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makes use of Mercer's condition. While classicalneural network techniques su�er from the existenceof many local minima [1, 3, 8, 19], SVM solutionsare obtained from quadratic programming prob-lems possessing a global solution. Kernel functionsand parameters can be chosen such that a bound onthe VC dimension is minimized [3, 16, 17, 18, 15].Being based on the structural risk minimizationprinciple and capacity concept with pure combina-torial de�nitions, the quality and complexity of theSVM solution does not depend directly on the di-mensionality of the input space [16, 17, 18]. Linksbetween SVM's, regularization theory and sparseapproximations have been shown in [12, 6].In the support vector method of function esti-mation one typically employs Vapnik's epsilon in-sensitive loss function or Huber's loss function. In[14] a least squares version of SVM's for classi�ca-tion has been proposed, which is related to the LSversion for function estimation reported in [10]. Inthis LS-SVM version one �nds the solution by solv-ing a linear system instead of quadratic program-ming. This is due to the use of equality insteadof inequality constraints in the problem formula-tion. In [2, 5, 13] such linear systems have beencalled augmented systems or Karush-Kuhn-Tucker(KKT) systems and their numerical stability hasbeen investigated. In this paper we present an iter-ative solution to LS-SVM's based on the conjugategradient method [7]. This method enables solvinglarge scale classi�cation problems. As an examplewe show the excellent performance on a multi two-spiral benchmark problem, which is known to be adi�cult test case for neural network classi�ers [9].This paper is organized as follows. In Section2 we discuss LS-SVM classi�ers. In Section 3 wepresent an iterative method for training large scaleLS-SVM's. In Section 4 an illustrative example isgiven on a multi two-spiral benchmark problem.



2 Least Squares Support Vector MachinesGiven a training set of N data points fyk; xkgNk=1,where xk 2 Rn is the k-th input pattern and yk 2R is the k-th output pattern, the support vectormethod approach aims at constructing a classi�erof the form:y(x) = sign[ NXk=1�k yk 	(x; xk) + b] (1)where �k are support values and b is a realconstant. For 	(�; �) one typically has the fol-lowing choices: 	(x; xk) = xTk x (linear SVM);	(x; xk) = (xTk x+ 1)d (polynomial SVM of degreed); 	(x; xk) = expf�kx � xkk22=�2g (RBF SVM);	(x; xk) = tanh[�xTk x+ �] (MLP SVM), where �,� and � are constants.For the case of two classes, one assumes� wT'(xk) + b � +1 ; if yk = +1wT'(xk) + b � �1 ; if yk = �1 (2)which is equivalent toyk[wT'(xk) + b] � 1; k = 1; :::; N (3)where '(�) is a nonlinear function which maps theinput space into a higher dimensional space. LS-SVM classi�ers as introduced in [14] are obtainedas solution to the following optimization problem:minw;b;eJLS(w; b; e) = 12wTw +  12 NXk=1 e2k (4)subject to the equality constraintsyk [wT'(xk) + b] = 1� ek; k = 1; :::; N: (5)One de�nes the LagrangianL(w; b; e;�) = JLS� NXk=1�kfyk[wT'(xk)+b]�1+ekg(6)where �k are Lagrange multipliers, which can beeither positive or negative due to the equality con-straints as follows from the Kuhn-Tucker conditions[4].The conditions for optimality8>>>>>>>>><>>>>>>>>>:
@L@w = 0 ! w =PNk=1 �kyk'(xk)@L@b = 0 ! PNk=1 �kyk = 0@L@ek = 0 ! �k = ek@L@�k = 0 ! yk[wT'(xk) + b]� 1 + ek = 0(7)

for k = 1; :::; N can be written as the linear system[4]2664 I 0 0 �ZT0 0 0 �Y T0 0 I �IZ Y I 0 3775 2664 wbe� 3775 = 2664 000~1 3775 (8)where Z = ['(x1)T y1; :::;'(xN )T yN ], Y =[y1; :::; yN ], ~1 = [1; :::; 1], e = [e1; :::; eN ], � =[�1; :::;�N ]. Elimination of w and e gives� 0 Y TY ZZT + �1I � � b� � = � 0~1 � : (9)Mercer's condition is applied to the matrix 
 =ZZT with 
kl = ykyl '(xk)T'(xl)= ykyl	(xk; xl): (10)The parameters of the kernels, such as � for theRBF kernel, can be optimally chosen by optimiz-ing an upper bound on the VC dimension, whichinvolves solving a quadratic programming problem[3, 16, 17, 18]. The support values �k are propor-tional to the errors at the data points in the LS-SVM case, while in the standard SVM case manysupport values are typically equal to zero. Henceone could rather speak of a support value spectrumin the LS-SVM case.3 A Large Scale Algorithm for LS-SVM'sThe matrix in (9) is of dimension (N+1)�(N+1).For large value values of N this matrix cannot bestored, such that an iterative solution method forsolving (9) is needed. A Hestenes-Stiefel conjugategradient algorithm for solving Ax = B with A 2Rn�n symmetric positive de�nite and B 2 Rn isgiven by (see [7] p.523):Conjugate Gradient Methodi = 0;x0 = 0; r0 = B;while ri 6= 0i = i+ 1if i = 1p1 = r0else�i = rTi�1ri�1=rTi�2ri�2pi = ri�1 + �ipi�1end�i = rTi�1ri�1=pTi Apixi = xi�1 + �ipiri = ri�1 � �iApiendx = xi
(11)



A convergence property of this method is that ifA = I + C is symmetric positive de�nite andrank(C) = r then the algorithm converges in atmost r + 1 steps [7].The problem (9) is of the form� 0 Y TY H � � �1�2 � = � d1d2 � (12)with H = 
+�1I , �1 = b, �2 = �, d1 = 0, d2 = ~1.The matrix in (12) on the other hand is not positivede�nite. Hence in this form it cannot be solved by(11). However, (9)(12) is equivalent to solving� s 00 H � � �1�2 +H�1Y �1 � = � �d1 + Y TH�1d2d2 �(13)with s = Y TH�1Y > 0 (H = HT > 0).Finally, (12) can be solved then as followsLS-SVM - Large Scale Algorithm1. Solve �; � from H� = Y andH� = d2 using (11).2. Compute s = Y T �.3. Find solutionb = �1 = �T d2=s� = �2 = � � ��1.Note that in (11), A isn't stored in the case of thislarge scale algorithm. The computational complex-ity is O(Nr2).4 Example: a Multi Two-Spiral ProblemThe two-spiral problem [9] is a well-known bench-mark problem for testing the quality of neural net-work classi�ers. In [14] the excellent training andgeneralization performance of LS-SVM's with RBFkernel on this problem has been shown. In order toillustrate the large scale LS-SVM version we de�nehere a more complicated multi two-spiral classi�ca-tion problem as shown in Figure 1. Given are 1000training data where the training data of the twoclasses are indicted by `*' and `o'. A RBF kernelwas used with � = 1 and  = 10. The resultingclassi�er (1) with support values �k and bias termb obtained from the large scale algorithm is shownon Figure 1. Taking 1000 support values one has nomisclassi�cation on the training set, together withexcellent generalization as is clear from the deci-sion boundary between the black and white regionson Figure 1. The support value spectrum is shownon Figure 2, which are the obtained support valuessorted from largest to smallest. Figure 3 shows theperformance of the classi�er on the training datain terms of the number of misclassi�ed data as afunction of the amount of most signi�cant supportvalues.
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Figure 1: Multi two-spiral classi�cation problemwith 1000 training data (data points of the twoclasses are indicated by `*' and `o'). The excellentgeneralization performance of the LS-SVM withRBF kernel is clear by visual inspection from theblack and white regions which determine the deci-sion boundary between the two classes.
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Figure 2: Support Value Spectrum related to theFigure 1, with support values �k sorted from largestto smallest values for the given training data set.
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Figure 3: Performance on the training set as a func-tion of the number of the sorted support values,related to previous Figures.5 ConclusionsIn this paper we proposed a large scale algorithmfor least squares support vector machines basedon a conjugate gradient method. The applica-tion to a di�cult multi two-spiral classi�cationproblem shows that excellent generalization perfor-mance can be obtained using the LS-SVM approachin the separable case. This approach involves solv-ing a linear system instead of quadratic program-ming for the standard SVM case and allows to ap-ply Mercer's condition with use of several type ofkernels functions. The performance of the classi�erturns out to be quite robust as well with respect totuning parameters of the algorithm.References[1] Bishop C.M., Neural networks for pattern recogni-tion, Oxford University Press, 1995.[2] Bj�ork A., Paige C.C., "Solution of augmented lin-ear systems using orthogonal factorizations," BIT34, 1-24, 1994.[3] Cherkassky V., Mulier F., Learning from data:concepts, theory and methods, John Wiley andSons, 1998.[4] Fletcher R., Practical methods of optimization,Chichester and New York: John Wiley and Sons,1987.[5] Fletcher R., Johnson T., \On the stability of null-space methods for KKT systems," SIAM J. MatrixAnal. Appl., Vol.18, No.4, 938-958, 1997.
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