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1 Introduction

Our perception of shape is, like all of our perceptions, a product of evolution by
natural selection. This entails that our perception of shape is a satisficing solu-
tion to certain problems faced by our ancestors, e.g., the need to stalk prey, secure
mates, elude predators, and predict outcomes of actions. Natural selection produces
satisficingsolutions, rather thanoptimizingsolutions, because selection favors sur-
vival of thefitter, not of thefittest: A gene need confer only a slight edge over the
competition—a standard far lower than optimality—to proliferate in later genera-
tions.

It is standard in vision research to assume that more accurate perceptions are
fitter perceptions, and that therefore natural selection tunes our perceptions to be
veridical, i.e., to be accurate reflections of the objectiveworld. For instance, Palmer
argues that “Evolutionarily speaking, visual perception is useful only if it is reason-
ably accurate. . . This is almost always the case with vision” [28]. Geisler andDiehl
argue that “In general, (perceptual) estimates that are nearer the truth have greater
utility than those that are wide of the mark” [11].

If perception is indeed veridical, then the world of our visual experience shares
the attributes of the objective world. Our visual world has three spatial dimensions,
a temporal dimension, and contains 3D objects with shapes, colors, textures and
motions. Vision researchers standardly assume that the objective world does also. In
other words, they standardly assume that the language of ourvisual representations
is the correct language for describing objective reality.
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In this chapter we propose, contrary to standard assumptions, that natural selec-
tion does not in general favor veridical perceptions. The reason, in short, is that
fitness is distinct from truth; it depends not only on the objective world, but also on
the organism, its state, and the action class in question. A gazelle, for instance, of-
fers lots of “fitness points” to a hungry cheetah seeking to eat, but none to a cheetah
seeking to mate. Natural selection favors fitness, not truth. It is straightforward to
produce evolutionary games in which true perceptions are driven to extinction by
nonveridical perceptions that simply report fitness [25].

The consequences of this for shape perception are profound.If our perceptions
of 3D shape are not veridical reconstructions of objective 3D shapes, then a new
framework, entirely different from the standard, is required to properly understand
shape perception. In this chapter we sketch such a formal framework that incorpo-
rates the role of evolution in a fundamental way, and in whichperceived shape is an
adaptive guide to behavior, not a reflection of objective reality. This framework is
consistent with theinterfacetheory of perception [15].

Because natural selection has tuned our perception of shapeto be an adaptive
guide to behavior, our perception of shape has evolved to be tightly coupled with our
actions, a coupling that we formalize here with a commuting diagram that we call
the “perception-decision-action” loop, or PDA loop. Thus the detailed properties of
perceived shapes, such as their symmetries and parts, are not depictions of the true
properties of shapes in an objective world, but simply guides to adaptive action.1

2 Bayesian Decision Theory

A common framework for modeling vision in general, and the “recovery” of 3D
shape from 2D images in particular, is Bayesian decision theory (BDT) [12, 17,
18, 21, 23, 24]. BDT provides a probabilistic framework at the computational (or
competence) level [26], at which visual problems are analyzed in terms input-
output relations (e.g., the formal constraints needed to derive desired outputs from
given inputs)—independently of performance considerations involving specific al-
gorithms or their implementations.

Given the basic inductive problem that any image is consistent with many differ-
ent 3D interpretations, the visual system can resolve this ambiguity only by bring-
ing additional constraints (or biases) to bear—based on regularities observed in
the terrestrial environment in which our species evolved—and comparing the rel-
ative probabilities of different scene interpretations. For example, in estimating 3D
shape from shading, human vision appears to assume that light comes from above
(e.g., [19, 24]). Similarly, theories of shape-from-contours often assume that the 3D
shapes are symmetric, or maximally compact (e.g., [30]).

1 We use “action” in the broadest sense of the word—to include not only visually-guided manip-
ulation of objects (“dorsal stream”), but also visual categorizations (“ventral stream”) that inform
subsequent behavior, e.g., whether or not to eat a fruit thathas some probability of being poisonous.
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Formally, given an imagey0, the visual system must compare the posterior proba-
bility p(x|y0) for different scene interpretationsx. By Bayes’ Theorem, this posterior
probability is proportional to the the product of the likelihood of the scenep(y0|x)
and its prior probabilityp(x). The likelihood term captures the extent to which the
scene interpretationx is consistent with—and hence can “explain”—the imagey0.
In theories of shape-from-X, it is usually taken to be a projective mapping from 3D
to 2D (orthographic or perspective), plus some model of noise. Because many differ-
ent 3D interpretations are typically consistent with any given image, the likelihood
cannot generally resolve the ambiguity by itself (i.e., thelikelihood may be equally
high for a large number of 3D interpretations). The other source of information—the
prior probability—reflects the observer’s internalized beliefs about fact that certain
scenes, shapes, or states of the world are more likely than others—e.g., light tends
to come from above, objects tend to be compact, there is a prevalence of symmetric
objects, etc. [30, 19, 24].

The combined use of the prior and likelihood—via Bayes—yields a posterior dis-
tribution on the space of scene interpretations. It is common to use the maximum-a-
posteriori (MAP) estimate as one’s “best” interpretation.More generally, however,
the choice of a “best” point estimate depends on the loss function one assumes—
namely, the consequences of errors, or deviations from the “true” (but unknown)
interpretation. If the loss function is essentially a Dirac-delta function (i.e., no loss
for the correct answer, equal loss for every other answer) the value that minimizes
expected loss is the mode of the posterior distribution, i.e., the MAP estimate. How-
ever, if the loss function is quadratic (i.e., squared-error), the value that minimizes
expected loss is the mean of the posterior distribution. Hence different choices of
loss functions lead to different strategies for picking a single “best” scene interpre-
tation from the posterior distribution (e.g., [24]).

3 A general framework for perception and its evolution

Bayes’ Theorem provides a provably optimal way of combiningthe two probabilis-
tic sources of information embodied in the likelihood and prior [17]. Hence there is
strong, principled justification for using Bayes, once a likelihood model and a prior
have been specified on a particular space of possible interpretations. However, the
Bayesian framework as it is standardly applied to vision involves important assump-
tions about the choice of interpretation space that we will argue are too restrictive.

Consider the standard Bayesian setup for vision shown in Figure 1a.X is the
space of scene interpretations (say, 3D shapes), with priorprobability distribution
µX. Y is the space of 2D images. The likelihood mappingL is the projective map
from 3D to 2D (possibly with noise).B is the Bayesian posterior map fromY to
X. Technically,L andB are both Markovian kernels [31]. Thus, for eachx∈ X, the
projective mapL specifies a probability distribution onY (in the noise-free case,
this distribution is supported on a single point). And for each y ∈ Y, the Bayesian
posteriorB gives a probability distribution on the spaceX of 3D shapes.
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Fig. 1 (a) The standard Bayesian framework for vision. (b) The computational evolutionary per-
ception (CEP) framework. In CEP, the objective worldW lies outside of the probabilistic inferential
apparatus for vision. There are perceptual channelsPX andPY to the two representational spacesX
andY, respectively. And there are specific fitness functions onW that assign, for a given organism
o, its states, and the type of actiona in question, “fitness points” to eachw∈W.

Importantly, note that in this setup the spaceX plays two distinct roles: (i) it
corresponds to the space of objective world states; and (ii)it corresponds to the space
of possible perceptual interpretations from which the visual system must “choose.”
This dual role is entirely consistent with theinverse opticsapproach to vision—
according to which the goal of vision is essentially to invert or “undo” the effects
of optical projection (e.g., [1, 29]). It is also consistentwith the historical roots
of Bayesian methods, namely, as techniques for computing “inverse probability”—
a prototypical case being to infer the relative probabilities of possible underlying
causesp(C|E) given some observed eventE, when what one actually knows are the
probabilities of obtaining various eventsp(E|C) from particular causesC [22].

This dual role played byX makes it clear how BDT embodies the common as-
sumption that human vision has evolved to see the truth. It isnot the case, of course,
that a BDT observer always makes veridical perceptual inferences. Indeed, it can-
not. Because a BDT observer embodies specific assumptions about regularities in
the world (“light tends to come from above,” “objects tend tobe mostly convex,”
etc.) it is always possible to place it within a context whereits assumptions are vi-
olated. At a more fundamental level, however, BDT makes the basic assumption
that thelanguageof scene interpretationsX is the correct language for describing
objective reality. In other words, BDT assumes that the representational spaceX
contains somewhere within it a true description of the objective world—even if the
observer’s estimate misses it in any given instance. It is inthis more fundamental
sense that BDT assumes that human vision has evolved to see the truth.

Consideration of vision in other species, especially thosewith simpler visual
systems, suggests that this implicit identification of the representational spaceX
with the objective world is too simplistic. As we will see, itis also too restrictive if
one wants a formal framework that is general enough to encompass the evolution of
visual systems.
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In discussing simpler visual systems, such as those of the flyand the frog, Marr
[26] noted that they “...serve adequately and with speed andprecision the needs of
their owners, but they are not very complicated; very littleobjective information
about the world is obtained. The information is all very subjective...”; and that “...it
is extremely unlikely that the fly has any explicit representation of the visual world
around him—no true conception of a surface, for example, butjust a few triggers
and some specifically fly-centered parameters...” (p. 34). Thus Marr seemed to ac-
knowledge that visual systems that do not compute objectiveproperties of the world
can serve the needs of their owners well enough for them to survive, even thrive,
in their respective niches. This should not be surprising; after all, what matters in
evolution is fitness, not truth, and even visual systems thatcompute only simple,
purely “subjective,” properties can confer sufficient fitness. Despite this, Marr held
that the properties computed byhumanvision—such as object shape—are objective
properties of the world that exist independently of any observer. There is no rea-
son to believe, however, that the representational spaces that evolved in the species
Homo sapiensmust correspond to objective reality. The evolution ofHomo sapiens
is guided no less by fitness than the evolution of any other species. And fitness is
clearly distinct from objective truth because it depends not only on the objective
world, but also on theorganism(fly vs. elephant), itsstate(hungry vs. satiated),
and thetype of actionunder consideration (eating vs. mating). Therefore one’s for-
mal framework must be broad enough to include the possibility thathumanvisual
representations also do not capture objective truth.

Thus, rather than simply assuming, or postulating, that thespace of interpreta-
tionsX is identical to (or in one-to-one correspondence with) the objective world—
let’s call it W—one’s formal framework must consider different possible relation-
ships betweenX andW. We make no assumptions aboutW, except that it is mean-
ingful to talk about probabilities inW, governed by some (unknown) probability
measureµ on an event spaceW . We define aperceptual strategyas a measurable
functionP : W → X. One can think ofP as a channel betweenW andX, that allows
information to flow from the objective world to the organism.In the general case,
P is a Markovian kernel which specifies, for eachw∈W, a probability distribution
onX.2 One can then consider four classes of perceptual strategiescorresponding to
different relationships betweenX andW (see [16, 25]): (i) thenäıve realiststrategy
assumes thatX =W and thatP preserves all structures onW; (ii) the strong critical
realist strategy assumes only thatX ⊂ W but requires thatP projects all structures
of W ontoX; (iii) the weak critical realiststrategy allows thatX 6⊂W but requires
thatP projects all structures ofW ontoX; and (iv) aninterface strategyallows that
X 6⊂W and does not require thatP projects all structures ofW ontoX. The interface
strategyneed not see the truthin the more fundamental sense that the very language
of the spaceX may be the wrong language to capture the structure of the objective
world W.

2 Hence, formally,P is a mappingP : W×X → [0,1], whereX is the event space onX. One can
view P as a linear operator that maps probability measures onW to probability measures onX. In
the discrete case, it would be represented by a stochastic matrix whose rows add up to 1. For more
on Markovian kernels see [3, 31].
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Most vision researchers today are weak critical realists. They recognize—contrary
to the claim of naive realism and strong critical realism—that perceptual represen-
tations are distinct from objective reality, but assume that perceptual representations
are isomorphic, or at least homomorphic, to objective reality. We call these two
versions “isomorphic realism” and “homomorphic realism.”

We generalize BDT to a framework we call Computational Evolutionary Percep-
tion (CEP; [16]). In CEP, the objective worldW lies outside of the Bayesian infer-
ential apparatus (see Figure 1b).X andY are simply two representational spaces—
neither corresponds to the objective worldW (nor are they assumed to be isomorphic
toW). For example,Y may be a lower-level representation (say, a 2D representation
of image structure) that evolved earlier, whereasX may be a higher-level representa-
tion, involving some 3D structure, that evolved later. There are perceptual channels
PX andPY from the worldW to X andY, respectively. As noted above, in the general
case,PX andPY are also Markovian kernels. Thus, for eachw∈ W, PX specifies a
probability measure onX, andPY specifies a probability measure onY. In particu-
lar, the measureµ onW yields, viaPX, a pushdown measureµX onX, and similarly
via PY, a measureµY on Y.3 In the diagram in Figure 1b, therefore, all four map-
pings shown (L,B,PX andPY) are Markovian kernels. It is therefore meaningful to
take their compositions, which are also Markovian kernels (such as the composition
PXL : W →Y).4 An important constraint in the CEP framework is that the diagram
in Figure 1b must commute. As a result, for example,PY = PXL. This is a coherence
constraint on perceptual representations that allows observers to predict the percep-
tual consequences of their actions, despite the fact that they are ignorant about the
objective world itself (see also Section 4).

What shapes the evolution of perception is, of course, fitness. We therefore ex-
pect that natural selection tunes perceptual channels (andtheir corresponding repre-
sentational spaces) to the only signal that matters for evolution, namely, fitness. In
order to bring fitness into our formalism, we view organisms as gathering “fitness
points” as they interact with the world. As we noted, fitness depends not only on the
objective world, but also on the organism, its current state, and the type of action in
question. Thus we define aglobal fitness function f: W×O×S×A→ R

+, where
O is the set of organisms,Sof their possible states, andA of possible action classes.
Once we fix a particular organismo∈ O, states∈ S, and action classa∈ A, thespe-
cific fitness function fo,s,a : W → R

+ assigns fitness points to each possiblew∈ W
(say, of a starving lion eating a gazelle).

Given a specific fitness functionfo,s,a, evolution shapes a source message about
fitness and a channel to communicate that message, that results in hill-climbing
toward greater expected-fitness payout to the organism. This means that a perceptual
channelPX from W to X may be expressed as the composition of two Markovian

3 Thus, whereas in BDTµX is taken to be the world prior, in CEPµX is the pushdown, via the
perceptual channelPX , of the priorµ on the objective world.
4 Kernel composition is defined as follows: LetM be a kernel from(X,X ) to (Y,Y ), and N
be a kernel from(Y,Y ) to (Z,Z ). Then the composition kernelMN from (X,X ) to (Z,Z ) is
defined,∀x∈ X andA∈ Z , by MN(x,A) =

∫
Y M(x,dy)N(y,A). This is simply a generalization to

the continuous case of the familiar multiplication of (stochastic) matrices. For details, see [31].
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Fig. 2 (a) A specific fitness function defined on a world containing a resource that varies in quantity
from 0 to 100. Resource quantities around 25 and 75 confer thegreatest fitness, whereas resource
values around 0, 50, and 100 confer the least fitness. (b) The construction of a message set with 4
messages, based on a simple clustering of fitness values intofour categories: “very high” (green),
“somewhat high” (blue), “somewhat low” (yellow) and “very low” (red).

kernels: a message construction kernelPCX from W to a set of messagesM, and a
transfer kernelPTX from M to X. The messageconstructionkernelPCX is needed
because the messages to be transmitted depend not only on theworld W, but also
on the fitness values associated with elements ofW (for a particular organismo, its
states, and action classa). Hence, given the sameW, but a different specific fitness
function fo,s,a, the set of messages to be transmitted may be different. Consider
an example of a simple world with multiple territories, eachof which contains a
resource whose quantity varies from 0 to 100. Thus each valuefrom 0 to 100 may
be considered to be a different world state. Now consider thespecific fitness function
fo,s,a shown in Figure 2a. As shown, resource quantities around 25 and 75 confer
the greatest fitness, whereas resource values around 0, 50, and 100 confer the least
fitness. Assume that the representational spaceX contains 4 elements, say,X =
{A,B,C,D}. Then an efficient way to construct a message set might be to have
four messages, obtained by clustering the fitness values into four categories: “very
high” (green), “somewhat high” (blue), “somewhat low” (yellow) and “very low”
(red) (see Fig Figure 2b). The received messages are then highly informative about
fitness, and would allow the organism to choose between territories in a manner that
will result in high expected-fitness payout (e.g., given a choice between a “green”
territory vs. a “blue” one).5 (Note that this occurs despite the fact that the received
messages carry little information about the actual number of resources.) We use the
termDarwinian Observerto refer to a perceptual channelPX that has been shaped
by natural selection as a satisficing solution for a specific fitness function.

The above analysis assumed that the representational spaceX was fixed, and the
perceptual channelPX was being tuned to increase expected-fitness payout. Another
way, however, to increase expected-fitness payout is to evolve the representational
space itself:X1 →X2 → . . .. Presumably, there would be selection pressure to evolve
a more complex representational space (e.g., a representation that captures some 3D
structure) when the expected-fitness payout with the current space is insufficient to

5 In this example, a simple clustering based on fitness values was sufficient. More generally, how-
ever, multi-dimensional scaling may be required. Indeed, MDS-type solutions may also provide an
explanation of how dimensional structure can arise in perceptual representations.
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survive or compete, and going to the more complex representational space would
allow a substantial increase in expected-fitness payout.

The CEP framework is thus more general than the BDT frameworkfor vision.
First, while incorporating the fundamental role of probabilistic inference, it allows
us to consider different possible relationships between the space of interpretationsX
and the objective worldW (rather than simply assuming thatX =W, or thatX is iso-
morphic toW). Second, it explicitly incorporates the role of fitness into the formal
framework, in a way that does not simply reduce fitness to the gain/loss function of
BDT. And third, by using Markovian kernels to map the relationship betweenW and
X, it allows us to articulate precisely different ways in which perceptual evolution
can proceed (e.g., by tuning a perceptual channel to a fixed representational space,
or evolving the representational space itself).

4 Shape as a code for fitness

4.1 Implications for shape perception

With our general framework in place, the implications for shape perception now
follow straightforwardly. First, our framework makes it clear that we really have
no basis for assuming—as is standardly done—that shape is anobjective property
of the world. For example, it is fairly standard among shape researchers to speak
of “shape recovery” when referring to the computation of 3D shape from different
2D cues. This nomenclature reflects the identification of therepresentational space
X with the objective worldW that is assumed in theinverse opticsapproach to
vision (and, as noted above, is commonly made in Bayesian approaches to vision).
When one sees the 3D shape of an object, the undulations in itssurface, etc., one
sees, according to the inverse optics approach, geometric properties that correspond
to objective properties of the world6—properties that exist independently of any
observer. However, as we noted above, this is too simplistic. It is certainly much
more than can be claimed based on available facts. There is surely an objective
world W, but there is no basis for saying thatshapeis a property of that world.
Rather, shape is simply a representational format used by our visual systems to guide
interactions with the objective world. It is part of the representational spaceX, not
W. It should be clear from this that our position is strictly weaker—not stronger—
than the standardinverse opticsor shape recoveryapproach. Whereas the standard
approach assumes, or postulates, thatX = W or thatX is isomorphic toW, we are
open to different possible relations betweenX andW.

6 The inverse optics approach allows for misperceptions—e.g., that observers tend to perceive an
object from a certain viewpoint as being less elongated in depth than physical measurements of the
object tell us it is. But the inverse optics approach nevertheless assumes thatoneof the shapes in
X is the “correct” one in the objective worldW. In other words, at a more fundamental level, the
inverse optics approach assumes that the very property we call shapeis an intrinsic property of the
objective worldW itself.
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Second, our framework entails thatshape, as a representational format, most
likely evolved because it made possible the development of aperceptual channel
with high expected-fitness payout. Thus the property we callshapeis essentially an
effective coding scheme that has been tuned by natural selection: it conveys to an
organism—in a compact and efficient format—the various waysin which the organ-
ism could interact with objects in the world to gain more “fitness points.” Therefore
when we perceive the 3D shape of an object—the undulations onits surface, its
symmetries, its part structure—all of these are different aspects of a representa-
tional format that natural selection has fashioned, one which compactly summarizes
the different possible actions that we could take, and that allows us to predict the
perceptual consequences of those actions (e.g., how the perception of a 3D object
would change were we to rotate it slightly to left, pick it up in a certain way, etc.),
and what the fitness consequences would be (e.g., would we successfully eat that
apple or evade that tiger).

This last point raises a natural question: How is it possiblefor us to interact
successfully with the objective world if we are fundamentally ignorant of it, and
can assume no simple correspondence between our perceptions and that objective
world? This is where the third implication of our framework comes in, namely, that
action (broadly construed) plays a central role in the evolution of shape perception.
In brief, it is perfectly possible to interact successfullywith a fundamentally un-
known objective world because (i) there is a regularity in the perceptual mapping;
(ii) there is regularity in the consequences of our actions in the objective world; and
(iii) these mappings are linked in a coherent manner. This isa fundamental point for
our framework and, to develop it fully, we need to introduce some more formalism,
namely that of theperception-decision-action(or PDA) loop. Before we do this in
the next subsection, however, we provide an example that should help fix intuitions.

Consider the desktop interface of a PC. A file’s icon on the desktop might be
green, rectangular and in the middle of the screen. Does thisentail that the file
itself is green, rectangular and in the middle of the computer? Of course not. The
shape, position and color of the icon are merely conventionsthat allow the user
to interact with the computer despite being ignorant of the complex details of its
diodes, resistors, software, voltages and magnetic fields.The desktop interface is
useful not because it reveals the truth about the computer, but because it hides the
complex truth, and instead provides simple symbols that guide useful interactions
with the computer. In like manner, natural selection has shaped our perceptions to
be an interface that hides the true nature of the objective world, and guides adaptive
behavior [14, 15, 20]. Spacetime is the desktop, and objectswith their shapes, colors,
textures and motions are icons in the desktop. Spacetime andobjects are not the
objective truth, and do not resemble the truth. Instead, they are a species-specific
adaptation shaped by natural selection to guide adaptive behaviors and to allow us
to survive long enough to reproduce. Perception has been shaped by the imperative
to produce offspring, not to see truth.
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4.2 The role of action in the evolution of shape perception

In this section we incorporate action and decision into our formalism, and draw out
implications for shape perception. Natural selection necessarily couples perception
and action because fitness, to which perception is tuned, depends crucially on the
actions of the observer. Different classes of action are, ingeneral, coupled with dif-
ferent expected fitnesses. The fitness points gleaned from anapple for the action
of eating is greater than for the action of mating. Since natural selection tunes per-
ceptual channels to convey information about fitness, one expects tight coupling
between perceptual channels and the actions they inform.

When an observer receives a perceptual experiencex ∈ X, it must decide what
action to take. We will denote the set of available actions bya setG, where we think
of G as including a group that acts onX. Recall that if a groupG acts onX, then for
everyg∈ G the mappingx 7→ gx is a bijective map fromX to X. Common examples
are the actions of translation and rotation on Euclidean spaces. We also allow there
to be actions inG other than group actions.

Thus, given a perceptual experiencex ∈ X the observer must decide which ac-
tion g ∈ G to take. The natural formalism to describe such a decision isagain a
Markovian kernel,D, from (X,X ) to (G,G ). We callD the decision kernel.

Once an actiong is chosen, the observer must then act on the objective world
W. We model this action by a Markovian kernelA from (G,G ) to (W,W ), which
we call the action kernel. Given this formalism, we can thinkof action as sending a
message from the observer to the objective world.

Thus we have three kernels:P, D, andA. P maps fromW to X; D maps fromX
to G; A maps fromG back toW (see Figure 3). So together they form a loop, which
we call the PDA loop. We have a PDA loop for each perceptual representation space
X. So, in the CEP example discussed in Section 3, there is a PDA loop for the 2D
image spaceY and another PDA loop for the 3D spaceX.

However, just as we assume that the observer does not know theobjective world
W, and therefore does not know the perception kernelP, so also the observer does
not know the action kernelA. Informally, this means that when we act, we don’t
really know what effects we are having in the objective worldW itself; however we

W X
P

A D

G

Fig. 3 The Perception-Decision-Action (PDA) loop.W denotes the objective world,X a space of
perceptual representations of an organism, andG the related set of actions the organism can take.
P is a perception kernel,D a decision kernel, andA an action kernel. All kernels are Markovian.
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do know the results of those effects back in our perceptual experiencesX. Formally,
even though the observer cannot know the kernelsP andA, it can know the kernel
AP from (G,G ) to (X,X ), which is formed by the kernel composition ofA andP. It
can also know the kernelDAP from (X,X ) to (X,X ) (i.e., fromX back to itself).
This allows the observer to learn how to interact withW, even while being ignorant
of W. The observer can try different actionsg∈ G and note their consequences for
perceptual experiences inX. If the consequences are unexpected, the observer can
update its decision kernelD to correct this.

This applies to actions with objects and shapes. If, for instance, the observer acts
in a way that leads it to perceive that its body moves through space via an element of
the Galilean group, or that its hand is grasping an object androtating it, then, given
its perceptions of the relative position of an object, and the symmetries and parts of
that object, it can predict what the consequences of its action should be for changes
in the relative position and perceived shape of that object.

This also applies to object categorization. Such categorization allows the ob-
server to predict the fitness consequences of various current and future interactions
with the object (such as eating it). We are thus using the word“action” broadly to
include not only “dorsal stream” visually-guided motor behavior, but also “ventral
stream” perception and categorization that inform future behavior.

Let’s return to the desktop metaphor discussed above. A new generation of desk-
tops now employ 3D interfaces. In such a desktop, if the icon of a file has a particular
3D shape, say the shape of a book, and the desktop contains a 3Dbookshelf with a
book-shaped gap, then the user can be guided by the shape and position of the 3D
icon to grasp it and place it in the bookshelf. In one sense, this is unremarkable. But
the key concept here is that the file itself in the computer hasno 3D shape, and in
particular is not shaped like a book. Moreover, the directory system in the computer
has no 3D shape, and in particular is not shaped like a bookshelf. These 3D shapes
are mere conveniences for guiding effective interactions of the user, not insights into
the true nature of files and directories—and certainly not ofthe myriads of voltages
and magnetic fields in the computer.

4.3 Perceptual organization of shape

Apart from computing 3D shape from 2D image cues, another fundamental aspect
of shape perception is the perceptual organization of shape. A great deal of psy-
chophysical work indicates that human vision organizes complex shapes hierarchi-
cally in terms of parts and their spatial relationships (e.g., [5, 7, 13, 32]). This “struc-
tural” approach to shape separates the representation of individual parts from that of
their spatial relationships—thereby allowing a shape to beidentified as comprising
the same parts, but in somewhat different spatial relations(e.g., a sleeping cat vs. a
standing cat). It is also closely related to the axis or skeleton-based approach, which
provides a compact “stick-figure” representation of a complex shape that captures
its structural aspects (e.g., its branching structure) [4]. A recent probabilistic ap-
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proach to the computation of shape skeletons yields a one-to-one correspondence
between parts and skeletal branches—indicating that partsand skeletons are indeed
complementary aspects of the perceptual organization of shape [8].

They key point, for current purposes, is that the perceptualorganization of shape
in terms of parts and axes has no natural interpretation in terms of inverse optics.
There is no objective “ground truth” regarding whether an object “really” has one
part or two, or whether an axis that continues from one portion of a shape to another
is “really” the same or a different axial branch (e.g., consider a U-shape vs. a V-
shape, and a morphing sequence between them). The organization of shape in terms
of segmented parts, or in terms of axes, is something that thevisual systemimposes
on perceptual objects—it is not an objective property of theworld. This does not
mean that a Bayesian analysis of the problem is not possible.However, the likeli-
hood or the “forward” mapping in that case has a different interpretation; it is not
a projective or rendering map, but the visual system’s owngenerative modelcon-
cerning how objects are formed [8]. This is easily accommodated within the current
framework, since for us the space of interpretationsX is distinct from the world
W. Hence, in this case, the spaceX would consist of all possible interpretations of
a shape as a hierarchical organization using segmented parts (e.g., different parti-
tions of a shape, and different tree structures capturing possible part hierarchies). In
the context of perceptual organization of shape, it is therefore especially clear that
elements ofX have no simple correspondence to the objective worldW.

A natural question is: Why have shape representations basedon parts and axes
evolved, if they have no simple correspondence to the objective worldW? The an-
swer, as expected, has to do with fitness. Organisms that can predict, upon seeing an
object at one time, what that object might look like on other occasions, are likely to
interact with it much more successfully—and thus have greater fitness—than those
that cannot. And a shape representation based on parts and axes goes a long way
in conferring this ability: Upon seeing an animal in one particular articulated pose
(configuration of limbs), for example, it is much easier to predict other possible (un-
seen) articulated poses if one’s shape representation is part-based than, say, if one’s
representation consists simply of an unstructured template of the shape as a whole.
In sum, a framework that allowsX andW to be distinct, and incorporates the role of
fitness, makes it much easier to understand the perceptual organization of shape.

5 Discussion

We sketched a formal framework—Computational Evolutionary Perception—that
subsumes and generalizes the standard Bayesian framework for vision. While in-
corporating the role of probabilistic inference, CEP also incorporates fitness in a
fundamental way, and it allows us to consider different possible relationships be-
tween the objective world and perceptual representationalspaces. In our frame-
work, shape is not an objective property of the world. It is simply a representa-
tional format employed by our visual systems to guide adaptive interactions with
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the world. This representational format evolved because itallows a high-capacity
channel for fitness. In other words,shape is an effective code for expected fitness
that has been tuned by natural selection.Because fitness depends crucially on the
actions of an organism, shape representations in our framework are closely tied to
actions. Thus when we perceive the 3D shape of an object—the undulations of its
surface, its local and global symmetries, its part and skeletal structure—these are
various aspects of a code that compactly summarizes the possible actions that one
could take (including future actions based on current categorization), and to predict
the fitness consequences of those actions. To model this formally, we introduced the
perception-decision-action (PDA) loop. Among other things, the PDA loop clari-
fies how, even though one cannot know the effects of one’s actions in the objective
world itself, one can nevertheless know (because of the coherent coupling between
perception and action) the results of those effects back in our perceptual experience.
This explains how organisms can interact effectively with afundamentally unknown
objective world. Finally, CEP and the PDA loop provide a new framework for under-
standing the perceptual organization of shape using parts and skeletons—something
that is difficult to accommodate within a standard inverse-optics approach to shape.
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Appendix: Relation to Quantum Bayesianism

One possible objection to the framework proposed in this chapter might be: “It is
naive for vision scientists to propose that our perceptionsare not veridical, and that
therefore the objective world need not be spatiotemporal and need not contain 3D
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objects with shapes. Surely physicists know otherwise, andwould dismiss such a
proposal out of hand.”

Although some physicists might dismiss such a proposal, there are others who,
in trying to best interpret the formalism of quantum theory,have been led to a view
about quantum states that comports well with our proposal. These physicists, who
call their approach “quantum Bayesianism,” or QBism for short, claim that quantum
states are not objective representations of the external world, but rather are compen-
dia of beliefs about possible outcomes of measurements [9, 10, 2]. As Fuchs [9]
puts it, “. . . there is no sense in which the quantum state itself represents (pictures,
copies, corresponds to, correlates with) a part or a whole ofthe external world, much
less a world thatjust is” and “. . . a quantum state is astate of beliefabout what will
come about as a consequence of. . . actions upon the system.” So, for instance, ac-
cording to QBism a state function of a quantum system, represented say in the basis
of the position operator, has a particular shape in space that can be used to predict
the consequences of actions on that system.

This is entirely consistent with the view we propose about our perceptual ex-
periences in general, and our experiences of shape in particular. There is no sense
in which the objects in our perceptual experiences picture,copy, correspond to, or
correlate with a part or a whole of the external world. Instead such objects and their
shapes, and perceived space-time itself, are states of belief about what will come
about as a consequence of our actions (which could include measurement). The rea-
son is that natural selection, which has tuned our perceptions, rewards fitness and
nothing else. Therefore our perceptions have been tuned to inform us of the fitness
consequences of our possible actions, not to copy or picturethe objective world.


