
 1

  Computational Foundations for Perceptual Symbol System 

 

Leonid Perlovsky and Roman Ilin 

 

 

Abstract 

 

We describe computational foundations for Perceptual Symbol System (PSS). This requires 

new mathematical methods of dynamic logic (DL), which have overcome limitations of 

classical artificial intelligence and connectionist approaches. The paper discusses these past 

limitations, relates them to combinatorial complexity (exponential explosion) of algorithms 

in the past, and further to the static nature of classical logic. The new mathematical theory, 

DL, is a process-logic. We apply it to one aspect of PSS, learning of situations from object 

perceptions. We relate DL to essential PSS mechanisms of concepts, simulators, grounding. 

Experimental neuroimaging evidence for DL and PSS in brain imaging is discussed as well 

as future research directions.  

 

 

1. Introduction. PSS, challenge of computational model 

 

In a series of papers Barsalou developed a theory of perceptual symbol system (PSS), which 

grounds cognition in perception. “Grounded cognition… rejects the standard view that amodal 

symbols represent knowledge in semantic memory” (Barsalou 1999). This publication 
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emphasized the roles of simulation in cognition. “Simulation is the reenactment of perceptual, 

motor, and introspective states acquired during experience with the world, body, and mind… 

when knowledge is needed to represent a category (e.g., chair), multimodal representations 

captured during experiences … are reactivated to simulate how the brain represented perception, 

action, and introspection associated with it.” Simulation is an essential computational mechanism 

in the brain. The best known case of these simulation mechanisms is mental imagery (e.g., 

Kosslyn 1980; 1994); other forms of grounded cognition include situated actions, social and 

environmental interaction (e.g., Barsalou 2003a; Barsalou et al. 2007; Yeh & Barsalou 2006). 

We would emphasize that imagery is a subset of simulation; it includes various sensory-motor 

and emotional signals, and its dynamic aspect in PSS is usually not available to consciousness. 

According to PSS cognition supports action. Simulation is a central mechanism of PSS, yet 

rarely, if ever, they recreate full experiences. Using the mechanism of simulators, which 

approximately correspond to concepts and types in amodal theories, PSS implements the 

standard symbolic functions of type-token binding, inference, productivity, recursion, and 

propositions. Using these mechanisms PSS retains the symbolic functionality. “Thus, PSS is a 

synthetic approach that integrates traditional theories with grounded theories.” (Barsalou 1999; 

2005; 2007). 

 

Grounded cognition includes cognitive linguistics theories (Lakoff & Johnson 1980; 1999; 

Boroditsky & Ramscar 2002; Langacker 1987; 1991; Talmy 1983; 1988; Fauconnier 1985; 

Tomasello 2003; and others); theories of situated action (Gibson 1979; Clark 1997; Breazeal 

2002; Barsalou et al. 2007; etc.); grounding cognition, memories, actions, language, and symbols 

(Glenberg 1997; Glenberg & Kaschak 2002; Coventry & Garrod 2004; Pecher & Zwaan 2005); 
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and cognitive simulation theories, in particular PSS (Barsalou 1999), on which we concentrate in 

this paper.  

 

According to Barsalou, during the Cognitive Revolution in the middle of the last century, 

cognitive scientists were inspired by new forms of representation “based on developments in 

logic, linguistics, statistics, and computer science.” They adopted amodal representations, 

including feature lists, semantic networks, and frames (Barsalou & Hale 1993). Little empirical 

evidence supports amodal symbolic mechanisms (Barsalou 1999). It seems, amodal symbols 

were adopted largely because they promised to provide “elegant and powerful formalisms for 

representing knowledge, because they captured important intuitions about the symbolic character 

of cognition, and because they could be implemented in artificial intelligence.” As we discuss in 

the next section, these promises were unfulfilled, they faced fundamental mathematical 

difficulties. 

 

“Clearly an important goal for future theory is to implement and formalize” PSS. For initial 

attempts to formalize grounded theories mathematically see (Cangelosi et al. 2000; Joyce, 

Richards, Cangelosi, & Coventry 2003; Cangelosi & Riga 2006) and references therein. 

Computational models for PSS (Barsalou 1999; 2003a; 2007) require new mathematical 

methods different from traditional artificial intelligence, pattern recognition, or 

connectionist methods. The reason is that traditional methods encountered combinatorial 

complexity (CC), an irresolvable computational difficulty, when attempting to model 

complex systems, like mind, which required learning combinations of perceptual features 

and objects (Perlovsky 1994; 1997; 2000; 2002; 2006b; 2007a). Developing realistic and 
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scalable formalization is a goal of this article. Although the developed mathematical formalism is 

quite general, here we concentrate on just one example of PSS mechanism: a mathematical 

description of models and simulators for forming and enacting representations of situations 

(higher level symbols) from perceptions of objects (lower level symbols). 

 

 

2. Overcoming past mathematical difficulties 

 

Simple object perception involves bottom-up signals from sensory organs and top-down signals 

from internal mind’s representations (memories) of objects. During perception, the mind matches 

subsets of bottom-up signals corresponding to objects with representations of object in the mind. 

This produces object recognition; it activates brain signals leading to mental and behavioral 

responses (Grossberg 1982; Kosslyn 1994; Bar et al.. 2006; Schacter & Addis 2007).  

 

2.1. Computational complexity since the 1950s 

 

Developing mathematical descriptions of the very first recognition step in this seemingly simple 

association-recognition-understanding process has not been easy, a number of difficulties have 

been encountered during the past fifty years. These difficulties were summarized under the 

notion of combinatorial complexity (CC) (Perlovsky 1998b). CC refers to multiple combinations 

of various elements in a complex system; for example, recognition of a scene often requires 

concurrent recognition of its multiple elements that could be encountered in various 

combinations. CC is computationally prohibitive because the number of combinations is very 



 5

large: for example, consider 100 elements (not too large a number); the number of combinations 

of 100 elements is 100100, exceeding the number of all elementary particle events in life of the 

Universe; no computer would ever be able to compute that many combinations. 

 

The problem was first identified in pattern recognition and classification research in the 1960s 

and was named “the curse of dimensionality” (Bellman 1961). It seemed that adaptive self-

learning algorithms and neural networks could learn solutions to any problem ‘on their own’, if 

provided with a sufficient number of training examples. The following thirty years of developing 

adaptive statistical pattern recognition and neural network algorithms led to a conclusion that the 

required number of training examples often was combinatorially large. Training had to include 

not only every object in its multiple variations, angles, etc., but also combinations of objects. 

Thus, self-learning approaches encountered CC of learning requirements.  

 

Rule systems were proposed in the 1970’s to solve the problem of learning complexity (Minsky 

1975; Winston 1984). Minsky suggested that learning was a premature step in artificial 

intelligence; Newton “learned” Newtonian laws, most of scientists read them in the books. 

Therefore Minsky has suggested, knowledge ought to be input in computers “ready made” for all 

situations and artificial intelligence would apply these known rules. Rules would capture the 

required knowledge and eliminate a need for learning. Chomsky’s original ideas concerning 

mechanisms of language grammar related to deep structure (Chomsky 1972) were also based on 

logical rules. Rule systems work well when all aspects of the problem can be predetermined. 

However in the presence of variability, the number of rules grew; rules became contingent on 
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other rules and combinations of rules had to be considered. The rule systems encountered CC of 

rules.  

 

In the 1980s, model systems were proposed to combine advantages of learning and rules-models 

by using adaptive models (Nevatia & Binford 1977; Bonnisone et al. 1991; Perlovsky 1987; 

1988; 1991; 1994). Existing knowledge was to be encapsulated in models and unknown aspects 

of concrete situations were to be described by adaptive parameters. Along similar lines went the 

principles and parameters idea of Chomsky (1981). Fitting models to data (top-down to bottom-

up signals) required selecting data subsets corresponding to various models. The number of 

subsets, however, is combinatorially large. A general popular algorithm for fitting models to the 

data, multiple hypothesis testing (Singer, Sea, & Housewright 1974) is known to face CC of 

computations. Model-based approaches encountered computational CC (N and NP complete 

algorithms).  

 

 

2.2. Logic, CC, and amodal symbols. 

 

In subsequent research, CC was related to logic underlying various algorithms and neural 

networks (Perlovsky 1996a; 2000; Marchal 2005). Logic serves as a foundation for many 

approaches to cognition and linguistics; it underlies most of computational algorithms. But its 

influence extends far beyond, affecting cognitive scientists, psychologists, and linguists, who do 

not use complex mathematical algorithms for modeling the mind. All of us operate under more 

than 2000 year old influence of logic, under a more or less conscious assumption that in the basis 
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of the mind there are mechanisms of logic. As discussed in section 6, our minds are unconscious 

about its illogical foundations; we are mostly conscious about a small part of the minds 

mechanisms, which are approximately logical. Our intuitions, therefore, are unconsciously 

affected by bias toward logic. When laboratory data drive our thinking away from logical 

mechanisms, it is difficult to overcome the logical bias. 

 

Relationships between logic, cognition, and language have been a source of longstanding 

controversy. Aristotle assumed a close relationship between logic and language. He emphasized 

that logical statements should not be formulated too strictly and language inherently contains the 

necessary degree of precision. According to Aristotle, logic serves to communicate already made 

decisions (Perlovsky 2007). The mechanism of the mind relating language, cognition, and the 

world Aristotle described as forms. Today we call similar mechanisms internal representations, 

or concepts, or simulators in the mind. Aristotelian forms are similar to Plato’s ideas with a 

marked distinction, forms are dynamic: their initial states, before learning, are different from 

their final states of concepts (1995 / IV BCE). Aristotle emphasized that initial states of forms, 

forms-as-potentialities, are not logical (i.e. vague), but their final forms, forms-as-actualities, 

attained in the result of learning, are logical. This fundamental idea was lost during millennia of 

philosophical arguments. As discussed below this Aristotelian process of dynamic forms 

corresponds to Barsalou idea of PSS simulators, and in this paper we develop mathematics 

(dynamic logic) for this process. 

 

The founders of formal logic emphasized a contradiction between logic with its law of excluded 

middle and language with its uncertainty. In the 19th century George Boole and great logicians 
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following him, including Gottlob Frege, Georg Cantor, David Hilbert, and Bertrand Russell (see 

Davis 2000, and references therein) eliminated uncertainty of language from mathematics, and 

founded formal mathematical logic based on the “law of excluded middle.” Hilbert developed an 

approach named formalism, which rejected intuition as a matter of scientific investigation and 

formally defined scientific objects in terms of axioms or rules. In 1900 he formulated famous 

Entscheidungsproblem: to define a set of logical rules sufficient to prove all past and future 

mathematical theorems. This entailed formalization of the entire human thinking and language. 

Formal logic ignored the dynamic nature of Aristotelian forms and rejected uncertainty of 

language. Hilbert was sure that his logical theory described mechanisms of the mind, “The 

fundamental idea of my proof theory is none other than to describe the activity of our 

understanding, to make a protocol of the rules according to which our thinking actually 

proceeds.” (see Hilbert 1928). However, Hilbert’s vision of formalism explaining mysteries of 

the human mind came to end in the 1930s, when Gödel (1932/1994) proved internal 

inconsistency of formal logic. This is a reason why theories of cognition and language based on 

formal logic are inherently flawed.  

 

There is a close relation between logic and CC. It turned out that combinatorial complexity of 

algorithms is a finite-system manifestation of the Gödel’s theory (Perlovsky 1996a). If Gödelian 

theory is applied to finite systems, CC is the result, instead of the fundamental inconsistency. 

According to the law of excluded middle every statement is either true or false and nothing in 

between. Therefore, algorithms based on formal logic have to evaluate every variation in sensory 

signals or the mind’s representations as a separate logical statement. A large number of 

combinations of these variations cause CC.  
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This general statement manifests in various types of algorithms in different ways. Rule systems 

are logical in a straightforward way, and the number of rules grows combinatorially. Pattern 

recognition algorithms and neural networks are related to logic in learning procedures: every 

training sample is treated as a logical statement (“this is a chair”) resulting in CC of learning. 

Multivalued logic and fuzzy logic were proposed to overcome limitations related to the law of 

excluded middle (Zadeh 1965; Kecman 2001). Yet the mathematics of multivalued logic is no 

different in principle from formal logic with “excluded third” substituted by “excluded n+1.” 

Fuzzy logic uses logic to set a degree of fuzziness. Correspondingly, it encounters a difficulty 

related to the degree of fuzziness: if too much fuzziness is specified, the solution does not 

achieve a needed accuracy, and if too little, it becomes similar to formal logic. If logic is used to 

find the appropriate fuzziness for every model at every processing step, then the result is CC. 

The mind has to make concrete decisions, for example one either enters a room or does not; this 

requires a computational procedure to move from a fuzzy state to a concrete one. But fuzzy logic 

does not have a formal procedure for this purpose; fuzzy systems treat this decision on an ad-hoc 

basis.  

 

Is logic still possible after Gödel? The contemporary state of this field was reviewed in (Marchal 

2005). It appears that logic after Gödel is much more complicated and much less logical than 

was assumed by founders of artificial intelligence. CC cannot be solved within logic. Penrose 

thought that Gödel’s results entail incomputability of the mind processes and testify for a need 

for new physics (Penrose 1994). An opposite position in (Perlovsky 2000; 2006a;c; 2006b) is 
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that incomputability of logic does not entail incomputability of the mind. These publications 

argue that logic is not the basic mechanism of the mind. 

 

To summarize, various manifestations of CC are all related to formal logic and Gödel theory. 

Rule systems rely on formal logic in a most direct way. Even mathematical approaches 

specifically designed to counter limitations of logic, such as fuzzy logic and the second wave of 

neural networks (developed after the 1980s) rely on logic at some algorithmic steps. Self-

learning algorithms and neural networks rely on logic in their training or learning procedures: 

every training example is treated as a separate logical statement. Fuzzy logic systems rely on 

logic for setting degrees of fuzziness. CC of mathematical approaches to the mind is related to 

the fundamental inconsistency of logic. Therefore logical inspirations, leading early cognitive 

scientists to amodal brain mechanisms, could not realize their hopes for mathematical models of 

the brain-mind. 

 

Why did the outstanding mathematicians of the 19th and early 20th c. believed in logic to be the 

foundation of the mind? Even more surprising is the belief in logic after Gödel. Gödelian theory 

was long recognized among most fundamental mathematical results of the 20th c. How is it 

possible that outstanding minds, including founders of artificial intelligence, and many cognitive 

scientists and philosophers of mind insisted that logic and amodal symbols implementing logic in 

the mind are adequate and sufficient? The answer, in our opinion, might be in the “conscious 

bias.” As we discuss in section 6, non-logical operations making up more than 99.9% of the 

mind functioning are not accessible to consciousness (Bar et al. 2006). However, our 

consciousness functions in a way that makes us unaware of this. In subjective consciousness we 
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usually experience mind as logical. Our intuitions are “consciously biased.” This is why amodal 

logical symbols, which describe a tiny fraction of the mind mechanisms, have seemed to many 

the foundation of the mind. 

 

Another aspect of logic relevant to PSS is that it lacks dynamics; it is about static statements 

such as “this is a chair.” Classical logic is good at modeling structured statements and relations, 

yet it misses the dynamics of the mind and faces CC. The essentially dynamic nature of the mind 

is not represented in mathematical foundations of logic. Dynamic logic discussed in the next 

section is a logic-process. It overcomes CC by automatically choosing the appropriate degree of 

fuzziness for every mind’s concept at every moment. DL combines advantages of logical 

structure and connectionist dynamics. This dynamics mathematically represents the learning 

process of Aristotelian forms (which are different from classical logic as discussed in this 

section) and serves as a foundation for PSS concepts and simulators.  

 

 

2.3. Dynamic logic-process 

 

DL describes perception as an interaction between bottom-up and top-down signals (Perlovsky 

2000; 2006b; 2007c). This section concentrates on an initial relation of brain processes to 

mathematics of DL. To concentrate on this relationship, we much simplify discussion of the 

brain structures. We discuss visual recognition of objects as if retina and visual cortex is a single 

processing layer of neurons where recognition occurs (which is not true, detailed relationship of 

the DL process to brain is considered in given references). Perception consists in association-
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matching of bottom-up and top-down signals. Sources of top-down signals are representations-

models; in perception processes models are modified-learned and new models are formed; since 

an object is never encountered exactly the same as previously, perception is always a learning 

process. The DL processes along with concept-representations are mathematical models of the 

PSS simulators. Bottom-up signals, in this simplified discussion, are a field of neuronal synapse 

activations in visual cortex. Sources of top-down signals are representation-concepts or, 

equivalently, model-simulators (for short, models). Each model projects a set of priming, top-

down signals, representing the bottom-up signals expected from a particular object. Models 

depend on parameters. Parameters characterize object position, angles, lightings, etc. (In case of 

learning situations considered later, parameters characterize objects and relations making up a 

situation.) To summarize this highly simplified description of a visual system, the learning-

perception process “matches” top-down and bottom-up activations by selecting “best” models 

and their parameters and the corresponding sets of bottom-up signals.  

 

Mathematical measures of the “best” fit between bottom-up and top-down signals were given in 

(Perlovsky 2000; 2006b). They are similar to probabilistic or informatics measures. In the first 

case they represent probabilities that the given (observed) data come from representations-

models of particular objects. In the second case they represent information contained in 

representations-models about the observed data. These similarities are maximized over the model 

parameters. Result can be interpreted correspondingly as a maximum probability (likelihood) 

that models-representations fit sensory signals, or as maximum information in models-

representations about the signals. Both similarity measures account for all expected models and 

for all combinations of signals and models. Correspondingly, a similarity contains a large 
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number of items, a total of MN, where M is a number of models and N is a number of signals; 

this huge number is the cause for the combinatorial complexity discussed previously. 

 

Maximization of a similarity measure is a mathematical model of an unconditional drive to 

improve the correspondence between bottom-up and top-down signals (representations-models). 

In biology and psychology it was discussed as curiosity, cognitive dissonance, or a need for 

knowledge since the 1950s (Harlow 1950; Festinger 1957; Cacioppo & Petty 1982). This process 

involves learning-related emotions evaluating satisfaction of this drive for knowledge (Grossberg 

& Levine 1987; Perlovsky 2006b; 2007c) In computational intelligence it is even more 

ubiquitous, every mathematical learning procedure, algorithm, or neural network maximizes 

some similarity measure. In the process of learning, concept-models are constantly modified. 

From time to time a system forms a new concept, while retaining an old one as well; 

alternatively, old concepts are sometimes merged or discarded.  

 

The DL learning process, let us repeat, consists in estimating model parameters and associating 

subsets of signals with concepts by maximizing a similarity. Although a similarity contains 

combinatorially many items, DL maximizes it without combinatorial complexity (Perlovsky 

1996b; 1997; 2000; 2007c) as follows. First, fuzzy association variables are defined, which give 

a measure of correspondence between each signal and each model. They are defined similarly to 

the a posteriori Bayes probabilities, they range between 0 and 1, and as a result of learning they 

converge to the probabilities, under certain conditions. Often they are close to bell-shapes. 
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The DL process is defined by a set of differential equations given in the above references; 

together with models it gives a mathematical description of the PSS simulators. To keep the 

paper self-consistent we summarize these equations in Appendix 1. As a model of perception-

cognitive processes, DL models PSS and not amodal signals, DL also explains how illogical 

dynamic PSS gives rise of classical logic in the human mind, and what is the role of amodal 

symbols. This is discussed in details in section 5. 

 

The DL model of simulator-processes avoids combinatorial complexity because there is no need 

to consider separately various combinations of bottom-up and top-down signals. Instead, all 

combinations are accounted for in the DL simulator-processes. Initially, models do not match 

data; association variables are wide and vague, they take near homogeneous values across the 

data, associating all representation-models (through simulator processes) with all input signals 

(Perlovsky 2000; 2006b). The DL simulator-processes improve matching, models better fit data, 

errors become smaller, bell-shapes concentrate around relevant patterns in the data (objects), and 

the association variables tend to 1 for correctly matched signal patterns and models, and 0 for 

others; thus certain representations get associated with certain subsets of signals (objects are 

recognized and concepts formed). This process “from vague-to-crisp” that matches bottom-up 

and top-down signals has been independently conceived and demonstrated in brain imaging 

research to take place in human visual system (Bar, Kassam, Ghuman, Boshyan, Schmid, Dale, 

Hamalainen, Marinkovic, Schacter, Rosen, & Halgren 2006). 

 

Mathematical convergence of the DL process was proven in (Perlovsky 2000). It follows that the 

simulator-process of perception or cognition forms objects or concepts among bottom-up signals, 
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which are most similar in terms of the similarity measure. Despite a combinatorially large 

number of items in the similarity, a computational complexity of DL is relatively low, it is linear 

in the number of signals, and therefore could be implemented by a physical system, like a 

computer or brain.  

 

 

2.4. Example of DL, object perception in noise 

 

The purpose of this section is to illustrate DL simulator-process described above; therefore we 

use a simple example, still unsolvable by other methods, (mathematical details are omitted, they 

could be found in Linnehan, Mutz, Perlovsky, Weijers, Schindler, & Brockett 2003). In this 

example, DL searches for patterns in noise. Finding patterns below noise can be an exceedingly 

complex problem. If an exact pattern shape is not known and depends on unknown parameters, 

these parameters should be found by fitting the pattern model to the data. However, when the 

locations and orientations of patterns are not known, it is not clear which subset of the data 

points should be selected for fitting. A standard approach for solving this kind of problem, which 

has already been mentioned, is multiple hypothesis testing (Singer, Sea, & Housewright 1974); 

this algorithm exhaustively searches all combinations of subsets and models and faces 

combinatorial complexity. In the current example, we are looking for ‘smile’ and ‘frown’ 

patterns in noise shown in Fig.1a without noise, and in Fig.1b with noise, as actually measured 

(object signals are about 2-3 times below noise). The image size in this example is 100x100 

points (N = 10,000 bottom-up signals, corresponding to the number of receptors in an eye retina), 

and the true number of models is 4 (3+noise), which is not known. Therefore, at least M = 5 
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models should be fit to the data, to decide that 4 fits best. This yields complexity of MN = 105000; 

this number is much larger than the size of the Universe and the problem was considered 

unsolvable. Fig. 1 illustrates DL operations: (a) true ‘smile’ and ‘frown’ patterns without noise; 

(b) actual image available for recognition; (c) through (h) illustrates the DL process, it show 

improved models at various steps of solving DL eqs.(3), total of 22 steps. In terms of signal-to-

noise ratio it is 10,000% improvement over the previous state-of-the-art. (In this example DL 

actually works better than human visual system; the reason is that human brain is not optimized 

for recognizing these types of patterns in noise). The main point of this example is that DL 

simulator-perception is a process “from vague-to-crisp,” similar to visual system processes 

demonstrated in (Bar et al. 2006). 
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Fig.1. Finding ‘smile’ and ‘frown’ patterns in noise, an example of dynamic logic operation: (a) true ‘smile’ and ‘frown’ patterns 

are shown without noise; (b) actual image available for recognition (signals are below noise, signal-to-noise ratio is between ½ 

and ¼, 100 times lower than usually considered necessary); (c) an initial fuzzy blob-model, the vagueness corresponds to 

uncertainty of knowledge; (d) through (h) show improved models at various steps of DL (eq.(3) are solved in 22 steps). Between 

stages (d) and (e) the algorithm tried to fit the data with more than one model and decided, that it needs three blob-models to 

‘understand’ the content of the data. There are several types of models: one uniform model describing noise (it is not shown) and 

a variable number of blob-models and parabolic models, which number, location, and curvature are estimated from the data. Until 

about stage (g) the algorithm ‘thought’ in terms of simple blob models, at (g) and beyond, the algorithm decided that it needs 

more complex parabolic models to describe the data. Iterations stopped at (h), when similarity (1) stopped increasing. 

 

 

3. DL of PSS: perceptual cognition and simulators 

 

Section 2.4 illustrated DL for recognition of simple objects in noise, a case complex and 

unsolvable for prior state-of-the-art algorithms, still too simple to be directly relevant for 

PSS. Here we consider a problem of situation learning, assuming that object recognition has 

been solved. In computational image recognition this is called “situational awareness” and it 

is a long-standing unsolved problem. The principled difficulty is that every situation 

includes many objects that are not essential to recognition of this specific situation; in fact 

there are many more “irrelevant” or “clutter” objects than relevant ones. Let us dwell on this 

for a bit. Objects are spatially-limited material things perceptible by senses. A situation is a 

collection of contextually related objects that tend to appear together and are perceived as 

meaningful, e.g., an office, a dining room. The requirement for contextual relations and 

meanings makes the problem mathematically difficult. Learning contexts comes along with 

learning situations; it reminds the problem of a chicken and egg. We subliminally perceive many 
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objects, most of which are irrelevant, e.g. a tiny scratch on a wall, which we learn to ignore. 

Combinations of even a limited number of objects exceed what is possible to learn in a single 

lifetime as meaningful situations and contexts (e.g. books on a shelf) from random sets of 

irrelevant objects (e.g. a scratch on a wall, a book, and a pattern of tree branches in a window). 

Presence of hundreds irrelevant objects makes learning by a child of mundane situations a 

mathematical mystery. In addition, we constantly perceive large numbers of different objects 

and their combinations, which do not correspond to anything worth learning.  

 

An essential part of learning-cognition is to learn which sets of objects are important for 

which situation (contexts). The key mathematical property of DL that made this solution 

possible, same as in the previous section, is a process “from vague-to-crisp.” Concrete crisp 

models-representations of situations are formed from vague models in the process of 

learning (or cognition-perception). We illustrate here that complex symbols, situations, are 

formed by situation-simulators from simpler perceptions, objects, which are simpler 

perceptual symbols, being formed by simulators at “lower” levels of the mind, comparative 

to “higher” situation-simulators. Situation-simulators operate on PSS representations of 

situations, which are dynamic and vague assemblages of situations from imagery (and 

others) bits and pieces perceived at lower levels; this dynamic process of DL-PSS-

simulation is mostly unconscious.  We will discuss in details in section 5 that these are 

perceptual symbols as described in (Barsalou 1999). DL mathematically models PSS 

simulators (Barsalou 1999), processes that match bottom-up perceptions with top-down 

signals and form (assemble) symbols in cognition-perception. An essential mechanism of 

DL cognition-perception is a process of simulation of perceptual imagination-cognitions; 
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these situation-symbols are simulated from simpler perceptions-objects (imagination here is 

not limited to imagery, and is mostly unconscious). And the same mechanism can simulate 

plans and more complex abstract thoughts, although this is beyond the scope of the present 

paper. Thus we demonstrate that DL mathematically models PSS simulators. 

 

3.1. DL formulation 

 

In a simplified problem considered here, the task is for an intelligent agent (a child) to learn to 

recognize certain situations in the environment; while it is assumed that a child has learned to 

recognize objects. For example, situation “office” is characterized by the presence of a chair, a 

desk, a computer, a book, a book shelf. Situation “playground” is characterized by the presence 

of a slide, a sandbox, etc. The principal difficulty is that many irrelevant objects are present in 

every situation. (This child learning is no different mathematically from an adult recognition.) 

 

In the example below, Do is the total number of objects that the child can recognize in the world 

(it is a large number). In every situation he or she perceives Dp objects. This is a much smaller 

number compared to Do. Each situation is also characterized by the presence of Ds objects 

essential for this situation (Ds < Dp). Normally nonessential objects are present and Ds is 

therefore less than Dp. The sets of essential objects for different situations may overlap, with 

some objects being essential to more than one situation. We assume that each object is 

encountered in the scene only once. This is a minor and nonessential simplification, e.g. we may 

consider a set of similar objects as a new object. For example, “book” is an object and “books” is 

another object referring to more than one book.  
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The real life learning is sequential as a child is exposed to situations one at a time. Again, DL 

can handle this, but in this paper we consider the data about all the situations available at the 

time of learning.  

 

Following (Ilin & Perlovsky 2009) a situation can be mathematically represented as a vector in 

the space of all objects, Xn = (xn1, … xni,… xnDo). If the value of xni is one the object i is present 

in the situation n and if xni is zero, the corresponding object is not present. Since Do is a large 

number, Xn is a large binary vector with most of its elements equal to zero. A situation model is 

characterized by parameters, a vector of probabilities, pm = (pm1,.. pmi,... pmDo). Here pmi is the 

probability of object i being part of the situation m. Thus a situation model contains Do unknown 

parameters. Estimating these parameters constitutes learning. 

 

We model the elements of vector pm as independent (this is not essential for learning, if presence 

of various objects in a situation actually is correlated, this would simplify learning, e.g. perfect 

correlation would make it trivial). Correspondingly, conditional probability of observing vector 

Xn in a situation m is then given by the standard formula (Jaynes 2003).  

l(X(n) | Mm(n)) = ∏
=

Do

i 1

pmi
xni(1 – pmi)(1-xni)  

 

Consider N perceptions a child was exposed to (N includes real “situations” and “irrelevant” 

random ones); among them most perceptions were “irrelevant” corresponding to observing 

random sets of objects, and M-1 “real” situations, in which Ds objects were repeatedly present. 
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All random observations we model by 1 model (“noise”); assuming that every object has an 

equal chance of being randomly observed in noise (which again is not essential) the probabilities 

for this noise model, m=1, are p1i=0.5 for all i. Thus we define M possible sources for each of the 

N observed situations. 

 

The total likelihood-similarity for our M models (M-1 “real” and 1 noise) is given by the same 

equation as similarity in the previous example (Perlovsky 2006b, also Appendix 1). And the 

same DL equations maximize it over the parameters, which in this case are the probabilities of 

objects constituting various situations. 

 

For shortness, we did not discuss relations among objects. Spatial, temporal, or structural 

connections, such as “to the left,” “on top,” or “connected” can be easily added to the above DL 

formalism. Relations and corresponding markers (indicating which objects are related) are no 

different mathematically than objects, and can be considered as included in the above 

formulation. The formulation here assumes that all the objects have already been recognized, but 

the above formulation can be applied without any change to real, continuously working brain 

with multiplicity of concurrently running simulators at many levels, feeding each other. Also 

modality of objects (various sensorial or motor mechanisms) requires no modifications 

(emotions can be included as well, but emotions are not always reduced to representations and 

this requires a separate discussion beyond this paper). The bottom up signals do not have to be 

definitely recognized objects, these signals can be sent before objects are fully recognized, while 

object simulators are still running and object representations are vague; this would be 
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represented by xni values between 0 and 1. The presented formalization therefore is a general 

mechanism. 

 

 

3.2. Example of symbol-situation learning using DL 

 

In this example we set the total number of recognizable objects equal to 1000 (Do=1000). The 

total number of objects perceived in a situation is set to 50 (Dp=50). The number of essential 

objects is set to 10 (Ds=10). The number of situations to learn (M-1) is set to 10. Note that the 

true identities of the objects are not important in this simulation so we simply use object indexes 

varying from 1 to 1000. The situation names are also not important and we use situation indexes. 

We would emphasize that the use of numbers for objects and situation, while may seem 

consistent with amodal symbols, in fact is nothing but notations. The principled differences 

between PSS and amodal systems are mechanisms in the brain and their modeling, not 

mathematical notations. Among these mechanisms are simulators, mathematically described by 

DL. Let us repeat, amodal symbols are governed by classical logic, which is static, and faces CC. 

DL is a process and overcomes CC. DL operates on PSS representations (models pm), which are 

vague collections of objects (some of these objects could also be vague, not completely 

assembled yet representation, but this is beyond this paper). Another principled difference is 

interaction between perceptual-based bottom-up and top-down neural fields Xn and Mm; indexes 

n and m are just mathematical shorthand for corresponding neural connections. In this paper we 

consider object perception and situation perception in different sections, but of course the real 

mind-brain operates continuously, “objects” in this section are neural signals sent to situation-
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recognition brain area (and corresponding simulators) by excited neuron fields corresponding to 

models of recognized-objects in section 2 (and as discussed, these signals are being sent before 

objects are fully recognized, while object simulators are still running). 

 

The data for this example are generated by first randomly selecting Ds=10 specific objects for 

each of the 10 groups of objects, allowing some overlap between the groups (in terms of specific 

objects). This selection is accomplished by setting the corresponding probabilities pmi = 1. Next 

we add 40 more randomly selected objects to each group (corresponding to Dp=50). We also 

generate 10 more random groups of 50 objects to model situations without specific objects 

(noise); this is of course equivalent to 1 group of 500 random objects. We generate N’=800 

perceptions for each situation resulting in N=16,000 perceptions (data samples, n = 1… 16,000) 

each represented by 1,000-dimensional vector Xn. These data are shown in Fig. 2 sorted by 

situations. 
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Fig. 2. Generated data; object index is along vertical axes and situation index is horizontal. The perceptions (data 

samples) are sorted by situation index (horizontal axis); this makes visible the horizontal lines for repeated objects. 

 

The samples are randomly permuted, according to randomness of real life perceptual situations, 

in Fig. 3. The horizontal lines disappear; the identification of repeated objects becomes 

nontrivial. An attempt to learn groups-situations (the horizontal lines) by inspecting various 

horizontal sortings (until horizontal lines would become detectable) would require MN = 1016000 

inspections, which is of course impossible. 
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Fig. 3. Generated data, same as Fig. 2, randomly sorted by situation index (horizontal axis), as available to the DL 

algorithm for learning. 

 

DL algorithm is initiated similarly to section 2 by defining 20 situational models (an arbitrary 

selection, given actual 10 situations) and one random noise model to give a total of M=21 

models (in section 2.4, Fig.1 models were automatically added by DL as required; here we have 

not done this (mostly, because it would be too cumbersome to present results). The models are 

initialized by assigning random probability values to the elements of the models. These are the 

initial vague perceptual models which assign all objects to all situations.  
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Fig. 4 illustrates the initialization and the iterations of the DL algorithm (the first 3 steps of 

solving DL equations. Each subfigure displays the probability vector pm for each of the 20 

models. The vectors have 1000 elements corresponding to objects (vertical axes). The values of 

each vector element are shown in gray scale. The initial models assign nearly uniformly 

distributed probabilities to all objects. The horizontal axes are the model index changing from 1 

to 20. The noise model is not shown. As the algorithm progresses, situation grouping improves, 

and only the elements corresponding to repeating objects in “real” situations keep their high 

values, the other elements take low values. By the third iteration the 10 situations are identified 

by their corresponding models. The other 10 models converge to more or less random low-

probability vectors. 
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Fig. 4. DL situation learning. Situation-model parameters converge close to true values in 3 steps.  
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Fig. 5. Errors of DL learning are quickly reduced in 3-4 steps, iterations continue until average 

error reached low value of 0.05 (10 steps). 

 

This fast and accurate convergence can be seen from Figs. 5 and 6. We measure the fitness of the 

models to the data by computing the sum squared error, using the following equation. 

 

E = ∑ ∑
∈ =}{ 1Bm

Do

i

( pmi – pmi
True)2  

 

In this equation the first summation is over the subset {B} containing top 10 models that provide 

the lowest error (and correspondingly, the best fit to the 10 true models). In the real brain, of 
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course, the best models would be added as needed, and the random samples would accumulate in 

the noise model automatically; as mentioned, DL can model this process and the reason we did 

not model it, is that it would be too cumbersome to present results.  Fig. 5 shows how the sum 

squared error changes over the iterations of the DL algorithm. It takes only a few iterations for 

the DL algorithm to converge. Each of the best models contains 10 large and 990 low 

probabilities. Iterations stop, when average error of probabilities reached a low value of 0.05 

resulting in the final error E(10) =1000*(0.05^2 )*10 = 25. 

 

Fig. 6 shows average associations, A(m,m’) among true (m) and computed models (m’); this is 

an 11x11 matrix according to the true number of different models (it is computed using 

association variables between models and data, f(m|n)) 

 

A(m,m’) = (1/N’) ∑
=

N

n 1

 f(m|n)* f(m’|n), m’∈{B},  

A(m,11) = (1/10*N’) ∑∑
=∉

N

nBm 1}{'

 f(m|n)* f(m’|n), m’∉{B}  

 

Here, f(m|n) for true 10 models m is either 1 (for N’ data samples from this model) or 0 (for 

others), f(m’|n) are computed associations, in the second line all 10 computed noise models are 

averaged together, corresponding to one true (random) noise model. The correct associations on 

the main diagonal in Fig. 6 are 1 (except noise model, which is spread among 10 computed noise 

models, and therefore equals 0.1) and off-diagonal elements are near 0 (incorrect associations, 

corresponding to small errors shown in Fig 5.) 
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Again, as in section 2, learning of perceptual situation-symbols has been accomplished due to 

DL process-simulator, which simulated internal model-representations of situations, M, to match 

patterns in bottom-up signals X (sets of lower-level perceptual object-symbols). 

 

 

 

Fig. 6. Correct associations are near 1 (diagonal, except noise) and incorrect associations are near 

0 (off-diagonal). 
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4. Simulators, concepts, grounding, binding, and DL  

 

As described previously Barsalou argued for PSS, which grounded perception, cognition, and 

high-level symbol operation in modal symbols, which are ultimately grounded in the 

corresponding brain systems. Previous section provides an initial “first step” toward developing 

formal mathematical description suitable for PSS. We have considered just one subsystem of 

PSS, a mechanism of learning, formation, and recognition of situations from objects making up 

the situations. The mind’s representations of situations are symbol-concepts of a higher level of 

abstractness than symbol-objects making them up. The proposed mathematical formalism can be 

advanced straightforwardly to “higher” levels of more and more abstract concepts. We would 

add a word of caution: such application to more abstract ideas may require an additional 

grounding in language (Perlovsky 2007b; 2009a); however this discussion is beyond the scope of 

the paper. Similarly, the proposed mathematical formalism can be applied at a lower level of 

recognizing objects as constructed from their parts; mathematical techniques of sections 2 and 3 

can be combined to implement this PSS object recognition idea as described in (Barsalou 1999). 

The proposed theory mathematically models productivity of the mind concept-simulator system. 

 

Modeling situations in PSS as a step toward general solution of the binding problem is discussed 

in (Edelman & Breen 1999). DL provides a general approach to the binding problem similar to 

the “corkboard” approach described in (Edelman & Intrator 2001). This publication also discusses the 

role of context similar to the DL scene modeling. 

 

Below we discuss relationships between mathematical DL procedures of previous sections and 

fundamental ideas of PSS. Section 2 concentrated on the principal mathematical difficulty 
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experienced by all previous attempts to solve the problem of complex symbol formation from 

less complex symbols, combinatorial complexity (CC). CC was resolved by using DL, a 

mathematical theory, in which learning begins with vague (non-specific) symbol-concepts, and 

in the process of learning symbol-concepts are becoming concrete and specific. Learning could 

refer to a child’s learning, which might take days or months or an everyday perception and 

cognition, taking 1/6th of a second (in the later case learning refers to the fact that every specific 

realization of a concept in the world is different in some respects from any previous occurrences, 

therefore learning-adaptation is always required). In the considered case of learning situations as 

compositions of objects, the initial vague state of each situation-symbol is a nearly random and 

vague collection of objects, while the final learned situation consists of a crisp collection of few 

objects specific to this situation. In the learning process random irrelevant objects are “filtered 

out,” their probability of belonging to a concept-situation is reduced to zero, while probabilities 

of relevant objects, making up a specific situation is increased to a value characteristic of this 

object being actually present in this situation. Relation of this DL process to PSS is now 

considered. 

 

First we address concepts and their development in the brain. According to (Barsalou 2007), 

 

“The central innovation of PSS theory is its ability to implement concepts and their 

interpretative functions using image content as basic building blocks.” 

 

This aspect of PSS theory is implemented in DL in a most straightforward way. Concept-

situations in DL are collections of objects (symbol-models at lower levels, which are neurally 
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connected to neural fields of object-images). Considering objects to be perceptual entities-

symbols in the brain, concept-situations are collections of perceptual symbols. In this way 

situations are perceptual symbols of a higher order complexity than object-symbols, they are 

grounded in perceptual object-symbols (images), and in addition, their learning is grounded in 

perception of images of situations.  

 

A PSS mathematical formalization of abstract concepts (Barsalou 2003b), not grounded in direct 

perceptions, will be considered in subsequent publications. Here we just mention that the 

proposed model is applicable to higher levels, “beyond” object-situations; it is also applicable to 

language, including syntax, and to language-cognition interaction (see also Perlovsky 2004; 

2006d; 2009a; Fontanari & Perlovsky 2007; 2008a;b; Fontanari, Tikhanoff, Cangelosi, Ilin, & 

Perlovsky 2009). Also, in section 3 we did not consider relations among objects specifically; 

nevertheless our DL formalization does not exclude relations from a list of objects. A complete 

consideration in future will include relations and markers, indicating which objects and in which 

way are related; these relations, markers and their learning are not different mathematically from 

objects (in case of language, relations and markers would address syntax). 

 

Barsalou (2008) has described development of concepts in the brain as forming collections of 

correlated features. This is explicitly implemented in the DL process described in section 3. This 

mathematical representation corresponds to multimodal and distributed representation in the 

brain. A mathematical set or collection is implemented in the brain by a population of 

conjunctive neurons (Simmons & Barsalou 2003). Specific relations of various parts of neural 
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fields in this paper and brain systems will be addressed in future research along with modeling 

brain operations on more comprehensive scale. 

 

DL learning and perception-cognition processes are mathematical models of PSS simulators. DL 

symbol-situations are not static collections of objects but dynamic processes. In the process of 

learning they “interpret individuals as tokens of the type” (Barsalou 2008). They can model 

multi-modal distributed representations (including motor programs) as described in the 

reference.  

 

The same DL mathematical procedure can apply to perception of a real situation in the world as 

well as an imagined situation in the mind. This is the essence of imagination. Models of 

situations (probabilities of various objects belonging to a situation, and objects attributes, such 

their locations) can depend on time, in this way they are parts of simulators accomplishing 

cognition of situations evolving in time. If “situations” and “time” are invoked “with closed 

eyes” and pertain to the mind’s imaginations, the simulators implement imagination-thinking 

process, or planning.  

 

Usually we perceive-understand a surrounding situation, while at the same time thinking and 

planning future actions and imagine consequences. This corresponds to running multiple 

simulators in parallel. Some simulators support perception-cognition of the surrounding 

situations as well as ongoing actions, they are mathematically modeled by DL processes that 

converged to matching internal representations (types) to specific subsets in external sensor 
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signals (tokens). Other simulators simulate imagined situations and actions related to 

perceptions, cognitions, and actions, produce plans, etc. 

 

Developed here DL modeling of PSS models mathematically what Barsalou (2003b) called 

dynamic interpretation of PSS (DIPSS). DIPSS is fundamental to modeling abstraction processes 

in PSS. Three central properties of these abstractions are type–token interpretation; structured 

representation; and dynamic realization. Traditional theories of representation based on logic 

model interpretation and structure well but are not sufficiently dynamical. Conversely, 

connectionist theories are dynamic but are inadequate at modeling structure. PSS addresses all 

three properties. Similarly, the DL mathematical process developed here addresses all three 

properties. In type–token relations “propositions are abstractions for properties, objects, events, 

relations and so forth. After a concept has been abstracted from experience, its summary 

representation supports the later interpretation of experience.” Correspondingly in the developed 

mathematical approach, DL models a situation as a loose collection of objects. Its summary 

representation (the initial model) evolves-simulates representation of a concrete situation in the 

process of perception of this concrete situation. A loose collection of property and relation 

simulators evolves according to DL to represent abstractions. This DL process involves structure 

(initial model) and dynamics (the DL process). Examples of DL-PSS for symbolic predication, 

conceptual combinations, and abstract concepts will be addressed in future publications. 

 

 

5. Perceptual vs. amodal symbols  
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Since any mathematical notation may look like an amodal symbol, in this section we discuss the 

roles of amodal vs. perceptual systems in DL. This would require clarification of the word 

symbol. We touch on related philosophical and semiotic discussions and relate them to 

mathematics of DL and to PSS. For the sake of brevity within this paper we limit discussions of 

general interest, emphasizing connections between DL, perceptual, and amodal symbols; 

extended discussions of symbols can be found in (Perlovsky 2006b;d). We also summarize here 

related discussions scattered throughout the paper. 

 

“Symbol is the most misused word in our culture” (Deacon, 1998). Why the word “symbol” is 

used in such a different way: to denote trivial objects, like traffic signs or mathematical 

notations, and also to denote objects affecting entire cultures over millennia, like Magen David, 

Swastika, Cross, or Crescent? Let us compare in this regard opinions of two founders of 

contemporary semiotics, Charles Peirce (Peirce 1897; 1903) and Ferdinand De Saussure (1916). 

Peirce classified signs into symbols, indexes, and icons. Icons have meanings due to resemblance 

to the signified (objects, situations, etc.), indexes have meanings by direct connection to the 

signified, and symbols have meaning due to arbitrary conventional agreements. Saussure used 

different terminology, he emphasized that signs receive meanings due to arbitrary conventions, 

whereas symbol implies motivation. It was important for him that motivation contradicted 

arbitrariness. Peirce concentrated on the process of sign interpretation, which he conceived as a 

triadic relationship of sign, object, and interpretant. Interpretant is similar to what we call today a 

representation of the object in the mind. However, this emphasis on interpretation was lost in the 

following generation of scientists. This process of “interpretation” seems close to DL processes 
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and PSS simulators. We therefore follow Saussurean designation of symbol as a motivated 

process. 

 

Motivationally-loaded interpretation of symbols was also proposed by Jung (1921). He 

considered symbols as processes bringing unconscious contents to consciousness. Similar are 

roles of PSS simulators and DL processes.  

  

In the development of scientific understanding of symbols and semiotics, the two functions, 

understanding language and understanding world, have often been perceived as identical. This 

tendency was strengthened by considering logic to be the mechanism of both, language and 

cognition. According to Russell (1919), language is equivalent to axiomatic logic, “[a word-

name] merely to indicate what we are speaking about; [it] is no part of the fact asserted… it is 

merely part of the symbolism by which we express our thought”. Hilbert (1928) was sure that his 

logical theory also describes mechanisms of the mind, “The fundamental idea of my proof theory 

is none other than to describe the activity of our understanding, to make a protocol of the rules 

according to which our thinking actually proceeds.” Similarly, logical positivism centered on 

“the elimination of metaphysics through the logical analysis of language” – according to Carnap 

(1959) logic was sufficient for the analysis of language. As discussed in section 2.2, this belief in 

logic is related to functioning of human mind, which is conscious about the final states of DL 

processes and PSS simulators, which are perceived by our minds as approximately logical 

amodal symbols. Therefore we identify amodal symbols with these final static logical states, 

signs. 
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DL and PSS explain how the mind constructs symbols, which have psychological values and are 

not reducible to arbitrary logical amodal signs, yet are intimately related to them. In section 4 we 

have considered objects as learned and fixed. This way of modeling objects indeed is amenable 

to interpreting them as amodal symbols. Yet, we have to remember that these are but final states 

of previous simulator processes, perceptual symbols. Every perceptual symbol-simulator has a 

finite dynamic life, and then it becomes a static symbol-sign. It could be stored in memory, or 

participate in initiating new dynamical perceptual symbols-simulators. This infinite ongoing 

dynamics of the mind-brain ties together static signs and dynamic symbols. It grounds symbol 

processes in perceptual signals that originate them; in turn, when symbol-processes rich their 

finite static states-signs, these become perceptually grounded in symbols that created them. We 

could become consciously aware of static sign-states, express them in language and operate with 

them logically. Then, outside of the mind-brain dynamics, they could be transformed into amodal 

logical signs, like marks on a paper. Dynamic processes – symbols-simulators are usually not 

available to consciousness. These PSS processes involving static and dynamic states are 

mathematically modeled by DL in section 4.  

 

To summarize, DL does not model amodal symbols, which are governed by classical logic that 

leads to combinatorial complexity. DL operates on different type of PSS representations, which 

are vague combinations of lower-level representations. These lower-level representations could 

include memory states as well as vague dynamic states from concurrently running simulators – 

DL processes of the on-going perception-cognition. (We do not discuss in this paper the nature 

of memory, which may involve various working memories as well as permanent memories with 

their own simulators and dynamics). To the extent that the mind-brain is not a strict hierarchy, 
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the same-level and higher-level representations could be involved along with lower levels. Thus 

DL models processes-simulators, which operate on PSS representations. These representations 

are vague and DL processes are assembling and concretizing these representations. As described 

in several references by Barsalou, bits and pieces from which these representations are 

assembled, could include mental imagery as well as other components, including multiple 

sensor, motory, and emotional modalities (these details are beyond this paper); these bits and 

pieces all are mostly inaccessible to consciousness during the process dynamics. DL also 

explains how logic and ability to operate amodal symbols originate from illogical operations of 

PSS. 

 

The developed DL formalization of PSS, suggests using a word signs for amodal static logical 

constructs outside of the mind, including mathematical notations; and to reserve symbols for 

perceptually grounded motivational cognitive processes in the mind-brain. Memory states, to the 

extent they are understood as static entities, are signs in this terminology. Logical statements and 

mathematical signs are perceived and cognized due to PSS simulator processes and after being 

understood become signs. Perceptual symbols, through simulator processes, tie together static 

and dynamic states in the mind. Dynamic states are mostly outside of consciousness, while static 

states might be available to consciousness. 

 

 

6. Experimental evidence  
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Bar et al. (2006) demonstrated in neuroimaging experiments that visual perception proceeds 

according to DL simulating crisp perceptions from initial vague representations. 

Experimental procedures in this reference used functional Magnetic Resonance Imaging 

(fMRI) to obtain high-spatial resolution of processes in the brain, which they combined with 

magneto-encephalography (MEG), measurements of the magnetic field next to the head, which 

provided high temporal resolution of the brain activity. Combining these two techniques the 

experimenters were able to receive high resolution of cognitive processes in space and time. Bar 

et al. concentrated on three brain areas: early visual cortex, object recognition area (fusiform 

gyrus), and object-information semantic processing area (OFC). They demonstrated that OFC is 

activated 130 ms after the visual cortex, but 50 ms before object recognition area. This suggests 

that OFC represents the cortical source of top-down facilitation in visual object recognition. This 

top-down facilitation was unconscious. In addition they demonstrated that the imagined image 

generated by top-down signals facilitated from OFC to cortex is vague, (the authors in this 

publication refer to low spatial-frequency content images). Conscious perception of an object 

occurs when vague projections become crisp and match the crisp and clear image from the retina, 

and an object recognition area is activated.  

 

The brain continuously extracts rudimentary information from early sensory data and simulates 

predictions, which facilitate perception and cognition in the relevant context by pre-sensitizing 

relevant representations. This includes predictions of complex information, such as situations 

and social interactions (Bar 2007; 2009). Predictions are initiated by gist information rapidly 

extracted from sensory data. At the “lower”-object level this gist information is a vague image of 

an object (low spatial frequency, Bar et al. 2006). At higher levels “the representation of gist 
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information” is yet to be defined.” The model developed here defines this higher-level gist 

information as vague collections of vague objects, with relevant objects for a specific situation 

having just slightly higher probabilities than irrelevant ones. The developed model is also 

consistent with the hypothesis in (Bar 2007) that perception and cognition at higher levels relies 

on mental simulations. Mathematical predictions in this paper suggest specific properties of these 

higher-level simulators, which could be verified experimentally. 

 

 

7. Future research  

 

Future research will address the DL mathematical description of PSS throughout the mind 

hierarchy; from features and objects “below situations” in the hierarchy to abstract models 

and simulators at higher levels “above situations.” Modeling across the mind modalities will 

be addressed including diverse modalities, symbolic functions, conceptual combinations, 

predication. Modeling features and objects would have to account for suggestions that 

perception of features are partly inborn (Barsalou 1999); this development therefore might 

require new experimental data on which feature aspects are inborn (Edelman & Newell, 

1998). The developed DL formalization of PSS corresponds to observations in (Wu & Barsalou 

2009) and it will be used for generating detailed experimentally verifiable predictions. The DL 

formalism developed here has 2 hierarchical levels, objects and situations, and it demonstrates 

bindings within these two levels. In future hierarchical extension of the DL binding will be 

related to hierarchy as a general mathematical principle (Edelman 2003). Similarly, the recursive 

property of cognition and language will be modeled as a mathematical hierarchy.  
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Experimental research (Bar et al. 2006; Bar 2007) can address specific properties of higher level 

simulators predicted here. Among these is a prediction that early predictive stages of situation 

simulations are vague. Whereas vague predictions of objects resemble low-spatial frequency of 

object imagery (Bar et al. 2006), “the representation of gist information on higher levels of 

analysis is yet to be defined” (Bar 2007). According to the developed model, vague predictions 

of situations should contain many less-relevant (and likely vague) objects with lower 

probabilities. Since the mathematical model proposed here is applicable to higher levels 

(“above” object-situations), this hypothesis should be relevant to the nature of information of 

higher level gists.  

 

The present model can be expanded to address another topic discussed in (Bar 2007), “how the 

brain integrates and holds simultaneously information from multiple points in time.” Two 

different mechanisms should be explored: first, explicit incorporation of time into models (so 

that model parameters-probabilities depend on time), and second, categorized temporal relations, 

such as “before,” “after” can be included as any other relations-objects into models. A joint 

mathematical-experimental approach might be fruitful in this area. 

 

Future research will address interaction between language and cognition. Since language is 

acquired from surrounding language, rather than from direct experience, language is a candidate 

system in the mind that is closer aligned with amodal symbols than with perceptual symbols. 

Kids at 5 years of age can talk about much of cultural content of the surrounding language, 

including highly abstract contents; yet, clearly kids do not have necessary experience to 
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understand highly abstract concepts, as perceptual symbols, and to relate them to the world. A 

mathematical model of language-cognition interaction was proposed in (Perlovsky 2009a). It 

suggested that higher abstract concepts could be stronger grounded in language than in 

perception; not only kids, but also adults may operate with abstract concepts as with amodal 

symbols, and therefore have limited understanding grounded in experience of how abstract 

concepts relate to the world. It is possible that higher level concepts may be less grounded in 

perception and experience than in language. Future experimental research should address this 

hypothesis. 

 

As mentioned, the developed model is applicable to language; correspondingly, it should bear on 

language evolution, and future research should address combining a language extension of this 

model with models of language evolution (Brighton, Smith, & Kirby 2005; Perlovsky &  

Fontanari 2006; Fontanari & Perlovsky 2007; 2008a;b; Fontanari, Tikhanoff, Cangelosi, Ilin, & 

Perlovsky 2009; Perlovsky 2009b). 

 

The role of emotions in perception was addressed in (Barrett & Bar 2009). There are several 

mechanisms of emotions and future research should extend this paper formalism to modeling 

emotions. Also future research would explore the role of emotions in language-cognition 

interaction (Perlovsky 2009b), and the role of emotions in symbol grounding. 
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Appendix 1. 

 

Bottom-up signals {X(n)} in this simplified discussion, is a field of neuronal synapse activations 

in visual cortex. Here and below curve brackets {…} denote multiple signals, a field. Index n = 

1,… N, enumerates neurons and X(n) are the activation levels. Sources of top-down signals are 

representations or concept-models {Mm(n)} indexed by m = 1,… M. Each model m Mm(n) 

projects a set of priming, top-down signals, representing the bottom-up signals X(n) expected 

from a particular object, m. Models depend on parameters {Sm}, Mm(Sm,n). Parameters 

characterize object position, angles, lightings, etc. (In case of learning situations considered in 

section 3, parameters characterize objects and relations making up a situation.) To summarize 

this highly simplified description of a visual system, n enumerates the visual cortex neurons, 

X(n) are the “bottom-up” activation levels of these neurons coming from the retina, and Mm(n) 

are the “top-down” activation levels (priming) of the visual cortex neurons. The learning-

perception process “matches” these top-down and bottom-up activations by selecting “best” 

models and their parameters and the corresponding sets of bottom-up signals.  
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Let us concentrate on defining a mathematical measure of the “best” fit between bottom-up and 

top-down signals. It is constructed in such a way that any of object-models can be recognized. 

Correspondingly, a similarity measure is designed so that it treats each object-model as a 

potential alternative for each subset of signals (Perlovsky 2000, 2006), 

 

L({X},{M}) = ∑∏
∈∈ MmNn

r(m) l(X(n) | Mm(n));  (A1) 

 

Here, l(X(n)|Mm(n)) (or simply l(n|m)) is called a conditional similarity between one signal X(n) 

and one model Mm(n). Parameters r(m) are proportional to the number of objects described by 

the model m. Expression (1) accounts for all combinations of signals and models in the 

following way. Sum ∑ ensures that any of the object-models can be considered (by the mind) as 

a source of signal X(n). Product ∏ ensures that all signals have a chance to be considered (even 

if one signal is not considered, the entire product is zero, and similarity L is 0; so for good 

similarity all signals have to be accounted for. This does not assume exorbitant amount of 

attention to each minute detail: among models there is a vague simple model for “everything 

else”). In a simple case, when all objects are perfectly recognized and separated from each other, 

there is just one object-model corresponding to each signal (other l(n|m) = 0). In this simple case 

expression (1) contains just 1 item, a product of all non-zero l(n|m). In the general case, before 

objects are recognized, L contains a large number of combinations of models and signals; a 

product over N signals is taken of the sums over M models; this results in a total of MN items; 

this huge number is the cause for the combinatorial complexity discussed previously. 
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The DL learning process consists in estimating model parameters Sm and associating subsets of 

signals with concepts by maximizing the similarity (1). Although (1) contains combinatorially 

many items, DL maximizes it without combinatorial complexity (Perlovsky, 1996b; 1997; 2000). 

First, fuzzy association variables f(m|n) are defined, 

 

f(m|n) = r(m) l(n|m) / ∑
∈Mm '

r(m') l(n|m'). (A2) 

 

These variables give a measure of correspondence between signal X(n) and model Mm relative to 

all other models, m’. They are defined similarly to the a posteriori Bayes probabilities, they 

range between 0 and 1, and as a result of learning they converge to the probabilities under certain 

conditions. 

 

DL process is defined by the following set of differential equations, 

 

df(m|n)/dt = f(m|n) ∑
∈Mm '

{[δmm' - f(m'|n)] [∂ln l(n|m')/∂Mm’] (∂Mm’/∂Sm’) dSm’/dt, 

dSm/dt =∑
∈Nn

f(m|n)[∂lnl(n|m)/∂Mm]∂Mm/∂Sm,  δmm'  = 1 if m=m', 0 otherwise.  (A3) 

 


