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Abstract

Support vector machines (SVM’s) have been intro-
duced in literature as a method for pattern recog-
nition and function estimation, within the frame-
work of statistical learning theory and structural
risk minimization. A least squares version (LS-
SVM) has been recently reported which expresses
the training in terms of solving a set of linear equa-
tions instead of quadratic programming as for the
standard SVM case. In this paper we present an
iterative training algorithm for LS-SVM’s which
is based on a conjugate gradient method. This
enables solving large scale classification problems
which is illustrated on a multi two-spiral bench-
mark problem.

Keywords. Support vector machines, classifica-
tion, neural networks, RBF kernels, conjugate gra-
dient method.

1 Introduction

Support vector machines have been introduced in
[16] for solving pattern recognition and nonlinear
function estimation problems. In this method one
maps the data into a higher dimensional input
space in which one constructs an optimal separat-
ing hyperplane. As kernel functions one can use
polynomials, splines, radial basis function networks
and multilayer perceptrons. For the mapping into
the higher dimensional input space and kernels one
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makes use of Mercer’s condition. While classical
neural network techniques suffer from the existence
of many local minima [1, 3, 8, 19], SVM solutions
are obtained from quadratic programming prob-
lems possessing a global solution. Kernel functions
and parameters can be chosen such that a bound on
the VC dimension is minimized [3, 16, 17, 18, 15].
Being based on the structural risk minimization
principle and capacity concept with pure combina-
torial definitions, the quality and complexity of the
SVM solution does not depend directly on the di-
mensionality of the input space [16, 17, 18]. Links
between SVM’s, regularization theory and sparse
approximations have been shown in [12, 6].

In the support vector method of function esti-
mation one typically employs Vapnik’s epsilon in-
sensitive loss function or Huber’s loss function. In
[14] a least squares version of SVM’s for classifica-
tion has been proposed, which is related to the LS
version for function estimation reported in [10]. In
this LS-SVM version one finds the solution by solv-
ing a linear system instead of quadratic program-
ming. This is due to the use of equality instead
of inequality constraints in the problem formula-
tion. In [2, 5, 13] such linear systems have been
called augmented systems or Karush-Kuhn-Tucker
(KKT) systems and their numerical stability has
been investigated. In this paper we present an iter-
ative solution to LS-SVM’s based on the conjugate
gradient method [7]. This method enables solving
large scale classification problems. As an example
we show the excellent performance on a multi two-
spiral benchmark problem, which is known to be a
difficult test case for neural network classifiers [9].

This paper is organized as follows. In Section
2 we discuss LS-SVM classifiers. In Section 3 we
present an iterative method for training large scale
LS-SVM’s. In Section 4 an illustrative example is
given on a multi two-spiral benchmark problem.



2 Least Squares Support Vector Machines

Given a training set of N data points {yx, 7% }o_,,
where x;, € R” is the k-th input pattern and y; €
R is the k-th output pattern, the support vector
method approach aims at constructing a classifier
of the form:

y(@) = signl> awyn Ua, o) + 8 (1)
k=1

where «j are support values and b is a real

constant. For ¥(-,-) one typically has the fol-
lowing choices: ¥(z,zx) = z{z (linear SVM);
U(z,zp) = (v} x4+ 1)¢ (polynomial SVM of degree

d); ¥(z,z) = exp{—|lz — 2]|3/0%} (RBF SVM);
U(r, 7)) = tanh[k 2] x + 0] (MLP SVM), where o,
k and 6 are constants.

For the case of two classes, one assumes

wlp(xy) +b>+1 ,  if gy =+1 @)
wlp(zy) +b< -1, if y,=-1

which is equivalent to
yrlwlp(z) +0)>1, k=1,...N (3)

where ¢(-) is a nonlinear function which maps the
input space into a higher dimensional space. LS-
SVM classifiers as introduced in [14] are obtained
as solution to the following optimization problem:

min Jr,s(w,b,e) =

w,b,e

1 1 N
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2 Y D) o (4)
k=1
subject to the equality constraints

yr [who(xy) +b]=1—e,, k=1,...,N. (5)

One defines the Lagrangian

N
L(w, b, e;a) = jLS*Z ar{ye[wT p(zy)+b]—1+e}

k=1
(6)
where ay are Lagrange multipliers, which can be
either positive or negative due to the equality con-
straints as follows from the Kuhn-Tucker conditions
[4].
The conditions for optimality

N
( 9L =0 - w=3,_, arxyrp(s)
N
%:0 — Zk:l akyk:(]
% =0 — oap="ye
9L —0 = yrlwTo(z)+b —1+e =0
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(7)

for k = 1,..., N can be written as the linear system
[4]
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where 7 = o) yr;s0zn)Tyn], vV =
[yi;syn], T = [1.51], e = [eis.qen], a =
[a1;...; an]. Elimination of w and e gives

0 | v7 b1 [0 o)

Y | ZZT++ T | [a| | T|°

Mercer’s condition is applied to the matrix Q =
777 with

Q= vy o) To(n)

10
= yryr Y (g, ). (10)

The parameters of the kernels, such as o for the
RBF kernel, can be optimally chosen by optimiz-
ing an upper bound on the VC dimension, which
involves solving a quadratic programming problem
[3, 16, 17, 18]. The support values ay, are propor-
tional to the errors at the data points in the LS-
SVM case, while in the standard SVM case many
support values are typically equal to zero. Hence
one could rather speak of a support value spectrum
in the LS-SVM case.

3 A Large Scale Algorithm for LS-SVM’s

The matrix in (9) is of dimension (N +1) x (N +1).
For large value values of N this matrix cannot be
stored, such that an iterative solution method for
solving (9) is needed. A Hestenes-Stiefel conjugate
gradient algorithm for solving Az = B with A €
R™ ™ symmetric positive definite and B € R" is
given by (see [7] p.523):

Conjugate Gradient Method
i =0;20 =057 = B;
while 7; # 0

i=i+1
ifi=1
P11 =To
else
ﬂi = 7“?,17“1'71/7“?,27“1'72
pi =Ti—1 + Bipi—1
end
N =71} riia/pl Ap;
T = Xi—1 + Aipi
T =Ti—1 — ANAD;
end

(11)



A convergence property of this method is that if
A = I + C is symmetric positive definite and
rank(C) = r then the algorithm converges in at
most r + 1 steps [7].

The problem (9) is of the form

] le]-a]

Y H
with H=Q+4~ 11,6 =b,& =a,d; =0,dy, = 1.
The matrix in (12) on the other hand is not positive
definite. Hence in this form it cannot be solved by
(11). However, (9)(12) is equivalent to solving

s 0 [ —di +YTH 'd;
- .

(12)

&
0 H } { L+ HT'YE
with s =YTH-'Y >0 (H=H" > 0).
Finally, (12) can be solved then as follows

LS-SVM - Large Scale Algorithm
1. Solve n,v from Hn =Y and
Hv = d, using (11).
2. Compute s = YTy,
3. Find solution
b= f] = anQ/S
a=%§& =v—n&.

Note that in (11), A isn’t stored in the case of this
large scale algorithm. The computational complex-
ity is O(Nr?).

4 Example: a Multi Two-Spiral Problem

The two-spiral problem [9] is a well-known bench-
mark problem for testing the quality of neural net-
work classifiers. In [14] the excellent training and
generalization performance of LS-SVM’s with RBF
kernel on this problem has been shown. In order to
illustrate the large scale LS-SVM version we define
here a more complicated multi two-spiral classifica-
tion problem as shown in Figure 1. Given are 1000
training data where the training data of the two
classes are indicted by “*” and ‘o’. A RBF kernel
was used with ¢ = 1 and v = 10. The resulting
classifier (1) with support values «;, and bias term
b obtained from the large scale algorithm is shown
on Figure 1. Taking 1000 support values one has no
misclassification on the training set, together with
excellent generalization as is clear from the deci-
sion boundary between the black and white regions
on Figure 1. The support value spectrum is shown
on Figure 2, which are the obtained support values
sorted from largest to smallest. Figure 3 shows the
performance of the classifier on the training data
in terms of the number of misclassified data as a
function of the amount of most significant support
values.

Figure 1: Multi two-spiral classification problem
with 1000 training data (data points of the two
classes are indicated by ‘*” and ‘0’). The excellent
generalization performance of the LS-SVM with
RBF kernel is clear by visual inspection from the
black and white regions which determine the deci-
sion boundary between the two classes.
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Figure 2: Support Value Spectrum related to the
Figure 1, with support values ay, sorted from largest
to smallest values for the given training data set.
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Figure 3: Performance on the training set as a func-
tion of the number of the sorted support values,
related to previous Figures.

5 Conclusions

In this paper we proposed a large scale algorithm
for least squares support vector machines based
on a conjugate gradient method. The applica-
tion to a difficult multi two-spiral classification
problem shows that excellent generalization perfor-
mance can be obtained using the LS-SVM approach
in the separable case. This approach involves solv-
ing a linear system instead of quadratic program-
ming for the standard SVM case and allows to ap-
ply Mercer’s condition with use of several type of
kernels functions. The performance of the classifier
turns out to be quite robust as well with respect to
tuning parameters of the algorithm.
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