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Abstract. Proving is a basic skill for mathematicians; however, this is a dif-
ficult skill for some students to learn. In fact, traditionally students have
struggled with learning to prove in their junior level mathematics courses. Re-
cently, many universities have instituted a transition course to help students
make the transition from computational courses to more proof based courses.
This paper is a survey of the current learning to prove literature. It will ex-
amine where students struggle, their notions of proof, and the proof strategies
that students employ. Finally, I will examine some of the relevant literature
regarding the teaching of proof.

Proof is a central form of discourse within the mathematical community. While
there have been some discrepancies among scholars as to the definition of a proof
or the standard of rigor required for a proof, it is agreed that proving is a neces-
sary skill for mathematicians. The process has many uses: to verify, to explain,
to communicate, to persuade, to construct new knowledge or even to synthesize
knowledge into an axiomatic form [1]. Thus learning to read, write and understand
proofs plays an essential part in becoming an active member in the community of
mathematicians.

Throughout history the rigor and requirements of a proof have changed depend-
ing on the culture of mathematics at the time. Kleiner [19] provides an exemplary
account of the historical development of these cultural rules. From the Babylonians’
method of mathematical examples in geometry to the Greek’s method of axiomatic
proof in geometry to the crisis over the symbolic notation in calculus, each of these
developmental stages in justification has brought a mathematically based change
to perceptions about the required rigor of proof. Euclid recognized a need for
generalized proof beyond the examples provided by Babylonian authors. As the
mathematical community debated the notations to be used in calculus, they recog-
nized the need for more rigorous proof. Although proof is commonly discussed in
high school geometry courses; traditionally, college students don’t encounter proof
again until calculus or beyond.

Many universities include some type of transition course from calculus to the
upper division courses in their mathematics major curriculum. This course is meant
to prepare students for the upper division courses, which often consist of presenting
students with a theorem and its proof as a form of teaching. The goal for the course
is to introduce students to the rigor of proof writing. The curriculum for transition
courses is not in any way standardized. Content, methods as well as expectations
change from section to section and university to university. Most courses begin
with some logic facts, perhaps including truth tables and basic logic vocabulary
[23].
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The goal of the transition course is to prepare students to handle the require-
ments of an upper division course where they are expected not only to produce
proofs in homework, but also read and understand proofs presented in textbooks
and lectures. It is expected that students be able to follow the logical implications
of proofs in class and potentially fill in gaps which are left to the student. Finally
students are asked to use theorems which have already been proved in order to
prove further conjectures or calculate answers to a question.

There is a growing body of research focused on learning to prove at the under-
graduate level, specifically in junior level proof writing or transition courses. In
what follows I give a brief overview of this literature concerning students’ experi-
ences, abilities, difficulties, and notion of proof, as well as frameworks regarding
student proof strategies and schemes. Finally some theoretical research with re-
gards to the cognitive restructuring required of students learning to prove, and the
knowledge students need to successfully prove conjectures and begin developing
expertise is also discussed.

1. Student’s abilities and difficulties

Producing a formal proof requires the use of several areas of knowledge. Students
struggle with the content area involved in the proof as well as the laws of logic and
deductive reasoning. Students may also be unaware of the logical reasoning and
aspects of rigor which govern the proving process. These difficulties as well as the
issues concerning the process of proof writing and the language issues are discussed
in the research literature.

Ruthven and Coe [27] studied the practices of advanced mathematics students
at the end of their first year in college. They found most of these students did not
use formal justification even when prompted to do so. When given the opportunity
to use a proof to justify a conjecture made, students did not take it. Those students
who did provide a justification or explanation of their conjectures used empirical
evidence, i.e. appealing to examples as a source of proof.

Part of becoming a member of the mathematical community is learning to align
one’s discourse with that of the larger community [34]. This ability is dependent
on the student understanding socio-mathematical norms held by the community.
Dreyfus found students are often unaware of the social norms developed within
the mathematical community regarding proof [6]. This difficulty is reinforced by
Knuth and Elliott [21], who found pre-service teachers to posses an inadequate un-
derstanding of proof as defined by the mathematical community. In a similar study
with year 10 students in the UK, Almeida [2] found students held an inadequate
understanding of the formalism required.

Other difficulties were noted by Selden and Selden [30], who found students
focused on local issues within a proof, without seeing the global picture. Thus a
proof could be proving something besides the conjecture, but if each of its local
steps were good the students indicated the proof was acceptable.

In a separate study Selden and Selden [29] found college students in a proof
transition course struggled to understand the logic required to validate a proof.
Students could not reliably determine the logical structure of mathematical state-
ments in order to formulate a proof framework. Students were also unable to unpack
informal statements into their formal logical equivalent statements, which is a pre-
requisite to being able to prove the statement. Similarly, Finlow-Bates et al. [8]
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found that first year math students at the university level failed to be able follow a
chain of reasoning. Hoyles and Kűchemann [17] studied high school students’ un-
derstanding of logical implications. They found if students were asked to assume a
statement was true, then given the antecedent was true they could correctly induce
the implication. However, when students had to pick an example, they struggled to
understand the need to pick an example which satisfied the antecedent. Students
tended to pick examples to confirm a conjecture not to prove it or test it.

Another facet of difficulties within the logic aspect of proof construction is the
language used. Finlow-Bates et al. [8] discovered students misunderstood the
language being used in proofs. This predominately occurred when the word carried
a specific mathematical meaning, which differed from its everyday use. Likewise
Dreyfus [6] concurs that university students lack the language to communicate
effectively in proof writing. The professor in Moore’s study [24] is concerned that
students do not have the language or cultural understanding.

Language is a basis for several difficulties students have. Moore found language
to be a difficulty for students along with their use of definitions and their abili-
ties related to the specific concepts. He found students consistently exhibited the
following seven difficulties:

•D1: The students did not know the definitions. That is, they were unable
to state the definitions.
•D2: The students had little intuitive understanding of the concepts.
•D3: The students’ concept images were inadequate for doing the proofs.
•D4: The students were unable, or unwilling, to generate and use their own
examples.
•D5: The students did not know how to use definitions to obtain the
overall structure of proofs.
•D6: The students were unable to understand and use mathematical
language and notation.
•D7: The students did not know how to begin proofs. ([24] p.251-252).

These errors all relate to the students’ conceptual understanding of the material
at hand and not necessarily the logical implications required in a deductive proof. It
is worthy of noting the importance of the students being able to generate examples,
D4. Without the domain specific knowledge held by the professor, the students
struggled to generate examples they could easily manage. This left them unable to
explore the definitions and theorems they were trying to understand and prove.

Several other studies support students’ difficulties with the conceptual under-
standing of the material. Dreyfus remarks, “In most cases, they still lack the
conceptual clarity to actively use the relevant concepts in a mathematical argu-
ment,”([6] p. 91). Finlow-Bates, Lerman, and Morgan [8] determined misunder-
standing of the mathematical concept as a source of difficulty for their students as
well. Hart [13] found that in abstract algebra courses students’ were confused by
the operations involved, indicating some problems inherent in their concept image.

While it is clear that students struggle with several aspects of proving, these
difficulties fit nicely into two categories. First students struggle with the logic,
language and culture of the proof as determined by the community. Second students
lack the domain specific knowledge, such as definitions, theorems, heuristics and
the ability to generate examples. Difficulties in the first category are intertwined
with student notions of what constitutes a proof and the values they hold, while the
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latter category is related to the strategic knowledge they need and is often content
or domain specific.

2. Student’s notion of proof

In learning to prove, the notion of a proof encompasses a wide range of issues
and ideas. Students’ notions of proof determine what they consider a valid proof,
what convinces them of a fact, how they approach the task of proving, what they
value in a proof, and how they determine what constitutes a proof. The research
literature points to the fact that students at the undergraduate level do not have a
robust notion of proof.

Students’ perceptions of proof play an important role in their thinking and rea-
soning and hence in the types of proofs they produce [24]. Moore conducted a
classroom research experiment in a transition course taught at the university level.
He noticed the students perceived a proof to be procedural, a set of steps to perform.
Gray, Pinto, Pitta and Tall [9] found that students with a procedural approach were
less successful at advanced mathematical thinking. Moore also noted that students
had a limited idea of the purpose of proof.

Some students see the purpose of proof in a very narrow or disconnected manner.
Vinner [32] observed students distinguished between verifying a truth and proving.
This may be due in part to the student’s notion that proving is convincing. As Segal
[28] notes, there is a difference in the intended audience between convincing and
validating. One convinces an individual, but when putting forth an argument for
the community, one is validating a truth. Segal noticed that students distinguished
between these two aspects of proof when looking at an empirical justification, but
they were unable to do so when analyzing a deductive argument. Raman [25] also
distinguishes between the private audience and public audience. She found that
students saw these two aspects of proof as disconnected, whereas experts in the
field see them intertwined. Raman’s students didn’t see the explanatory key idea
of the proof connecting the different aspects. Although students tend to look for
meaning and explanation in proofs, they rate proofs by their form.

In several studies it was noted that students think a proof must be presented in
a particular format [14,20,32]. Vinner evaluated students at the senior high school
level. He found students spent time substituting values into a previously proved
theorem to confirm the general formula. This hints that their notion of proof did
not include the concept of generality. Students felt a particular case might still
need to be confirmed even though a general proof is understood.

The students studied by Healy and Hoyles [14] also struggled with the generality
of proof. Healy and Hoyles found that students simultaneously held two different
proof conceptions. The proofs, which were given highest preference to the students
personally, were explanatory, while the proofs to receive the highest mark from the
teacher were algebraic, even when the algebraic proof was incorrect. However, the
proofs they constructed were mainly empirical or narrative in nature. Knuth’s [20]
subjects also placed a higher value on algebraic proofs even if there were clear errors
in the proof.

Knuth claims a robust notion of proof should include an understanding of the in-
fallibility of a proof as well as the generality of a proof. He studied the conceptions
of in-service high school teachers and found they did not have a robust notion of
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proof. The teachers used four criteria to determine if a particular response consti-
tuted a proof: valid method, sound mathematical reasoning, sufficient detail, and
knowledge dependence. The proofs were judged by their mechanics. For instance
if a proof used induction, it was likely to be judged as a proof because it used a
valid method, even if the induction was done incorrectly. These criteria, however,
were not the same criteria for what determined a convincing argument. The teach-
ers were convinced by sound mathematical reasoning, empirical data (an example
or visual reference), familiarity, generality and that it showed (in a visual way)
why. Students interviewed by Finlow-Bates [7] were also convinced by examples
and stated the role of a proof was to explain.

Almeida [1] surveyed first and second year university students. He found the
students’ professed ideas about proof were similar to what he considered ideal:
they espoused formal views. However their private proof practices deviated from
the ideals they had expressed. He suggests that even the best second year university
student can understand the need for a formal proof but may be unable to live up
to the demands of rigor in his/her own proof practices, ([1], p.847). The lower
students lack the understanding to perceive a formal proof as anything more than
symbolic manipulation.

The first year university students interviewed by Finlow-Bates [7] saw value in
the informal arguments presented but placed more value on empirical evidence. In
fact they valued an informal proof with examples higher than the informal proof
alone. When validating proofs, students value being able to understand what has
been written [30]. This is in contrast to when students were asked to rank a proof
for a grade. There they were likely to pick a proof for its structure (algebraic) even
if they could not understand its meaning. In fact when ranking proofs students
consistently paid attention to “their clarity, usefulness, consistency, how convincing
they were and how easy they were to understand before considering if they were
logical and rigorous, ”([8], p. 258). When constructing proofs, students also value
understanding [1] and they see value in informal arguments.

Overall students’ concept images of proof seem to include a notion of algebraic or
symbolic manipulation. Although they are convinced by informal and explanatory
methods they consistently mark formal proofs as a preferred method. Students
value being able to understand arguments. They value explanations and are con-
vinced by empirical evidence. Their own proof construction (concept usage) is not
usually formal. Some of the students viewed the purpose of proofs to include ex-
plaining, and verifying, but for the most part their notion of the purpose of proof
is rather narrow.

3. Student Proof Schemes

Aside from describing student difficulties and notions of proof, a significant por-
tion of the proof literature seeks to categorize the arguments produced by students
as proof. An argument that convinces a student or which a student would use
to convince someone is classified as a type of proof scheme [12]. There has been
significant research on proof to classify and characterize student proof schemes
[4, 10–12, 15, 22]. Each of these frameworks defines student behavior differently.
The Harel and Sowder framework is the most extensive of the frameworks.

Harel and Sowder give three classes of conviction: external, empirical, and ana-
lytical. Each of these classes is made up of several proof schemes. To the authors
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these schemes represent cognitive stages in the student’s mathematical develop-
ment. There are two issues that Harel and Sowder attempt to define in this frame-
work. The first is the student’s level of understanding and the second is the tech-
niques of proving by which the student is convinced. These are certainly related
issues, but there is some confusion in this framework as students are capable of
using different schemes for different problems. There is certainly cognitive develop-
ment involved in being able to use an analytic proof scheme. Harel and Sowder also
comment that students need to go through the process of using empirical schemes
to be able to use analytical schemes. They remark that external conviction is an
unnecessary step in the process, which presents a potential stumbling block for
students.

The class of external conviction consists of ritual, authoritarian and non –quan-
titative symbolic schemes. The ritual scheme is when students are convinced by the
form of the proof. The authoritarian scheme represents students who are convinced
by a textbook, teacher or some other authority. The non-quantitative symbolic
scheme describes students who mindlessly manipulate symbols with little to no
understanding of their meaning. Harel and Sowder comment that other than the
authoritarian proof scheme these schemes are due to poor teaching.

Arguments which convinced students in the empirical proof schemes class fall into
two categories: inductive and perceptual. Inductive arguments are based on spe-
cific cases or examples. The inductive scheme is a natural progression in learning to
prove. When a student is convinced by a set of pictures which lack transformational
reasoning, we define this to be the perceptual proof scheme. If transformational rea-
soning is present then the proof scheme is analytical. The analytical proof schemes
category was greatly revised by Harel [11] and renamed as deductive proof schemes.
There are two types of deductive proofs: transformational and modern axiomatic.
Each type of proof requires the student use goal oriented mental operations and
recognize the need for generality. The difference is that transformational proofs
are characterized by the transformation of images that govern the deduction in the
evidencing process.

Transformational proof schemes are divided into contextual, generic, and causal
schemes. Each of these distinctions is due to a restriction a student places on the
generality of the proof. Either they restrict the context of the argument (con-
textual), the generality of the justification (generic), or the mode of justification
(causal). The last proof scheme under transformational reasoning is called con-
structive. This scheme describes students who construct the object in question
rather than just prove its existence. Mathematicians also use this type of proof to
show existence.

Modern axiomatic proofs are characterized by a set of (arbitrary) rules that gov-
ern the transformations of images in the evidencing process. The class of modern
axiomatic schemes describes a progress of understanding. It begins with structural
schemes. The structural proof scheme requires that students recognize that defini-
tions and theorems belong in the structure created by a particular set of axioms.
The progression of understanding proceeds to axiomatizing, which is the ability to
analyze the implications of changing a set of axioms. Harel and Sowder see the
class of deductive proofs as hierarchical. Transformational proofs are generally de-
veloped first by students, but the ultimate goal is for students to be able to produce



LEARNING TO PROVE IN ORDER TO PROVE TO LEARN 7

modern axiomatic proofs. Likewise that structural conception must come before
axiomatizing [10].

Balacheff’s research [4] focuses on further developing the empirical proof scheme.
He asserts that students use examples for a variety of reasons. He first defines
two types of proofs: pragmatic and conceptual. Pragmatic proofs use actions to
show that something is the case, while conceptual proofs rest on the ability to
formulate properties or relations. Balacheff notes that students use examples for
both pragmatic and conceptual proofs. He defines example usage in four categories:
na̋ıve empiricism, crucial experiment, generic example and thought experiment.

Students utilizing na̋ıve empiricism believe a conjecture to be fact after verifying
the results for a few cases. These students do not consider generalization at all.
The crucial experiment is a move toward generic understanding. Students pick
examples where the validity of the statement is not intuitive. The idea is that
if it works for this very complicated or difficult example then it should work for
everything else. The generic example has all of the reasoning of a proof, but the
proof is done with one representative of the class of objects it represents. Finally,
the thought experiment is when students are able to detach themselves from the
example in question and recognize the key idea of the proof.

Several studies have used Balacheff’s framework to analyze students uses of ex-
ample. Knuth and Elliott [22] remark that the first two uses of examples are an
inductive approach to proof. Generic examples and thought experiments are a move
to deductive proofs. In fact a generic example for many students takes the place of
an explanatory proof [26].

Other proof scheme frameworks have also been put forth [8, 14, 17, 31]. Finlow-
Bates et al. classify students’ modes of thinking as empirical, logical and aesthetic.
Empirical thinking is indicated by students’ reliance on examples to convince them.
Students who preferred rational arguments (this is similar to a basic deductive proof
scheme) are indicated as thinking logically. An aesthetic mode of thought describes
students who prefer proofs which are visually or intuitively appealing. Similar
distinctions are made by Healy and Hoyles [14], who classify students’ proofs as
empirical, narrative and formal. The empirical and formal proofs described are the
same as Finlow-Bates et al. The narrative proofs are closely related to an aesthetic
mode of thinking. They include all of the reasoning and mathematical relationships
from the formal proof but they are written in everyday language or represented in
pictures. This category is also similar to Tall’s [31] iconic proofs.

Tall [31], drawing from Bruner’s work, uses the cognitive development involved
in communication to determine different representations of proofs: enactive, iconic
and symbolic. Enactive communication is done with actions and gestures, hence an
enactive proof needs physical movement to show something is true. Iconic commu-
nication uses pictures to explain. Tall’s definition of symbolic communication refers
to the language of logic. This is akin to Harel and Sowder’s modern axiomatic proof
scheme.

Each of these studies defined student behavior in a slightly different manner.
There are, however, some clear areas of consistency. Students may appeal to out-
side authority and empirical evidence when proving. Students often focus on form
and visual aspects of a proof rather than the analytical or deductive reasoning. It is
important to understand that students may use several different schemes depend-
ing on the task before them. This is no different than mathematicians who may
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choose to use transformational reasoning to prove some conjectures and axiomatic
reasoning for others. Harel and Sowder define the entire class of analytical or de-
ductive proof schemes to be considered as mathematical proofs. From the student’s
perspective all of these schemes including the external proof schemes are convincing
arguments of different levels.

4. What Student’s Need to Know

Learning to prove is not a simple task. Students must learn strategic knowledge
in the content areas in which they are proving. Students must also obtain knowledge
specific to proving. Likewise students need a wealth of problem solving skills as well
as socio-mathematical norms regarding proof. They must be able to manipulate this
knowledge by reformulating ideas, introducing notation and generating examples.
Finally, there is a need for students to develop some behaviors associated with
experts in the field. These areas of cognitive development play a role in the student
learning to prove.

Jones [18] found successful students were able to create a rich concept map of
proof. A larger proof concept map does not however, guarantee success. Gray et
al. [9] conclude students need to develop a level of sophistication which includes
the ability to be flexible with definitions and procedures, as well as being capable
of thinking about mathematics symbolically.

Weber [33] interviewed undergraduates and doctoral students in abstract algebra.
He found students needed domain specific knowledge outside of a complete concept
image. Students needed to know proof techniques that may be specifically suitable
for that domain. They must be able to determine which proofs are important
and when are they useful. Students must be able to determine when and when
not to use syntactic strategies, defined as procedural or symbolic manipulation.
For example when proving the intersection of two sets is empty the strategy first
employed should be a proof by contradiction. This does not always work, but it
is the best first guess. Weber found even students who had conceptual knowledge
about the content of the conjecture, did not necessarily know how to proceed in
the proof. Hart [13] found the advanced students in his study made use of these
domain specific strategies in their proofs.

Students also find it difficult to know what constitutes a proof. This is related to
an inherent lack of understanding about the socio-mathematical norms established
for the community. Dreyfus [6] argues that the socio-mathematical norms of the
community of practicing mathematicians are not taught in the college classroom.
He implies that students do not know what is expected of them regarding the rigor
required for a particular proof in a certain situation and therefore are unable to
justify their claims in an acceptable manner.

Socio-mathematical norms may not be the only issue. Housman and Porter [15]
suggest there may be a learning trajectory, which proceeds from external convic-
tion through empirical conviction to analytical conviction or proof. As students
gain experience in proof writing, they progress through this trajectory. Students
with more proof experience are able to reformulate statements into logically equiv-
alent statements or take definitions and reformulate them to informal statements.
These students introduce notation and generate examples more often [13,15]. Being
capable of reformulating statements is a necessary skill for proving.
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Weber’s description of the strategic knowledge students need to be successful at
proving is exemplified in the tasks that Berliner ascribes to experts. Berliner [5]
describes the characteristics of experts in the teaching field. The parallel skills in
mathematics might include the following skills: experts know how to proceed when
faced with the wording of a conjecture. Experts have access to a wide range of
examples, which clarify the nuances of the conjecture. Experts can also generate
new examples to fit a new situation. Experts can recognize patterns in new problems
and are better able to find analogies. While these skills and behaviors do not
guarantee a student will be successful at proving; students who are successful exhibit
these abilities.

5. Implications for Teaching and Research

The question is how to provide students with experiences, which help them to de-
velop the knowledge and skills necessary to prove a statement. Almeida [3] suggests
this experience should be similar to experiences faced by “pioneering mathemati-
cians.”He argues that the natural sequence for developing mathematics is “intuition,
trial, error, speculation, conjecture, proof.”

Dreyfus [6] notes the issues involved in the current mathematics textbooks and
the misconceptions they produce. For example he notes that textbooks often use
examples as a way of justifying a theorem. Likewise textbooks often use informal
language in justification and he notes that classroom discourse is often even more
watered down. This gives students poor examples of proof which permeate their
concept image of proof. Hoyles [16] argues that the influence the curriculum plays
on student approaches and perceptions of proof is underestimated. The students in
her study exhibited behavior determined by the curriculum in the UK, associating
proof with numerical investigations. Their answers listed data and conjectured even
when this method was not appropriate.

Due to the enormous importance of proof in the mathematical dialogue it is im-
perative that we as a community continue to improve students’ proving. While the
literature is not particularly positive about student’s abilities at the undergraduate
level, students are learning. Thus it would be helpful if further literature focused on
the abilities of students rather than their difficulties. Finally, the research suggests
that students learn to prove best when they are immersed in doing mathematics.
Hence the transition courses would benefit from developing curriculum which pro-
motes defining, conjecturing and proving in a similar manner to mathematicians.
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