Natural Selection and Shape Perception
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1 Introduction

Our perception of shape is, like all of our perceptions, adpob of evolution by
natural selection. This entails that our perception of shiapa satisficing solu-
tion to certain problems faced by our ancestors, e.g., ted testalk prey, secure
mates, elude predators, and predict outcomes of actiotigralaelection produces
satisficingsolutions, rather thaaptimizingsolutions, because selection favors sur-
vival of thefitter, not of thefittest A gene need confer only a slight edge over the
competition—a standard far lower than optimality—to pesiate in later genera-
tions.

It is standard in vision research to assume that more aepeateptions are
fitter perceptions, and that therefore natural selectioegwur perceptions to be
veridical, i.e., to be accurate reflections of the objeatieeld. For instance, Palmer
argues that “Evolutionarily speaking, visual percept®nseful only if it is reason-
ably accurate. . This is almost always the case with vision” [28]. Geisler &iehl
argue that “In general, (perceptual) estimates that areenéze truth have greater
utility than those that are wide of the mark” [11].

If perception is indeed veridical, then the world of our \@kaxperience shares
the attributes of the objective world. Our visual world hiaee spatial dimensions,
a temporal dimension, and contains 3D objects with shamdsrs; textures and
motions. Vision researchers standardly assume that tleetlg world does also. In
other words, they standardly assume that the language ofisual representations
is the correct language for describing objective reality.
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In this chapter we propose, contrary to standard assungptibat natural selec-
tion does not in general favor veridical perceptions. Thesoa, in short, is that
fitness is distinct from truth; it depends not only on the obiye world, but also on
the organism, its state, and the action class in questioraz&ltg, for instance, of-
fers lots of “fithess points” to a hungry cheetah seeking tptes none to a cheetah
seeking to mate. Natural selection favors fitness, not titiil straightforward to
produce evolutionary games in which true perceptions akemlito extinction by
nonveridical perceptions that simply report fitness [25].

The consequences of this for shape perception are profdfunal. perceptions
of 3D shape are not veridical reconstructions of objectiesBapes, then a new
framework, entirely different from the standard, is regdito properly understand
shape perception. In this chapter we sketch such a formakfrerk that incorpo-
rates the role of evolution in a fundamental way, and in wipiefceived shape is an
adaptive guide to behavior, not a reflection of objectivdityea his framework is
consistent with thénterfacetheory of perception [15].

Because natural selection has tuned our perception of gbape an adaptive
guide to behavior, our perception of shape has evolved tigbtiyt coupled with our
actions, a coupling that we formalize here with a commutiragyhm that we call
the “perception-decision-action” loop, or PDA loop. Thhe tetailed properties of
perceived shapes, such as their symmetries and parts, tadlepiotions of the true
properties of shapes in an objective world, but simply gsiideadaptive actioh.

2 Bayesian Decision Theory

A common framework for modeling vision in general, and thectvery” of 3D
shape from 2D images in particular, is Bayesian decisionrthéBDT) [12, 17,
18, 21, 23, 24]. BDT provides a probabilistic framework a tomputational (or
competence) level [26], at which visual problems are aralyin terms input-
output relations (e.g., the formal constraints needed tve€eesired outputs from
given inputs)—independently of performance considenatiovolving specific al-
gorithms or their implementations.

Given the basic inductive problem that any image is consistéh many differ-
ent 3D interpretations, the visual system can resolve thisiguity only by bring-
ing additional constraints (or biases) to bear—based onlaétjes observed in
the terrestrial environment in which our species evolvedé-eomparing the rel-
ative probabilities of different scene interpretationst Example, in estimating 3D
shape from shading, human vision appears to assume thattgies from above
(e.g., [19, 24]). Similarly, theories of shape-from-cam®often assume that the 3D
shapes are symmetric, or maximally compact (e.g., [30]).

1 We use “action” in the broadest sense of the word—to incluteonly visually-guided manip-
ulation of objects (“dorsal stream”), but also visual catgzations (“ventral stream”) that inform
subsequent behavior, e.g., whether or not to eat a fruihsome probability of being poisonous.
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Formally, given an imagg, the visual system must compare the posterior proba-
bility p(x|yo) for different scene interpretatiornsBy Bayes’ Theorem, this posterior
probability is proportional to the the product of the likedod of the scen@(yo|x)
and its prior probabilityp(x). The likelihood term captures the extent to which the
scene interpretatiornis consistent with—and hence can “explain”—the imgge
In theories of shape-from-X, it is usually taken to be a prtiye mapping from 3D
to 2D (orthographic or perspective), plus some model ofd@ecause many differ-
ent 3D interpretations are typically consistent with anyegiimage, the likelihood
cannot generally resolve the ambiguity by itself (i.e.,ltkelihood may be equally
high for a large number of 3D interpretations). The otherseof information—the
prior probability—reflects the observer’s internalizedidfs about fact that certain
scenes, shapes, or states of the world are more likely therst-e.g., light tends
to come from above, objects tend to be compact, there is alerese of symmetric
objects, etc. [30, 19, 24].

The combined use of the prior and likelihood—via Bayes—dsel posterior dis-
tribution on the space of scene interpretations. It is comtoaise the maximum-a-
posteriori (MAP) estimate as one’s “best” interpretatiblare generally, however,
the choice of a “best” point estimate depends on the losstimone assumes—
namely, the consequences of errors, or deviations from tile™ (but unknown)
interpretation. If the loss function is essentially a Diggdta function (i.e., no loss
for the correct answer, equal loss for every other answery#tue that minimizes
expected loss is the mode of the posterior distribution,the MAP estimate. How-
ever, if the loss function is quadratic (i.e., squared+®rtbe value that minimizes
expected loss is the mean of the posterior distribution.ddetifferent choices of
loss functions lead to different strategies for pickingragte “best” scene interpre-
tation from the posterior distribution (e.g., [24]).

3 A general framework for perception and its evolution

Bayes’ Theorem provides a provably optimal way of combinthegtwo probabilis-
tic sources of information embodied in the likelihood anpfl7]. Hence there is
strong, principled justification for using Bayes, once &litkood model and a prior
have been specified on a particular space of possible ietatpns. However, the
Bayesian framework as it is standardly applied to visiomines important assump-
tions about the choice of interpretation space that we wgllie are too restrictive.

Consider the standard Bayesian setup for vision shown inr€ida.X is the
space of scene interpretations (say, 3D shapes), with praiyability distribution
Ux. Y is the space of 2D images. The likelihood mappinig the projective map
from 3D to 2D (possibly with noiseB is the Bayesian posterior map fromto
X. Technically,L andB are both Markovian kernels [31]. Thus, for each X, the
projective mapL specifies a probability distribution ovi (in the noise-free case,
this distribution is supported on a single point). And focles € Y, the Bayesian
posteriorB gives a probability distribution on the spaXeof 3D shapes.
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Fig. 1 (a) The standard Bayesian framework for vision. (b) The astaijonal evolutionary per-
ception (CEP) framework. In CEP, the objective wafldies outside of the probabilistic inferential
apparatus for vision. There are perceptual charendR, to the two representational spaces
andY, respectively. And there are specific fitness functiong\otiat assign, for a given organism
0, its states, and the type of actioa in question, “fithess points” to eaehe W.

Importantly, note that in this setup the spaXelays two distinct roles: (i) it
corresponds to the space of objective world states; antid@yrespondsto the space
of possible perceptual interpretations from which the &isystem must “choose.”
This dual role is entirely consistent with tteverse opticsapproach to vision—
according to which the goal of vision is essentially to irar “undo” the effects
of optical projection (e.g., [1, 29]). It is also consistamith the historical roots
of Bayesian methods, namely, as techniques for computmgfse probability”—
a prototypical case being to infer the relative probaleiitof possible underlying
causep(C|E) given some observed eveaf when what one actually knows are the
probabilities of obtaining various event$E |C) from particular causes [22].

This dual role played bX makes it clear how BDT embodies the common as-
sumption that human vision has evolved to see the truthntithe case, of course,
that a BDT observer always makes veridical perceptual émees. Indeed, it can-
not. Because a BDT observer embodies specific assumptiang edgularities in
the world (“light tends to come from above,” “objects tendo® mostly convex,”
etc.) it is always possible to place it within a context whigseassumptions are vi-
olated. At a more fundamental level, however, BDT makes tichassumption
that thelanguageof scene interpretations is the correct language for describing
objective reality. In other words, BDT assumes that the e@sgntational spacé
contains somewhere within it a true description of the dbjeavorld—even if the
observer’s estimate misses it in any given instance. It ihis more fundamental
sense that BDT assumes that human vision has evolved toestett.

Consideration of vision in other species, especially thogh simpler visual
systems, suggests that this implicit identification of tBpresentational space
with the objective world is too simplistic. As we will seejstalso too restrictive if
one wants a formal framework that is general enough to enasaie evolution of
visual systems.
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In discussing simpler visual systems, such as those of trenflythe frog, Marr
[26] noted that they “...serve adequately and with speedoaecision the needs of
their owners, but they are not very complicated; very litilgective information
about the world is obtained. The information is all very sdlye...”; and that “...it
is extremely unlikely that the fly has any explicit represgion of the visual world
around him—mno true conception of a surface, for examplejusita few triggers
and some specifically fly-centered parameters...” (p. 3@)isTMarr seemed to ac-
knowledge that visual systems that do not compute objeptivperties of the world
can serve the needs of their owners well enough for them tav&yreven thrive,
in their respective niches. This should not be surprisiffigrall, what matters in
evolution is fitness, not truth, and even visual systems ¢batpute only simple,
purely “subjective,” properties can confer sufficient faeeDespite this, Marr held
that the properties computed hymarnvision—such as object shape—are objective
properties of the world that exist independently of any obme There is no rea-
son to believe, however, that the representational sphaegvolved in the species
Homo sapiensnust correspond to objective reality. The evolutionHaimo sapiens
is guided no less by fitness than the evolution of any othecispeAnd fitness is
clearly distinct from objective truth because it dependsardy on the objective
world, but also on the@rganism(fly vs. elephant), itstate (hungry vs. satiated),
and thetype of actiorunder consideration (eating vs. mating). Therefore orwa’s f
mal framework must be broad enough to include the possilihiat humanvisual
representations also do not capture objective truth.

Thus, rather than simply assuming, or postulating, thasfieece of interpreta-
tionsX is identical to (or in one-to-one correspondence with) thiective world—
let’s call it W—one’s formal framework must consider different possildtion-
ships betweelX andW. We make no assumptions ab&\t except that it is mean-
ingful to talk about probabilities iW, governed by some (unknown) probability
measureu on an event spac#’. We define gerceptual strateggs a measurable
functionP : W — X. One can think oP as a channel betwe&\ andX, that allows
information to flow from the objective world to the organisim.the general case,
P is a Markovian kernel which specifies, for eagle W, a probability distribution
onX.2 One can then consider four classes of perceptual strategiessponding to
different relationships betweefiandW (see [16, 25]): (i) thendive realiststrategy
assumes that = W and thatP preserves all structures o¥; (ii) the strong critical
realist strategy assumes only thétC W but requires thalP projects all structures
of W onto X; (iii) the weak critical realiststrategy allows thaX ¢ W but requires
thatP projects all structures & ontoX; and (iv) aninterface strategwllows that
X ¢ W and does not require thBtprojects all structures &% ontoX. The interface
strategyneed not see the truth the more fundamental sense that the very language
of the spaceX may be the wrong language to capture the structure of theige
world W.

2 Hence, formallyP is a mapping® : W x 2" — [0, 1], where2” is the event space of. One can
view P as a linear operator that maps probability measuré&/ @a probability measures oX. In
the discrete case, it would be represented by a stochastitxmwaose rows add up to 1. For more
on Markovian kernels see [3, 31].
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Most vision researchers today are weak critical realiisyTrecognize—contrary
to the claim of naive realism and strong critical realism-atthberceptual represen-
tations are distinct from objective reality, but assumé preaiceptual representations
are isomorphic, or at least homomorphic, to objective tgalie call these two
versions “isomorphic realism” and “homomorphic realism.”

We generalize BDT to a framework we call Computational Etiohary Percep-
tion (CEP; [16]). In CEP, the objective worlty lies outside of the Bayesian infer-
ential apparatus (see Figure 1K)andY are simply two representational spaces—
neither corresponds to the objective waidnor are they assumed to be isomorphic
toW). For exampleY may be a lower-level representation (say, a 2D representati
of image structure) that evolved earlier, wher¥avay be a higher-level representa-
tion, involving some 3D structure, that evolved later. Thare perceptual channels
Px andR, from the worldw to X andY, respectively. As noted above, in the general
casePx andR, are also Markovian kernels. Thus, for eagle W, Py specifies a
probability measure o, andR, specifies a probability measure ¥nln particu-
lar, the measurg onW yields, viaPx, a pushdown measuge on X, and similarly
via R/, a measuret onY.2 In the diagram in Figure 1b, therefore, all four map-
pings shownl(,B,Px andR,) are Markovian kernels. It is therefore meaningful to
take their compositions, which are also Markovian kerr&lgli as the composition
P«L : W — Y).% An important constraint in the CEP framework is that the thag
in Figure 1b must commute. As a result, for examples= PxL. This is a coherence
constraint on perceptual representations that allowsrebsseto predict the percep-
tual consequences of their actions, despite the fact tiegtdlre ignorant about the
objective world itself (see also Section 4).

What shapes the evolution of perception is, of course, fitrd& therefore ex-
pect that natural selection tunes perceptual channelgli{@irccorresponding repre-
sentational spaces) to the only signal that matters forugieml, namely, fitness. In
order to bring fithess into our formalism, we view organisragathering “fitness
points” as they interact with the world. As we noted, fithespehds not only on the
objective world, but also on the organism, its current statel the type of action in
guestion. Thus we definegdobal fitness function fW x O x Sx A — R™, where
Ois the set of organism§,of their possible states, aidof possible action classes.
Once we fix a particular organisoe O, states € S, and action clasa € A, thespe-
cific fitness functionofsa : W — R assigns fitness points to each possible W
(say, of a starving lion eating a gazelle).

Given a specific fitness functiofy s a, evolution shapes a source message about
fitness and a channel to communicate that message, thatsrasuiill-climbing
toward greater expected-fithess payout to the organisra.riiéans that a perceptual
channelPx from W to X may be expressed as the composition of two Markovian

3 Thus, whereas in BDTuy is taken to be the world prior, in CER is the pushdown, via the
perceptual channél, of the prioru on the objective world.

4 Kernel composition is defined as follows: Lkt be a kernel fromX, 2°) to (Y,#), andN
be a kernel fromY,#") to (Z, 2). Then the composition kerndN from (X, 2") to (Z, %) is
defined,vx € X andA € 2, by MN(x,A) = [, M(x,dy)N(y,A). This is simply a generalization to
the continuous case of the familiar multiplication of (stastic) matrices. For details, see [31].
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Fig. 2 (a) A specific fitness function defined on a world containingsurce that varies in quantity
from 0 to 100. Resource quantities around 25 and 75 confegréeest fitness, whereas resource
values around 0, 50, and 100 confer the least fitness. (b) ditraiction of a message set with 4
messages, based on a simple clustering of fithess valuefourtoategories: “very high” (green),
“somewhat high” (blue), “somewhat low” (yellow) and “vergu” (red).

kernels: a message construction kefRgl from W to a set of messagéd, and a
transfer kernePr, from M to X. The messageonstructionkernelP, is needed
because the messages to be transmitted depend not only wottldé/N, but also
on the fitness values associated with elemenW ¢for a particular organisr, its
states, and action clasa). Hence, given the sanW, but a different specific fithess
function fosa, the set of messages to be transmitted may be different.id@ns
an example of a simple world with multiple territories, eafhwhich contains a
resource whose quantity varies from 0 to 100. Thus each ¥edue O to 100 may
be considered to be a different world state. Now considespleeific fithess function
fosa shown in Figure 2a. As shown, resource quantities arounchés/& confer
the greatest fitness, whereas resource values around G)bQpa confer the least
fithess. Assume that the representational spéamntains 4 elements, sa¥, =
{A,B,C,D}. Then an efficient way to construct a message set might bewe ha
four messages, obtained by clustering the fithess valuedadnt categories: “very
high” (green), “somewhat high” (blue), “somewhat low” (i@l) and “very low”
(red) (see Fig Figure 2b). The received messages are thely imgormative about
fitness, and would allow the organism to choose betweendges in a manner that
will result in high expected-fitness payout (e.g., given aich between a “green”
territory vs. a “blue” onef. (Note that this occurs despite the fact that the received
messages carry little information about the actual numbezsmurces.) We use the
term Darwinian Observeto refer to a perceptual chanrf&] that has been shaped
by natural selection as a satisficing solution for a specitfiefis function.

The above analysis assumed that the representational Xpaas fixed, and the
perceptual chann&k was being tuned to increase expected-fitness payout. Anothe
way, however, to increase expected-fitness payout is tovevthe representational
space itselfX; — X, — .... Presumably, there would be selection pressure to evolve
a more complex representational space (e.g., a repreiserttat captures some 3D
structure) when the expected-fitness payout with the ctsqgarce is insufficient to

5 In this example, a simple clustering based on fitness valassswificient. More generally, how-
ever, multi-dimensional scaling may be required. IndeeBSvype solutions may also provide an
explanation of how dimensional structure can arise in vz representations.
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survive or compete, and going to the more complex represensh space would
allow a substantial increase in expected-fitness payout.

The CEP framework is thus more general than the BDT frameviarkision.
First, while incorporating the fundamental role of probiatic inference, it allows
us to consider different possible relationships betweesiace of interpretatiois
and the objective worlaV (rather than simply assuming thét=W, or thatX is iso-
morphic toW). Second, it explicitly incorporates the role of fitnes®ittie formal
framework, in a way that does not simply reduce fitness to #ie/lgss function of
BDT. And third, by using Markovian kernels to map the relathip betweelV and
X, it allows us to articulate precisely different ways in whigerceptual evolution
can proceed (e.g., by tuning a perceptual channel to a fiygésentational space,
or evolving the representational space itself).

4 Shape as a code for fitness

4.1 Implicationsfor shape perception

With our general framework in place, the implications foagh perception now
follow straightforwardly. First, our framework makes italr that we really have
no basis for assuming—as is standardly done—that shapedbjactive property
of the world. For example, it is fairly standard among shagsearchers to speak
of “shape recovery” when referring to the computation of 3aEe from different
2D cues. This nomenclature reflects the identification ofépeesentational space
X with the objective worldW that is assumed in thimverse opticsapproach to
vision (and, as noted above, is commonly made in Bayesiaroappes to vision).
When one sees the 3D shape of an object, the undulationssorfisce, etc., one
sees, according to the inverse optics approach, geometpegies that correspond
to objective properties of the wofle-properties that exist independently of any
observer. However, as we noted above, this is too simpliktis certainly much
more than can be claimed based on available facts. Thereas/san objective
world W, but there is no basis for saying theltapeis a property of that world.
Rather, shape is simply a representational format usedbyisual systems to guide
interactions with the objective world. It is part of the repentational space, not
W. It should be clear from this that our position is strictlyaker—not stronger—
than the standarithverse opticor shape recovergpproach. Whereas the standard
approach assumes, or postulates, ¥at W or thatX is isomorphic toN, we are
open to different possible relations betweeandWw.

6 The inverse optics approach allows for misperceptions—thgt observers tend to perceive an
object from a certain viewpoint as being less elongated jottdnan physical measurements of the
object tell us it is. But the inverse optics approach neeetts assumes thaneof the shapes in

X is the “correct” one in the objective worlMy. In other words, at a more fundamental level, the
inverse optics approach assumes that the very property livehegoeis an intrinsic property of the
objective worldw itself.
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Second, our framework entails thslhape as a representational format, most
likely evolved because it made possible the developmentpdraeptual channel
with high expected-fitness payout. Thus the property westelpes essentially an
effective coding scheme that has been tuned by naturaltegleit conveys to an
organism—in a compact and efficient format—the various vily¢hich the organ-
ism could interact with objects in the world to gain more “&$s points.” Therefore
when we perceive the 3D shape of an object—the undulatioriss@urface, its
symmetries, its part structure—all of these are differespteats of a representa-
tional format that natural selection has fashioned, onelwbompactly summarizes
the different possible actions that we could take, and thadva us to predict the
perceptual consequences of those actions (e.g., how theptem of a 3D object
would change were we to rotate it slightly to left, pick it upa certain way, etc.),
and what the fitness consequences would be (e.g., would veessfally eat that
apple or evade that tiger).

This last point raises a natural question: How is it possfbleus to interact
successfully with the objective world if we are fundamelgtanorant of it, and
can assume no simple correspondence between our perceptidrthat objective
world? This is where the third implication of our framewoiknges in, namely, that
action (broadly construed) plays a central role in the evamiuof shape perception.
In brief, it is perfectly possible to interact successfullith a fundamentally un-
known objective world because (i) there is a regularity i@ perceptual mapping;
(ii) there is regularity in the consequences of our actiorntsé objective world; and
(iif) these mappings are linked in a coherent manner. Thafisidamental point for
our framework and, to develop it fully, we need to introduses more formalism,
namely that of theperception-decision-actiofor PDA) loop. Before we do this in
the next subsection, however, we provide an example thaidhelp fix intuitions.

Consider the desktop interface of a PC. A file’s icon on thekidgsmight be
green, rectangular and in the middle of the screen. Doesetitil that the file
itself is green, rectangular and in the middle of the comu@f course not. The
shape, position and color of the icon are merely conventibasallow the user
to interact with the computer despite being ignorant of thmglex details of its
diodes, resistors, software, voltages and magnetic figlds.desktop interface is
useful not because it reveals the truth about the compuiehbdrause it hides the
complex truth, and instead provides simple symbols thadeyuiseful interactions
with the computer. In like manner, natural selection hapstaur perceptions to
be an interface that hides the true nature of the objectivédwand guides adaptive
behavior[14, 15, 20]. Spacetime is the desktop, and objétitgheir shapes, colors,
textures and motions are icons in the desktop. Spacetimeljedts are not the
objective truth, and do not resemble the truth. Instead; #ire a species-specific
adaptation shaped by natural selection to guide adaptivaviers and to allow us
to survive long enough to reproduce. Perception has begredhzy the imperative
to produce offspring, not to see truth.
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4.2 Theroleof action in the evolution of shape perception

In this section we incorporate action and decision into oamfalism, and draw out
implications for shape perception. Natural selection ssagly couples perception
and action because fithess, to which perception is tuneandispcrucially on the
actions of the observer. Different classes of action argeimeral, coupled with dif-
ferent expected fitnesses. The fitness points gleaned froapple for the action
of eating is greater than for the action of mating. Since raéselection tunes per-
ceptual channels to convey information about fithess, opeas tight coupling
between perceptual channels and the actions they inform.

When an observer receives a perceptual experigrc¥, it must decide what
action to take. We will denote the set of available actiona bgtG, where we think
of G as including a group that acts &nh Recall that if a groujs acts onX, then for
everyg € G the mapping — gxis a bijective map fronX to X. Common examples
are the actions of translation and rotation on Euclideanespa/Ne also allow there
to be actions irG other than group actions.

Thus, given a perceptual experience X the observer must decide which ac-
tion g € G to take. The natural formalism to describe such a decisiaygan a
Markovian kernelP, from (X, 2") to (G,¥). We callD the decision kernel.

Once an actiory is chosen, the observer must then act on the objective world
W. We model this action by a Markovian kernglfrom (G,¥) to (W, #), which
we call the action kernel. Given this formalism, we can thifilaction as sending a
message from the observer to the objective world.

Thus we have three kerneB; D, andA. P maps fromW to X; D maps fromX
to G; A maps fromG back tow (see Figure 3). So together they form a loop, which
we call the PDA loop. We have a PDA loop for each perceptuabsmtation space
X. So, in the CEP example discussed in Section 3, there is a Be#\fbr the 2D
image spac¥ and another PDA loop for the 3D spaxe

However, just as we assume that the observer does not knabjbetive world
W, and therefore does not know the perception kePalo also the observer does
not know the action kernel. Informally, this means that when we act, we don't
really know what effects we are having in the objective waxdtself; however we

G

A D

W > X

p

Fig. 3 The Perception-Decision-Action (PDA) looy. denotes the objective worl& a space of
perceptual representations of an organism, @rille related set of actions the organism can take.
P is a perception kerneD a decision kernel, and an action kernel. All kernels are Markovian.
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do know the results of those effects back in our perceptyseence. Formally,

even though the observer cannot know the kerRedsdA, it can know the kernel
APfrom (G,¥) to (X, Z"), which is formed by the kernel compositiondandP. It

can also know the kern&IAP from (X, 2") to (X, Z") (i.e., fromX back to itself).

This allows the observer to learn how to interact Witheven while being ignorant

of W. The observer can try different actiogs G and note their consequences for
perceptual experiences i If the consequences are unexpected, the observer can
update its decision kernBl to correct this.

This applies to actions with objects and shapes. If, forinst, the observer acts
in a way that leads it to perceive that its body moves thropgles via an element of
the Galilean group, or that its hand is grasping an objectatading it, then, given
its perceptions of the relative position of an object, arelshmmetries and parts of
that object, it can predict what the consequences of iterastiould be for changes
in the relative position and perceived shape of that object.

This also applies to object categorization. Such categtioz allows the ob-
server to predict the fitness consequences of various ¢wameifuture interactions
with the object (such as eating it). We are thus using the Waction” broadly to
include not only “dorsal stream” visually-guided motor betor, but also “ventral
stream” perception and categorization that inform futwgkdvior.

Let'’s return to the desktop metaphor discussed above. A mewrgtion of desk-
tops now employ 3D interfaces. In such a desktop, if the id@fibe has a particular
3D shape, say the shape of a book, and the desktop containbadkiShelf with a
book-shaped gap, then the user can be guided by the shapesitidrpof the 3D
icon to grasp it and place it in the bookshelf. In one sensgjghunremarkable. But
the key concept here is that the file itself in the computerrt@a3D shape, and in
particular is not shaped like a book. Moreover, the dirgcsystem in the computer
has no 3D shape, and in particular is not shaped like a botlk$hese 3D shapes
are mere conveniences for guiding effective interactidniseuser, not insights into
the true nature of files and directories—and certainly nahefmyriads of voltages
and magnetic fields in the computer.

4.3 Perceptual organization of shape

Apart from computing 3D shape from 2D image cues, anothatdorental aspect
of shape perception is the perceptual organization of shamggeat deal of psy-
chophysical work indicates that human vision organizespgerishapes hierarchi-
cally in terms of parts and their spatial relationships.(¢5g 7, 13, 32]). This “struc-
tural” approach to shape separates the representatiodieidnal parts from that of
their spatial relationships—thereby allowing a shape tabatified as comprising
the same parts, but in somewhat different spatial relafjerts, a sleeping cat vs. a
standing cat). Itis also closely related to the axis or skeldased approach, which
provides a compact “stick-figure” representation of a camphape that captures
its structural aspects (e.g., its branching structure) Mtecent probabilistic ap-
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proach to the computation of shape skeletons yields a coadacorrespondence
between parts and skeletal branches—indicating that padskeletons are indeed
complementary aspects of the perceptual organizationagfesf8].

They key point, for current purposes, is that the perceprganization of shape
in terms of parts and axes has no natural interpretationrms®f inverse optics.
There is no objective “ground truth” regarding whether ajeob“really” has one
part or two, or whether an axis that continues from one powuita shape to another
is “really” the same or a different axial branch (e.g., cdesia U-shape vs. a V-
shape, and a morphing sequence between them). The orgamizishape in terms
of segmented parts, or in terms of axes, is something thatishal systenimposes
on perceptual objects—it is not an objective property ofweld. This does not
mean that a Bayesian analysis of the problem is not possilolever, the likeli-
hood or the “forward” mapping in that case has a differergrptetation; it is not
a projective or rendering map, but the visual system’s generative modeton-
cerning how objects are formed [8]. This is easily accomndi@ithin the current
framework, since for us the space of interpretatighis distinct from the world
W. Hence, in this case, the spa¥evould consist of all possible interpretations of
a shape as a hierarchical organization using segmentesl(pagt, different parti-
tions of a shape, and different tree structures capturisgipte part hierarchies). In
the context of perceptual organization of shape, it is ftoeecespecially clear that
elements oKX have no simple correspondence to the objective watld

A natural question is: Why have shape representations lasedrts and axes
evolved, if they have no simple correspondence to the db@watorld W? The an-
swer, as expected, has to do with fitness. Organisms thateditp upon seeing an
object at one time, what that object might look like on othesasions, are likely to
interact with it much more successfully—and thus have grdéhess—than those
that cannot. And a shape representation based on parts eadjass a long way
in conferring this ability: Upon seeing an animal in one jgatar articulated pose
(configuration of limbs), for example, it is much easier tegict other possible (un-
seen) articulated poses if one’s shape representationtibgsed than, say, if one’s
representation consists simply of an unstructured tempiethe shape as a whole.
In sum, a framework that allows andW to be distinct, and incorporates the role of
fithess, makes it much easier to understand the percepgatiaation of shape.

5 Discussion

We sketched a formal framework—Computational Evolutignaerception—that
subsumes and generalizes the standard Bayesian framewvorision. While in-

corporating the role of probabilistic inference, CEP alscorporates fitness in a
fundamental way, and it allows us to consider different fideselationships be-
tween the objective world and perceptual representatispates. In our frame-
work, shape is not an objective property of the world. It i@y a representa-
tional format employed by our visual systems to guide adeptiteractions with
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the world. This representational format evolved becausdldtvs a high-capacity
channel for fitness. In other wordshape is an effective code for expected fithess
that has been tuned by natural selecti@®cause fithess depends crucially on the
actions of an organism, shape representations in our frankeave closely tied to
actions. Thus when we perceive the 3D shape of an object—rtialations of its
surface, its local and global symmetries, its part and skiestructure—these are
various aspects of a code that compactly summarizes théjastions that one
could take (including future actions based on current categtion), and to predict
the fithess consequences of those actions. To model thisfigrmve introduced the
perception-decision-action (PDA) loop. Among other tlinthe PDA loop clari-
fies how, even though one cannot know the effects of one'srath the objective
world itself, one can nevertheless know (because of thereaheoupling between
perception and action) the results of those effects backiiperceptual experience.
This explains how organisms can interact effectively withredamentally unknown
objective world. Finally, CEP and the PDA loop provide a neanfework for under-
standing the perceptual organization of shape using padgtskeletons—something
that is difficult to accommodate within a standard inverp&eas approach to shape.
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Appendix: Relation to Quantum Bayesianism

One possible objection to the framework proposed in thigptEdramight be: “It is
naive for vision scientists to propose that our perceptaesot veridical, and that
therefore the objective world need not be spatiotempordireeed not contain 3D
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objects with shapes. Surely physicists know otherwise,vamald dismiss such a
proposal out of hand.”

Although some physicists might dismiss such a proposalethee others who,
in trying to best interpret the formalism of quantum thedvgye been led to a view
about quantum states that comports well with our propodads@ physicists, who
call their approach “quantum Bayesianism,” or QBism forrshdaim that quantum
states are not objective representations of the extermédyaut rather are compen-
dia of beliefs about possible outcomes of measurements0}92]1 As Fuchs [9]
puts it, “... there is no sense in which the quantum state itself repre¢pictures,
copies, corresponds to, correlates with) a part or a whalesoéxternal world, much
less a world thajust is’ and “. .. a quantum state isstate of beliefabout what will
come about as a consequence.ofactions upon the system.” So, for instance, ac-
cording to QBism a state function of a quantum system, reptesl say in the basis
of the position operator, has a particular shape in spatce#mbe used to predict
the consequences of actions on that system.

This is entirely consistent with the view we propose about merceptual ex-
periences in general, and our experiences of shape in ylartidhere is no sense
in which the objects in our perceptual experiences picttopy, correspond to, or
correlate with a part or a whole of the external world. Indteach objects and their
shapes, and perceived space-time itself, are states ef ablout what will come
about as a consequence of our actions (which could incluésunement). The rea-
son is that natural selection, which has tuned our percepti@wards fithess and
nothing else. Therefore our perceptions have been tuneddom us of the fithess
consequences of our possible actions, not to copy or pitiierebjective world.



