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Novel Mechanism for Plasma Glucose–Lowering Action of
Metformin in Streptozotocin-Induced Diabetic Rats
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To better understand the insulin-independent plasma glu-
cose–lowering action of metformin, we used streptozotocin
(STZ)-induced diabetic rats to investigate the possible
mechanisms. Oral intake of metformin decreased the
plasma glucose of STZ-induced diabetic rats with a parallel
increase of plasma �-endorphin–like immunoreactivity
(BER). Mediation of opioid �-receptors in the action of
metformin was identified by the blockade of receptors with
antagonist in STZ-induced diabetic rats and the failure of
action in opioid �-receptor knockout diabetic mice. Re-
lease of BER from adrenal glands by metformin was char-
acterized, using bilateral adrenalectomy and the release of
BER from isolated adrenal medulla of STZ-induced diabetic
rats. Repeated treatment with metformin in STZ-induced
diabetic rats increased the mRNA and protein levels of
GLUT-4 in soleus muscle that was blocked by naloxonazine.
Reduction of the mRNA or protein levels of hepatic PEPCK
was also impeded in the same group of STZ-induced dia-
betic rats. In conclusion, our results provide novel mecha-
nisms for the plasma glucose–lowering action of
metformin, via an increase of �-endorphin secretion from
adrenal glands to stimulate opioid �-receptor linkage,
leading to an increase of GLUT-4 gene expression and an
attenuation of hepatic PEPCK gene expression in STZ-
induced diabetic rats. Diabetes 55:819–825, 2006

D
iabetes and its complications constitute a major
health problem in modern societies. Both type 1
and type 2 diabetes comprise abnormalities of
insulin action, including deficiency and insulin

resistance (1).
Metformin is a widely prescribed antihyperglycemic

agent for type 2 diabetes. Because it lowers blood glucose
without increasing insulin secretion, metformin has been
considered an insulin sensitizer (2). In fact, metformin
showed beneficial effects in type 2 diabetes, including
weight reduction, improved lipid profiles, and enhanced

endothelial function (3). Thus, metformin is introduced for
use in insulin-resistant states even before the development
of hyperglycemia (4).

The mechanisms of metformin action have remained
obscure, despite multiple pathways of action being pro-
posed, including a decrease of hepatic glucose production,
an increase of peripheral glucose disposal, and a reduction
of intestinal glucose absorption (1). It has been docu-
mented that metformin activated 5�AMP-activated protein
kinase (AMPK) in hepatocytes, thereby reducing activity
of acetyl-CoA carboxylase and lowering expression of a
lipogenic transcription factor as well as inhibiting hepatic
gluconeogenesis (5,6). Thus, AMPK seems a major signal
for the action of metformin to suppress lipogenesis and
induce fatty acid oxidation (5,6). In fact, plasma glucose–
lowering action is not entirely dependent on insulin (7). It
has been mentioned that exercise causes an increase of
glucose uptake in the skeletal muscle of diabetic and
nondiabetic subjects through the translocation of GLUT-4
to cell membranes (8). This translocation of GLUT-4 is
mediated through insulin-independent phosphorylation
and activation of AMPK (9,10). However, direct evidence
for the linkage of these two signals is lacking.

Additionally, it has been indicated that exogenous �-en-
dorphin induces an increase of circulating insulin in
humans with or without diabetes (11,12). The effect of
opioids on glucose homeostasis may in fact be produced
by other mechanisms in addition to insulin. Intravenous
injection of synthetic �-endorphin lowered plasma glucose
in streptozotocin (STZ)-induced diabetic rats, as observed
in our previous study (13). Chemical agents such as
loperamide or tramadol increased glucose utilization via
activation of opioid �-receptors to lower plasma glucose
in STZ-induced diabetic rats (14,15). In obese Zucker rats,
mediation of �-endorphin in exercise-induced improve-
ment of insulin resistance has also been observed (16).
These findings support a beneficial effect of opioid �-re-
ceptor activation on plasma glucose regulation. Thus, the
aim of this study is to clarify whether �-endorphin is
involved in the plasma glucose–lowering action of met-
formin. The deficient functions of pancreas �-cells in
STZ-induced diabetic rats has been documented (17), and
rats with STZ-induced diabetes were thus used in the
current study as an animal model of type 1–like diabetes.

RESEARCH DESIGN AND METHODS

Male Wistar rats weighing 200–250 g were obtained from the Animal Center of
the National Cheng Kung University Medical College. Male BDF1 mice (as the
wild-type controls) and opioid �-receptor knockout BDF1 mice (18), aged
8–10 weeks, all of which had been bred in the same animal center, were
obtained from Dr. H.H. Loh (University of Minnesota Medical School, Minne-
apolis, MN). STZ-induced diabetic rats were prepared by intravenously
injecting STZ (60 mg/kg) into the male Wistar rats at age 8–10 weeks. Mice
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with or without opioid �-receptors also received an intraperitoneal injection
of STZ at 50 mg/kg to induce diabetes (19). At 2 weeks after the injection of
STZ, animals were considered to be diabetic if they had plasma glucose levels
�20 mmol/l and other diabetic features, including polyuria, polydipsia, and
hyperphagia. Also, plasma insulin in these STZ-induced diabetic rats was
reduced to 1.23 � 0.6 pmol/l (n � 8), a level markedly lower than that of
normal rats (154.8 � 5.2 pmol/l, n � 8). All animal procedures were performed
according to the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, as well as the guidelines of the Animal Welfare
Act.
Effect of metformin on plasma glucose or �-endorphin level in STZ-

induced diabetic rats. Metformin was dissolved in distilled water containing
0.9% (wt/vol) sodium chloride for oral administration into fasted rats at
desired doses. It has been documented that rats that have received sodium
pentobarbital show no changes of plasma glucose and glucagon (20). Thus,
under anesthesia with sodium pentobarbital (30 mg/kg i.p.), blood samples
(0.1 ml) were collected from the tail vein for the measurement of plasma
glucose or �-endorphin–like immunoreactivity (BER). The time course of the
effect of metformin on plasma glucose in STZ-induced diabetic rats was
preliminarily determined; the plasma glucose–lowering effect of metformin at
an oral dosage of 100 mg/kg reached a plateau within 60 min and was
maintained for �120 min. Thus, the effects of metformin on plasma glucose
and plasma BER were determined, using blood samples collected 60 min after
oral administration. As controls, we used animals that had received a similar
administration of saline used to dissolve metformin at the same volume. The
opioid receptor antagonists known to antagonize �-subtypes, including nal-
oxonazine and naloxone, were injected into the tail vein of animals 30 min
before oral treatment with metformin.
Effect of metformin on plasma glucose or BER level in opioid �-recep-

tor knockout diabetic mice. Fasting STZ-induced diabetic mice with or
without opioid �-receptors were given an oral administration of metformin at
100 mg/kg, the dose showing maximal effect in STZ-induced diabetic rats.
After 60 min, blood samples (0.1 ml) were collected from the lower eyelid of
mice under anesthesia with pentobarbital (30 mg/kg i.p.) for determination of
plasma glucose and BER.
Isolation and incubation of adrenal medulla. Adrenal glands were re-
moved from the killed STZ-induced diabetic rats, and medullas were imme-
diately dissected after removal of the cortex as previously described (21). The
tissues were cut into �1-mm thick slices and transferred to a glass tube fitted
with a mesh of nylon at the bottom to permit free interchange with the
medium. The tissues were incubated with metformin at indicated concentra-
tions with continuous shaking at 40 cycles/min under 37°C for 30 min.
Incubation was terminated by placing the tubes on ice. The medium from each
incubated sample was collected and frozen at �70°C until the �-endorphin
assay was performed.
Adrenalectomized rats. Bilateral adrenalectomy was performed in Wistar
rats, using the dorsal approach as described previously (22). The adrenalec-
tomized rats were also fed standard rat chow and 0.9% sodium chloride in
their drinking water ad libitum. Sham-operated rats were fed standard rat
chow and water ad libitum. Animals were allowed to recover for 2 weeks after
the operation. The animals appeared alert and in good health. Then, diabetes
was induced by an injection of STZ as described above.
Laboratory determinations. The concentration of plasma glucose was
measured by the glucose oxidase method, using an analyzer (Quik-Lab; Ames,
Miles, Elkhart, IN). An enzyme-linked immunosorbent assay for the determi-
nation of BER in plasma or medium incubating adrenal medulla was carried
out, using a commercially available kit (Peninsula Laboratories, San Carlos,
CA).
Determination of gene expression. STZ-induced diabetic rats were orally
administered vehicle or metformin (100 mg/kg) every 8 h, three times daily.
Naloxonazine was intravenously injected into another group of STZ-induced
diabetic rats 30 min before receiving an oral administration of metformin in
the same manner. In preliminary experiments, metformin was found to modify
the mRNA and protein levels for GLUT-4 and hepatic PEPCK in STZ-induced
diabetic rats after a 3-day treatment. Therefore, animals were killed after 3
days of treatment. Normal rats receiving a similar treatment of vehicle were
used as controls. Liver and soleus muscle were immediately removed, frozen
in liquid nitrogen, and stored at �70°C for the determination of gene
transcripts. Changes in hepatic PEPCK mRNA were determined by RT-PCR.
PEPCK-specific primers were 5�-AGTTGAATGTGTGGGTGATGACA-3� and
5�-AAAACCGTTTTCTGGGTTGATG-3� for forward and reverse primers, re-
spectively (23). Prophobilinogene deaminase–specific primers were 5�-
GGAGCCATGTCTGGTAACGGCA-3� and 5�-GGTACCCACGCGAATCACTCT
CA-3� for forward and reverse primers, respectively (24). Quantification of the
mRNA level was examined, using the ratio of PEPCK to prophobilinogene
deaminase. The mRNA of GLUT-4 in soleus muscle was investigated by
Northern blot analysis (15). The effects of testing agents on protein levels of

PEPCK and GLUT-4 were evaluated by Western blot analysis (15). Anti–rat
GLUT-4 antibody was purchased from Genzyme Diagnostics (Cambridge,
MA). The antibody specific to PEPCK was a gift from Dr. D.K. Granner
(Vanderbilt University School of Medicine, Nashville, TN). The blots were
incubated with a goat polyclonal actin antibody (Santa Cruz Biotechnology,
Santa Cruz, CA) or a mouse monoclonal �-tubulin antibody (Zymed Labora-
tories, San Francisco, CA) as an internal control. Blood samples were also
collected from the tail vein of these rats before death to assay the plasma
levels of glucose and BER as described above. Also, the daily amount of food
and water intake as well as changes of body weight in metformin-treated
STZ-induced diabetic rats were measured to compare with vehicle-adminis-
tered controls.
Statistical analysis. Plasma glucose–lowering activity was noted in the
animals that had received metformin. Results of plasma glucose–lowering
activity were calculated as the percentage reduction of the initial value
according to the formula (Gi � Gt)/Gi � 100%, where Gi was the initial plasma
glucose and Gt was the plasma glucose concentration after treatment with
metformin.

Data are expressed as the means � SE for the number (n) of animals in the
group, as indicated in tables and figures. Repeated-measures ANOVA was used
to analyze the changes in plasma glucose and other parameters. Dunnett range
post hoc comparisons were used to determine the source of significant
differences where appropriate. P 	 0.05 was considered statistically signifi-
cant.

RESULTS

Effects of metformin on plasma glucose and BER

levels in STZ-induced diabetic rats. At 60 min after
treatment, a dose-dependent decrease of plasma glucose
was observed in STZ-induced diabetic rats receiving an
oral administration of metformin (Fig. 1A). The plasma
glucose–lowering activity produced by metformin at 100
mg/kg was 21.4 � 1.8% in STZ-induced diabetic rats.
Increasing the dosage of metformin to 115 mg/kg yielded a
plasma glucose–lowering activity of 21.9 � 2.3% that was
not more effective. Plasma glucose decreased from 5.3 �
0.9 mmol/l to 4.6 � 0.8, 4.4 � 0.5, and 3.9 � 0.7 mmol/l at
60 min later in normal rats receiving oral administration of
metformin at 50, 75, and 100 mg/kg, respectively. The
plasma glucose–lowering activity of metformin in normal
rats was as effective as that produced in STZ-induced
diabetic rats. The effect of metformin at 100 mg/kg was
investigated in subsequent experiments.

Plasma BER was raised �30 min later in STZ-induced
diabetic rats by oral administration of metformin. The
action of metformin was maximal at 60 min, which was
used as the optimal time in subsequent experiments. A
dose-dependent elevation of plasma BER level was ob-
served in the same group of STZ-induced diabetic rats
receiving metformin (Fig. 1B).
Effect of bilateral adrenalectomy on the action of

metformin in STZ-induced diabetic rats. The basal
plasma glucose or BER in STZ-induced diabetic rats was
not modified by adrenalectomy, compared with the sham-
operated group (Table 1). However, both the decrease of
plasma glucose and the increase of plasma BER by met-
formin (100 mg/kg) disappeared in STZ-induced diabetic
rats with bilateral adrenalectomy, whereas these effects
persisted in sham-operated STZ-induced diabetic rats re-
ceiving the same treatment (Table 1).
Effect of metformin on the secretion of BER from
isolated adrenal medulla of STZ-induced diabetic
rats. The amount of BER in the medium was increased by
metformin in a concentration-dependent manner (Fig. 2).
Metformin at 1 �mol/l increased BER in the medium and
reached a plateau, and no further effect was produced by
metformin at higher concentrations (Fig. 2).
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Effects of opioid �-receptor antagonists on the ac-
tion of metformin in STZ-induced diabetic rats. Table
2 shows the dose-dependent action of naloxone and
naloxonazine to inhibit the plasma glucose–lowering ac-
tivity of metformin in STZ-induced diabetic rats. In the
presence of 1 mg/kg naloxone, the plasma glucose level in
STZ-induced diabetic rats treated with 100 mg/kg met-
formin was not statistically different from the basal level.
Also, naloxonazine (1 mg/kg) prevented the ability of
metformin (100 mg/kg) to lower plasma glucose in STZ-
induced diabetic rats. However, both naloxone and nalox-
onazine at the highest dose did not affect the basal plasma
glucose level of STZ-induced diabetic rats (Table 2).
Change of metformin-induced plasma glucose–lower-
ing activity in opioid �-receptor knockout diabetic
mice. Plasma glucose in opioid �-receptor knockout dia-
betic mice was not modified by oral administration with
metformin (100 mg/kg), whereas plasma BER was ele-
vated (Fig. 3). Similar administration of metformin (100
mg/kg) in diabetic mice with opioid �-receptors also
increased plasma BER, but this action was in parallel with

the plasma glucose–lowering action (Fig. 3). The plasma
glucose-lowering activity of metformin in these wild-type
diabetic mice was �21.7 � 2.1%, similar to the activity
produced in STZ-induced diabetic rats.
General characteristics of STZ-induced diabetic rats
repeatedly receiving oral administration of met-
formin. Plasma glucose levels of STZ-induced diabetic
rats were reduced after repeated oral administration of
metformin (100 mg/kg) for 3 days (Table 3), showing a
plasma glucose–lowering activity of 23.9 � 2.3%. Elevation
of plasma BER occurred in the same group of STZ-induced
diabetic rats, and it was significantly (P 	 0.01) higher
than in the vehicle-administered group (Table 3). The
3-day treatment with metformin (100 mg/kg) did not
influence the feeding behavior and/or body weight of
STZ-induced diabetic rats (Table 3).

In the presence of naloxonazine (1 mg/kg), plasma BER
levels in the STZ-induced diabetic rats treated with met-
formin (100 mg/kg) were still markedly raised (Table 3).
However, the reduction of plasma glucose by metformin

FIG. 1. A: The changes of plasma glucose in STZ-induced diabetic rats
that received oral treatment of metformin. B: The change of plasma
BER in the same group of animals. Values (means � SE) were obtained
from each group of eight animals. The vehicle (saline) used to dissolve
metformin was given at the same volume. *P < 0.05 and **P < 0.01 vs.
data from the vehicle-administered group (0 mg/kg metformin).

FIG. 2. Effect of metformin on BER secretion from the isolated adrenal
medulla of STZ-induced diabetic rats. Results (pg/mg protein) are the
means � SE of seven determinations. *P < 0.05 and **P < 0.01 vs. data
from samples treated with modified Krebs solution (0 �mol/l met-
formin).

TABLE 1
Effect of adrenalectomy on the metformin-induced changes of
plasma glucose and BER in STZ-induced diabetic rats

STZ-induced diabetic rats

Adrenalectomized
Sham-

operated

n 8 8
Plasma glucose (mmol/l)

Basal 22.9 � 2.2 23.3 � 1.8
Vehicle 22.7 � 1.8 23.1 � 1.7
Metformin

(100 mg/kg orally) 22.4 � 2.1 18.4 � 1.9*
Plasma BER (pg/ml)

Basal 50.1 � 4.1 48.6 � 4.8
Vehicle 50.6 � 4.3 48.8 � 4.2
Metformin

(100 mg/kg orally) 52.1 � 3.6 94.6 � 3.7*

Data are means � SE. The basal level shows the value from fasting
animals without treatment. *P 	 0.01 vs. the basal value in each
group.
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(100 mg/kg) in STZ-induced diabetic rats was abolished by
naloxonazine (Table 3). The body weight of STZ-induced
diabetic rats was not influenced by naloxonazine (Table
3).
Effect of metformin on the mRNA and protein levels
of GLUT-4 in soleus muscle of STZ-induced diabetic
rats. The mRNA level of GLUT-4 in soleus muscle isolated
from vehicle-administered STZ-induced diabetic rats was
�47% of that from vehicle-administered normal rats (Fig.
4A). Repeated oral treatment of STZ-induced diabetic rats
with metformin (100 mg/kg) for 3 days resulted in an
elevation of GLUT-4 mRNA level in the soleus muscle to a
level �76% of that in vehicle-administered normal rats.
Also, the effect of metformin (100 mg/kg) on GLUT-4
mRNA levels in STZ-induced diabetic rats was reversed by
naloxonazine (1 mg/kg) to the same level as in the vehicle-
administered STZ-induced diabetic rats (Fig. 4A).

The protein level of GLUT-4 in soleus muscle of vehicle-
administered STZ-induced diabetic rats was significantly
reduced to �45% of that in the vehicle-administered
normal rats (Fig. 4B). Repeated oral treatment with met-
formin (100 mg/kg) elevated the protein level of GLUT-4 in
soleus muscle of STZ-induced diabetic rats to a level �80%
of that in vehicle-administered normal rats. Naloxonazine
(1 mg/kg) reversed this action of metformin (Fig. 4B).
However, naloxonazine alone did not affect basal GLUT-4
gene expression. Quantification of the mRNA and protein
levels of GLUT-4 induced by these treatments is shown in
Table 4.
Effect of metformin on the mRNA and protein levels
of hepatic PEPCK in STZ-induced diabetic rats. Fig.
4C shows the level of mRNA encoding PEPCK that was
elevated nearly 3.4-fold in untreated STZ-induced diabetic
rats compared with normal rats. This increase of mRNA
level in the liver of STZ-induced diabetic rats was reduced
to �33% of vehicle-administered STZ-induced diabetic rats
by repeated oral treatment with metformin (100 mg/kg) for
3 days.

The protein levels of PEPCK in the liver of vehicle-
administered STZ-induced diabetic rats were about three-
fold of the vehicle-administered normal rats. Repeated
oral treatment of STZ-induced diabetic rats with met-
formin (100 mg/kg) for 3 days resulted in a marked

reduction of the protein level of PEPCK to near the level in
vehicle-administered normal rats; which was reversed on
blockade of opioid �-receptors by naloxonazine (1 mg/kg)
(Fig. 4D). However, the basal levels of mRNA and protein
in hepatic PEPCK were not influenced by naloxonazine
alone. Quantification of all data from these treatments is
also shown in Table 4.

DISCUSSION

Metformin has oral bioavailability, with peak plasma con-
centration reached after 2–3 h (25). We found that oral
treatment with metformin for 1 h can dose-dependently
lower plasma glucose in a manner parallel with an in-
crease of plasma BER in STZ-induced diabetic rats. In fact,
plasma insulin levels in STZ-induced diabetic rats was only
�1/120 of that in normal rats. Thus, mediation of endoge-
nous insulin is negligible in this STZ-induced diabetic rat
model. The effective dose of metformin in STZ-induced
diabetic rats was similar to that used in type 2 diabetic rats
(26). Also, the plasma glucose–lowering activity of met-
formin in STZ-induced diabetic rats was the same as that

FIG. 3. A: The change of plasma glucose in opioid �-receptor knockout
diabetic mice and wild-type controls receiving an oral intake of
metformin (100 mg/kg). B: The plasma BER in same group of mice.
Values (means � SE) were obtained from each group of seven animals.
**P < 0.01 vs. data from animals before treatment.

TABLE 2
Effects of opioid �-receptor antagonists on metformin-induced
reduction of plasma glucose levels in STZ-induced diabetic rats

Plasma glucose (mmol/l)

n 7
Basal 23.2 � 1.8
Metformin (100 mg/kg orally)


 Vehicle 18.1 � 1.9*

 Naloxone (mg/kg i.v.)

0.1 19.4 � 1.7†
0.5 20.5 � 2.1
1.0 22.8 � 2.0


 Naloxonazine (mg/kg i.v.)
0.1 20.1 � 2.1
0.5 22.6 � 1.6
1.0 23.0 � 2.2

Naloxone (1 mg/kg i.v.) 23.5 � 2.3
Naloxonazine (1 mg/kg i.v.) 23.7 � 2.6

Data are means � SE. The basal level shows the value from fasting
animals treated with vehicle. *P 	 0.01 and †P 	 0.05 compared with
the basal value, respectively.
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in normal rats. These results indicated that metformin has
an ability to lower plasma glucose without the help of
endogenous insulin; elevation of �-endorphin seems re-
lated to this action of metformin.

Although �-endorphin is released with adrenocortico-
trophic hormone from the pituitary gland (27), adrenal
glands are also a source of �-endorphin (28,29). We have
demonstrated that secretion of opioids from adrenal
glands is associated with a decrease of plasma glucose in
STZ-induced diabetic rats (19), which is consistent with
the view that pituitary gland–independent release of en-
dogenous opioids is operative in other organs (28,29). In
an attempt to make certain that adrenal glands are the
main source of metformin-induced release of �-endorphin,
we used bilateral adrenalectomy. The plasma glucose–
lowering action of metformin was eliminated by bilateral
adrenalectomy in STZ-induced diabetic rats. Also, no
increase of plasma �-endorphin was obtained in adrena-
lectomized diabetic rats receiving metformin at the effec-
tive doses. Thus, adrenal glands seem responsible for the
secretion of �-endorphin by metformin. Moreover, met-
formin enhanced �-endorphin secretion from the isolated
adrenal medullas of STZ-induced diabetic rats in a concen-
tration-dependent manner. Taken together, one can con-
clude that a release of �-endorphin from adrenal glands by
metformin is related to metformin’s plasma glucose–low-
ering action in STZ-induced diabetic rats.

The actions of �-endorphins are mediated in part by
opioid �-receptors, which are believed to be expressed in
specialized neurons for pain transmission at both spinal

and supraspinal sites (30). Recently, we observed that
�-endorphin enhanced the uptake of radioactive glucose
into the isolated soleus muscle of STZ-induced diabetic
rats and stimulated glycogen synthesis in the hepatocytes
isolated from STZ-induced diabetic rats (13). Both actions
of �-endorphin were naloxone and naloxonazine sensitive
(13). Thus, opioid �-receptors are also located in periph-
eral tissues that can be activated to lower plasma glucose
by improving glucose utilization (13,15). The action of
metformin in STZ-induced diabetic rats was inhibited by
blockade of opioid �-receptors, using naloxone or nalox-
onazine. In fact, two subtypes of the �-receptors (�1 and
�2) have been postulated, although the �1 subtype is
naloxonazine sensitive (30). This suggests that the plasma
glucose–lowering action of metformin in STZ-induced
diabetic rats may be mediated by peripheral opioid �1-
receptor activation, which is worthwhile to be investigated
in advance. However, these antagonists may have nonspe-
cific effects in addition to the blockade of opioid �-recep-
tors. Therefore, for further investigation, we used opioid
�-receptor knockout mice receiving STZ. The plasma
glucose–lowering action of metformin was eliminated in
opioid �-receptor knockout diabetic mice, although the
BER-elevating action of metformin was still observed. This
result supports the essential role of opioid �-receptors in
plasma glucose–lowering action of metformin during the
absence of insulin. The role of cerebral opioid receptors in
the regulation of food intake has been well-established
(31). Although the evidence indicating the cerebral action
of metformin is not documented, chronic treatment with

FIG. 4. Representative images indicating the mRNA level for GLUT-4 or �-actin in soleus muscle (A), the protein level for GLUT-4 or actin in
soleus muscle (B), the gel electrophoresis of RT-PCR for PEPCK from the liver (C), and the protein level for PEPCK or �-tubulin in liver (D).
Lane 1: Vehicle-administered normal rats. Lane 2: Vehicle-administered STZ-induced diabetic rats. Lane 3: Metformin-treated STZ-induced
diabetic rats. Lane 4: Metformin plus naloxonazine-administered STZ-induced diabetic rats. Quantification of the data are shown in Table 4.

TABLE 3
General characteristics of STZ-induced diabetic rats orally treated with metformin three times daily for 3 days

Body weight
(g per rat)

Food intake
(g per day)

Plasma glucose
(mmol/l)

Plasma BER
(pg/ml)

Normal rats

 Vehicle 237.6 � 12.4* 18.1 � 4.5* 5.2 � 1.8† 43.2 � 5.2

STZ-induced diabetic rats

 Vehicle 179.3 � 13.2 41.7 � 6.2 23.4 � 2.1 49.2 � 4.8

 Metformin (100 mg/kg orally) 175.3 � 10.1 39.6 � 7.1 17.2 � 1.8* 96.4 � 5.7*

 Naloxonazine (1 mg/kg i.v.) 180.8 � 11.4 40.1 � 5.8 23.9 � 2.4 93.8 � 6.1*

Data are means � SE from eight different animals in each group. *P 	 0.01 and †P 	 0.001 compared with the values from vehicle-treated
STZ-induced diabetic rats.
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metformin produced an anorectic effect to lower body
weight in genetically obese Zucker rats (32). In fact,
metformin did not influence the food intake of STZ-
induced diabetic rats. This is probably because the �-en-
dorphin release induced by metformin mainly exerts its
effect on opioid �-receptors located on peripheral tissues.
However, this view shall be clarified in the future.

In diabetes, elevation of blood glucose is a consequence
of increased hepatic glucose output in concert with re-
duced peripheral glucose utilization (33). PEPCK is one of
the key enzymes in hepatic gluconeogenesis (33). Insulin
deficiency is clearly associated with a change in hepatic
metabolism (33). Moreover, a reduction in insulin-medi-
ated glucose uptake caused by decreasing gene expression
of GLUT-4 has been reported in skeletal muscle, a major
site for glucose disposal, in diabetic rats (34). Recent
studies strongly support the reduction in hepatic glucone-
ogenesis as the primary route through which metformin
exerts its glucose-lowering action (5,6). In addition, met-
formin has been shown to facilitate the trafficking of
GLUT-4 to membrane of skeletal muscle (8–10). Because
long-term exposure is required for the activation of mRNA
level, the gene expression associated with glucose regula-
tion was examined in STZ-induced diabetic rats that had
received a 3-day repeated treatment with metformin. Con-
sistent with previous studies (5,6), the plasma glucose–
lowering activity of metformin was associated with an
attenuation of the raised hepatic PEPCK gene expression
in STZ-induced diabetic rats. Meanwhile, an increase in the
gene expression of GLUT-4 may contribute to plasma
glucose regulation in metformin-treated STZ-induced dia-
betic rats. Both actions of metformin were reversed by
blockade of opioid �-receptors, using naloxonazine. This
is consistent with the previous view that �-endorphin, via
activation of opioid �-receptors, is a positive regulator in
glucose utilization and a negative modulator in hepatic
gluconeogenesis in the insulin-deficient state (15). How-
ever, the effect of �-endorphin on the brain to affect these
genes cannot be excluded, and this needs more studies in
the future. Also, the effect of metformin on the regulation
of hepatic PEPCK gene expression in STZ-induced dia-
betic rats seems more effective than that in the GLUT-4
gene expression. This finding suggests that metformin
exerts its antihyperglycemic effect mainly through a reduc-
tion of hepatic gluconeogenesis; this view is consistent
with previous reports (5,6).

It has been indicated that phospholipase C and protein
kinase C (PKC) play a key role in opioid signals (13). Also,
PKC is involved in a rate-limiting step in GLUT-4 mRNA
expression (35). Therefore, the phospholipase C–PKC

pathway is related to the signals of opioid �-receptors in
the regulation of GLUT-4 gene expression, although the
detailed action mechanism needs further investigation. In
fact, the suppression of PEPCK gene expression in STZ-
induced diabetic rats by metformin was blocked by opioid
�-receptor antagonist, indicating the mediation of opioid
�-receptors. The gene expression of PEPCK in liver is
regulated by a number of hormones (36), and signals for
opioid �-receptors to regulate the hepatic PEPCK gene
expression need to be clarified in the near future. Never-
theless, we demonstrated that metformin possesses an
ability to enhance the secretion of �-endorphin from
adrenal glands of STZ-induced diabetic rats. Then, the
released �-endorphin can activate peripheral opioid �-re-
ceptors to modify gene expressions of GLUT-4 and PEPCK
for lowering the plasma glucose level in the insulin-
deficient state.

It has been documented that splanchnic nerve stimula-
tion increases the release of opioids from adrenal glands
(37,38). Activation of �1-adrenoceptors on adrenal medulla
in the regulation of �-endorphin secretion has also been
mentioned (19). In fact, it has been proposed that met-
formin releases norepinephrine by an indirect sympatho-
mimetic-like action (39). Also, metformin inducing the
release of norepinephrine from postganglionic sympa-
thetic nerve endings (40) has been demonstrated. The role
of norepinephrine in the mechanism(s) for metformin to
enhance �-endorphin secretion from adrenal grand needs
further evidence.

In conclusion, our results suggest that metformin exerts
its antihyperglycemic effect primarily through enhance-
ment of �-endorphin secretion from adrenal glands to
stimulate opioid �-receptors located on peripheral tissue,
thereby leading to the amelioration of GLUT-4 gene ex-
pression and an attenuation of raised hepatic PEPCK gene
expression in rats with insulin-deficient diabetes. This
finding provides a new insight on the mechanisms of
metformin action.
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