definite and has condition number bounded
independently of the discretization parameter h. In this case, fast CG con-
vergence can be obtained by using incomplete factorization preconditioners
based on ZT Z: see Alotto and Perugia (1999). Point and block Jacobi pre-
conditioners constructed without explicitly forming ZT AZ have been tested
in the finite element solution of the potential fluid flow problem (2.18)–(2.20)
in Arioli and Manzini (2003).

Null space methods have been used for a long time in structural optimiz-
ation. Some relevant references in this area include Cassell, Henderson and
Kaveh (1974), Henderson and Maunder (1969), Kaveh (1979, 1992, 2004)
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and Pothen (1989). In this case B is an equilibrium matrix associated with
Newton’s Third Law (i.e., action and reaction are equal and opposite). Now
B is no longer an incidence matrix, but many of the above-described con-
cepts can be extended to this more general situation. Algorithms to find
a null basis for B developed by Coleman and Pothen (1987) consist of two
phases, a combinatorial one and a numerical one. In the first phase, a max-
imum matching in the bipartite graph of B is used to locate the nonzero
entries in the null basis. In the second phase (not needed when B is an
incidence matrix), the numerical values of the nonzero entries in the basis
are computed by solving certain systems of equations.

When additional structure, such as bandedness, is present in B, it is
usually possible to exploit it so as to develop more efficient algorithms.
Banded equilibrium matrices often arise in structural engineering. The so-
called turnback algorithm (Topcu 1979) can be used to compute a banded
Z; see also Kaneko et al. (1982), where an interpretation of the turnback
algorithm in terms of matrix factorizations is given, and Gilbert and Heath
(1987) for additional methods motivated by the turnback algorithm. We
also mention Plemmons and White (1990) for approaches based on different
graph-theoretic concepts with a focus on parallel implementation aspects,
and Chow, Manteuffel, Tong and Wallin (2003) for another example of how
structure in the constraints can be exploited to find a null basis resulting in
a sparse reduced matrix ZT AZ.

One problem that may occur in the null space method is that a computed
null basis matrix Z may be very ill-conditioned, even numerically rank de-
ficient. One way to avoid this problem is to compute a Z with orthonormal
columns, which would be optimally conditioned. An orthonormal null basis
for B can be computed by means of the QR factorization as follows. Let

BT = Q

[

R
O

]

,

where Q is n× n orthogonal and R is m×m, upper triangular and nonsin-
gular. Then the first m columns of Q form an orthonormal basis for
range(BT ) and the remaining n − m columns form an orthonormal basis
for range(BT )⊥ = ker(B). Therefore, if qi denotes the ith column of Q,
then

Z =
[

qm+1 qm+2 . . . qn

]

is the desired matrix. Of course, in the sparse case special ordering tech-
niques must be utilized in order to maintain sparsity in Z (Amestoy, Duff
and Puglisi 1996, Matstoms 1994). The fact that the columns of Z are ortho-
normal is advantageous not only from the point of view of conditioning, but
also for other reasons. For example, in the computation of thin-plate splines
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it is often required to solve saddle point systems of the form
[

A + ρI BT

B O

] [

x
y

]

=

[

f
0

]

, (6.4)

where A is symmetric, ρ > 0 is a smoothing parameter, and B has full
row rank; see Sibson and Stone (1991). Usually, problem (6.4) needs to be
solved for several values of ρ. If Z is a null basis matrix with orthonormal
columns, the coefficient matrix in the reduced system (6.1) is ZT (A+ρI)Z =
ZT AZ + ρI. If n − m is so small that a spectral decomposition ZT AZ =
UΛUT of ZT AZ can be computed, then for any ρ we have ZT (A + ρI)Z =
U(Λ + ρI)UT and the reduced linear systems can be solved efficiently.

One further advantage of having an orthonormal null basis is that the re-
duced system (6.1) is guaranteed to be well-conditioned if A is. For example,
if A is symmetric positive definite and has condition number bounded in-
dependently of mesh size, the same is true of ZT AZ and therefore the CG
method applied to (6.1) converges in a number of iterations independent of
mesh size, even without preconditioning; see Arioli and Manzini (2002) for
an example from groundwater flow computations. This property may fail to
hold if Z does not have orthonormal columns, generally speaking; see Arioli
and Manzini (2003) and Perugia and Simoncini (2000).

Sparse orthogonal schemes have been developed by Berry, Heath, Kaneko,
Lawo, Plemmons and Ward (1985), Gilbert and Heath (1987), Heath et al.
(1984) and Kaneko and Plemmons (1984) in the context of structural op-
timization, and by Arioli (2000), Arioli and Manzini (2002) and Arioli et al.
(2001) in the context of mixed-hybrid finite element formulations of the po-
tential fluid flow problem (2.18)–(2.20). A parallel orthogonal null space
scheme has been presented by Psiaki and Park (1995) for trajectory optim-
ization problems in quadratic dynamic programming. One limitation of the
QR factorization approach is that the null bases obtained by this method
are often rather dense compared to those obtained by other sparse schemes;
indeed, the sparsest orthogonal null basis may be considerably less sparse
than an arbitrary null basis: see Coleman and Pothen (1987) and Gilbert
and Heath (1987). Hence, there is a trade-off between good conditioning
properties and sparsity.

Error analyses of various null space methods have been carried out by
Cox and Higham (1999a) for dense problems, and by Arioli and Baldini
(2001) for the sparse case. See further Barlow (1988), Barlow and Handy
(1988), Björck and Paige (1994), Cox and Higham (1999b), Fletcher and
Johnson (1997), Gulliksson (1994), Gulliksson and Wedin (1992), Hough
and Vavasis (1997), Sun (1999) and Vavasis (1994) for stable implementa-
tions and other numerical stability aspects of algorithms for saddle point
problems, in particular for equality-constrained and weighted least squares
problems. Finally, appropriate stopping criteria for the CG method applied
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to the reduced system (6.1) in a finite element context have been given by
Arioli and Manzini (2002).

7. Coupled direct solvers

In this section we give a brief overview of direct methods based on trian-
gular factorizations of A. Our discussion is limited to the symmetric case
(A = AT , B1 = B2 and C = CT , possibly zero). As far as we know, no
specialized direct solver exists for nonsymmetric saddle point problems. Al-
though such problems are often structurally symmetric, in the sense that
the nonzero pattern of A is symmetric, some form of numerical pivoting
is almost certainly going to be needed for stability reasons; such pivoting
would in turn destroy symmetry. See Duff, Erisman and Reid (1986) for a
treatment of direct methods for general sparse matrices.

There are several ways to perform Gaussian elimination on a symmetric,
possibly indefinite matrix in a way that exploits (and preserves) symmetry.
A factorization of the form

A = QTLDLTQ, (7.1)

where Q is a permutation matrix, L is unit lower triangular, and D a block
diagonal matrix with blocks of dimension 1 and 2 is usually referred to as
an LDLT factorization. The need for pivot blocks of size 2 is made clear by
the following simple example:

A =









0 1 1
1 0 1

1 1 0









,

for which selecting pivots from the main diagonal is impossible. Diagonal
pivoting may also fail on matrices with a zero-free diagonal due to instabil-
ities. The use of 2× 2 pivot blocks dates back to Lagrange (1759). In 1965,
W. Kahan (in correspondence with R. de Meersman and L. Schotsmans)
suggested that Lagrange’s method could be used to devise stable factoriza-
tions for symmetric indefinite matrices. The idea was developed by Bunch
and Parlett (1971), resulting in a stable algorithm for factoring symmetric
indefinite matrices at a cost comparable to that of a Cholesky factorization
for positive definite ones. The Bunch–Parlett pivoting strategy is akin to
complete pivoting; in subsequent papers (Bunch 1974, Bunch and Kaufman
1977), alternative pivoting strategies requiring only O(n2) comparisons for
a dense n × n matrix have been developed; see also Fletcher (1976b). The
Bunch–Kaufman pivoting strategy (Bunch and Kaufman 1977) is widely
accepted as the algorithm of choice for factoring dense symmetric indefin-
ite matrices. In the sparse case, the pivoting strategy is usually relaxed in
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order to maintain sparsity in L. Several sparse implementations are avail-
able; see Duff, Gould, Reid, Scott and Turner (1991), Duff and Reid (1983,
1995) and Liu (1987). In this case the permutation matrix Q is the result of
symmetric row and column interchanges aimed at preserving sparsity in the
factors as well as numerical stability. While the Bunch–Kaufman algorithm
is normwise backward stable, the resulting factors can have unusual scaling,
which may result in a degradation of the accuracy of computed solutions.
As reported in Ashcraft, Grimes and Lewis (1998), such difficulties have
been observed in the solution of saddle point systems arising in sparse non-
linear optimization codes. We refer the reader to Ashcraft et al. (1998) for
a thorough discussion of such accuracy issues and ways to address these
problems; see also Vavasis (1994).

We note that when A is positive definite and B has full rank, the saddle
point matrix A admits an LDLT factorization with D diagonal and Q = I
(i.e., no pivoting is needed). Indeed, since A is positive definite it can
be decomposed as A = LADALT

A with LA unit lower triangular and DA

diagonal (and positive definite); furthermore the Schur complement S =
−(C +BA−1BT ) is negative definite and therefore it can be decomposed as
S = −LSDSLT

S . Hence, we can write

A =

[

A BT

B −C

]

=

[

LA O
LB LS

] [

DA O
O −DS

] [

LT
A LT

B

O LT
S

]

= LDLT , (7.2)

where LB = BL−T
A D−1

A ; note that BA−1BT = LBDALT
B. In practice,

however, the factors will be rather dense with the original ordering, and
symmetric permutations have to be used in order to preserve sparsity. Note
that LS and LB will be completely full if the Schur complement is. However,
not all sparsity-preserving permutations are acceptable. It can be shown
that there exist permutation matrices Q such that QAQT does not have an
LDLT factorization with D diagonal. Furthermore, some permutations may
lead to numerical instability problems.

For many symmetric indefinite codes the factorization consists of two
phases, a symbolic and a numeric one. In the symbolic phase, an initial
fill-reducing ordering is computed based on the structure of A only. This is
often some variant of minimum degree or nested dissection (Duff et al. 1986).
In the numeric phase, the actual factorization is computed. Frequently in
the course of this phase, the pivot order from the symbolic phase may have
to be altered for numerical stability reasons. There are, however, a few ex-
ceptions to this rule. An important one is the quasidefinite case discussed
in Section 3.3, i.e., when C (as well as A) is symmetric positive definite. In
this case QAQT always has an LDLT factorization with D diagonal, regard-
less of the choice of Q; see Vanderbei (1995). This is an important result:
it suggests that the fill-reducing ordering computed in the symbolic phase
of the factorization will not need to be altered in the course of the numeric
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phase because of stability concerns. Since no pivoting is used in the numeric
phase, it is possible to exploit all the features of modern supernodal sparse
Cholesky factorization codes (Ng and Peyton 1993). The resulting algorithm
is more efficient than performing a Bunch–Parlett or Bunch–Kaufman fac-
torization. Numerical stability considerations in Vanderbei (1995) suggest
that the resulting factorization is usually sufficiently accurate. A stability
analysis was given in Gill et al. (1996), where the close relationship between
A and its nonsymmetric positive definite form (3.10) was used – together
with results in Golub and Van Loan (1979) – to derive stability conditions.

A further exception (with C = O) has been identified by Tůma (2002).
For a large class of saddle point matrices arising from mixed and hybrid
finite element discretizations it is possible to prove the existence of static,
fill-reducing pre-orderings Q such that the permuted matrix QAQT has the
LDLT factorization with D diagonal. Such pre-orderings are characterized
in terms of conditions on the resulting elimination tree. The factorization
can be carried out in three phases: a first, symbolic phase in which an initial
fill-reducing ordering is computed and the corresponding elimination tree is
built; a second phase, also symbolic, where the initial ordering is modi-
fied so that the permuted matrix satisfies the conditions that guarantee the
existence of the factorization; and a final, numeric phase where the LDLT

factorization itself is computed. The numerical experiments in Tůma (2002)
show that this is an effective approach. As in the quasidefinite case, no nu-
merical stability problems have appeared in practice; however, a formal error
analysis has not yet been carried out. We mention that examples of saddle
point systems that cause difficulties for symmetric indefinite factorization
algorithms have been pointed out in Vavasis (1994).

For the general case, sophisticated strategies for computing sparse LDLT

factorizations with 1 × 1 and 2 × 2 pivot blocks have been developed over
many years by Duff and Reid together with several collaborators; see Duff
(1994), Duff et al. (1986), Duff et al. (1991), Duff and Pralet (2004), Duff
and Reid (1983, 1995, 1996). This work has led to a series of widely used
codes that are part of the HSL library; see Section 12 for information on
how to access these codes. The first is MA27, developed in the early 1980s;
the second is MA47, a code geared towards symmetric indefinite systems
in saddle point form (with C = O); later came MA57 and, recently, the
MA67 code. All these codes, except for MA67, are multifrontal codes. The
need for codes specifically designed for saddle point systems (with C = O)
is clear when one considers the presence of the zero block in position (2,2).
Clearly, any form of symmetric pivoting must be restricted so that pivots
are not chosen from the zero block. Failure to do so during the symbolic
phase leads to a very large number of pivot order alterations during the
numeric factorization phase, dramatically slowing down the computation.
Furthermore, the structure of the matrix during the subsequent factorization
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steps must also be taken into account in order to avoid excessive fill-in. The
code MA47 has been designed with both of these goals in mind; see Duff
(1994) and Duff and Reid (1996) for details. The code MA67, also geared
towards saddle point systems, is based on design concepts that are quite
different from those of the previous codes; as already mentioned it is not a
multifrontal code, and furthermore it does not have separate symbolic and
numeric phases. Instead, the numerical values of the entries are taken into
account during the selection of the pivots. A Markowitz-type strategy is
used to balance sparsity and numerical stability needs. Unfortunately, the
extensive comparison of HSL codes performed in Gould and Scott (2004)
indicates that MA67 is generally inferior to its predecessors.

Other sparse direct solvers for symmetric indefinite systems, based on
different design principles, exist; see for instance the recent reports (Meshar
and Toledo 2005, Schenk and Gärtner 2004), and Section 12 below. While
these codes have not been developed specifically for saddle point matrices,
they may work quite well on such problems. For instance, Schenk and
Gärtner (2004) report that their code factors a saddle point matrix from
optimization of order approximately 2 million (with 6 million nonzeros) in
less than a minute on a 2.4 GHz Intel 32-bit processor, producing a factor
with about 1.4 × 108 nonzeros.

Although fairly reliable in practice, sparse LDLT factorization methods
are not entirely foolproof. Besides the examples given in Vavasis (1994), a
few failures to compute acceptably accurate solutions have been reported
in Gould and Scott (2004), even with the use of iterative refinement; see
also Schenk and Gärtner (2004). Nevertheless, sparse LDLT methods are
the solvers of choice in various sparse optimization codes, where they are
often preferred to methods based on Schur complement reduction (‘normal
equations methods’) for both stability and sparsity reasons. Sparse direct
solvers have been less popular in the numerical solution of PDE problems
because of their intrinsic storage and computational limitations, although
these solvers can be quite competitive for 2D problems; see, e.g., Perugia
et al. (1999). For saddle point systems arising from PDE problems on 3D
meshes, it is necessary to turn to iterative methods.

8. Stationary iterations

We begin our discussion of iterative algorithms with stationary schemes.
These methods have been popular for years as ‘standalone’ solvers, but
nowadays they are most often used as preconditioners for Krylov subspace
methods (equivalently, the convergence of these stationary iterations can
be accelerated by Krylov subspace methods.) Another common use for
stationary iterations is as smoothers for multigrid methods; we return to
this in Section 11.
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8.1. The Arrow–Hurwicz and Uzawa methods

The first iterative schemes for the solution of saddle point problems of a
rather general type were the ones developed by the mathematical economists
Arrow, Hurwicz and Uzawa (see Arrow et al. (1958)). The original papers
addressed the case of inequality constraints; see Polyak (1970) for an early
study of these methods in the context of the equality-constrained problem
(1.4)–(1.5).

The Arrow–Hurwicz and Uzawa methods are stationary schemes consist-
ing of simultaneous iterations for both x and y, and can be expressed in
terms of splittings of the matrix A. By elimination of one of the unknown
vectors, they can also be interpreted as iterations for the reduced (Schur
complement) system. Hence, these algorithms may be regarded both as
coupled and as segregated solvers.

We start with Uzawa’s method (Uzawa 1958), which enjoys considerable
popularity in fluid dynamics, especially for solving the (steady) Stokes prob-
lem (Fortin and Glowinski 1983, Glowinski 1984, Glowinski 2003, Temam
1984, Turek 1999). For simplicity, we assume A is invertible and we de-
scribe the algorithm in the case B1 = B2 = B and C = O. Generalization
to problems with B1 �= B2 or C �= O is straightforward. Starting with
initial guesses x0 and y0, Uzawa’s method consists of the following coupled
iteration:

{

Axk+1 = f − BT yk,

yk+1 = yk + ω(Bxk+1 − g),
(8.1)

where ω > 0 is a relaxation parameter. As noted in Golub and Overton
(1988, page 591) (see also Saad (2003, page 258)), this iteration can be
written in terms of a matrix splitting A = P − Q, i.e., as the fixed-point
iteration

Puk+1 = Quk + b,

where

P =

[

A O
B − 1

ω I

]

, Q =

[

O −BT

O − 1
ω I

]

, and uk =

[

xk

yk

]

. (8.2)

Note that the iteration matrix is

T = P−1Q =

[

O −A−1BT

O I − ωBA−1BT

]

,

and therefore the eigenvalues of T are all real (and at least n of them are
exactly zero).

On the other hand, if we use the first equation in (8.1) to eliminate xk+1

from the second one we obtain

yk+1 = yk + ω (BA−1f − g − BA−1BT yk), (8.3)
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showing that Uzawa’s method is equivalent to a stationary Richardson
iteration applied to the Schur complement system

BA−1BT y = BA−1f − g. (8.4)

If A is symmetric and positive definite, so is BA−1BT . Denoting the smallest
and largest eigenvalues of BA−1BT by λmin and λmax, respectively, it is well
known that Richardson’s iteration (8.3) converges for all ω such that

0 < ω <
2

λmax
;

see, e.g., Saad (2003, page 114). Furthermore, the spectral radius of the
iteration matrix I − ωBA−1BT of (8.3) is minimized by taking

ω∗ =
2

λmin + λmax
.

In some special cases, the optimal value of ω can be estimated analytically
(Langer and Queck 1986). An important example is that of (LBB-stable)
discretizations of the steady-state Stokes system (2.10)–(2.12), for which the
Schur complement is spectrally equivalent to the identity (Verfürth 1984a).
This means that the eigenvalues of BA−1BT are bounded below and above
by positive constants, i.e., by numbers that do not depend on the mesh
size h. As a result, Uzawa’s iteration converges at a rate independent of
h. We note that this is not the case for the so-called generalized Stokes
problem arising from the solution of the unsteady Stokes problems using
implicit methods; see Cahouet and Chabard (1988). The convergence of
Uzawa’s method in this case is rather slow, as it is for most other prob-
lems, particularly for the Oseen problem at high Reynolds numbers (small
ν) (Fortin and Fortin 1985). Improved convergence can be achieved by suit-
ably preconditioning the Uzawa iteration: see Cahouet and Chabard (1988)
and Elman and Golub (1994). Uzawa-type algorithms for the stabilized
case (C �= O) were first studied by Vincent and Boyer (1992). An Uzawa-
type method with variable relaxation parameters was proposed by Hu and
Zou (2001). Uzawa’s method is still being actively developed by many re-
searchers: recent papers discussing various extensions and improvements of
Uzawa’s classical algorithm include Bertrand and Tanguy (2002), Bramble,
Pasciak and Vassilev (2000), Cao (2004b), Chen (1998), Cui (2004), Hu
and Zou (2002), Liu and Xu (2001), Maday, Meiron, Patera and Ronquist
(1993), Nochetto and Pyo (2004), Zsaki, Rixen and Paraschivoiu (2003).
Not all applications of Uzawa’s method are to fluid flow problems: see Ito
and Kunisch (1999) for a recent application to image restoration.

The bulk of the computational effort in Uzawa’s method is spent in the
solution of linear systems involving A. These systems can be solved by direct
methods or, more often, by an inner iterative scheme. For instance, in the
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case of the Stokes problem A is a direct sum of discrete Laplace operators,
and multigrid methods are a natural choice. The case of inexact inner solves
has been studied in detail in Bramble, Pasciak and Vassilev (1997), Chen
(1998), Cheng (2000), Cheng and Zou (2003), Cui (2002), Elman and Golub
(1994), Peters, Reichelt and Reusken (2004), Robichaud, Tanguy and Fortin
(1990) and Zulehner (2002).

The Arrow–Hurwicz method (Arrow and Hurwicz 1958) may be regarded
as an inexpensive alternative to Uzawa’s method, useful when solves with
A are too expensive. Here we follow the derivation given in Saad (2003,
Section 8.4). By noting that iterate xk+1 given by the first of (8.1) is the
minimizer of the objective function

φ(x) =
1

2
xT Ax − xT (f − BT yk),

we can derive a less expensive method by taking one step in the direction
of the (negative) gradient of φ(x), with fixed step length α. The resulting
method is the Arrow–Hurwicz iteration:

{

xk+1 = xk + α(f − Axk − BT yk),

yk+1 = yk + ω(Bxk+1 − g).
(8.5)

As in the case of Uzawa’s method, the Arrow–Hurwicz method can be cast
as a fixed-point iteration induced by the splitting

A = P −Q where P =

[

1
αI O
B − 1

ω I

]

, Q =

[

1
αI − A −BT

O − 1
ω I

]

. (8.6)

The convergence of this algorithm depends on the two relaxation paramet-
ers, α and ω. Convergence conditions and theoretical estimates for the op-
timal choice of parameters have been given in Fortin and Glowinski (1983),
Polyak (1970), Queck (1989) and, more recently, in Astrakhantsev (2001)
and Bychenkov (2002). Because the convergence of the Arrow–Hurwicz
method is usually rather slow, various improvements have been proposed,
including preconditioned variants of the form

{

xk+1 = xk + α Q−1
A (f − Axk − BT yk),

yk+1 = yk + ω Q−1
B (Bxk+1 − g),

(8.7)

where QA and QB are appropriately chosen ‘preconditioning matrices’: see
Astrakhantsev (2001), Queck (1989) and Robichaud et al. (1990). Obvi-
ously, the line between preconditioned versions of the Arrow–Hurwicz al-
gorithm and inexact/preconditioned variants of Uzawa’s method is blurred.
Additional hybrids can be obtained by combining the Arrow–Hurwicz and
CG algorithms: see, e.g., Aboulaich and Fortin (1989) and Stoyan (2001).
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8.2. Penalty and multiplier methods

Here we assume that A = AT is positive semidefinite, B1 = B2 = B is of
full rank, and C = O. We further assume that ker(A) ∩ ker(B) = {0}, so
that the saddle point system has a unique solution. As we have noted in
Section 1, the saddle point problem is then equivalent to the constrained
minimization problem

min J(x) =
1

2
xT Ax − fT x, (8.8)

subject to Bx = g. (8.9)

A very old method for finding the solution x∗ of (8.8)–(8.9) is based on the
observation that

x∗ = lim
γ→∞

x(γ),

where x(γ) is the unique solution of the unconstrained minimization problem

min Ĵ(x) ≡ J(x) +
γ

2
‖Bx − g‖2

2.

In mechanical terms, rigid constraints can be thought of as limiting cases of
very large restoring forces, i.e., in this case, forces with potential energy of
the form U(x) = γ

2 (Bx − g)T (Bx − g); see Courant (1943). The minimizer

x(γ) can be found by setting the gradient of J(x) + γ
2 (Bx− g)T (Bx− g) to

zero, leading to the linear system

(A + γBT B)x = f + γBT g. (8.10)

If we let y(γ) = γ(Bx(γ)−g), where x = x(γ) is the solution of (8.10), then
it is possible to prove that

‖x∗ − x(γ)‖2 = O(γ−1) and ‖y∗ − y(γ)‖2 = O(γ−1) for γ → ∞;

see Glowinski (1984, pages 21–22). Therefore, provided that γ is taken large
enough, x(γ) and y(γ) are approximate solutions of the original saddle point
problem. The penalty method can be thought of as an approximate direct
method. Since a monotonically increasing sequence γ1, γ2, . . . of values of γ
may be used to compute better and better approximations to x∗, it may also
be regarded as a stationary iterative method. In some cases, the choice of γ
may be made on the basis of physical considerations: see, e.g., Destuynder
and Nevers (1990), Nour-Omid and Wriggers (1986).

Since the matrix A+γBT B in (8.10) is symmetric and positive definite for
γ > 0, one can in principle use a Cholesky factorization or the CG method
to compute x(γ). Unfortunately, such an approach cannot be recommen-
ded, since the condition number of A + γBT B grows like a (possibly large)
multiple of γ; see Glowinski (1984, pages 22–23) and Van Loan (1985) for an
analysis of the penalty method applied to equality-constrained least squares
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problems. In practice, for large values of γ the coefficient matrix A+γBT B
is dominated by the (highly singular) term γBT B, and accurate solutions
of (8.10) are difficult to obtain.

This drawback of the penalty method can be overcome in two ways. One
way is to observe that (x(γ), y(γ)) is the unique solution of the regularized
saddle point system

[

A BT

B −εI

] [

x
y

]

=

[

f
g

]

, ε = γ−1. (8.11)

Stable solution of this linear system is now possible, for instance using a
sparse direct solver; this approach is popular in optimization. However,
using a direct solver is not always feasible.

The other option is to modify the penalty method so as to avoid ill-
conditioning. This leads to the method of multipliers, developed independ-
ently by Arrow and Solow (1958, page 172), Hestenes (1969) and Powell
(1969). A further advantage of this method, which combines the use of
penalty with Lagrange multipliers, is that it produces the exact solution
(x∗, y∗) rather than an approximate one. The method of multipliers can be
described as follows. Select γ > 0 and consider the augmented Lagrangian

L(x, y) = J(x) + (Bx − g)T y +
γ

2
‖Bx − g‖2

2. (8.12)

Given an approximation yk for the Lagrange multiplier vector y, we compute
the minimum xk+1 of the function ψ(x) ≡ L(x, yk). This requires solving
the linear system

(A + γBT B)x = f − BT yk + γBT g. (8.13)

Now we use the computed solution xk+1 to obtain the new Lagrange multi-
plier approximation yk+1 according to

yk+1 = yk + γ (Bxk+1 − g),

and so on. Clearly, the method of multipliers is precisely Uzawa’s iteration
applied to the saddle point system

[

A + γBT B BT

B O

] [

x
y

]

=

[

f + γBT g
g

]

, (8.14)

which has exactly the same solution (x∗, y∗) as the original one. Note that
the parameter γ does double duty here, in that it appears both in the defin-
ition of the augmented Lagrangian and as the relaxation parameter for the
Uzawa iteration. As we know from our discussion of Uzawa’s method, the
iteration converges for γ ∈ (0, 2/ρ) where ρ denotes the largest eigenvalue of
the Schur complement B(A+γBT B)−1BT . This interval becomes unboun-
ded, and the rate of convergence arbitrarily large, as γ → ∞. Again, taking
too large a value of γ results in extreme ill-conditioning of the coefficient
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matrix in (8.13). It is necessary to strike a balance between the rate of
convergence of the method and the conditioning properties of (8.13). The
choice of γ and many other aspects of the multiplier method have been dis-
cussed by a number of authors, including Bertsekas (1982), Chen and Zou
(1999), Fortin and Glowinski (1983), Greif et al. (2005), Hestenes (1975),
Luenberger (1984), Zienkiewicz, Vilotte, Toyoshima and Nakazawa (1985).
See further Awanou and Lai (2005) for a study of the nonsymmetric case.
Another possibility is to combine the augmented Lagrangian method with
a (preconditioned) Arrow–Hurwicz scheme; see Fortin and Glowinski (1983,
page 26) and Kouhia and Menken (1995) for an application of this idea to
problems in structural mechanics.

8.3. Other stationary iterations

In addition to the foregoing algorithms, a number of other stationary itera-
tions based on matrix splittings A = P −Q can be found in the literature.
In particular, SOR- and block-SOR-type schemes have been proposed in
Strikwerda (1984) for the Stokes problem, in Barlow et al. (1988), Benzi
(1993) and Plemmons (1986) for structural analysis computations, and in
Chen (1998), Golub, Wu and Yuan (2001) and Li, Li, Evans and Zhang
(2003) for general saddle point systems. Some of these schemes can be
interpreted as preconditioned or inexact variants of the classical Uzawa al-
gorithm. Alternating-direction iterative methods for saddle point problems
have been studied in Brown (1982), Douglas Jr., Durán and Pietra (1986,
1987). Other stationary iterative methods for saddle point problems have
been studied in Bank, Welfert and Yserentant (1990), Benzi and Golub
(2004), Dyn and Ferguson (1983), Golub and Wathen (1998) and Tong and
Sameh (1998); since these methods are most often used as preconditioners
for Krylov subspace methods, we defer their description to Section 10.

9. Krylov subspace methods

In this section we discuss Krylov subspace methods for solving (precon-
ditioned) saddle point problems. Our goal is not to survey all existing
methods and implementations (more complete surveys can be found, e.g.,
in the monographs by Greenbaum (1997), Saad (2003) and van der Vorst
(2003) or in the papers by Eiermann and Ernst (2001) and Freund et al.
(1992)), but to describe the main properties of the most commonly used
methods. We discuss the general theory, the main convergence results, and
implementation details. For simplicity, we describe the basics of Krylov sub-
space methods for the unpreconditioned and nonsingular system (1.1)–(1.2).
The later sections will describe the general ideas of preconditioning (Sec-
tion 10), and different preconditioning techniques specifically constructed
for (generalized) saddle point systems (Sections 10.1–10.4).
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9.1. General theory

Suppose that u0 is an initial guess for the solution u of (1.1)–(1.2), and define
the initial residual r0 = b − Au0. Krylov subspace methods are iterative
methods whose kth iterate uk satisfies

uk ∈ u0 + Kk(A, r0), k = 1, 2, . . . , (9.1)

where

Kk(A, r0) ≡ span {r0,Ar0, . . . ,Ak−1r0} (9.2)

denotes the kth Krylov subspace generated by A and r0. It is well known
that the Krylov subspaces form a nested sequence that ends with dimension
d ≡ dimKn+m(A, r0) ≤ n + m, i.e.,

K1(A, r0) ⊂ · · · ⊂ Kd(A, r0) = · · · = Kn+m(A, r0).

In particular, for each k ≤ d, the Krylov subspace Kk(A, r0) has dimension
k. Because of the k degrees of freedom in the choice of the iterate uk, k
constraints are required to make uk unique. In Krylov subspace methods
this is achieved by requiring that the kth residual rk = b−Auk is orthogonal
to a k-dimensional space Ck, called the constraints space:

rk = b −Auk ∈ r0 + AKk(A, r0), rk ⊥ Ck. (9.3)

Orthogonality here is meant with respect to the Euclidean inner product.
The relations (9.1)–(9.3) show that Krylov subspace methods are based on
a general type of projection process that can be found in many areas of
mathematics. For example, in the language of the finite element method,
we may consider Kk(A, r0) the test and Ck the trial space for constructing
the approximate solution uk. In this sense the projection process (9.1)–
(9.3) corresponds to the Petrov–Galerkin framework; see, e.g., Quarteroni
and Valli (1994, Chapter 5). The interpretation of Krylov subspace methods
as projection processes was popularized by Saad in a series of papers in the
early 1980s (Saad 1981, 1982). A survey of his approach can be found in his
book, Saad (2003). For additional analyses of Krylov subspace methods in
terms of projections see, e.g., Barth and Manteuffel (1994) and Eiermann
and Ernst (2001).

Knowing the properties of the system matrix A it is possible to determine
constraint spaces Ck that lead to uniquely defined iterates uk, k = 1, 2, . . . ,
in (9.1)–(9.3). Examples for such spaces are given in the following theorem.

Theorem 9.1. Suppose that the Krylov subspace Kk(A, r0) has dimen-
sion k. If

(C) A is symmetric positive definite and Ck = Kk(A, r0), or

(M) A is nonsingular and Ck = AKk(A, r0),
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then there exists a uniquely defined iterate uk of the form (9.1) for which
the residual rk = b −Auk satisfies (9.3).

Proof. See Saad (2003, Proposition 5.1).

Items (C) and (M) in Theorem 9.1 represent mathematical characteriza-
tions of the projection properties of well-known Krylov subspace methods.
Item (C) characterizes the conjugate gradient (CG) method of Hestenes and
Stiefel for symmetric positive definite matrices (Hestenes and Stiefel 1952).
Note that if A is not symmetric positive definite, an approximate solution
uk satisfying both (9.1)–(9.2) and (9.3) with Ck = Kk(A, r0) may not exist;
cf., e.g., Brown (1991) and Cullum and Greenbaum (1996). Nevertheless,
there are several implementations of this projection process, in particular
the full orthogonalization method (FOM) of Saad (1981). Implementations
of the projection process characterized by item (M) are the minimal re-
sidual (MINRES) method of Paige and Saunders (1975) for nonsingular
symmetric (possibly indefinite) matrices, and the generalized minimal re-
sidual (GMRES) method of Saad and Schultz (1986) for general nonsingular
matrices. Further mathematically equivalent implementations are discussed
in Liesen, Rozložńık and Strakoš (2002).

Numerous other choices of constraint spaces for constructing Krylov sub-
space methods exist. For example, in case of a nonsymmetric matrix A one
may choose Ck = Kk(AT , r0), which represents a generalization of the pro-
jection process characterized in item (C). Specific implementations based
on this choice include the method of Lanczos (1950) and the biconjug-
ate gradient (BiCG) method of Fletcher (1976a). However, for a general
nonsymmetric matrix A the process based on Ck = Kk(AT , r0) is not well
defined, because it may happen that no iterate uk satisfying both (9.1)–
(9.2) and (9.3) exists. In an actual implementation such as BiCG this will
lead to a breakdown. In practice such breakdowns are unlikely to occur,
but near-breakdowns may cause irregular convergence and serious build-up
of rounding errors, see Greenbaum (1997, Chapter 5) for further discussion.
Such instabilities are often overcome by the stabilized BiCG (BiCGStab)
method of van der Vorst (1992), which combines the BiCG projection prin-
ciple with an additional minimization step in order to ‘stabilize’ the conver-
gence behaviour. It is important to note that although BiCGStab is based
on BiCG, it avoids using the transposed matrix AT . Closely related is the
transpose-free quasi-minimal residual method (TFQMR) for general non-
symmetric matrices developed by Freund (1993). While both BiCGStab
and TFQMR typically produce smoother convergence curves than BiCG,
none of these methods is guaranteed to be free of breakdowns. A related
BiCG-like method, which overcomes some of the numerical instabilities of
BiCG, is the quasi-minimal residual (QMR) method for general nonsymmet-
ric matrices of Freund and Nachtigal (1991). We point out that, despite the
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naming similarities, QMR and TFQMR are not mathematically equivalent,
and hence may produce completely different approximate solutions even in
exact arithmetic. In case of a symmetric (possibly indefinite) matrix A the
Lanczos process underlying the QMR method can be simplified, leading to
a mathematically equivalent but numerically more efficient implementation.
This is exploited in the symmetric QMR (SQMR) method of Freund and
Nachtigal (1994).

Additional Krylov subspace methods can be constructed by using different
search spaces in (9.1). For example, the projection process

uk ∈ u0 + AKk(A, r0), rk ∈ r0 + AKk(A,Ar0) ⊥ Kk(A, r0), (9.4)

yields a uniquely defined iterate uk whenever A is nonsingular and sym-
metric. An implementation of this mathematical principle is the SYMMLQ
method of Paige and Saunders (1975) for nonsingular symmetric (possibly
indefinite) matrices.

9.2. Convergence analysis

In exact arithmetic, the methods that are mathematically described by
items (C) and (M) in Theorem 9.1 as well as by (9.4) for symmetric nonsin-
gular A terminate with the exact solution in step d ≡ dimKn+m(A, r0),
i.e., they yield ud = u. This feature is called the finite termination prop-
erty. In practice, however, one is typically not interested in computing the
exact solution. For example, when the linear system represents a discret-
ized partial differential equation, then an approximate solution uk of the
linear system with an error norm on the level of the discretization error is
often sufficient. Once this error level is reached, the iterative method can
be stopped. In this way iterative methods such as Krylov subspace methods
may significantly outperform any direct method which cannot be stopped
prematurely, because their intermediate results do not represent approxim-
ate solutions. The question is how fast can a given Krylov subspace method
reach a given accuracy level.

To analyse this question we use the fact that the geometric orthogonality
condition expressed in (9.3) is often equivalent to an algebraic optimality
condition for a certain norm of either the error ek = u − uk or the residual
rk = b−Auk. This optimality condition can be derived using the following
well-known theorem for best approximations in Hilbert spaces; see, e.g.,
Conway (1990, Chapter 1).

Theorem 9.2. Suppose that H is a Hilbert space with inner product 〈·, ·〉
and associated norm ‖ · ‖. If M ⊂ H is a closed linear subspace, then for
each fixed h ∈ H there exists a unique element m0 ∈ M with ‖h − m0‖ =
infm∈M ‖h − m‖. Moreover, h − m0 is orthogonal to M with respect to
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〈·, ·〉. Conversely, if m0 ∈ M is such that h − m0 is orthogonal to M with
respect to 〈·, ·〉, then ‖h − m0‖ = infm∈M ‖h − m‖.

To apply this result in our context, consider a symmetric positive defin-
ite matrix A and the projection process (9.1)–(9.3) with Ck = Kk(A, r0).
According to item (C) in Theorem 9.1, this process leads to a uniquely
defined iterate uk ∈ u0 +Kk(A, r0). The residual rk = Aek is orthogonal to
Kk(A, r0) with respect to the Euclidean inner product, or, equivalently, the
error ek = u − uk = (u − u0) − (uk − u0) is orthogonal to Kk(A, r0) with
respect to the A-inner product defined by 〈v, w〉A ≡ wTAv. With R

n+m,
Kk(A, r0), u − u0 ∈ R

n+m, and uk − u0 ∈ Kk(A, r0) taking the roles of H,
M, h, and m0 in Theorem 9.2, respectively, we see that the orthogonality
condition (9.3) is equivalent to

‖ek‖A = min
z∈u0+Kk(A,r0)

‖u − z‖A,

where ‖ · ‖A denotes the A-norm (sometimes called energy norm) associated
with the A-inner product. As mentioned above, item (C) represents a math-
ematical characterization of the CG method; what we have just derived is
its well-known optimality property (error minimization in the energy norm).
Analogously, we may show that the methods characterized by item (M) in
Theorem 9.1 minimize the Euclidean norm of the residual rk = b − Auk

over the affine subspace u0 + Kk(A, r0). These results are summarized in
the following theorem.

Theorem 9.3. Suppose that the Krylov subspace Kk(A, r0) in the pro-
jection process (9.1)–(9.3) has dimension k. Then the iterate uk satisfies
the following optimality properties.

(C) If A is symmetric positive definite and Ck = Kk(A, r0), then

‖u−uk‖A = ‖ek‖A = min
z∈u0+Kk(A,r0)

‖u−z‖A = min
p∈Πk

‖p(A)e0‖A. (9.5)

(M) If A is nonsingular and Ck = AKk(A, r0), then

‖b −Auk‖2 = ‖rk‖2 = min
z∈u0+Kk(A,r0)

‖b −Az‖2 = min
p∈Πk

‖p(A)r0‖2.

(9.6)

Here Πk denotes the set of polynomials of degree at most k with value 1 at
the origin.

For reasons apparent from (9.6) we refer to methods characterized by
item (M) as minimal residual methods. Note that the Euclidean residual
norm in these methods gives a lower bound for the residual norm of all
Krylov subspace methods based on (9.1)–(9.3). Therefore significant re-
search efforts have been made to understand the convergence behaviour of
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these methods. The interpretation of the kth error and residual in (9.5)
and (9.6) in terms of the initial error and residual multiplied by a certain
polynomial in the matrix A, respectively, is the typical starting point for
the convergence analysis of the Krylov subspace methods characterized by
items (C) and (M).

First consider item (C) (as implemented by the CG method). Since A is
assumed to be symmetric positive definite, it is orthogonally diagonalizable,
A = VDVT , with VTV = I and D = diag(λj). The A-norm of the error at
step k satisfies

‖ek‖A = min
p∈Πk

‖p(A)e0‖A = min
p∈Πk

‖A1/2p(A)e0‖2 = min
p∈Πk

‖p(A)A1/2e0‖2

≤ min
p∈Πk

‖p(A)‖2 ‖A1/2e0‖2

= ‖e0‖A min
p∈Πk

‖p(D)‖2

= ‖e0‖A min
p∈Πk

max
λj

|p(λj)|. (9.7)

Hence ‖ek‖A/‖e0‖A, the kth relative A-norm of the error, is bounded by
the value of a polynomial approximation problem on the eigenvalues of A.
This bound is sharp in the sense that for each (symmetric positive defin-

ite) matrix A and each iteration step k there exists an initial error e
(k)
0 for

which equality holds; see Greenbaum (1979). Consequently, the worst-case
behaviour of the CG method is completely determined by the eigenvalues of
the matrix. An immediate question is how small can a kth degree polyno-
mial with value 1 at the origin become on a given set of matrix eigenvalues.
While the polynomial that solves the min-max problem is explicitly known
(see Greenbaum (1979) and Liesen and Tichý (2004b) for different deriva-
tions), no simple expression for the min-max value itself exists. The sharp
bound (9.7), however, provides some intuition of how the eigenvalue distri-
bution influences the worst-case convergence behaviour. For example, if all
eigenvalues are tightly clustered around a single point that is far away from
the origin, one may expect fast convergence. Widely spread eigenvalues,
on the other hand, will potentially lead to slow convergence. The stand-
ard approach for estimating the right-hand side of (9.7) is to replace the
min-max problem on the discrete set of eigenvalues by a min-max approx-
imation problem on its convex hull (i.e., on an interval from the smallest
eigenvalue λmin to the largest eigenvalue λmax of A). The latter is solved
by scaled and shifted Chebyshev polynomials of the first kind, giving the
well-known bound

min
p∈Πk

max
λj

|p(λj)| ≤ 2

(

√

κ(A) − 1
√

κ(A) + 1

)k

, where κ(A) =
λmax

λmin
; (9.8)

see, e.g., Greenbaum (1997, Theorem 3.1.1). The bounds (9.7)–(9.8) show
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that a small condition number of A is sufficient (but not necessary) for a fast
decrease of the relative A-norm of the error. This fact motivates the classical
goal of preconditioning, which is to modify the given linear system in order
to reduce the condition number of the system matrix. However, while (9.7)
is sharp, the right-hand side of (9.8) often overestimates the left-hand side
and thus the worst-case relative A-norm of the error. Moreover, the actual
behaviour for a specific right-hand side vector b depends not only on the
eigenvalue distribution but also on the coefficients of b in the eigenvectors of
A. Several case studies on model problems have recently been performed;
see, e.g., Beckermann and Kuijlaars (2001, 2002), Liesen and Tichý (2004a)
and Naiman, Babuška and Elman (1997) for more details.

Next consider the minimal residual methods. The resulting projection
process (9.1)–(9.3) is well defined for each nonsingular matrix A. For sim-
plicity, suppose that A is diagonalizable, A = XDX−1, with D = diag(λj).
Then the kth Euclidean norm of the residual satisfies

‖rk‖2 = min
p∈Πk

‖p(A)r0‖2

≤ min
p∈Πk

‖Xp(D)X−1‖2 ‖r0‖2

≤ ‖X‖2 min
p∈Πk

‖p(D)‖2 ‖X−1‖2 ‖r0‖2

= ‖r0‖2 κ(X ) min
p∈Πk

max
λj

|p(λj)|. (9.9)

Clearly,
‖rk‖2/‖r0‖2,

the kth relative Euclidean residual norm, is bounded by the value of the
same type of polynomial approximation problem as in (9.7), multiplied by
the condition number of the eigenvector matrix X of A.

If A is normal, then κ(X ) = 1, and it can be shown that the bound (9.9)
is sharp in the same sense as the bound (9.7); see Greenbaum and Gurvits
(1994) and Joubert (1994). In this case the same intuition as described
above for the worst-case behaviour of CG also applies to the worst-case
behaviour of minimal residual methods. In particular, a single eigenvalue
cluster far away from the origin implies fast convergence (here measured by
the relative Euclidean residual norm). Additionally, (9.8) can be used if A is
symmetric positive definite, which shows that in this case a small condition
number of A is sufficient (but not necessary) for fast convergence. As in the
case of CG, reducing the condition number of a symmetric positive definite
system matrix A also represents a reasonable goal of preconditioning for
minimal residual methods.

In the case of a nonsingular symmetric indefinite matrix A, the min-
max approximation problem on the matrix eigenvalues in (9.9) cannot be
replaced by the min-max problem on their convex hull, as eigenvalues lie on

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir


56 M. Benzi, G. H. Golub and J. Liesen

both sides of the origin. Here one may replace the discrete set of eigenvalues
by the union of two intervals containing all of them and excluding the origin,
say I− ∪ I+ ≡ [λmin, λs] ∪ [λs+1, λmax] with λmin ≤ λs < 0 < λs+1 ≤ λmax.

When both intervals are of the same length, i.e., λmax−λs+1 = λs−λmin,
the solution of the corresponding min-max approximation problem

min
p∈Πk

max
λ∈I−∪I+

|p(λ)|, (9.10)

is characterized by a result of de Boor and Rice (1982). This leads to the
bound

min
p∈Πk

max
λj

|p(λj)| ≤ 2

(

√

|λminλmax| −
√

|λsλs+1|
√

|λminλmax| +
√

|λsλs+1|

)[k/2]

, (9.11)

where [k/2] denotes the integer part of k/2; see Greenbaum (1997, Chap. 3).
For an illustration of this bound suppose that |λmin| = λmax = 1 and |λs| =
λs+1. Then κ(A) = λ−1

s+1, and the right-hand side of (9.11) reduces to

2

(

1/λs+1 − 1

1/λs+1 + 1

)[k/2]

. (9.12)

Note that (9.12) corresponds to the value of the right-hand side of (9.8) at
step [k/2] for a symmetric positive definite matrix having all its eigenvalues
in the interval [λ2

s+1, 1], and thus a condition number of λ−2
s+1. Hence the

convergence bound for an indefinite matrix with condition number κ needs
twice as many steps to decrease to the value of the bound for a definite
matrix with condition number κ2. Although neither of the two bounds is
sharp, this clearly indicates that solving indefinite problems represents a
significant challenge.

In the general case when the two intervals I− and I+ are not of the
same length, the explicit solution of (9.10) becomes quite complicated (see,
e.g., Fischer (1996, Chapter 3)), and no simple and explicit bound on the
min-max value is known. One may of course extend the smaller interval to
match the length of the larger one, and still apply (9.11). But this usually
results in a significantly weaker convergence bound, which fails to give rel-
evant information about the actual convergence behaviour. An alternative
is to consider the asymptotic behaviour of the min-max value (9.10), and in
particular the asymptotic convergence factor

ρ(I− ∪ I+) ≡ lim
k→∞

(

min
p∈Πk

max
λ∈I−∪I+

|p(λ)|
)1/k

. (9.13)

Obviously, ρ(I− ∪ I+) may be estimated even if the value (9.10) for each
step k is unknown. Asymptotic convergence results are common in the the-
ory of semi-iterative methods (Eiermann and Niethammer 1983, Eiermann,
Niethammer and Varga 1985) and of classical iterative methods such as
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SOR (Varga 1962). Because of the finite termination property, asymptotic
convergence results for Krylov subspace methods have to be put into proper
perspective. They certainly can be useful in the convergence analysis of min-
imal residual methods for sequences of linear systems of growing dimension,
e.g., when studying the dependence of the convergence behaviour on the
mesh size in a discretized differential equation. An example is discussed in
Section 10.1 below.

If A is nonnormal, then κ(X ) may be very large, and (9.9) may be a very
large overestimate even of the worst-case relative residual norm of minimal
residual methods. In particular, the matrix eigenvalues may in the nonnor-
mal case give misleading information about the convergence behaviour. In
fact, it has been shown that any nonincreasing convergence curve of relat-
ive residual norms can be obtained by a (nonnormal) matrix A having any
prescribed set of eigenvalues (Greenbaum, Pták and Strakoš 1996). While
the examples constructed by this theory may be artificial, misleading eigen-
value information was also demonstrated and analysed in the more practical
context of discretized convection-diffusion problems; see Ernst (2000) and
Liesen and Strakoš (2005) for further details. Several other sets associated
with the matrix A have been used in the convergence analysis for nonnor-
mal problems, among them the field of values (Ernst 2000, Starke 1997),
pseudospectra (Nachtigal, Reddy and Trefethen 1992), and the polynomial
numerical hull (Greenbaum 2002). In the context of saddle point problems,
the field of values seems to be quite useful. In particular, rate of convergence
estimates obtained from this set for preconditioned saddle point systems
arising from mixed finite element discretizations of PDEs are sometimes op-
timal in the sense that they are independent of the mesh size parameter;
see, e.g., Klawonn and Starke (1999) and Loghin and Wathen (2004) for
details. However, the first inequality in (9.9) has been shown to be strict
for some nonnormal matrices A; see Faber, Joubert, Knill and Manteuffel
(1996) and Toh (1997). Hence no convergence analysis based solely on the
matrix A can in the nonnormal case give a sharp bound on the worst-case
residual norm, so that the initial residual should be included in the conver-
gence analysis whenever possible. This is sometimes only possible in the
context of the specific application; see Liesen and Strakoš (2005) for an
example. An important and often overlooked fact is that the convergence
of minimal residual methods is not slower for nonnormal than for normal
matrices. In particular, it has been shown that for each nonnormal mat-
rix there exists a normal matrix for which the same convergence behaviour
can be observed (for the same initial residual); see Greenbaum and Strakoš
(1994). Yet, as described above, the convergence behaviour in the nonnor-
mal case is significantly more difficult to analyse than in the normal case.
Sharp convergence results can usually only be obtained by considering the
specific properties of A (e.g., its eigenvalue-eigenvector structure) in relation
to the given initial residual.
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9.3. Implementation details

When implementing Krylov subspace methods, one needs to generate (at
least implicitly) a basis of the Krylov subspace Kk(A, r0). For reasons of nu-
merical stability this basis should preferably be orthogonal, and for reasons
of computational efficiency, the basis should be generated by a short-term
recurrence.

In the case of a symmetric matrix A, these two goals are achieved sim-
ultaneously by the symmetric Lanczos method (Lanczos 1950), which gen-
erates an orthogonal basis v1, . . . , vk of Kk(A, r0) using a three-term recur-
rence, meaning that in step k only the vectors vk−1 and vk are required
to compute vk+1. This highly efficient method is the basic ingredient of
many Krylov subspace methods for symmetric matrices, among them CG,
MINRES and SYMMLQ. Symmetry of the system matrix (even positive
definiteness in case of CG) turns out to be a strong restriction in the case
of generalized saddle point systems (1.1)–(1.2). First of all, A needs to
be symmetric, which requires A = AT , C = CT , and B1 = B2. These
conditions are satisfied in many applications: see Section 2. However, if
the system is preconditioned, the preconditioned system matrix needs to
be symmetric (positive definite) as well. This in general requires that the
preconditioner P be symmetric positive definite. For example, consider left
preconditioning by P, i.e., the preconditioned system

P−1 Au = P−1 b.

If P is symmetric positive definite, its Cholesky decomposition exists, P =
LLT , and hence the preconditioned system is equivalent to

(L−1 AL−T ) (LT u) = L−1 b.

The matrix L−1AL−T is again symmetric (positive definite), and one can
apply the same method to solve the unpreconditioned as well as the pre-
conditioned system. If P is symmetric but not positive definite, then the
preconditioned system matrix P−1A is in general nonsymmetric, regardless
of A being symmetric or not (unless P and A commute, e.g., when P is
a polynomial in A). If no good symmetric positive definite preconditioner
is known, or if a very good nonsymmetric preconditioner is available, the
possible advantage of A being symmetric is lost, and one usually must use
a solution method for nonsymmetric matrices. See Simoncini (2004a) and
Section 10 below.

For a general, nonsymmetric matrix A, the two goals mentioned above
cannot be achieved at once (with few exceptions possessing a particular
structure; see Faber and Manteuffel (1984) and Liesen and Saylor (2005)).
Here one has to choose between a full recurrence and an orthogonal Krylov
subspace basis, or a short-term recurrence and a nonorthogonal basis. The
former approach, implemented by the Arnoldi method (Arnoldi 1951), is
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Table 9.1. Summary of Krylov subspace methods discussed in Section 9.

Method Required A Type Recurrence Required P

CG symm. def. optimal three-term symm. def.
MINRES, SYMMLQ symm. optimal three-term symm. def.
SQMR symm. non-optimal three-term symm.
GMRES general optimal full general
QMR, BiCGStab, general non-optimal three-term general

TFQMR

used in the GMRES algorithm. The latter approach is implemented in the
nonsymmetric (or two-sided) Lanczos method (Lanczos 1950), which forms
a main ingredient of methods like BiCG, BiCGStab, and QMR. Methods
based on orthogonal bases are sometimes called optimal methods, while
the other class is referred to as non-optimal methods. The non-optimal
methods also include truncated and restarted versions of the optimal meth-
ods. Recent research shows that when an optimal method such as GMRES
converges quickly, the related non-optimal methods based on (9.1)–(9.2)
often also converge quickly (Simoncini and Szyld 2005). The nonsymmet-
ric Lanczos method is also used in SQMR, which represents a non-optimal
method for symmetric indefinite matrices. However, unlike the optimal
methods for this class of problems discussed above (in particular MINRES
and SYMMLQ), the SQMR method does not require a symmetric positive
definite preconditioner, since its underlying Lanczos method works for non-
symmetric matrices as well. A summary of the methods discussed in this
section is given in Table 9.1.

10. Preconditioners

The use of preconditioning has been already referred to several times in
previous sections. As we saw, preconditioning may be used in the iterat-
ive solution of reduced systems arising from Schur complement reduction
or from the application of various null space methods. In this section we
discuss preconditioners in greater detail, and provide a description of some
of the most widely used or promising techniques. In view of the fact that
preconditioning has been and remains a most active area of research, ac-
counting for the vast majority of papers on the numerical solution of saddle
point problems (more generally, on linear solvers) in the last several years, a
completely exhaustive survey is impossible. In some cases we limit ourselves
to very brief notes and to pointers to the literature.

As is well known, the term preconditioning refers to transforming the
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linear system Au = b into another system with more favourable properties
for iterative solution. A preconditioner is a matrix P (or P−1) that ef-
fects such a transformation. Generally speaking, preconditioning attempts
to improve the spectral properties of the system matrix. For symmetric
problems, the (worst-case) rate of convergence of Krylov subspace methods
like CG or MINRES depends on the distribution of the eigenvalues of A.
Ideally, the preconditioned matrix M = P−1A (or M = AP−1) will have a
smaller spectral condition number, and/or eigenvalues clustered around 1.
Another favourable situation is when the preconditioned matrix has a min-
imum polynomial of small degree.

For nonsymmetric (nonnormal) problems the situation is more complic-
ated, and the eigenvalues may not describe the convergence of nonsymmetric
matrix iterations like GMRES; see the discussion in Section 9. Neverthe-
less, a clustered spectrum (away from 0) often results in rapid convergence,
especially if the departure from normality of the preconditioned matrix is
not too high.

Generally speaking, there are two approaches to constructing precondi-
tioners. One is based on purely algebraic techniques, like incomplete fac-
torizations, sparse approximate inverses, and algebraic multilevel methods.
These preconditioners require little knowledge of the problem at hand be-
sides the entries of A, and can be applied – at least in principle – in a
more or less black-box fashion. This type of preconditioning has proved
quite effective in the solution of linear systems arising from the discretiz-
ation of scalar partial differential equations of elliptic type, and is widely
used in many areas of computational science and engineering; see Benzi
(2002), Meurant (1999), Saad (2003), van der Vorst (2003) for recent treat-
ments. When applied to saddle point systems, on the other hand, standard
algebraic preconditioners are often found to perform poorly. Because of
the indefiniteness and lack of diagonal dominance, these preconditioners
are often unstable. Even when the computation of the preconditioner does
not suffer from some type of breakdown (e.g., zero pivots in an incomplete
factorization), the quality of the resulting preconditioner is often not very
satisfactory, and slow convergence is observed. Also, because of the absence
of decay in A−1, it is difficult to construct good sparse approximate inverse
preconditioners for saddle point matrices.

The second approach develops preconditioners that are tailored to the
particular application at hand. This approach requires knowledge of the
origin of the problem, including (for PDEs) details about the discretization
used, the underlying geometry, properties of the coefficients, and so forth.
Of course, the more information one can use, the better the quality of the
resulting preconditioner. The drawback of this approach is that the range
of problems that can be treated with a particular preconditioner will neces-
sarily be narrow, but this may not be a problem from the user’s viewpoint.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir


Numerical solution of saddle point problems 61

For saddle point problems, the construction of high-quality precondition-
ers necessitates exploiting the block structure of the problem, together with
detailed knowledge about the origin and structure of the various blocks.
Because the latter varies greatly from application to application, there is no
such thing as the ‘best’ preconditioner for saddle point problems. The choice
of a preconditioner is strongly problem-dependent. For instance, techniques
that give excellent results for the time-dependent Stokes problem may be
completely inadequate for the steady-state case, or with the Oseen equa-
tions. Preconditioners that have been successfully used in optimization may
be useless in fluid dynamics, and conversely. The good news is that power-
ful preconditioning techniques have been developed for many problems of
practical interest.

We review several such techniques below. We begin with block precondi-
tioners, especially popular in fluid dynamics, and continue with constraint
preconditioners, especially popular in optimization. As it turns out, the
first class of preconditioners has close ties with Schur complement reduc-
tion, while the second is related to the null space approach. Next we describe
a more recent, promising class of methods based on the Hermitian and skew-
Hermitian splitting of Â in (3.10). This approach is rather general and has
already been applied to a fairly wide range of problems, from fluid dynamics
to weighted least squares. We conclude this section with a brief discussion
of recent attempts to develop reliable incomplete factorization techniques
for symmetric indefinite systems. It is also worth noting that both the sta-
tionary iterative methods described in Section 8 and the multilevel methods
described in Section 11 can be accelerated by (used as preconditioners for)
Krylov subspace methods.

The survey of preconditioners in this section is by no means exhaustive;
see Axelsson and Neytcheva (2003) and Zulehner (2002) for other overviews
of preconditioning techniques for saddle point problems.

10.1. Block preconditioners

In this section we consider block diagonal and block triangular precondition-
ers for Krylov subspace methods applied to the coupled system Au = b. As
we shall see, the performance of such preconditioners depends on whether
fast, approximate solvers for linear systems involving A and the Schur com-
plement S are available. Therefore, the preconditioners considered in this
section are related to the ‘segregated’ solvers considered in Section 5.

10.1.1. Block diagonal preconditioners

Here we consider block diagonal preconditioning for the case of an invertible
but possibly nonsymmetric saddle point matrix A with C = O. Then the
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basic block diagonal preconditioner is given by

Pd =

[

A O
O −S

]

, (10.1)

where S = −B2A
−1BT

1 is the Schur complement. Left preconditioning of A
with Pd results in the matrix

M = P−1
d A =

[

I A−1BT
1

−S−1B2 O

]

. (10.2)

The matrix M is nonsingular by assumption and, as pointed out in Kuznet-
sov (1995) and Murphy, Golub and Wathen (2000), it satisfies

(M− I)

(

M− 1

2
(1 +

√
5)I

) (

M− 1

2
(1 −

√
5)I

)

= O.

Hence M is diagonalizable and has only three distinct eigenvalues, namely
1, 1

2(1 +
√

5), and 1
2(1−

√
5) (see de Sturler and Liesen (2005) for the com-

plete form of the eigendecomposition of M). Hence, for each initial residual
r0, dimKn+m(M, r0) ≤ 3, which means that GMRES applied to the pre-
conditioned system with matrix M will terminate after at most 3 steps.
The same can be shown for right preconditioning with Pd, or any centred
preconditioning of the form P−1

1 AP−1
2 with P1P2 = Pd. Furthermore, these

results generalize to the case of a nonzero (2,2) block C of the matrix A
(Ipsen 2001).

At first sight this looks promising. However, a simple calculation using
the formula (3.4) for the inverse of A shows that

A−1 =

(

M +

[

A−1BT
1 S−1B2 O
O −I

])

P−1
d .

We see that forming the preconditioned system Mu = P−1
d b out of the

given saddle point system Au = b using the block diagonal preconditioner
(10.1) is essentially as expensive as computing the inverse of A directly using
(3.4). In practice, the exact preconditioner (10.1) needs to be replaced by
an approximation,

P̂d =

[

Â O

O −Ŝ

]

, (10.3)

where both Â and Ŝ are approximations of A and S, respectively.
Several different approximations have been considered in the literature.

Examples from a few specific applications are given in Section 10.1.3. Here
we describe a fairly general framework developed in de Sturler and Liesen
(2005). There the preconditioner (10.3) is obtained by considering a split-
ting of A into

A = D − E,
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where D is invertible. Then Â = D and Ŝ = −B2D
−1BT

1 are chosen, and
bounds for the eigenvalues of the resulting preconditioned matrix

M̂ = P̂−1
d A =

[

I − D−1E D−1BT
1

−Ŝ−1B2 O

]

=

[

I D−1BT
1

−Ŝ−1B2 O

]

−
[

D−1E O
O O

]

(10.4)
are given in terms of the eigenvalues of M = P−1

d A. These bounds show

that the distance of the eigenvalues of M̂ to the three distinct eigenvalues of
M depends on several factors, including the norm of the matrix D−1E. In
particular, when A is diagonally dominant, and D = diag(A), then a good

clustering of the eigenvalues of M̂ around 1, 1
2(1+

√
5), and 1

2(1−
√

5) can be

expected. However, the preconditioned matrix M̂ still has (now potentially
n+m distinct) eigenvalues that may be on both sides of the imaginary axis.

To overcome this drawback, de Sturler and Liesen (2005) propose combin-
ing the approximate block diagonal preconditioner (10.3) with an Uzawa-
type fixed point iteration (see Section 8.1 above) that is based on a splitting

of M̂ as in the rightmost expression in (10.4) into M̂ = P1−P2. The inverse
of P1 is known explicitly, and if D is simple enough (e.g., diagonal), it can

be efficiently computed. Then the preconditioned system M̂u = P̂−1
d b = b̂

can be written as

(P1 − P2)u = b̂ ⇔ u = P−1
1 P2u + P−1

1 b̂,

which yields the fixed point iteration

uk+1 = P−1
1 P2uk + P−1

1 b̂, (10.5)

where P−1
1 P2 =

[

(I + D−1BT
1 Ŝ−1B2)D

−1E O

−Ŝ−1B2D
−1E O

]

.

Because of the form of the iteration matrix P−1
1 P2, it is easy to see that

this fixed point iteration depends only on the first n components of u, i.e.,
it is sufficient to consider the iteration

xk+1 = (I + D−1BT
1 Ŝ−1B2)D

−1E xk + [P−1
1 b̂]1:n,

where [P−1
1 b̂]1:n denotes the first n components of the vector P−1

1 b̂. Hence
this approach can be considered a segregated solution method, in which (an
approximation to) x∗ is computed first, and is then used to compute (an
approximation to) y∗. The reduced system of order n here is given by

(

I − (I + D−1BT
1 Ŝ−1B2)D

−1E
)

x = [P−1
1 b̂]1:n. (10.6)

Obviously, this solution technique reduces the number of unknowns com-
pared to the preconditioned system with the matrix M̂ from n+m to n. This
might result in a significant saving of computational resources, especially
when m is relatively large. Moreover, and possibly even more importantly,
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the eigenvalues of the system matrix in (10.6) tend to be clustered around 1,
with tighter clustering corresponding to a smaller norm of the matrix D−1E.
In particular, the spectrum has only one instead of the three clusters of M̂;
see de Sturler and Liesen (2005). Because of this, the performance of a
Krylov subspace method such as GMRES applied to (10.6) is typically bet-
ter than the performance for the block diagonally preconditioned system
with the matrix M̂. It is important to note that the approach through
(10.6) is closely related to (left) constraint preconditioning described below
in Section 10.2. For simplicity, consider the case with B1 = B2 = B, and
the constraint preconditioner Pc in (10.15) with G = D resulting from the
splitting A = D − E. A straightforward calculation shows that the system
matrix in (10.6) is exactly the same as the (1,1) block of the preconditioned

matrix M in (10.17). Also note that the block diagonal preconditioner P̂d

in this case is equal to the block diagonal matrix in the factorization of the
constraint preconditioner Pc in (10.15). Further details about the relation
between these two approaches can be found in de Sturler and Liesen (2005).

Next, consider the case of a symmetric saddle point matrix A with A
positive definite and C = O. Then Fischer et al. (1998) consider block
diagonal preconditioners of the form

P̂±
d =

[

η−1A O

O ±Ŝ

]

, (10.7)

where η > 0 is a scaling parameter, and Ŝ is a symmetric positive definite
approximation of the (negative) Schur complement. Note that P̂+

d is positive

definite, while P̂−
d is indefinite. Since both A and Ŝ are symmetric positive

definite, their Cholesky decompositions A = LLT and Ŝ = MMT can be
used to transform the system Au = b into the equivalent system

[

ηI (M−1BL−T )T

±M−1BL−T O

] [

η−1LT x
MT y

]

=

[

L−1f
(ηM)−1g

]

. (10.8)

Clearly, the system matrix in (10.8) is of the same form as A±
η in (3.13),

and hence its eigenvalues depending on the choice of + or − and of η are
characterized in Theorem 3.8. There it is shown that the eigenvalue dis-
tributions vary greatly from each other. In addition, the positive definite
preconditioner P̂+

d yields a symmetric system matrix A+
η in (10.8), while the

indefinite preconditioner P̂−
d leads to the nonsymmetric matrix A−

η . For a
fixed η it is therefore interesting to understand which choice yields the bet-
ter performance of a Krylov subspace method applied to the preconditioned
system (10.8). Curiously, there may be no difference at all. In fact, assum-
ing that g = 0 in the saddle point system, Fischer et al. (1998) show that
the preconditioned matrices A±

η in (10.8) both generate the same Krylov
subspace iterates uk when special initial residuals are used. In this case the
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residual norms of MINRES applied to the symmetric system coincide with
the residual norms of GMRES applied to the nonsymmetric system in every
step of the iteration. This exact equivalence is lost when random initial
residuals are used, but as is shown numerically in Fischer et al. (1998), the
convergence curves are very close in such cases as well. Since the MINRES
method is based on three-term recurrences due to symmetry of the system
matrix (cf. Section 9), the positive definite preconditioner clearly represents
the superior strategy.

Block diagonal preconditioners for saddle point problems arising from
(stabilized) discretized Stokes problems (2.10)–(2.12) have been studied, for
example, in Silvester and Wathen (1994) and Wathen and Silvester (1993).
The system matrix of the discrete problem is a generalized saddle point
matrix of the form

A =

[

A BT

B −βC

]

, (10.9)

where A is block diagonal and symmetric positive definite, C is symmetric
positive semidefinite, and β > 0 is a stabilization parameter. Silvester and
Wathen (Silvester and Wathen 1994, Wathen and Silvester 1993) provide
several results on the eigenvalue distribution of the preconditioned matrix
P̂−1

d A for different symmetric positive definite preconditioners P̂d of the
form (10.3).

For example, consider the case Â = diag(A), and −Ŝ = β diag(C) if

C �= O or −Ŝ = βhdI if C = O (here d is the spatial dimension of the
Stokes problem, and h is the mesh size parameter), i.e., a positive definite

diagonal preconditioner P̂d. Then it can be shown that the eigenvalues of
the symmetric indefinite preconditioned matrix P̂−1

d A are contained in the
union of two real intervals of the form

(−a,−bh) ∪ (ch2, d), (10.10)

where a, b, c, d are positive constants that are independent of h (Wathen
and Silvester 1993, Theorems 1 and 2). As discussed in Section 9, the
(worst-case) convergence of MINRES applied to the preconditioned system

depends on the eigenvalue distribution of P̂−1
d A, and an upper convergence

bound can be found by using (the smallest) two intervals containing the
eigenvalues. If these intervals are of the same length, then such a conver-
gence bound is given by (9.9)–(9.11). But in the case of (10.10), the two
intervals are in fact not of the same length, since the negative eigenvalues
spread out less rapidly under mesh refinement than the positive eigenvalues.
Extending the two intervals in (10.10) to make their lengths equal, say by
replacing (10.10) with (−d,−ch2) ∪ (ch2, d) (where we assume, for simpli-
city, d > a and b > c), would predict an asymptotic convergence rate of
O(1 − h2c/d) for MINRES. However, with some careful analysis it can be
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shown that the asymptotic convergence factor of (10.10) is actually of order
O(1 − h3/2

√

bc/ad); see Wathen et al. (1995) for details. More sophistic-
ated positive definite block diagonal preconditioners in this context leading
to even better asymptotic convergence rates are studied in Silvester and
Wathen (1994); see also Section 10.1.3.

Apart from the work in Silvester and Wathen (1994) and Wathen and
Silvester (1993), block diagonal preconditioners have been studied in the
context of numerous additional applications. The upshot is that for suitably
chosen approximations to A and S, block diagonal preconditioners result-
ing in mesh-independent rates of convergence exist for mixed finite element
formulations of many problems. For example, an analysis of the eigen-
value distribution of block diagonally preconditioned saddle point systems
arising from mixed finite element discretizations of magnetostatics prob-
lems is given in Perugia and Simoncini (2000, Section 4). Other analyses
of block diagonal preconditioners in specific applications can be found in
Battermann and Heinkenschloss (1998), Chizhonkov (2001, 2002), Klawonn
(1998a), Krzyżanowski (2001), Kuznetsov (1995, 2004), Lukšan and Vlček
(1998), Lyche et al. (2002), Mardal and Winther (2004), Pavarino (1997,
1998), Peters et al. (2004), Powell and Silvester (2004), Toh, Phoon and
Chan (2004) and Vassilevski and Lazarov (1996).

10.1.2. Block triangular preconditioners

Block triangular preconditioners of the form

Pt =

[

A BT

O S

]

were first considered in Bramble and Pasciak (1988) and extensively de-
veloped in the last few years. Note that Uzawa’s method may also be re-
garded as a block (lower) triangular preconditioner; cf. (8.2). This class of
preconditioners includes some of the most effective solvers for saddle point
problems, both symmetric and nonsymmetric. Note that the first block row
of Pt coincides with the first block row of A; hence, for the initial guess
u0 = 0, the solution of the initial preconditioning equation Pt z0 = r0 = b
must in particular satisfy the first of the two equations in the saddle point
system (1.6). In Section 10.2 we will examine preconditioning strategies that
require satisfying the second equation in the saddle point system (constraint
preconditioning). In the setting of fluid flow problems, the first approach re-
quires the preconditioner to respect the conservation of momentum, whereas
the second one imposes a mass balance condition.

Recalling the block factorization (3.3), we immediately see that the spec-
trum of P−1

t A is σ(P−1
t A) = {1} and moreover, the preconditioned matrix

has minimum polynomial of degree 2, so that a method like GMRES would
converge in at most two steps. In practice, of course, approximations Â and
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Ŝ to A and S have to be used. The computation of zk = P−1
t rk at each

step of a nonsymmetric Krylov subspace method can be implemented on
the basis of the factorization

P−1
t =

[

Â−1 O
O I

] [

I BT

O −I

] [

I O

O −Ŝ−1

]

. (10.11)

Note that the cost of applying the preconditioner is only slightly higher
than in the block diagonal case: besides the solves with Â and Ŝ, there
is an additional multiplication by BT . Once again, the choice of the ap-
proximations Â and Ŝ is problem-dependent; see Section 10.1.3. Generally
speaking, the better the approximations, the faster the convergence. How-
ever, since the preconditioned matrix P−1

t A (or AP−1
t ) is nonnormal, con-

vergence estimates are not easy to obtain. Field of values analysis can be
used in some instances to obtain eigenvalue bounds and convergence estim-
ates for GMRES. These analyses and numerical experiments indicate that
h-independent convergence rates can be achieved for some important prob-
lems, including the Oseen equations; see Klawonn and Starke (1999), Loghin
and Wathen (2004) and the discussion in the next section. Other analyses
of block triangular preconditioners for specific applications can be found
in Battermann and Heinkenschloss (1998), Cao (2004a), Elman, Silvester
and Wathen (2002a), Kanschat (2003), Klawonn (1998b), Krzyżanowski
(2001) and Pavarino (1998); see also Bramble and Pasciak (1988), Simoncini
(2004a) and Zulehner (2002) for analyses of the inexact case. An apparent
disadvantage in the symmetric case is that block triangular preconditioning
destroys symmetry. A symmetrized version of block triangular precondition-
ing has been proposed in Bramble and Pasciak (1988); see also Axelsson and
Neytcheva (2003), D’Yakonov (1987) and Zulehner (2002). However, sym-
metrization is seldom necessary in practice: if good approximations to A
and S are available, a method like GMRES with block triangular precon-
ditioning will converge quickly and the overhead incurred from the use of a
nonsymmetric solver will be negligible.

We also mention preconditioners based on incomplete block triangular
factorizations of the form

P =

[

Â O

B Ŝ

] [

I Â−1BT

O I

]

≈ A,

where Â and Ŝ are easily invertible approximations of A and the Schur
complement S. Note that application of this preconditioner requires two
solves with Â rather than one, in addition to the solve with Ŝ. Multiplying
out the factors, we obtain

P =

[

Â BT

B −Ĉ

]

, Ĉ = −(BÂ−1BT + Ŝ).
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Hence, generally speaking, P is an indefinite preconditioner of the type
considered in Section 10.2. Note that P is symmetric if Â and Ŝ are.
Again, the key issue here is the choice of the approximations Â ≈ A and
Ŝ ≈ S. Such incomplete block LU factorization preconditioners corres-
pond to classical solution methods known in computational fluid dynamics
as SIMPLE schemes (for ‘Semi-Implicit Method for Pressure-Linked Equa-
tions’): see Patankar (1980) and Patankar and Spalding (1972). In the

original SIMPLE scheme Â = DA and Ŝ = −BD−1
A BT , respectively, where

DA denotes the main diagonal of A. Different choices of the approximations
involved lead to different preconditioners. Variants of SIMPLE are also of-
ten used as smoothers for multigrid; see the discussion in Section 11. A
spectral analysis of the SIMPLE preconditioner applied to the Oseen prob-
lem can be found in Li and Vuik (2004). See also Benzi and Liu (2005) for
numerical experiments and comparisons with other preconditioners. These
experiments confirm the intuition that SIMPLE preconditioning is effect-
ive when A is strongly diagonally dominant, as is the case for generalized
Stokes and Oseen problems with sufficiently small time steps. On the other
hand, SIMPLE is not competitive when the time steps are large or ‘infinite’
(steady case), for in this case the approximations to A and especially to S
are poor. It should be mentioned that for unsteady problems classical
(Chorin-style (Chorin 1968)) pressure-correction schemes are also very
efficient; see Wesseling (2001, page 303). Further references on incom-
plete block factorizations for the treatment of time-dependent Navier–Stokes
equations include Gauthier, Saleri and Quarteroni (2004), Perot (1993),
Quarteroni, Saleri and Veneziani (2000), Saleri and Veneziani (2005) and
Veneziani (2003).

10.1.3. Approximating A and S

As we have seen, many algorithms for solving saddle point systems depend
on the availability of good approximations for the (1,1) block A and for
the Schur complement S. Such approximations are needed in segregated
approaches and in preconditioned Uzawa schemes where the Schur comple-
ment system (5.1) is solved by a preconditioned iteration, and in the con-
struction of block diagonal and block triangular preconditioners for coupled
Krylov iterations applied to Au = b.

The construction of such approximations is a strongly problem-dependent
process, and a large body of literature exists on this topic. The problem
has been especially well-studied for mixed finite element formulations of
elliptic PDEs, for the Stokes and Oseen problems, and for linear elasticity
problems. Furthermore, some work has been done towards the construction
of preconditioners for the Schur complement (‘normal equations’) systems
arising from interior point methods in optimization.
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In the case of mixed finite element approximations of elliptic boundary
value problems and of Stokes- and Oseen-type equations, the submatrix
A usually corresponds either to a zeroth-order differential operator (mul-
tiplication by a function or tensor K, as in (2.18)), or to a direct sum of
second-order differential operators of diffusion or convection-diffusion type.
When A represents multiplication by a function (a mass matrix), it can
be well approximated by either a (scaled) identity matrix or by diagonal

lumping of A (that is, the ith diagonal entry of Â is equal to the sum of
the entries in the ith row of A). If the coefficients in K are sufficiently

smooth, the resulting approximation Â is then spectrally equivalent to A,
in the sense that the eigenvalues of Â−1A are positive and contained in an
interval whose endpoints do not depend on the mesh size; see Rusten and
Winther (1992, 1993) and Wathen (1987). When A represents a discrete
(vector) diffusion or convection-diffusion operator, a spectrally equivalent

approximation Â can be obtained in many cases by performing one or more
multigrid sweeps on the linear system A x = v. Thus, the approximation
Â of A is not constructed explicitly, but is defined implicitly by the action
Â−1v on a given vector v. We refer the reader to Elman et al. (2005c) for
details. Here we note that for the generalized (unsteady) Stokes and Oseen
problems the matrix A is usually well-conditioned because of the presence of
an additional term inversely proportional to the time step ∆t. This makes
the (1,1) block strongly diagonally dominant, and a single multigrid V-cycle
with an appropriate Gauss–Seidel smoother is often sufficient: see Mardal
and Winther (2004) and Turek (1999).

When A does not arise from the discretization of a differential operator,
approximate solves, if necessary, may be obtained by either incomplete fac-
torizations or by a few iterations of a Krylov subspace method, possibly
with an appropriate preconditioner.

The approximation Ŝ of the Schur complement matrix S is usually more
delicate. In the context of saddle point systems arising from the discretiz-
ation of PDEs, good approximations to the Schur complement are critical
to the performance of block preconditioners. In many cases, excellent ap-
proximations can be constructed by thinking in terms of the underlying dif-
ferential operators. We recommend Loghin and Wathen (2003) for a highly
readable discussion of this problem in terms of pseudodifferential operators.

For mixed finite element discretizations of elliptic problems of the type
(2.18)–(2.20), the Schur complement S = −BA−1BT can be interpreted as
a discretization of the second-order diffusion operator ∇K−1 · ∇ acting on
the unknown function corresponding to the y variable (e.g., on the pressure
for incompressible flow problems). In this case, a number of approximations

Ŝ are possible. Provided that K is sufficiently well-behaved, the action of
S−1 can be approximated by an iteration of multigrid. For higher-order
methods, a low-order discretization of the same diffusion operator may also
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be expected to give a very good approximation. The literature in this area
is vast; see, e.g., Kanschat (2003), Kuznetsov (1995, 2004), Loghin and Wa-
then (2003), Martikainen (2003), Moulton, Morel and Ascher (1998), Peru-
gia and Simoncini (2000), Powell and Silvester (2004), Rusten, Vassilevski
and Winther (1996), Rusten and Winther (1992, 1993) and Warsa, Benzi,
Wareing and Morel (2004).

For LBB-stable discretizations of the linear elasticity and steady-state
Stokes problem, the Schur complement is spectrally equivalent to a mass
matrix (Verfürth 1984a). This is not surprising if one thinks of S as a dis-
crete counterpart of a pseudodifferential operator of the form div ∆−1 grad
and keeping in mind the identity ∆ = div grad. Hence, under appropriate
discretization the Schur complement has condition number bounded inde-
pendently of mesh size and can be approximated effectively and cheaply
in a number of ways; see the previous discussion on approximating zeroth-
order differential operators, as well as the references Elman (1996), Elman
et al. (2005c), Klawonn (1998a, 1998b), Loghin and Wathen (2003, 2004),
Pavarino (1997), Silvester and Wathen (1994), Wathen and Silvester (1993)
and Yang (2002).

For mixed finite element discretizations of the generalized Stokes prob-
lem that arises from the implicit treatment of the time-dependent Stokes
problem, on the other hand, the Schur complement is of the form S =
−B(A + βI)−1BT , where β > 0 is inversely proportional to the time step.
In the 2D case, A is the block diagonal matrix

A =

[

νH O
O νH

]

,

where H is a discrete Laplace operator and ν > 0 denotes the viscosity.
In the 3D case, there will be three blocks along the diagonal instead of
two. Clearly, for very large time steps (β small) the matrix S = −B(A +
βI)−1BT is close to the Schur complement of the steady Stokes problem
and is well-conditioned independent of mesh size. In this case a scaled
pressure mass matrix will be a good approximation. On the other hand,
for small step sizes (β large) this operator has a condition number that
grows as h → 0. Note that in the limit as β → ∞, the Schur complement
behaves essentially as a discrete diffusion operator. The same is true for
the case of small viscosity ν (high Reynolds numbers Re ), regardless of
the size of the time step, for in this case the matrix A, which contains
terms proportional to ν = Re−1, will be negligible. In these cases the
SIMPLE approximation for the Schur complement can be quite good for
sufficiently small β. Robust preconditioners that work well for small as well
as large time steps and over a wide range of Reynolds numbers were first
proposed and analysed in Cahouet and Chabard (1988); see also Bramble
and Pasciak (1997) and Kobelkov and Olshanskii (2000). The idea is to
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build preconditioners that are discrete counterparts of the pseudodifferential
operator L implicitly defined by

L−1 = ν I − β ∆−1,

where I denotes the identity operator and ∆ is a pressure Laplacian. Here
∆−1 stands for the data-to-solution mapping for a pressure-Poisson equation
with suitable boundary conditions. Thus, the action of the approximate
Schur complement Ŝ on a vector v consists of

Ŝ−1v = ν Mp v − β (BM−1
u BT )−1v,

where Mp is a pressure mass matrix and Mu a velocity mass matrix. Note
that BM−1

u BT is simply the so-called compatible discretization of the Lapla-
cian (Cahouet and Chabard 1988). Again, inexact solves can be used to
approximate (BM−1

u BT )−1v. For further details see Turek (1999) and the
recent paper by Mardal and Winther (2004).

The situation is more complicated for the nonsymmetric saddle point
problems arising from discretizations of the (steady and unsteady) Oseen
equations. For steady problems with large viscosity (small Reynolds num-
bers), using a pressure mass matrix to approximate the Schur complement
is usually sufficient and results in rates of convergence independent of mesh
size when block diagonal or block triangular preconditioners are used. How-
ever, the rate of convergence tends to deteriorate quickly as the viscosity
gets smaller. The problem is that as ν → 0, the exact Schur complement
becomes increasingly nonsymmetric and cannot be well approximated by
a (necessarily symmetric) mass matrix; see, e.g., Cao (2004a), Elman and
Silvester (1996) and Krzyżanowski (2001). Much progress has been made
in the last few years towards developing robust preconditioners of the block
triangular type for the Oseen equations; see Elman (1999, 2002), Elman,
Howle, Shadid, Shuttleworth and Tuminaro (2005a), Elman, Howle, Shadid
and Tuminaro (2003a), Elman, Silvester and Wathen (2002a, 2002b, 2005c),
Kay, Loghin and Wathen (2002), Loghin and Wathen (2002) and Silvester,
Elman, Kay and Wathen (2001). Out of this effort, two especially interest-
ing techniques have emerged. The first idea is to approximate the inverse
of the Schur complement matrix S = BA−1BT with

Ŝ−1 = (BBT )−1BABT (BBT )−1 (10.12)

(here and in the remainder of this section we dispense with the negat-
ive sign for ease of notation). This approximation, originally proposed by
Elman (1999) (see also Saleri and Veneziani (2005)), has been given vari-
ous justifications. A simple one is to observe that if B were square and
invertible, then the inverse of BA−1BT would be B−T AB−1. However, B
is rectangular. Therefore it makes sense to replace the inverse of B with
the Moore–Penrose pseudo-inverse B†; see Campbell and Meyer Jr. (1979).
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If we assume B to have full row rank, the pseudo-inverse of B is given by
B† = BT (BBT )−1, thus justifying the approximation (10.12). Now the
approximate Schur complement is (strongly) nonsymmetric if A is. Note

that evaluating the action of Ŝ−1 on a given vector v requires the solution of
two pressure-Poisson-type problems, plus matrix-vector multiplies involving
BT , A and B. It follows from (10.11) that the block triangular precondi-
tioner can be applied by performing matrix-vector products involving BT ,
A and B, and a few iterations of multigrid. For 3D problems, multigrid is
needed to approximately solve three convection-diffusion problems for the
three components of the velocity field (approximate inversion of A), and to
solve the two Poisson-type problems approximately on the pressure space.
Numerical experiments for simple model problems indicate that the per-
formance of this preconditioner depends only mildly on the mesh size and
viscosity coefficient; see Elman (1999). However, it was found to perform
poorly (occasionally failing to converge) on some difficult problems; see
Vainikko and Graham (2004). As noted in Elman, Howle, Shadid, Shuttle-
worth and Tuminaro (2005a), for finite element problems the performance
of this preconditioner can be greatly improved by the use of appropriate
scalings. Denoting by M1 and M2 suitable diagonal matrices, Elman et al.
(2005a) derive the more accurate approximation

Ŝ−1 = (BM−2
2 BT )−1BM−2

2 AM−1
1 BT (BM−2

1 BT )−1. (10.13)

The matrix M1 is taken to be the diagonal of the velocity mass matrix

Mu; taking M2 = M
1/2
1 makes the two variable-coefficient discrete diffusion

operators in (10.13) identical. Although the cost of the two variants (10.12)
and (10.13) is almost the same, the improvement in performance obtained
by the use of scaling can be quite dramatic; see the numerical experiments
in Elman et al. (2005a).

Another effective approximation of the Schur complement for the Os-
een problem was introduced in Kay, Loghin and Wathen (2002) and ana-
lysed in Elman, Silvester and Wathen (2002b). Again, several justifica-
tions have been given for this approach, the original one being based on
the Green’s tensor of the Oseen operator on the continuous level. An-
other elegant derivation in terms of pseudodifferential operators can be
found in Loghin and Wathen (2003). A simpler, heuristic argument is to
first consider the case where A and BT are both square and commute:
ABT = BT A. If A is nonsingular, its inverse must also commute with
BT , hence A−1BT = BT A−1. If we think of A as representing a second-
order differential operator and B a first-order one then, apart from possible
problems near the boundary, assuming commutativity is reasonable. It
follows from these assumptions that S−1 = (BA−1BT )−1 = A(BBT )−1.
In practice, however, A and BT have different dimensions and represent
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operators acting on different function spaces. Note that BBT is, again, a
(scalar) pressure-Poisson-type operator; on the other hand, A is a (vector)
convection-diffusion operator acting on the velocities. This suggests intro-
ducing a discrete convection-diffusion operator Ap acting on the pressures.
Including the necessary mass matrix scalings, the resulting approximation
to the inverse of the Schur complement is thus

Ŝ−1 = M−1
p Ap(BM−1

u BT )−1. (10.14)

The block triangular preconditioner based on this approximate Schur com-
plement has been extensively tested on a variety of steady and unsteady
model problems, in both 2D and 3D; see, e.g., Kay, Loghin and Wathen
(2002), Elman, Howle, Shadid and Tuminaro (2003a), Elman, Silvester
and Wathen (2002a, 2002b), Hemmingsson-Frändén and Wathen (2001) and
Loghin and Wathen (2002). This method, which is referred to as the pres-
sure convection-diffusion preconditioner in Elman et al. (2005c), appears
to be very robust with respect to mesh refinement, and fairly robust with
respect to the viscosity, exhibiting only a mild deterioration as ν → 0 on
a wide range of problems and discretizations. Note that this approxima-
tion is less expensive than the one based on (10.13), since computing the

action of Ŝ−1 only requires solving a single pressure-Poisson problem and a
matrix-vector product with Ap.

One drawback of this approach is the need to construct an additional op-
erator, Ap, which is not required by the formulation of the Oseen problem
but is needed only to form the preconditioner. This discrete convection-
diffusion operator is not usually available in standard fluid dynamics codes.
This has motivated new, fully algebraic approaches to compute approxim-
ations to Ap from the existing blocks A, B and BT based on the notion of
sparse approximate commutators (SPAC); see Elman et al. (2005a). The
approximate Ap is the matrix that minimizes the cost functional

F (X) = ‖ABT − BT X‖F

(where ‖ · ‖F denotes the Frobenius norm) over a space of matrices with
prescribed sparsity pattern. Note that the solution of the unconstrained
minimization problem is Ap = (BBT )−1BABT , corresponding to Elman’s

approximation Ŝ−1 = (BBT )−1BABT (BBT )−1.
The block triangular preconditioner based on the pressure convection-

diffusion operator was also used by Syamsudhuha and Silvester (2003) with
good results as a smoother for multigrid applied to the Oseen problem. It
was also used by Elman, Loghin and Wathen (2003b) as a preconditioner
for the linear systems arising from Newton’s method applied to the Navier–
Stokes equations. In this case the method was again found to result in
h-independent convergence, but some growth in the iteration number was
observed for small ν.
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The pressure convection-diffusion operator, on the other hand, does not
seem to be applicable to the rotation form (2.15)–(2.17) of the Oseen equa-
tions. Different approximations need to be used in this case; see Olshanskii
(1999) and Section 10.3 below.

Approximations for the Schur complement matrices arising in interior
point methods for constrained optimization have been studied by several
authors. Here we give a brief discussion based on Frangioni and Gentile
(2004). As already pointed out in Section 3.5, such linear systems can be
extremely ill-conditioned. An interesting technique is the tree preconditioner
described in Resende and Veiga (1993), based on ideas first put forth in

Vaidya (1990). The approximation to S = BA−1BT is of the type Ŝ =

B̂MB̂T where B̂ and M are now both square matrices of order m. The
actual construction of these matrices depends on the application. In network
flow problems (the motivating application in Resende and Veiga (1993)),
the constraint matrix B is the node–edge incidence matrix of a directed
graph G, and B̂ is defined as the node–edge incidence matrix of a spanning
tree of G. Furthermore, A is diagonal and M is obtained by restricting
A−1 to the arcs that comprise the tree. (Note that when A = I, the matrix
S = BBT is closely related to the Laplacian matrix of the undirected version
of G.) More precisely, B̂ is chosen as the node–edge incidence matrix of an
(approximate) maximum weight spanning tree, where the weight of each
edge (i, j) is given by the corresponding entry of M . Such spanning trees
can be constructed in O(m) work using a variant of the classical Kruskal

algorithm. The resulting linear systems involving Ŝ can be solved in O(n)

work by solving linear systems with matrices B̂T , M and B̂. These linear
systems can be solved by visiting the spanning tree, without fill-in. This
preconditioner can be expected to be especially effective in the final stages
of the interior point iteration, since in this case the weights mij tend to zero
on all arcs, except on those corresponding to the basic optimal solution that
form a spanning tree. The preconditioner is less effective in the initial stages
of the interior point algorithm. This observation has motivated the use of
hybrid strategies where a diagonal preconditioner is used initially and the
tree preconditioner in later stages of the algorithm: see Resende and Veiga
(1993) for details. Improvements of the tree preconditioner were proposed
in Mehrotra and Wang (1996). A different strategy, based on an incomplete
QR factorization, was proposed in Júdice, Patricio, Portugal, Resende and
Veiga (2003), and found to be superior to the tree preconditioner for the
special case of transportation problems.

New preconditioners based on combinatorial principles have recently been
introduced by Frangioni and Gentile (2004). Motivated by the tree pre-
conditioner idea, these authors construct approximations of S of the form
Ŝ = B̂MB̂T , where now B̂ corresponds to a subgraph of the graph G of B;
this subgraph, which may contain (strictly) a spanning tree of G, should be
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such that linear systems associated with the matrix Ŝ can be easily solved.
For example, if the chosen subgraph happens to be chordal, then there is
an ordering of Ŝ such that no fill-in occurs when factoring Ŝ; see Rose
(1970). Fast algorithms exist to compute approximate maximum weight
chordal subgraphs. We refer the reader to Frangioni and Gentile (2004) for
further details and for numerical experiments showing that in many cases
the new subgraph-based preconditioners improve on existing techniques in
terms both of iteration counts and CPU time. An interesting open question
is to what extent these ideas can be exploited to construct approximate
Schur complements for saddle point problems arising from mixed finite ele-
ment discretizations of PDE problems, where the matrix B is a discrete
divergence operator.

We conclude this section with a brief discussion of purely algebraic meth-
ods that have been used to construct approximations Ŝ or Ŝ−1 to the Schur
complement matrix or to its inverse. See also the general treatment in Axels-
son (1994, Chapter 9) and the discussion in Siefert and de Sturler (2004,
Section 4). For simplicity, we confine ourselves to the case where B1 = B2

and C = O. Extension to cases with B1 �= B2 is usually straightforward;
the case C �= O, on the other hand, may be less obvious, especially when
seeking explicit approximations to S−1.

The simplest approximation is perhaps to set Ŝ = BD−1
A BT where DA is

either diagonal or possibly block diagonal with blocks of small size. Note
that in this case Ŝ will be sparse if B is, except for special situations (e.g.,
when B contains one or more dense columns). The diagonal approximation
DA = diag(A) is used, for instance, in the already-mentioned SIMPLE-type
schemes popular in computational fluid dynamics. Better approximations
can be obtained by means of incomplete factorizations of the form A ≈
LU ≡ Â. Then Ŝ = XY where X = BU−1 and Y = L−1BT . Matrices
X and Y may be computed by solving two lower triangular linear systems
involving UT and L and with multiple right-hand sides given by the columns
of BT . A posteriori dropping of small entries may be necessary to keep X
and Y sparse. Alternatively, one can use (explicit) sparse approximate
inverse techniques directly applied to A. For example, the approximate
inverse MA may be computed as the minimizer of the matrix functional

F (X) = ‖I − AX‖F

over a prescribed set of sparse matrices. Many other approximate inverse
techniques have been developed; see Benzi (2002) for an overview. Whatever
the technique employed, the resulting sparse approximate inverse MA ≈ A−1

can then be used to form an approximation Ŝ = BMABT . See Chow and
Saad (1997a), Little and Saad (2003) and Little, Saad and Smoch (2003)
for implementation details and for experimental comparisons of various
strategies. These techniques may be expected to work well when the entries
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in A−1 decay rapidly away from the main diagonal. This can be expected to
hold, for instance, for implicit time discretizations of time-dependent Stokes
and Oseen problems. Provided that sufficiently small time steps are taken,
the diagonal entries of A will be large compared to the off-diagonals and
will result in fast decay in A−1; see Demko, Moss and Smith (1984).

Other approximations that have been used in the literature for spe-
cific applications can be used, at least in principle, in more general set-
tings. Juvigny (1997) proposed the simple approximation (BA−1BT )−1 ≈
BABT as an approximate inverse of the Schur complement for saddle point
matrices arising from the use of Lagrange multipliers in domain decompos-
ition schemes. In this case B is often a very simple matrix representing a
restriction operator, and the approximation is not unreasonable. Although
this approximation is not very accurate, it has the advantage of having zero
construction cost; furthermore, computing the action of Ŝ−1 on a vector
only requires matrix vector products with sparse matrices. See also Lyche
et al. (2002) and Tyrtyshnikov and Vassilevski (2003) for more sophisticated
approximations to the Schur complements arising in similar contexts.

Another possible approximation is the already-mentioned Elman precon-
ditioner of the form

Ŝ−1 = (BBT )−1BABT (BBT )−1.

Although it was developed specifically for fluid flow problems, this approx-
imation should, at least in principle, be feasible whenever the solution of
linear systems with coefficient matrix BBT (or the equivalent least squares
problems) can be computed efficiently. Note that accommodating a nonzero
C in this and the previous case is not easy.

Yet another possibility is to approximate the action of S−1 on a vector v
by performing a few steps of an iterative method on the Schur complement
system Sz = v. Krylov subspace methods only require S in the form of
matrix-vector products. These in turn necessitate multiplications with B
and its transpose and solves with A. The latter operation may in turn be
performed by an (inner) iterative process. If a variable number of inner iter-
ations is performed, then a generalized conjugate gradient method (Axelsson
and Vassilevski 1991) or a flexible solver like FGMRES (Saad 1993) should
be used for the outer iteration. These inner solves need not be performed
to high accuracy. Even if an accurate approximation z ≈ S−1v is sought,
the accuracy of the inner solves with A can be relaxed in the course of the
outer iteration; see Simoncini and Szyld (2003). We further mention that
matrix-vector products involving S and selected vectors are used in the prob-
ing technique to compute banded approximations to S; see, e.g., Axelsson
(1994, Chapter 8.5.1). Finally, Bomhof and van der Vorst (2000) have pro-
posed a parallel direct-iterative approximate Schur complement algorithm
for linear systems arising in circuit simulation.
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10.2. Constraint and indefinite preconditioning

Constraint preconditioning is based on the principle that the precondition-
ing matrix should have the same 2×2 block structure as the original saddle
point matrix. In other words, the saddle point matrix is preconditioned
by another, ‘easier-to-invert’ saddle point matrix. Constraint precondi-
tioning has been extensively used in the solution of saddle point systems
arising from mixed finite element formulations of elliptic partial differential
equations (Axelsson and Neytcheva 2003, Bank et al. 1990, Ewing, Laz-
arov, Lu and Vassilevski 1990, Mihajlović and Silvester 2004, Perugia and
Simoncini 2000, Rozložńık and Simoncini 2002, Tong and Sameh 1998).
The method is also popular in the solution of saddle point (‘KKT’) systems
in optimization (Bergamaschi et al. 2004, Dyn and Ferguson 1983, Freund
and Nachtigal 1995, Gould, Hribar and Nocedal 2001, Keller, Gould and
Wathen 2000, Lukšan and Vlček 1998, Shi 1995). Komzsik, Poschmann
and Sharapov (1997) applied the preconditioner to problems arising in the
finite element analysis of structures.

We describe constraint preconditioning in the case where B1 = B2 = B
has full row rank and C = O. The preconditioning matrix is then

Pc =

[

G BT

B O

]

, (10.15)

where G is some approximation of A, G �= A. Of course, G should be chosen
so that Pc is invertible and solving linear systems involving Pc is significantly
easier than solving the original linear system Au = b. The name constraint
preconditioning comes from the fact that Pc is the coefficient matrix for
a saddle point problem with the same constraints as the original problem.
Moreover, the constraint preconditioner projects the problem onto the null
space of the constraint matrix B, as noted in Lukšan and Vlček (1998)
and Perugia et al. (1999). With an appropriate choice of the initial guess
u0, the component xk of every iterate uk generated by a Krylov method
preconditioned with Pc satisfies the constraint Bxk = g; see, e.g., Rozložńık
and Simoncini (2002).

When A has positive diagonal entries, G is often taken to be the diagonal
part of A, and if A = (aij) has been scaled so that aii = 1 for 1 ≤ i ≤ n,
then G = I. In this case the preconditioning matrix is just

Pc =

[

I BT

B O

]

,

i.e., the augmented matrix for a least squares problem of the form

min
z

‖h − BT z‖2,

and application of the preconditioner within a Krylov subspace method
involves repeated solution of such problems, either explicitly or implicitly.
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More generally, solution of linear systems with coefficient matrix Pc given
by (10.15) can be accomplished based on the identity

[

G BT

B O

]−1

=

[

I −G−1BT

O I

] [

G−1 O
O −(BG−1BT )−1

] [

I O
−BG−1 I

]

.

(10.16)
If G is sufficiently simple (e.g., diagonal) and linear systems with coefficient
matrix BG−1BT can be solved efficiently, then the action of the precondi-
tioner on a vector can be computed at a reasonable cost. In many cases,
however, the ‘exact’ solution of linear systems involving BG−1BT is too
expensive, and approximations must be used. For instance, incomplete
factorizations or sparse approximate inverse techniques can be used to ap-
proximately form and invert BG−1BT ; see Chow and Saad (1997a), Haws
(2002), Perugia and Simoncini (2000) and Toh et al. (2004). These strategies
are often more efficient than methods based on a direct LDLT factorization
of Pc. However, a sparse factorization of Pc would be advantageous when B
contains a dense column, as sometimes happens in optimization problems
(Bergamaschi et al. 2004), since in this case BG−1BT is completely dense.
Recently, an interesting new factorization (alternative to (10.16)) has been
introduced by Schilders; see Dollar and Wathen (2004) and Section 10.4
below. This can also be used to compute the action of P−1

c efficiently.
For a symmetric positive definite G, the (left) preconditioned matrix is

given by

M =

[

G BT

B O

]−1 [

A BT

B O

]

=

[

(I − Π)G−1A + Π O
X I

]

(10.17)

where

Π = G−1BT (BG−1BT )−1B

is the G-orthogonal projector onto range(G−1BT ) and

X = (BG−1BT )−1B(G−1A − I).

Note that in the special case m = n, we have Π = I and all the eigenvalues
of the preconditioned matrix are equal to 1; furthermore,

M− I =

[

O O
X O

]

⇒ (M− I)2 = O.

Therefore the minimal polynomial of the preconditioned matrix has degree
2, and GMRES applied to the preconditioned system delivers the solution
in at most two steps, independently of A and G. Of course, if m = n and B
is nonsingular then the solution of the saddle point system is simply given
by Bx∗ = g and BT y∗ = f − Ax∗, and the augmented system formulation
is neither necessary nor recommended.
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In the following, we deal with the more interesting case m < n. The eigen-
values and eigenvectors of the preconditioned matrix M in this case have
been studied in several publications, e.g., Durazzi and Ruggiero (2003a),
Lukšan and Vlček (1998), Perugia and Simoncini (2000) and Rozložńık and
Simoncini (2002). The following result was given in Keller et al. (2000,
Theorems 2.1 and 2.3).

Theorem 10.1. Let A ∈ R
n×n be symmetric, let B ∈ R

m×n have full
rank (= m < n), and suppose A is nonsingular. Let Z ∈ R

n×(n−m) be a
matrix whose columns form a basis for ker(B). Furthermore, let G ∈ R

n×n,
with G = GT �= A, be such that Pc in (10.15) is nonsingular. Then the
preconditioned matrix M in (10.17) has:

(1) the eigenvalue 1 with multiplicity 2m;
(2) n − m eigenvalues that are defined by the generalized eigenproblem

ZT AZxz = λZT GZxz.

Assume, in addition, that ZT GZ is positive definite. Then M has the
following m + i + j linearly independent eigenvectors:

(1) m eigenvectors of the form [0T , yT ]T corresponding to the eigenvalue 1
of M;

(2) i (0 ≤ i ≤ n) eigenvectors of the form [wT , yT ]T corresponding to the
eigenvalue 1 of M, where the components w arise from the generalized
eigenproblem Aw = Gw;

(3) j (0 ≤ j ≤ n−m) eigenvectors of the form [xT
z , 0T , yT ]T corresponding

to the eigenvalues of M not equal to 1, where the components xz arise
from the generalized eigenproblem ZT AZxz = λZT GZxz with λ �= 1.

Proof. See Keller et al. (2000).

As pointed out in Keller et al. (2000), if either ZT AZ or ZT GZ are pos-
itive definite, then the indefinite preconditioner Pc (10.15) applied to the
indefinite saddle point matrix A yields a preconditioned matrix M (10.17)
that has real eigenvalues. Clearly, the eigenvalues will be more clustered
near 1 the better G approximates A. Spectral properties of the precon-
ditioned matrices in the presence of inexact solves with G and BG−1BT

have been studied by Perugia and Simoncini (2000) and Toh et al. (2004).
We further mention the approach proposed by Coleman and Verma (2001),
where the blocks B and BT in the constraint preconditioner Pc are replaced
by approximations B̄, B̄T in order to simplify solves involving the precon-
ditioning matrix. In Coleman and Verma (2001), B̄ is obtained from B
by sparsification; in this case, care must be taken to avoid a (nearly) rank
deficient approximation. See also Arbenz et al. (2001), Biros and Ghat-
tas (2005a, 2005b) and Haber and Ascher (2001) for similar approaches in
different application contexts.
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If, in the notation of Theorem 10.1, ZT GZ is positive definite, then for
each initial residual r0, dimKn+m(M, r0) ≤ n−m+2: see, e.g., Lukšan and
Vlček (1998, Theorem 3.4) and Keller et al. (2000, Theorem 3.5). Hence
GMRES applied to the preconditioned system with matrix M will terminate
after at most n−m+2 steps. This is a very attractive feature of constraint
preconditioning when n − m is small.

In many applications n − m + 2 is quite large, so that a total number
of n − m + 2 iterations may be prohibitive. In addition, one is typically
interested only in an approximate rather than the exact solution, which
means that the iteration can be stopped after a prescribed tolerance is
achieved. Then a convergence analysis of the type described in Section 9
is required. Unfortunately, the matrix M is not diagonalizable, so that
standard convergence estimates like (9.9) are not applicable. In some cases,
however, it is still possible to derive convergence bounds similar to (9.9)
for GMRES applied to the preconditioned system. For example, assume
that A = AT is positive definite, B has full rank, and G = I. Then, for
a special initial residual of the form r0 = [sT

0 , 0T ]T , it can be shown that
the convergence of GMRES for the right constraint preconditioned system
only depends on the (1,1) block of the preconditioned matrix AP−1

c . In our
notation this (1,1) block is given by the (diagonalizable) matrix A(I−Π)+Π;
see Rozložńık and Simoncini (2002, Section 6) for details.

It should be pointed out that GMRES might not be the best method
for solving the constraint preconditioned linear system. The fact that con-
straint preconditioning incorporates a projection onto ker(B) suggests that
this preconditioning technique is closely related to the null space method
discussed in Section 7. The two methods are, in fact, mathematically equi-
valent (Gould et al. 2001, Lukšan and Vlček 1998, Perugia et al. 1999).
Exploitation of this equivalence allows the construction of a CG method
for a constraint preconditioned positive definite reduced system (Gould
et al. 2001). Unlike GMRES (when applied to a system with the non-
symmetric matrix M), this conjugate gradient method is based on efficient
three-term recurrences. In the numerical experiments in Keller et al. (2000),
this preconditioned conjugate gradient method represents a viable alternat-
ive to a direct solver (here MA27 from the Harwell subroutine library (Duff
and Reid 1983)), even for systems of relatively small order, and it typically
outperforms GMRES applied to M.

All numerical experiments in Keller et al. (2000) are performed using test
problems arising in linear and nonlinear optimization taken from the con-
strained and unconstrained testing environment (CUTE) (Bongartz, Conn,
Gould and Toint 1995). Another situation where constraint precondition-
ing performs well is when the saddle point system arises from a mixed finite
element formulation of a second-order, elliptic PDE. In this case it is often
possible to find an easily invertible (e.g., diagonal) G that is spectrally equi-
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valent to A. In many cases of practical interest, G = I will do. The resulting
constraint preconditioner (10.15) leads to asymptotic rates of convergence
for the right preconditioned system that are independent of h, the mesh dis-
cretization parameter, when the initial guess u0 = [0T , gT ]T (meaning that
r0 is of the form r0 = [sT

0 , 0T ]T ) is used. As in the analysis in Rozložńık and
Simoncini (2002) mentioned above, the convergence of GMRES then only
depends on the (diagonalizable) matrix A(I−Π)+Π. The eigenvalues of this
matrix are either 1, or contained in an interval [α0, α1], 0 < α0 ≤ α1 < 1,
where both α0 and α1 are independent of h (Perugia and Simoncini 2000,
Theorem 1) (cf. also Ewing et al. (1990)). Furthermore, the condition num-
ber of the eigenvector matrix of A(I−Π)+Π is bounded independently of h
(Rozložńık and Simoncini 2002, Proposition 6.3). The asymptotic optimal-
ity of these methods, however, does not always translate in computational
efficiency. As shown in Perugia and Simoncini (2000), it may be much
more efficient to replace the exact (but costly) preconditioner solves with
inexact ones, even if this introduces a dependency on h in the number of
preconditioned iterations. This is especially true of saddle point systems
that arise from the solution of 3D PDE problems. See also Mihajlović and
Silvester (2004) for a discussion of inexact constraint preconditioning for
mixed formulations of biharmonic problems in 2D.

Some of these results have been extended to the case where both A and
G are allowed to be nonsymmetric; see Cao (2002). The case where B1 �=
B2 was investigated in Ikramov (2003) and Wei and Zhang (2004). Dyn
and Ferguson (1983) studied the case where A is symmetric but G may be
nonsymmetric, and B1 = B2 = B. Assuming that A is symmetric positive
semidefinite with ker(A)∩ker(B) = {0} and that G is nonsingular and such
that G + GT − A is positive definite, they showed that the matrix Pc in
(10.15) is nonsingular, and that the stationary iteration

[

G BT

B O

] [

xk+1

yk+1

]

=

[

G − A O
O O

] [

xk

yk

]

+

[

f
g

]

, k = 0, 1, . . . (10.18)

is convergent for any choice of the initial guess. Therefore, the spectrum
of P−1

c A is contained in the disk {z ∈ C ; |z − 1| < 1}. A matrix splitting
of the form A = G − (G − A) such that G + GT − A is positive definite
is called a P-regular splitting ; see Ortega (1972, page 122). Examples of
such splittings when A is symmetric positive semidefinite with a nonzero
diagonal include the damped Jacobi, SOR, and SSOR splittings (Dyn and
Ferguson 1983). We mention that variants of the coupled iteration (10.18)
have been used as smoothers for multigrid methods; see Braess and Sarazin
(1997), Leem, Oliveira and Stewart (2004), Wabro (2004), Zulehner (2000)
and Section 11 below.

The important case where A is nonsymmetric but has positive definite
symmetric part has been studied in Golub and Wathen (1998), motivated
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by the Oseen (linearized Navier–Stokes) equations, and more recently in
Baggag and Sameh (2004), motivated by particulate flow problems. In both
of these papers, the idea is to use G = H ≡ 1

2(A + AT ), the symmetric part
of A. For the nonsymmetric linear system arising from the discretization
of the Oseen equations (2.7)–(2.9), the preconditioner becomes the (sym-
metric) matrix of the corresponding Stokes system (2.10)–(2.12). When
the kinematic viscosity coefficient ν in (2.7) is not too small, A is not too
far from being symmetric and this preconditioning strategy is very effect-
ive, yielding convergence rates that are independent of the mesh size. In
practice the exact solution of the preconditioning equation

Pcz = r, Pc =

[

H BT

B O

]

(10.19)

may be too expensive, and inexact solves may be required. For example,
(10.19) may be solved approximately by an iterative method, leading to a
nested (or inner-outer) iterative scheme. As shown in Baggag and Sameh
(2004), it is often possible in this way to retain the excellent convergence
properties of the outer scheme, while at the same time reducing the work
per iteration significantly. On the other hand, this approach does not work
well when A is far from symmetric (large Reynolds number, or small ν in
(2.7)); see the numerical experiments reported in Benzi and Liu (2005) and
Botchev and Golub (2004). In this case, better results can be obtained with
preconditioners of the form

Pc =

[

T BT

B O

]

,

where the submatrix T is nonsymmetric positive definite with a ‘large’ skew-
symmetric part that incorporates information from K, the skew-symmetric
part of A; see Botchev and Golub (2004).

The case where A = AT , B1 = B2 = B and C = CT �= O has been
considered in Axelsson and Neytcheva (2003), Bergamaschi et al. (2004),
Dollar (2005), Perugia and Simoncini (2000), Toh et al. (2004) and Zulehner
(2002). Here A and C are positive semidefinite and G is chosen so that the
preconditioning matrix

Pc =

[

G BT

B −C

]

(10.20)

is nonsingular. Furthermore, linear systems involving G and C + BG−1BT

should be easy to (approximately) solve. The spectral properties of this
preconditioner have been studied in Axelsson and Neytcheva (2003), Perugia
and Simoncini (2000) and Toh et al. (2004). We mention the following
results from Axelsson and Neytcheva (2003).
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Lemma 10.2. Let B, C, E be real matrices of order m × n, m × m and
n × n, respectively, where B has full rank, C = CT is positive semidefinite,
and E = ET . Then the eigenvalues of the generalized eigenproblem

γ

[

I BT

B −C

] [

x
y

]

=

[

E O
O O

] [

x
y

]

, ‖x‖ + ‖y‖ �= 0, (10.21)

where x ∈ C
n and y ∈ C

m, satisfy

(i) γ = xHEx
xH(I+BT C−1B)x

�= 0 if Ex �= 0 and C is positive definite,

(ii) γ = 0 if and only if Ex = 0, y �= 0 and the dimension of the eigenspace
corresponding to the zero eigenvalue is m + q, where q = dim ker(E),

(iii) the nonzero eigenvalues are contained in the interval min{0, λmin(E)}
≤ γ ≤ λmax(E).

Consider now a symmetric saddle point matrix A and the preconditioner
Pc given by (10.20), with G symmetric and positive definite. The eigenvalues
of the preconditioned matrix P−1

c A are those of the generalized eigenprob-
lem Au = λPcu; but these are of the form λ = γ + 1, where γ are the
eigenvalues of the generalized eigenproblem

γ

[

G BT

B −C

] [

x
y

]

=

[

A − G O
O O

] [

x
y

]

.

The latter is equivalent to

γ

[

I B̂T

B̂ −C

] [

x̂
y

]

=

[

Ê O
O O

] [

x̂
y

]

, (10.22)

where B̂ = BG−1/2, Ê = G−1/2AG−1/2 − I and x̂ = G1/2x. This gener-
alized eigenproblem is of the form (10.21) and therefore Lemma 10.2 can
be applied. In particular, the eigenvalues of P−1

c A are real. Clearly, the
better G approximates A, the more clustered around 1 are the eigenvalues
of P−1

c A.
Another form of indefinite preconditioning is based on the observation

that ‘stabilized’ saddle point systems (i.e., systems of the type (1.6) with
C �= O) are generally easier to solve than standard saddle point systems
(i.e., with C = O), in the sense that iterative methods tend to converge
faster when C �= O. It is also easier to construct effective block precondi-
tioners when C �= O, since the (negative) Schur complement C + BA−1BT

is typically better conditioned than BA−1BT . This observation justifies the
use of preconditioners of the form (10.20), with a suitably chosen C, even
if the (2, 2) block is zero in the original problem. This approach, referred
to as regularized preconditioning, was first considered in Axelsson (1979) in
the special case G = A and C = εI, where ε > 0. The preconditioning
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equation itself, Pcz = r, is solved by an iterative method, leading again to
an inner-outer process.

The case where G = A is symmetric positive definite, B1 = B2 = B has
full rank, and C is symmetric positive semidefinite is easily analysed. In
this case we have

A− Pc =

[

O O
O C

]

⇒ I −A−1Pc = A−1(A− Pc) =

[

O Y
O S−1C

]

,

where S = −BA−1BT and Y is a certain nonzero matrix. It follows that

P−1
c A =

[

I Ŷ
O (I − S−1C)−1

]

,

where Ŷ is again a nonzero matrix. Since S is negative definite and C is
positive semidefinite, I −S−1C has positive real eigenvalues. Therefore the
spectrum of the preconditioned matrix P−1

c A is real and contained in the
interval (β, 1], where

β =
1

1 + λmax(−S−1C)
≥ 1

1 + ‖S−1‖2 ‖C‖2
.

Also, P−1
c A has eigenvalue 1 with multiplicity n+ p, where p = dim ker(C).

This approach is especially efficient for the Stokes problem, for which S
is spectrally equivalent to the identity. Then ‖S−1‖2 ≈ 1 and as long as
‖C‖2 is bounded above independently of h, the spectrum of P−1

c A also
remains bounded as h → 0 and fast convergence of the preconditioned
iteration can be expected, independent of mesh size. In practice there is
no need to solve with Pc exactly: an approximate solution will suffice and
will be more efficient. Spectral bounds for the inexact case can be found in
Gorelova and Chizhonkov (2004) for C = O and in Dohrmann and Lehoucq
(2004) for C = CT �= O. It should be mentioned that regularization of
indefinite (constraint) preconditioners has also been used with good results
in optimization problems; see Bergamaschi et al. (2004) as well as Durazzi
and Ruggiero (2003a, 2003b); the latter papers also include results for a
parallel implementation.

Concerning the choice of a Krylov subspace method to use with con-
strained preconditioning, we distinguish between the symmetric case (A =
AT , B1 = B2, C = CT ) and the nonsymmetric case. In the nonsymmet-
ric case it is generally necessary to use a nonsymmetric Krylov subspace
method, such as GMRES or BiCGStab, whether the constraint precondi-
tioner used is symmetric or not. In the case of a symmetric A with a
symmetric constraint preconditioner Pc, on the other hand, there are al-
ternatives to the use of nonsymmetric Krylov subspace methods. Although
the preconditioned matrix M itself is nonsymmetric, the SQMR method can
be used; see the discussion at the end of Section 9, in particular Table 9.1.
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Furthermore, as described above, in some cases a combination of the null
space method and the CG method may be very effective. As noted in
Bramble and Pasciak (1988) and Lukšan and Vlček (1998), in the sym-
metric case it is sometimes even possible to use the CG method for the
preconditioned system with M. However, the indefiniteness of both Pc and
A does not in general lead to a robust algorithm, and safeguard strategies
have to be applied to overcome potential breakdowns. For the case of right
constraint preconditioning and assuming g = 0 in (1.3), such strategies are
discussed in detail in Lukšan and Vlček (1998) and Rozložńık and Simon-
cini (2002). When such strategies are applied, the preconditioned conjugate
gradient method can be competitive with direct solution methods, particu-
larly for problems from nonlinear equality-constrained optimization (Lukšan
and Vlček 1998, 2001). Finally, use of the CG method with an inexact form
of regularized constraint preconditioning has been rigorously justified in
Dohrmann and Lehoucq (2004).

10.3. Hermitian/skew-Hermitian preconditioning

The Hermitian and skew-Hermitian splitting (HSS) was introduced as a sta-
tionary iterative method in Bai, Golub and Ng (2003), where it was shown
to converge for non-Hermitian positive definite systems, i.e., linear systems
Ax = b with A + A∗ positive definite. In the real case (which is the only
one we consider here), such systems are said to be positive real. Problems
of this type arise, for instance, in the numerical solution of convection-
diffusion equations. The use of HSS as a preconditioner for rather general
saddle point problems has been studied in Benzi, Gander and Golub (2003),
Benzi and Golub (2004) and Simoncini and Benzi (2004).

The HSS preconditioner is based on the nonsymmetric formulation (3.10).
Here we are under the assumptions of Theorem 3.6. In particular, B1 =
B2 = B and C = CT . Letting H ≡ 1

2(A+AT ) and K ≡ 1
2(A−AT ) we have

the following splitting of Â into its symmetric and skew-symmetric part:

Â =

[

A BT

−B C

]

=

[

H O
O C

]

+

[

K BT

−B O

]

= H + K. (10.23)

Note that H, the symmetric part of Â, is symmetric positive semidefinite
since both H and C are. Let α > 0 be a parameter. In the same spirit as
the classical ADI (Alternating-Direction Implicit) method (Varga 1962), we

consider the following two splittings of Â:

Â = (H + αI) − (αI − K) and Â = (K + αI) − (αI −H).

Here I denotes the identity matrix of order n + m. The stationary HSS
iteration is obtained by alternating between these two splittings. Given an
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initial guess u0, the HSS iteration computes a sequence {uk} as follows:
{

(H + αI)uk+ 1

2

= (αI − K)uk + b̂,

(K + αI)uk+1 = (αI −H)uk+ 1

2

+ b̂.
(10.24)

Note that both H + αI and K + αI are nonsingular. The first matrix is
symmetric positive definite while the second one is a shifted skew-symmetric
matrix with eigenvalues of the form α + iνj , where νj ∈ R for all j =
1, . . . , n + m.

The two-step process (10.24) can be written as a fixed point iteration by
eliminating the intermediate vector uk+ 1

2

, yielding

uk+1 = Tαuk + c. (10.25)

Here

Tα := (K + αI)−1(αI −H)(H + αI)−1(αI − K)

is the iteration matrix of the method, and

c := (K + αI)−1[I + (αI −H)(H + αI)−1]b̂.

The fixed point iteration (10.25) converges for arbitrary initial guesses u0

and right-hand sides b̂ to the solution u = Â−1b̂ if and only if ρ(Tα) < 1,
where ρ(Tα) denotes the spectral radius of Tα. It follows from the results in
Bai et al. (2003) that when H is positive definite, the stationary iteration

(10.24) converges for all α > 0 to the solution of Âu = b̂. For saddle point
problems, H is positive definite if and only if H and C are. These conditions
are rather restrictive in practice, especially the one on C. However, it was
shown in Benzi and Golub (2004) that the HSS iteration converges for all
α > 0 if H is positive definite, B is of full rank and C is positive semidefinite
(possibly zero). The method can be made to converge even when H is
positive semidefinite and singular, provided that ker(H)∩ker(B) = {0}; see
Benzi and Golub (2004).

It was shown in Bai et al. (2003) that when H is positive definite, the
choice

α =
√

λmin(H)λmax(H)

minimizes an upper bound on the spectral radius of the iteration matrix Tα.
Unfortunately, in most saddle point problems λmin(H) = 0, so the result
does not apply. Furthermore, the rate of convergence of the HSS iteration
is rather slow, even with the ‘optimal’ choice of α. For these reasons Benzi
and Golub (2004) proposed that GMRES or other Krylov subspace methods
should be used to accelerate the convergence of the HSS method. In other
words, the HSS method is best used as a preconditioner for (say) GMRES
rather than as a stationary iterative method. As observed in Benzi and
Golub (2004), there is a unique splitting Â = P − Q with P nonsingular
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such that the iteration matrix Tα is the matrix induced by that splitting,
i.e., Tα = P−1Q = I − P−1A. An easy calculation shows that the HSS
iteration (10.24) can be written in correction form as

uk+1 = uk + P−1
α rk, rk = b̂ − Âuk,

where the preconditioner P is given by

P ≡ Pα = 1
2α(H + αI)(K + αI). (10.26)

Note that as a preconditioner we can use Pα = (H + αI)(K + αI) instead
of the expression given in (10.26), since the factor 1

2α has no effect on the
preconditioned system. It is just a normalization factor that allows us to
conclude that the eigenvalues of the preconditioned matrix P−1

α Â (or Â P−1
α ,

which has the same spectrum) are all contained in the disk {z ∈ C ; |z − 1|
< 1}. In particular, the spectrum of the preconditioned matrix, like that of

Â, lies entirely in the right half-plane: the preconditioned matrix is positive
stable.

The rate of convergence of nonsymmetric Krylov iterations (like GMRES)
preconditioned by Pα depends on the particular choice of α. Finding the
value of α that optimizes the rate of convergence is a very difficult problem
in general. Note that the value of α that minimizes the number of GMRES
iterations may be quite different from the one that minimizes the spectral
radius of Tα; see Benzi et al. (2003). Numerical experiments show that
with an appropriate scaling of the system (such that the nonzero diagonal

entries of Â are equal to 1), there is a unique value α∗ of α for which the
number of preconditioned iterations is minimized, and this α∗ is usually a
small number, between 0 and 1. In some cases, but not always, the optimal
α can be determined by trial and error on a small example (e.g., a coarse
discretization of the continuous problem to be solved) and then used with
good results on larger problems corresponding to finer discretizations; see
Benzi and Ng (2004), where HSS preconditioning was used to solve weighted
least squares problems arising in image processing.

Spectral properties of the preconditioned matrix as a function of α have
been studied, under different sets of assumptions, in Benzi et al. (2003),
Benzi and Ng (2004) and Simoncini and Benzi (2004). A Fourier analysis of
HSS preconditioning for saddle point formulations of Poisson’s equation (in-
cluding the anisotropic case) was given in Benzi et al. (2003). The analysis
showed that using a sufficiently small value of α results in h-independent
convergence. Furthermore, as α → 0 the eigenvalues of the preconditioned
matrix are all real and fall within two small intervals (0, ε1) and (2− ε2, 2),
with ε1, ε2 > 0 and ε1, ε2 → 0 as α → 0. This clustering result was gener-
alized in Simoncini and Benzi (2004) to general saddle point systems with
A = AT positive definite and C = O, using purely algebraic arguments.
However, h-independent convergence is not always guaranteed: for example,
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it does not occur for the Stokes problem. Nevertheless, good results have
been obtained in the solution of the Oseen problem, where HSS precon-
ditioning appears to be competitive with other preconditioners for large
Reynolds number (small ν). Numerical experiments indicate that the op-
timal value of α for steady 2D problems is largely independent of ν and
is approximately given by h1/2, where h denotes the mesh size. Further-
more, rapid convergence independently of h and ν is observed for unsteady
problems; see the numerical experiments in Benzi (2004) and Benzi and Liu
(2005).

Application of the HSS preconditioner within GMRES requires solving a
linear system of the form Pαzk = rk at each iteration. This is done by first
solving the system

(H + αI)wk = rk (10.27)

for wk, followed by

(K + αI) zk = wk. (10.28)

Recalling the form of H, see (10.23), equation (10.27) consists of two de-
coupled systems with coefficient matrices H + αI and C + αI, respectively.
Both matrices are symmetric positive definite, and a number of efficient
methods can be applied, including Cholesky factorization, preconditioned
CG (PCG) schemes, or multigrid, either geometric or algebraic. Multigrid
methods are the solvers of choice for a number of problems arising from
the discretization of partial differential equations, particularly in the case
of the Oseen problem (2.10)–(2.11) in Ω ⊂ R

3, where H is a direct sum of
three discrete Laplace operators. The solution of the system with matrix
C + αI is often much easier and reduces to a scaling by α when C = O.
When solving regularized weighted least squares problems, both H and C
are diagonal and the cost of solving (10.27) is negligible; see Benzi and Ng
(2004).

Note that the addition of a positive term α to the main diagonal of H
(and C) improves the condition number. This, in turn, tends to improve the
rate of convergence of iterative methods applied to (10.27). More precisely,
if H is normalized so that its largest eigenvalue is equal to 1, then for the
spectral condition number of H + αI we have

κ (H + αI) =
1 + α

λmin(H) + α
≤ 1 +

1

α
,

independent of the size of the problem. Note that even a fairly small value of
α, such as α = 0.1, yields a small condition number (κ (H + αI) ≤ 11). For
most problems, both multigrid and the CG method applied to (10.27) can
be expected to converge rapidly, independent of the number n of unknowns.

Solving (10.28) is usually more involved, especially when K �= O. It
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requires the solution of a linear system of the form

{

(αI + K)xk+1 + BT yk+1 = fk,

−Bxk+1 + αyk+1 = gk.
(10.29)

This system can be solved in several ways. One approach is to eliminate xk+1

from the second equation using the first one (Schur complement reduction),
leading to a smaller (order m) linear system of the form

[B(I + α−1K)−1BT + α2I]yk+1 = B(I + α−1K)−1fk + αgk. (10.30)

Once the solution yk+1 to (10.30) has been computed, the vector xk+1 is
given by

(αI + K)xk+1 = fk − BT yk+1.

When K = O, system (10.30) simplifies to

(BBT + α2I) yk+1 = Bfk + αgk, (10.31)

and xk+1 = α−1(fk −BT yk+1). If BBT is sufficiently sparse, system (10.31)
could be formed explicitly and solved by a sparse Cholesky factorization.
Otherwise, an iterative method like LSQR with a simple preconditioner
could be used. If B represents a discrete divergence operator, then BBT +
α2I is just a shifted discrete Laplace operator, and many fast solvers for
system (10.31) are available. When K �= O the coefficient matrix in (10.30)
is generally dense. An important exception is the Oseen problem in rotation
form (2.15)–(2.17). In the 2D case the coefficient matrix has the form

Â =





A1 D BT
1

−D A2 BT
2

−B1 −B2 C



 =





A1 O O
O A2 O
O O C



 +





O D BT
1

−D O BT
2

−B1 −B2 O



 = H + K.

(10.32)

Here A1, A2 are discrete Laplace operators with appropriate boundary con-
ditions, B =

[

B1 B2

]

, C = CT is a stabilization term that can be assumed

to be zero if the discretization used is already stable, and D = DT is a matrix
that corresponds to multiplication by w = ∇×v; see Section 2.1 for details.
For finite difference schemes (for instance, MAC (Harlow and Welch 1965))
D is a diagonal matrix; for finite elements, it will be a scaled mass matrix.
When D is diagonal, the Schur complement B(I + α−1K)−1BT + α2I is a
sparse matrix and can be formed explicitly. This follows from the fact that

(I + α−1K)−1 =

[

I α−1D
−α−1D I

]−1

=

[

E1 −E2

E2 E3

]

,
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where E1, E2 and E3 are diagonal matrices given by

E1 = I − α−2D(I + α−2D2)−1D,

E2 = α−1D(I + α−2D2)−1,

E3 = (I + α−2D2)−1.

When D is not diagonal, we can replace it with a spectrally equivalent
diagonal approximation and still have a sparse Schur complement; since we
are constructing a preconditioner, the action of (K + αI)−1 need not be
computed exactly. Hence, the Schur complement B(I + α−1K)−1BT + α2I
(or the approximation of it obtained by replacing D with a diagonal matrix)
is sparse, and system (10.28) can be efficiently solved via (10.30) using sparse
matrix techniques. It is also possible to use multigrid, since the Schur
complement can be interpreted as a discretization of a second-order, elliptic
operator with variable coefficients. Alternatively, an ILU-preconditioned
GMRES can be used. While we have focused here on the 2D case, the 3D
case can be treated along the same lines; see Benzi and Liu (2005).

Besides the Schur complement reduction, there are other approaches that
can be used to solve linear systems with matrix K + αI. Note that this
is a normal matrix of the form ‘identity-plus-skew-symmetric’. Various
Lanczos-type methods can be applied to systems of this kind; see Concus
and Golub (1976), Widlund (1978) and, more generally, Huhtanen (2002).
Other approaches to the solution of shifted skew-symmetric systems are
studied in Golub and Vanderstraeten (2000). Yet another possibility is to
regard (10.29) as a general nonsymmetric system and to use preconditioned
GMRES (say). Many of these schemes can benefit from the fact that for
even moderate values of α > 0, the condition number of K + αI is often
rather small.

It is important to stress that the linear systems in (10.24) need not be
solved exactly. The use of inexact solves was considered in Bai et al. (2003)
for the positive real case. The upshot is that inexact solves can greatly
reduce the cost of each iteration, at the expense of somewhat slower con-
vergence. Typically, in practical implementations, inexact solves result in
a much more competitive algorithm. Here we observe that when the al-
ternating scheme is used as a preconditioner for a Krylov method, inexact
solves are a natural choice, and there is no theoretical restriction on the ac-
curacy of the inner solves. Inexact solutions are often obtained by iterative
methods, leading to an inner-outer scheme; in this case, a flexible method
like FGMRES (Saad 1993) should be used for the outer iteration. Inexact
solves may also be performed by means of matrix splittings or incomplete
factorizations; see Benzi and Golub (2004). In this case, standard GMRES
can be used for the outer iteration.
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Other iterative solvers for the Navier–Stokes equations in rotation form
have been introduced and studied in Olshanskii (1999) and Olshanskii and
Reusken (2002). Although the rotation form does not appear to be widely
used in practice, it has some advantages over the (standard) convective form
(2.7)–(2.9). As mentioned in Olshanskii and Reusken (2002, page 1685), the
numerical solution of the Navier–Stokes equations in rotation form is a topic
that deserves further study.

10.4. Approximate and incomplete factorization methods

We conclude this section on preconditioners with a brief discussion of re-
cent attempts to develop effective and robust approximate and incomplete
factorization methods for saddle point matrices.

Approximate factorizations for symmetric saddle point systems have been
used in Gill et al. (1992) in the context of interior point methods for con-
strained optimization. Here we assume that A = AT is positive definite,
B1 = B2 = B is of full rank, and C = CT is positive semidefinite (possibly
zero). The approach taken in Gill et al. (1992) is to define the precondi-
tioner in terms of an exact LDLT factorization of an approximation P ≈ A.
More precisely, the idea is to compute a sparse Bunch–Parlett factorization

P = QTLDLTQ,

where P is symmetric indefinite, Q is a permutation matrix, L is unit lower
triangular, and D a block diagonal matrix with blocks of dimension 1 and
2. The resulting factorization can be used as a preconditioner with SQMR
or with a nonsymmetric Krylov subspace solver. Gill et al. (1992) modify
P to guarantee it is positive definite; the resulting preconditioner can then
be used with a symmetric Krylov subspace solver, such as SYMMLQ or
MINRES. In order to do so, it is sufficient to compute the eigendecompos-
ition of D (which can be done very easily), and then to change the sign
of the negative eigenvalues of D. If D̄ denotes the resulting block diagonal
matrix, the symmetric positive definite preconditioner is

P̄ = QTLD̄LTQ.

The main issue is the choice of the approximation P ≈ A. As usual, a
trade-off is involved. On one hand, P must be sufficiently close to A so
that convergence of the preconditioned iteration will be rapid; on the other,
P must be such that an LDLT factorization can be computed rapidly and
without too much fill-in. The choice of such P is clearly problem-dependent.
One possibility is to introduce a re-partitioning of A in the form

A =

[

A11 AT
12

A12 A22

]

, (10.33)
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where the order of A11 does not exceed n − m. This condition is necessary
in order to have a nonsingular block A22. If A11 is strongly diagonally
dominant, then a reasonable approximation could be

P =

[

D11 O
O A22

]

,

where D11 denotes the main diagonal of A11. For linear systems arising
in interior point methods, it is often possible to find a permutation of the
(1,1) block A of A so that A can be cast in the form (10.33) with A11

having very large entries on the main diagonal. Indeed, when a variable
xi is approaching the boundary of the feasible set, the ith diagonal entry
of the Hessian A becomes very large; by numbering these variables first,
the saddle point matrix A can be given the desired form. The block A22 is
now a smaller saddle point-type matrix. If m ≪ n, the submatrix A22 may
be much smaller than A, and a sparse Bunch–Parlett factorization of A22

can be computed efficiently. In the context of interior point methods, this
preconditioner can be expected to be especially effective in later stages of
Newton’s iteration, when many of the diagonal entries in A11 are large. See
Gill et al. (1992) for additional discussion and alternative approaches.

A different approximate factorization method has been presented by Dol-
lar and Wathen (2004) in the context of constraint preconditioning. Con-
sider a constraint preconditioner (10.15) partitioned as

Pc =





G11 G12 BT
1

G21 G22 BT
2

B1 B2 O



,

where the block B1 is nonsingular. Assume we choose matrices L1 ∈ R
m×m

and L2 ∈ R
(n−m)×(n−m), with L2 nonsingular; for instance, L2 = I. Then

Pc can be factorized as follows:

Pc =





BT
1 O L1

BT
2 L2 E

O O I









D1 O I
O D2 O
I O O









B1 B2 O
O LT

2 O
LT

1 ET I



, (10.34)

where

D1 = B−T
1 G11B

−1
1 − LT

1 B−1
1 − B−T

1 L1,

D2 = L−1
2 (G22 − BT

2 D1B2 − EB2 − BT
2 ET )L−T

2 ,

E = G21B
−1
1 − BT

2 D1 − BT
2 LT

1 B−1
1 .

A decomposition of the form (10.34) is known as a Schilders factorization.
Dollar and Wathen (2004) show how such a factorization can be used to
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solve linear systems of the form Pczk = rk efficiently at each iteration of an
iterative method. Since (10.34) is an exact factorization of an approximation
to A, we can think of it as a rather special approximate factorization of the
original coefficient matrix A. An alternative factorization (for symmetric
G), related to the null space method, is the following (Saunders 2005):

Pc =





I O O

BT
2 B−T

1 I O
O O I









G11 XT BT
1

X ZT GZ O
B1 O O









I B−1
1 B2 O

O I O
O O I



, (10.35)

where Z =
[

−B−1

1
B2

I

]

and XT = G12 − G11B
−1
1 B2. Approximate variants

of (10.35) may be used to construct factorized preconditioners.
A more standard approach is to compute an incomplete factorization of

the exact matrix A:

A = QTLDLTQ + R ≡ P + R,

where R represents a remainder matrix that contains terms that have been
discarded in the course of the incomplete factorization. The size of R de-
pends on the permutation matrix Q and on the dropping strategy used:
although levels of fill can be used, threshold-based dropping is likely to be
far more effective for indefinite systems. Unfortunately, the development of
reliable and effective incomplete LDLT factorizations for highly indefinite
systems has turned out to be a very difficult problem, and until recently
not much progress has been made in this area. This is in contrast with the
symmetric positive definite case and even with the general, nonsymmetric
case, for which many successful techniques exist (Axelsson 1994, Benzi 2002,
Meurant 1999, Saad 2003, van der Vorst 2003).

A possible explanation for the difficulties encountered in developing re-
liable incomplete factorizations for indefinite systems has been offered by
van der Vorst (Dongarra, Duff, Sorensen and van der Vorst 1998, pages 198–
199). When the matrix A is highly indefinite, it has many eigenvalues on
both sides of the imaginary axis. The eigenvalues of the preconditioned
matrix P−1A depend continuously on the entries of P. For P = I, they
coincide with the eigenvalues of A; for P = A, they are all equal to 1.
As the preconditioner P approaches A, for instance by allowing more and
more fill-in in the incomplete factors, the eigenvalues of P−1A approach
the value 1; in particular, the negative eigenvalues, en route to 1, have to
cross the imaginary axis. There is a high risk that some (perhaps many) of
these eigenvalues will come arbitrarily close to the origin. Hence, ‘improv-
ing’ the preconditioner (by allowing additional fill-in) may actually cause
the preconditioned matrix to become very close to singular, which in turn
may cause the preconditioned iteration to converge more slowly or even fail.
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This non-monotonic behaviour of incomplete factorization preconditioners
with respect to fill-in has been often observed in numerical experiments
with indefinite matrices. Moreover, serious difficulties are often met in the
course of computing an incomplete factorization, owing to various types of
instabilities originating from the highly indefinite and non-diagonally dom-
inant nature of saddle point matrices (Chow and Saad 1997b).

It is plausible that using the alternative, nonsymmetric positive definite
form (3.10) of the saddle point system may alleviate this problem, particu-
larly when C �= O; however, we are not aware of any experimental studies
in this direction. Another possibility would be to ignore the structure or
symmetry of A altogether and apply one of the numerous, time-tested in-
complete LU (ILU) factorization algorithms that have been developed for
general sparse matrices, combined with some form of pivoting to promote
stability. However, since fill-in tends to be very heavy with the original
ordering of A, large numbers of fill-ins have to be discarded, often resulting
in preconditioners of low quality. Band-reducing and sparsity-preserving
symmetric orderings (such as reverse Cuthill–McKee, minimum degree or
nested dissection; see Duff et al. (1986)) are of limited use here and often
produce unstable pivot sequences.

Some degree of success has been achieved through the use of nonsymmet-
ric permutations and scalings aimed at increasing the diagonal dominance of
the coefficient matrix; see Benzi, Haws and Tůma (2000), Haws (2002) and
Haws and Meyer (2003), where the HSL MC64 preprocessing subroutines
(Duff and Koster 1999, 2001) have been used in combination with various
ILU and sparse approximate inverse techniques. When applied to saddle
point matrices with C = O, these permutations produce a matrix with a
zero-free diagonal; moreover, the zero (or small) diagonal entries are re-
placed by (relatively) large nonzeros. The net effect of this preprocessing
is that stable ILU-type factorizations can now be computed in most cases.
Unfortunately, this preprocessing destroys the symmetry and other struc-
tural properties of A, and may lead to unnecessarily high storage demands
in some cases.

Very recently, some new approaches have been introduced for construct-
ing sparse incomplete LDLT factorizations of symmetric indefinite matrices
(Fish and Qu 2000, Freund 1997, Hagemann and Schenk 2004, Li and
Saad 2004, Qu 2000, Qu and Fish 2000, Qu and Fish 2002). While not neces-
sarily targeted to indefinite matrices in saddle point form, these techniques
may be quite effective when applied to such systems; see the results repor-
ted in Hagemann and Schenk (2004) and Li and Saad (2004). In particular,
maximum weighted matching techniques have been used in Hagemann and
Schenk (2004) to minimize the need for dynamic (Bunch-type (Bunch 1974))
pivoting in the course of the factorization (Duff and Pralet 2004). Such
matching techniques can be regarded as symmetric analogues of the non-

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir


Numerical solution of saddle point problems 95

symmetric permutations used in Duff and Koster (1999, 2001) to permute
large entries to the diagonal. Here the purpose is to preprocess the matrix
in a symmetry-preserving fashion with the goal of creating ‘large’ 2×2 diag-
onal blocks, thus enabling a more stable (incomplete) LDLT factorization.
Li and Saad (2004) instead promote stability by a different kind of prepro-
cessing, referred to as Bunch equilibration: see Bunch (1971). These new
preconditioners appear to be reasonably efficient and robust. In particular,
one of the approaches presented in Hagemann and Schenk (2004) appears
to be especially well suited to saddle point matrices. Since no comparison
between these general-purpose methods and more specialized precondition-
ers for saddle point problems has been carried out yet, it is not yet clear
how competitive this class of preconditioners really is. Nevertheless, in the
engineering community there is certainly strong interest in general-purpose
techniques (and software) that can be applied with little or no modification
to a wide range of problems, even though such preconditioners may not be
the best for any particular problem.

Some work has been done on developing incomplete factorization pre-
conditioners specifically for saddle point matrices. Unlike general-purpose
methods, these approaches take into account the block structure of A. One
approach is based on the following observation (Zhao 1998, Ren and Zhao
1999). If A = AT is positive definite, B1 = B2 = B is of full rank and
C = CT is positive semidefinite (possibly zero), then

A =

[

A BT

B −C

]

=

[

L11 O
L21 L22

] [

LT
11 LT

21

O −LT
22

]

= LU , (10.36)

where A = L11L
T
11 is the Cholesky factorization of A, L21 = BL−T

11 , and
−S = C + L21L

T
21 = L22L

T
22 is the Cholesky factorization of the (negative)

Schur complement. Note that (10.36) is a triangular, Cholesky-like factoriz-
ation of A; such a factorization always exists, without the need for pivoting
(cf. Section 7). If we could use P = LLT as a (split) preconditioner, it is
easily verified that

L−1AL−T =

[

I O
O −I

]

,

and a symmetric Krylov subspace algorithm like MINRES or SYMMLQ
would deliver the solution in at most two iterations. In practice, the exact
factor L is replaced by an incomplete one, as follows. First, an incomplete
Cholesky factorization A ≈ L̄11L̄

T
11 is computed; several stable and efficient

algorithms exist for this task. Next, we compute a sparse approximation
L̄21 to L21 by solving a matrix equation of the form L̄11X = BT using back-
substitutions; some form of dropping may be needed to preserve sparsity in
L̄21. Finally, an incomplete Cholesky factorization C + L̄21L̄

T
21 ≈ L̄2L̄

T
2 is
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computed. The resulting incomplete factor

L̄ =

[

L̄11 O
L̄21 L̄22

]

and its transpose can be used to define a positive definite, factorized pre-
conditioner P = L̄ L̄T for a method like SYMMLQ or MINRES. Numerical
experiments in Ren and Zhao (1999) indicate that this can be an effective
preconditioning strategy. Moreover, the resulting incomplete Cholesky fac-
torization of the Schur complement (−S ≈ L̄22L̄

T
22) can be used as a precon-

ditioner for Uzawa’s method, resulting in a significant acceleration. Clearly,
this approach will only work well when the Schur complement S is sparse
or can be well approximated by a sparse matrix; see the discussion in Sec-
tion 10.1.3. This approach may be extended to nonsymmetric saddle point
systems; in this case, however, the existence of the corresponding incom-
plete ILU factorizations may not be guaranteed. Using an ordering different
from the standard one may help; see Vasconcelos and D’Almeida (1998) for
a study of incomplete LU preconditioning of the discretized Navier–Stokes
equations with a nodal ordering of the unknowns.

Finally, we mention that incomplete factorizations for special classes of
nonsymmetric saddle point problems have been developed by Wille and
collaborators for solving the linear systems arising from Newton’s method
applied to mixed finite element discretizations of the steady Navier–Stokes
equations; see Dahl and Wille (1992), Wille and Loula (2002) and Wille,
Staff and Loula (2003). Here A is nonsymmetric (but positive definite), B1

may or may not be equal to B2, and C = O. In this work, fill-in is allowed
only in predetermined locations within the factors, corresponding to the
pressure block – i.e., in the (2,2) block of the factors. More precisely, the
guiding principle is that fill-in is accepted at locations in the global matrix
where the nodes belong to the same finite element. The resulting incomplete
factorizations appear to be numerically stable, and satisfactory convergence
rates are observed for problems in both 2D and 3D. In Wille et al. (2003),
parallel implementation aspects are also discussed.

11. Multilevel methods

A survey on the numerical solution of saddle point systems would not be
complete without some discussion of multilevel solvers. In this section we
give a very brief overview of multigrid and domain decomposition methods
for saddle point systems arising from PDE problems. The literature on this
topic is vast and highly technical, the construction of multilevel solvers usu-
ally being tied to a particular discretization and to analytical properties of
the coefficients at the continuous (infinite-dimensional) level. Since our main
emphasis is on the linear algebra aspects of finite-dimensional saddle point
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problems, we refrain from going into details and mostly restrict ourselves to
providing pointers to the literature.

11.1. Multigrid methods

As already mentioned repeatedly in the course of this survey, multigrid and,
more generally, multilevel methods can be used in segregated approaches to
solve reduced systems, as in Uzawa-type or block preconditioning schemes.
In the incompressible flow setting these subproblems correspond to discret-
izations of scalar elliptic PDEs for the velocities and/or the pressure field,
such as diffusion- or convection-diffusion-type problems. Multigrid methods
are ideally suited for such problems, often achieving optimal computational
complexity, in the sense that the number of operations scales linearly with
the number of unknowns. In the context of preconditioning inexact solves
are usually sufficient, and it may be enough to perform just one iteration
(V-, W- or F-cycle). The choice of multigrid components (smoothers, coarse
grid operators and intergrid transfer operators) is well understood for this
type of PDEs, and a plethora of algorithmic and software tools is available to
deal with a wide range of discretizations, properties of coefficients, and prob-
lem geometries. Standard treatments of multigrid methods can be found in
Hackbusch (1985), Trottenberg, Oosterlee and Schüller (2001) and Wessel-
ing (1992). For detailed discussions of the use of multigrid components in
the solution of saddle point problems from finite element discretizations,
the reader is referred to Elman et al. (2005c) and Turek (1999); see also the
recent survey by Wesseling and Oosterlee (2001).

More challenging is the construction of coupled multilevel methods, i.e.,
multilevel methods that are applied to the entire system Au = b. This
topic has seen extensive development (especially in the last 15 years) and
there are now a number of coupled multilevel methods for incompressible
flow problems (Braess and Dahmen 1999, Braess and Sarazin 1997, Brandt
and Dinar 1979, Elman 1996, Pernice 2000, Vanka 1986, Verfürth 1984b,
Wesseling 1992, Wesseling 2001, Wittum 1989, Wittum 1990), mixed for-
mulations of second- and fourth-order elliptic equations and of Maxwell’s
equations (Arnold, Falk and Winther 1997, Braess, Dahmen and Wieners
1999, Hiptmair 1996, Hiptmair 1997, Hiptmair and Hoppe 1999, Hiptmair,
Shiekofer and Wohlmuth 1996, Trottenberg et al. 2001, Vassilevski and
Wang 1992), optimization (Dreyer, Maar and Schulz 2000), and parameter
estimation problems (Ascher and Haber 2003). These multigrid schemes
may be used alone or as preconditioners for Krylov subspace methods; see
Trottenberg et al. (2001, pages 287–288) for a discussion of the solver versus
preconditioner question for multigrid.

For simplicity we consider here the two-grid case only. Our discussion,
although fairly general, is geared towards Stokes- and Oseen-type problems
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and is based on Deng, Piquet, Queutey and Visonneau (1996, Section 4) and
Wesseling (2001, Chapter 7.6). Introducing subscripts h and H for the fine
and the coarse grid discretization parameters (e.g., H = 2h), we rewrite
Au = b as Ah uh = bh, and we use the H subscripts for the coarse grid
problem. The restriction and prolongation operators are denoted Ih

H and
IH

h , respectively. The so-called ‘full approximation storage’ (FAS) two-grid
method consists of the following steps:

(i) perform ν1 pre-smoothing steps on Ah uh = bh;

(ii) compute the fine grid residual rh = bh −Ah uh;

(iii) apply the restriction to the fine grid residual, rH = Ih
Hrh;

(iv) solve the coarse grid problem AH uH = rH ;

(v) add the correction, uh = uh + α IH
h uH ;

(vi) perform ν2 post-smoothing steps.

At step (v), the correction control parameter α is either held fixed (possibly
α = 1) or chosen adaptively so as to minimize an appropriate measure of
the error. A truly multilevel algorithm (V-cycle) is obtained by recursively
applying the above procedure in step (iv). There are many variants of the
basic scheme just described.

The choice of the restriction and prolongation operators has been dis-
cussed at length in the above-mentioned monographs (e.g., in Turek (1999,
Chapter 3.4.2)) and will not be pursued here. More critical are the construc-
tion of the coarse grid operator AH and the choice of the coarse grid solver
in step (iv), and the choice of the smoother in steps (i) and (vi). The matrix
AH can be constructed in at least two ways. One possibility is to simply re-
discretize the problem on the coarse grid: this strategy, which is referred to
as DCGA (discretization coarse grid approximation), may also be applied to
nonlinear problems and is frequently used for the Navier–Stokes equations.
An alternative is to compute AH as AH = Ih

HAhIH
h . This choice, which

is referred to as GCGA (Galerkin coarse grid approximation) is restricted
to linear problems, but has the advantage that it can be computed without
knowledge of the underlying discretization. Hence, it is the preferred choice
for algebraic multigrid (AMG) algorithms, which only exploit information
contained in the coefficient matrix (Stüben 2001, Trottenberg et al. 2001). If
the prolongation operator IH

h is taken to be the transpose of the restriction
operator Ih

H , then the coarse grid operator AH is symmetric if the fine grid
one is. Preserving symmetry may be important if the multigrid iteration is
to be accelerated by a symmetric Krylov subspace method. In this case the
pre- and post-smoothing steps must also be performed in such a way as to
preserve symmetry. The restriction operator is usually of the form

Ih
H =

[

Ih
H O

O Îh
H

]

,
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where Ih
H and Îh

H are restriction operators for the x and y unknowns, re-
spectively. If we assume for simplicity that B1 = B2 = Bh and Ch = O and
take IH

h = (Ih
H)T , the coarse grid matrix has the same form as the fine one,

AH =

[

Ih
H O

O Îh
H

] [

Ah BT
h

Bh O

] [

IH
h O

O ÎH
h

]

=

[

AH BT
H

BH O

]

,

where AH = Ih
HAhIH

h and BH = Îh
HBhIH

h . Note that AH is symmetric if
Ah is.

The choice of the solver for the coarse grid problem is not as simple as it
may appear at first. Only seldom can the grid be refined to the point that
a direct method can be used to solve the coarse problem. This is because
grid geometries can be highly irregular, thus allowing only a modest amount
of coarsening. It is therefore necessary to resort to iterative methods and
inexact coarse grid solves. In this case the multigrid method should be
used as a preconditioner for an (outer) flexible Krylov subspace iteration in
order to guarantee convergence. Alternatively, a hybrid nonlinear multigrid-
inexact Newton method like the one proposed in Pernice (2000) can be used.

We now come to the choice of the smoother. To appreciate the importance
of this component, it should be kept in mind that the smoothing steps is
where most of the computational effort is usually spent, at least for geomet-
ric multigrid. Moreover, using the wrong smoother will destroy the efficiency
of the entire multigrid algorithm. The definition of appropriate smoothing
operations for saddle point problems is highly problem-dependent, and far
from obvious. The smoothers used for scalar elliptic PDEs, such as diffusion-
or convection-diffusion-type problems, are typically Gauss–Seidel or damped
Jacobi relaxation, possibly combined with an appropriate renumbering of
the grid points. These smoothers are not appropriate for saddle point prob-
lems, and they are not even defined when C = O. One approach is to use
Richardson or Kaczmarz-type iterations, which is equivalent to using Jacobi
or Gauss–Seidel smoothing on the normal equations (or squared system for
symmetric problems): see Hackbusch (1994) and Verfürth (1984b). A bet-
ter approach is to use some of the stationary iterations (or preconditioners)
for saddle point problems discussed in Sections 8–10, but even this is not
entirely straightforward.

The so-called distributive relaxation schemes (or transforming iterations)
provide a unified framework for the description of smoothers for saddle point
problems: see Brandt and Dinar (1979) and Wittum (1989, 1990). The
idea is to transform the original problem Au = b by right preconditioning
(often referred to as postconditioning in the multigrid literature) so that the
transformed system

AB v = b, u = B v
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is more easily solved. A splitting

AB = S − T
of the transformed matrix induces the following splitting of the original
matrix A:

A = S B−1 − T B−1.

This splitting defines a stationary iterative method for the original system,

S B−1uk+1 = T B−1uk + b

or, in correction form,

uk+1 = uk + B S−1(b −Auk). (11.1)

As long as B and S are nonsingular, the iteration (11.1) is consistent with
Au = b, in the sense that if it converges, it converges to the solution u∗ =
A−1b. The scheme (11.1) is called a distributive relaxation in the multigrid
literature. The reason is that the correction S−1(b−Auk) corresponding to
non-distributive (B = I) iterations is distributed over the entries of uk+1;
see Brandt and Dinar (1979) and Wesseling (2001, page 295).

A number of different distributive iterations can be obtained by special
choices of B and S. One possibility is to pick B such that AB is block lower
triangular. For instance, the block factorization (3.2) suggests the choice

B =

[

I −A−1BT

O I

]

⇒ AB =

[

A O
B S

]

.

This leads to a decoupling (segregation) of the x and y variables, and various
choices of S lead essentially to preconditioned versions of Uzawa’s method.
A slightly more general form of B is

B =

[

I −A−1BT Q
O Q

]

,

which leads to the transformed matrix

AB =

[

A O
B M

]

, M = −BA−1BT Q.

A variety of methods result from the choice of Q and S. For example, taking
Q = I and

S =

[

Â O

B Ŝ

]

,

where Â and Ŝ are easily invertible approximations of A and of the Schur
complement S, results in the SIMPLE scheme (Patankar and Spalding 1972,
Patankar 1980) already described in the context of block preconditioning

in Section 10.1.2. In the original SIMPLE scheme, Â = DA and Ŝ =
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−BD−1
A BT , where DA denotes the main diagonal of A. The matrix B used

for the distribution step is further approximated by

B̂ =

[

I −Â−1BT

O I

]

.

Different choices of the approximations involved lead to variations on the
original SIMPLE scheme (Patankar 1980, 1981, Shaw and Sivaloganathan
1988). Other options include the distributive Gauss–Seidel iteration and dis-
tributive ILU methods; see Brandt and Dinar (1979), Wittum (1989, 1990)
and the nice description in Wesseling (2001, Chapter 7.6). For the Stokes
problem, good results have been reported in Braess and Sarazin (1997) us-
ing as a smoother an iteration of the form (10.18), i.e., a constraint-type
preconditioner. This paper also discusses several variants of the SIMPLE
scheme and shows that not all variants result in good smoothers. See also
Zulehner (2000) for a generalization to the case C �= O. Smoothers of the
form (10.18) have also been used in connection with AMG methods for the
Oseen problem in Wabro (2004), and in Leem et al. (2004) in the context
of meshless discretizations. Recently, block triangular preconditioners of
the kind discussed in Section 10.1 (so-called pressure convection-diffusion
preconditioners) have been used with good results as smoothers for multi-
grid methods applied to the Oseen problem in Syamsudhuha and Silvester
(2003). See Brandt (1998) for a discussion of the barriers that remain to be
overcome before textbook multigrid efficiency (i.e., solution of the governing
equations in a number of operations not exceeding a small multiple of the
nonzeros in the discretized equations) can be achieved in realistic compu-
tational fluid dynamics simulations. See also Thomas, Diskin and Brandt
(2001) for recent progress in this direction.

All the smoothers discussed so far can be implemented in a segregated
fashion, with each relaxation involving solution of decoupled linear systems
for x and y. A strongly coupled smoothing procedure, not of the distributive
type, has been introduced by Vanka (1986). The main principle of Vanka
smoothing as applied to fluid flow problems is to visit each cell in some order
and to apply relaxation simultaneously to each of the variables associated
with that cell. This is equivalent to a reordering of the unknowns so that all
the velocities and the pressures associated with each cell are numbered con-
secutively. Both multiplicative (Gauss–Seidel-type) and additive (Jacobi-
type) variants have been developed. Vanka-type smoothing requires solv-
ing, at each step, a number of tiny saddle point problems, one for each cell.
Various approximations and suitable damping (under-relaxation) are used
to improve efficiency and to ensure the smoothing property. We refer to the
original paper (Vanka 1986) as well as to Wesseling (2001, pages 300–301)
for additional details. We note that this type of smoothing can also be
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interpreted as a form of domain decomposition, each subdomain reducing
to a single grid cell.

Problems involving unstructured meshes on complicated geometries have
motivated the development of AMG methods. AMG algorithms for scalar
problems have been around for almost 20 years and have been used for
some time in the solution of subproblems from segregated approaches; see,
e.g., Griebel, Neunhoeffer and Regler (1998), Stüben (2001) and Wagner,
Kinzelbach and Wittum (1997). Coupled AMG methods for saddle point
systems are barely 10 years old and are currently under development. We
mention Raw (1995), Wabro (2004) and Webster (1994) for applications to
incompressible flow problems, Adams (2004) for the development of AMG
solvers in solid mechanics, and Leem et al. (2004) for AMG methods for
saddle point systems arising from mesh-free discretizations. The reported
results on difficult problems are promising. However, many open questions
concerning coarsening strategies, the choice of appropriate smoothers, and
parallel implementation issues remain to be addressed before coupled AMG
solvers for saddle point problems can be considered fully mature.

Multilevel preconditioners for discontinuous Galerkin mixed finite element
discretizations of radiation-diffusion problems on unstructured meshes have
been developed in Warsa et al. (2004). Here the main idea is to use a
continuous finite element approximation of the same problem to precondi-
tion the discontinuous one. Although only one mesh needs to be generated,
suitable restriction and prolongation operators are needed to transfer in-
formation between the two discretizations. The continuous approximation
can be solved efficiently by standard algorithms like AMG or preconditioned
CG. This approach, which results in nearly optimal rates of convergence,
is akin to an approximate Schur complement method. It is worth noting
that in both Leem et al. (2004) and Warsa et al. (2004) the nonsymmetric
formulation (3.10) was found to be advantageous, even though the original
problems were symmetric.

Finally we mention some recent work on wavelet-based, multiscale meth-
ods. Originally developed for positive definite elliptic operators, these tech-
niques have recently been extended to symmetric indefinite saddle point
problems; see Dahlke, Hochmuth and Urban (2000), Hochmuth (1998) and
Kunoth (2002). These are discretization schemes that produce saddle point
systems that are well-conditioned, and can be efficiently solved by either
Uzawa-type schemes or by diagonally preconditioned Krylov methods, res-
ulting in convergence rates independent of discretization parameters.

11.2. Domain decomposition methods

Just as in the case of multigrid, domain decomposition methods can be
applied straightforwardly to the (elliptic, scalar) subproblems arising from
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segregated approaches; see, e.g., Fischer and Lottes (2004) for a recent ex-
ample. Coupled algorithms have recently been developed by several authors,
in particular for fluid flow and linear elasticity problems. Such methods are
seldom (if ever) used as solvers: rather, they are used either as precondi-
tioners for Krylov subspace methods, or as smoothers for multigrid, often
motivated by parallel processing. We refer the reader to Chan and Mathew
(1994) and Quarteroni and Valli (1999) for general treatments of domain de-
composition methods, and to Toselli and Widlund (2004, Chapter 9) for an
excellent discussion of methods designed specifically for saddle point prob-
lems. Because an up-to-date overview is already available, and also because
of space limitations, we do not go into details and we largely limit ourselves
to providing pointers to the literature.

Substructuring and additive Schwarz-type preconditioners for the sym-
metric saddle point problems arising from mixed finite element discretiz-
ations of second-order elliptic PDEs have been proposed and analysed in
Rusten et al. (1996) and Rusten and Winther (1993). Different boundary
conditions (Dirichlet or Neumann) on the interior interfaces are considered.
The preconditioned systems are symmetrizable (so that MINRES can be
used), and have condition numbers that are independent of mesh size.

An algebraic additive Schwarz domain decomposition preconditioner for
solving saddle point problems arising from mixed finite element simulations
of stochastic PDEs modelling flow in heterogeneous media has been de-
scribed in Cliffe, Graham, Scheichl and Stals (2000). In this paper the
preconditioner is not applied to to the coupled saddle point problem, but
rather to a reduced (SPD) system of the type (6.1), where Z is a suitably
constructed solenoidal basis. The resulting solver exhibits good robustness
with respect to problem parameters and almost optimal levels of parallel ef-
ficiency. See also Oswald (1998) for a multilevel preconditioner for systems
of the form (6.1) arising in the context of Stokes problems.

Several substructuring and domain decomposition preconditioners exist
for linear elasticity and Stokes problems. Overlapping Schwarz precondi-
tioners for saddle point systems containing a nonzero (2,2) block that de-
pends on a penalty parameter (as in (10.9)) were proposed by Klawonn
and Pavarino (1998). These preconditioners require the solution of local
saddle point problems on overlapping subdomains, plus the solution of a
coarse-level saddle point problem. Numerical experiments show that these
preconditioners result in convergence rates that are independent of the mesh
size, the number of subdomains, and the penalty parameter. The additive
preconditioners are scalable also in the sense of parallel efficiency. In Kla-
wonn and Pavarino (2000), the additive Schwarz preconditioner proposed in
Klawonn and Pavarino (1998) is compared experimentally with a block diag-
onal and with a block triangular preconditioner (both with inexact solves).
The results indicate that the additive Schwarz preconditioner (used with
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GMRES) is superior to the other methods in terms of iteration counts and
very often in terms of operation counts, with the block triangular precon-
ditioner being occasionally slightly better in terms of operation count. A
convergence analysis for the additive Schwarz preconditioner, however, is
still lacking. The preconditioned matrices have complex eigenvalues and
an indefinite symmetric part. On the other hand, they appear to be pos-
itive stable with eigenvalues contained in a rectangular region of the right
half-plane bounded away from zero, which explains in part the good con-
vergence properties of GMRES. In Pavarino (2000) the overlapping Schwarz
preconditioner is applied to mixed spectral or finite element discretizations
of time-dependent Stokes problems, again with excellent results.

A different approach, based on iterative substructuring, was introduced
and analysed by Pavarino and Widlund (2000) in the context of spectral ele-
ment mixed approximations. A related balancing Neumann–Neumann ap-
proach for the Stokes problem is proposed in Pavarino and Widlund (2002),
and extended to heterogeneous problems from linear elasticity in Goldfeld,
Pavarino and Widlund (2003). This is a non-overlapping hybrid domain
decomposition method in which the local problems are treated additively
while the coarse problem is treated multiplicatively. Theoretical and nu-
merical evidence show that these methods have excellent convergence and
scalability properties; see in particular Goldfeld (2000) for numerical ex-
periments with problems with up to 100 million unknowns using parallel
machines with up to 2000 processors. We further mention recent work by
Li on FETI methods for incompressible flow problems; see Li (2001, 2002a,
2002b).

Another domain decomposition method for linear elasticity problems was
introduced by Klawonn and Widlund (2000). This preconditioner uses in-
exact subdomain solves and Lagrange multipliers and is based on a refor-
mulation of the popular FETI method as a saddle point problem with both
primal and dual variables as unknowns. It is shown in Klawonn and Wid-
lund (2000) that the condition number of the preconditioned matrices is
bounded independently of the number of subdomains and grows only poly-
logarithmically with the number of unknowns in each subdomain. See also
Klawonn and Widlund (2001), and, for recent developments, Klawonn and
Widlund (2004). We also mention the overlapping additive and multiplicat-
ive two-level Schwarz methods proposed in Wang (2005) for plane elasticity
problems, which exhibit convergence rates independent of mesh size.

In Ainsworth and Sherwin (1999), p and h-p finite element discretizations
of the Stokes problem are considered. Both segregated (block diagonal)
and coupled (indefinite) preconditioners of the additive Schwarz type are
studied. For each type of scheme, eigenvalue bounds for the preconditioned
matrices are derived in terms of p (the polynomial degree), the fine and
coarse mesh sizes, and the inf-sup constant for the method. These estimates
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and the results of actual computations on representative problems show that
the rate of convergence for both methods does not deteriorate significantly
as the mesh is refined and the polynomial degree is increased.

We note that while there is a rich literature on domain decomposition
methods for symmetric saddle point problems and in particular for mixed
discretizations of the Stokes equations, there seems to be very few papers
concerned with coupled domain decomposition methods for nonsymmetric
saddle point systems and in particular for the Oseen equations. One such
paper is Vainikko and Graham (2004), where domain decomposition meth-
ods are implemented and experimentally compared with (and found to be
superior to) block triangular preconditioners for the Oseen problem. The-
oretical understanding, however, is still largely lacking.

Substructuring preconditioners for saddle point problems arising from
edge element discretizations of Maxwell’s equation in 3D have been intro-
duced and analysed by Hu and Zou (2003). These preconditioners are shown
to result in nearly optimal convergence rates, with the condition number of
the preconditioned matrices growing as the logarithm of the ratio between
the subdomain diameter and the finite element mesh size.

Domain decomposition methods for saddle point systems arising from
PDE-constrained optimal control problems have been studied in Heinken-
schloss and Nguyen (2004) and Nguyen (2004). Numerical experiments
indicate that the performance of these (overlapping and non-overlapping)
preconditioners with respect to mesh size and number of subdomains is
close to that of the corresponding domain decomposition preconditioners
for scalar PDEs. Furthermore, the preconditioners proposed in Nguyen
(2004) appear to be rather insensitive to control regularization parameters.

Finally, the application of additive Schwarz-type iterations as smoothers
in coupled multigrid methods for saddle point problems has been stud-
ied in Schöberl and Zulehner (2003). These are additive variants of the
already-mentioned (multiplicative) Vanka smoother (Vanka 1986). The ad-
ditive smoothers are shown to be related to an inexact version of Uzawa’s
method. An analysis of the smoothing property in the symmetric case is
also given. Numerical experiments indicate that the rates of convergence for
the multiplicative Vanka-type smoothers are significantly better than for the
additive smoothers, as one would expect; however, a theoretical analysis of
the convergence and smoothing properties in the multiplicative case is still
missing.

12. Available software

In spite of vigorous algorithmic and theoretical developments, the produc-
tion of high-quality, widely accessible software for solving linear systems
in saddle point form has been somewhat lagging. This may be in part
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a reflection of the fact that many saddle point systems arising in the ap-
plications require a customized approach – for example, a particular Schur
complement approximation. Another explanation is that when segregated
approaches are used, standard sparse linear equations packages are often
sufficient to solve the reduced linear systems. For example, many of the ex-
isting algorithms for saddle point problems from incompressible flow calcu-
lations require the availability of efficient solvers for diffusion- or convection-
diffusion-type problems, and can utilize a number of ‘standard’ multigrid
codes. In other situations, sparse direct solvers may be used to solve the
subproblems arising from segregated approaches. Because many general-
purpose linear solver packages exist and are readily accessible, there has
been no great demand for software specifically designed to solve linear sys-
tems in saddle point form. An exception is represented by the field of
optimization, where the interior point revolution has sparked a strong need
for reliable and efficient solvers for augmented systems.

As usual, the software situation tends to be better for direct solvers than
for iterative ones. Professional implementations of sparse direct solvers for
symmetric indefinite systems include the MA27/MA47/MA57 suite of codes
from the Harwell Subroutine Library (HSL) and the PARDISO package from
the University of Basel (Schenk and Gärtner 2004). Of the HSL codes, the
one that is best suited for saddle point matrices is perhaps MA47, although
MA57 appears to be the most efficient overall of the symmetric solvers
among the HSL codes (Gould and Scott 2004). For further information on
the HSL symmetric indefinite solvers, including licensing information, the
reader is referred to the web page

www.cse.clrc.ac.uk/nag/hsl/contents.shtml

For information about the PARDISO package, see

www.computational.unibas.ch/cs/scicomp/software/pardiso/

Although not specifically designed with saddle point systems in mind, the
out-of-core sparse symmetric indefinite code developed as part of the TAUCS
package at Tel Aviv University is also of interest; see

www.tau.ac.il/∼stoledo/taucs/
and the accompanying paper by Meshar and Toledo (2005).

Software tools for incorporating block preconditioners geared towards in-
compressible flow problems into Krylov subspace methods are now avail-
able in the Meros package, which is part of the Trilinos project from Sandia
National Laboratories (Heroux, Bartlett, Howle, Hoekstra, Hu, Kolda, Le-
houcq, Long, Pawlowski, Phipps, Salinger, Thornquist, Tuminaro, Willen-
bring, Williams and Stanley 2005); see

http://software.sandia.gov/trilinos/
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Many of the solvers within Trilinos may also be used as part of segregated
approaches; for instance, multilevel solvers are part of the ML package,
which is part of Trilinos.

Algebraic multigrid codes for incompressible flow problems, including
Markus Wabro’s AMuSE (Algebraic Multigrid for Stokes-type Equations)
package, can be accessed from the Institute of Computational Mathematics
at the Johannes Kepler University (Linz, Austria) web site

www.numa.uni-linz.ac.at/Research/Projects/P14953.html

A number of other freely available codes implementing a host of multigrid
and domain decomposition methods can be downloaded from the MGNET
web site; see

www.mgnet.org/mgnet-codes.html

We conclude this brief – and by no means complete – overview of available
software with the IFISS (‘Incompressible Flow Iterative Solvers Software’)
package developed by Howard Elman, Alison Ramage, David Silvester and
Andy Wathen: see

www.cs.umd.edu/∼elman/ifiss/
See also the book by Elman et al. (2005c). This is a finite element package
that can be used to generate a variety of incompressible flow problems on
both structured and unstructured 2D meshes. The code, written in Mat-

lab, allows the user to experiment with several preconditioner and solver
options.

13. Concluding remarks

In this paper we have surveyed a large number of solution methods for
solving linear systems in saddle point form, with a focus on iterative meth-
ods suitable for large and sparse problems. We have discussed classical
algorithms based on Schur complement reduction, null space methods, tri-
angular factorization and stationary iterations like the Arrow–Hurwicz and
Uzawa schemes and their variants. We have further discussed the use of
Krylov subspace methods and described a number of preconditioning tech-
niques including block diagonal, block triangular, constraint and incomplete
factorization preconditioners. We have reviewed a promising new approach
based on the Hermitian and skew-Hermitian splitting which appears to be
especially well suited to the Navier–Stokes equations in rotation form. We
saw that many preconditioning techniques rely (either explicitly or impli-
citly) on the availability of good and inexpensive approximations of a Schur
complement matrix; similar comments apply to other solvers, such as mul-
tigrid or domain decomposition methods. We have seen that very effective
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solvers exist for some classes of problems, including mixed finite element for-
mulations of elliptic PDEs and Stokes problems. Furthermore, great strides
have been made in recent years towards the development of effective precon-
ditioners for strongly nonsymmetric problems, such as the Oseen equations
with low viscosity.

In spite of this, many challenges remain. Effective preconditioners are
yet to be developed for large classes of linear systems arising from interior
point methods in constrained optimization. Some degree of success has been
achieved in this area with various types of approximate Schur complement
and constraint preconditioners, but there is plenty of room for improvement.
For many saddle point systems arising from optimal control problems, the
(1,1) block A is often symmetric indefinite. Although these systems may
sometimes be transformed to reduced saddle point systems with a definite
(1,1) block, this reduction is not always easy to accomplish and it may
be necessary to deal with the unreduced system. Hence, there is a need
for effective solvers that are able to handle saddle point matrices with an
indefinite (1,1) block. While some of the techniques described in this paper
may be adapted to this situation, there is a need for new approaches. Also
needed is a thorough study of stopping criteria for iterative methods applied
to saddle point problems. In particular, criteria that take into account the
different nature of the unknowns x and y should be developed.

Space and time limitations did not allow us to give very detailed treat-
ments of many interesting techniques. In particular, important subjects
such as direct solvers and multilevel methods have been touched upon only
very briefly. Sparse direct solvers have been around for a long time and
are widely used in some areas (such as optimization), but there are still
some difficulties to overcome before these methods can be considered fully
mature for solving saddle point systems: see for instance Gould and Scott
(2004), where it is mentioned that the symmetric HSL sparse direct solv-
ers could not solve four out of sixty-one of the test problems considered
there. The same holds true, of course (even more so!), for iterative solvers.
The ever-increasing complexity and size of the linear systems to be solved is
already making the use of iterative methods absolutely mandatory for many
applications, thus requiring continually improving solvers and precondition-
ers, with scalability more than ever a central concern. In line with current
trends, it is quite likely that the future will see many new and improved
multilevel algorithms, both geometric and algebraic, for solving large-scale
saddle point problems from PDEs and PDE-constrained optimization.
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Pavarino, Miro Rozložńık, Wil Schilders, Daniel Szyld and Andy Wathen
for informative discussions and pointers to the literature. We are especially
thankful to Jacek Gondzio, Jim Nagy, Maxim Olshanskii, Michael Saunders
and Valeria Simoncini for their careful reading of the manuscript and for
their helpful comments.

REFERENCES

R. Aboulaich and M. Fortin (1989), ‘Iterative methods for the solution of Stokes
equations’, Comput. Methods Appl. Mech. Engrg. 75, 317–324.

M. F. Adams (2004), ‘Algebraic multigrid methods for constrained linear systems
with applications to contact problems in solid mechanics’, Numer. Linear
Algebra Appl. 11, 141–153.

M. Ainsworth and S. Sherwin (1999), ‘Domain decomposition preconditioners for p
and hp finite element approximation of Stokes equations’, Comput. Methods
Appl. Mech. Engrg. 175, 243–266.

P. Alotto and I. Perugia (1999), ‘Mixed finite element methods and tree–cotree
implicit condensation’, Calcolo 36, 233–248.

P. Amestoy, I. S. Duff and C. Puglisi (1996), ‘Multifrontal QR factorization in a
multiprocessor environment’, Numer. Linear Algebra Appl. 3, 275–300.

R. Amit, C. A. Hall and T. A. Porsching (1981), ‘An application of network theory
to the solution of implicit Navier–Stokes difference equations’, J. Comput.
Phys. 40, 183–201.

G. Ammar, C. Mehl and V. Mehrmann (1999), ‘Schur-like forms for matrix Lie
groups, Lie algebras and Jordan algebras’, Linear Algebra Appl. 287, 11–39.

P. Arbenz and R. Geus (2005), ‘Multilevel preconditioned iterative eigensolvers for
Maxwell eigenvalue problems’, Appl. Numer. Math., to appear.

P. Arbenz, R. Geus and S. Adam (2001), ‘Solving Maxwell eigenvalue problems for
accelerating cavities’, Phys. Rev. ST Accel. Beams 4, # 022001.

M. Arioli (2000), ‘The use of QR factorization in sparse quadratic programming’,
SIAM J. Matrix Anal. Appl. 21, 825–839.

M. Arioli and L. Baldini (2001), ‘A backward error analysis of a null space algorithm
in sparse quadratic programming’, SIAM J. Matrix Anal. Appl. 23, 425–442.

M. Arioli and G. Manzini (2002), ‘A null space algorithm for mixed finite-element
approximations of Darcy’s equation’, Comm. Numer. Meth. Engng. 18, 645–
657.

M. Arioli and G. Manzini (2003), ‘Null space algorithm and spanning trees in
solving Darcy’s equation’, BIT 43, 839–848.

M. Arioli, I. S. Duff and P. P. M. De Rijk (1989), ‘On the augmented system
approach to sparse least-squares problems’, Numer. Math. 55, 667–684.
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J. Júdice, J. Patricio, L. Portugal, M. Resende and G. Veiga (2003), ‘A study of
preconditioners for network interior point methods’, Comput. Optim. Appl.
24, 5–35.

X. Juvigny (1997), Solution of large linear systems on massively parallel machines,
PhD thesis, Applied Mathematics, University of Paris VI, Paris, France.
In French.

I. Kaneko and R. J. Plemmons (1984), ‘Minimum norm solutions to linear elastic
analysis problems’, Internat. J. Numer. Methods Engng. 20, 983–998.

I. Kaneko, M. Lawo and G. Thierauf (1982), ‘On computational procedures for the
force method’, Internat. J. Numer. Methods Engng. 18, 1469–1495.

G. Kanschat (2003), ‘Preconditioning methods for local discontinuous Galerkin
discretizations’, SIAM J. Sci. Comput. 25, 815–831.

O. A. Karakashian (1982), ‘On a Galerkin–Lagrange multiplier method for the
stationary Navier–Stokes equations’, SIAM J. Numer. Anal. 19, 909–923.

A. Kaveh (1974), Application of topology and matroid theory to the analysis of
structures, PhD thesis, Imperial College of Science and Technology, London.

A. Kaveh (1979), ‘A combinatorial optimization problem: optimal generalized cycle
bases’, Comput. Methods Appl. Mech. Engrg. 20, 39–51.

A. Kaveh (1992), ‘Recent developments in the force method of structural analysis’,
Appl. Mech. Rev. 45, 401–418.

A. Kaveh (2004), Structural Mechanics: Graph and Matrix Methods, third edn,
Research Studies Press, UK.

D. Kay, D. Loghin and A. J. Wathen (2002), ‘A preconditioner for the steady-state
Navier–Stokes equations’, SIAM J. Sci. Comput. 24, 237–256.

C. Keller, N. I. M. Gould and A. J. Wathen (2000), ‘Constraint preconditioning
for indefinite linear systems’, SIAM J. Matrix Anal. Appl. 21, 1300–1317.
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