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Abstract

We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm.
Our Kernel-RLS (KRLS) algorithm performs linear regression in the feature space induced
by a Mercer kernel, and can therefore be used to recursively construct the minimum mean-
squared-error regressor. Sparsity of the solution is achieved by a sequential sparsification
process that admits into the kernel representation a new input sample only if its feature
space image cannot be sufficiently well approximated by combining the images of previously
admitted samples. This sparsification procedure is crucial to the operation of KRLS, as it
allows it to operate on-line, and by effectively regularizing its solutions. A theoretical analysis
of the sparsification method reveals its close affinity to kernel PCA, and a data-dependent
loss bound is presented, quantifying the generalization performance of the KRLS algorithm.
We demonstrate the performance and scaling properties of KRLS and compare it to a state-
of-the-art Support Vector Regression algorithm, using both synthetic and real data. We
additionally test KRLS on two signal processing problems in which the use of traditional
least-squares methods is commonplace: Time series prediction and channel equalization.

Keywords: on-line learning, kernel methods, non-linear regression, sparse representations,
recursive least-squares, signal processing
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1 Introduction

The celebrated recursive least-squares (RLS) algorithm (e.g. [16, 14, 25]) is a popular and
practical algorithm used extensively in signal processing, communications and control. The
algorithm is an efficient on-line method for finding linear predictors minimizing the mean
squared error over the training data. We consider the classic system identification setup (e.g.
[17]), where we assume access to a recorded sequence of input and output samples

Zt = {(x1, y1), . . . , (xt, yt)}

arising from some unknown source. In the classic regression (or function approximation)
framework the input-output pairs (xi, yi) are assumed to be independent identically dis-
tributed (IID) samples from some distribution p(Y,X). In signal processing applications the
inputs more typically consist of lagged values of the outputs yi, as would be the case for
autoregressive (AR) sources, and/or samples of some other signal (ARMA and MA models,
respectively). In the prediction problem, one attempts to find the best predictor ŷt for yt

given Zt−1 ∪ {xt}. In this context, one is often interested in on-line applications, where the
predictor is updated following the arrival of each new sample. On-line algorithms are use-
ful in learning scenarios where input samples are observed sequentially, one at a time (e.g.
data mining, time series prediction, reinforcement learning). In such cases there is a clear
advantage to algorithms that do not need to relearn from scratch when new data arrive. In
many of these applications there is an additional requirement for real-time operation, mean-
ing that the algorithm’s computational cost per time-step should be bounded by a constant
independent of time, for it is assumed that new samples arrive at a roughly constant rate.

Standard approaches to the prediction problem usually assume a simple parametric form,
e.g. ŷ(t|w) =

〈

w,φ(xt)
〉

, where w is a vector of parameters and φ is a fixed, finite dimen-
sional mapping. In the classic least-squares approach, one then attempts to find the value of

w that minimizes the squared error
∑t

i=1

(

yi −
〈

w,φ(xi)
〉)2

. The RLS algorithm is used to
recursively solve this least-squares problem for w. Given a new sample (xt, yt), the number
of computations performed by RLS to derive a new minimum least-squares estimate of ŵ is
independent of t, making it suitable for real-time applications.

Kernel machines are a relatively new class of learning algorithms utilizing Mercer kernels
to produce non-linear and non-parametric versions of conventional supervised and unsuper-
vised learning algorithms. The basic idea behind kernel machines is that a Mercer kernel
function, applied to pairs of input vectors, can be interpreted as an inner product in a high
dimensional Hilbert space H (the feature space), thus allowing inner products in feature
space to be computed without making direct reference to feature vectors. This idea, com-
monly known as the “kernel trick”, has been used extensively in recent years, most notably
in classification and regression [5, 15, 27]. Focusing on regression, several kernel based al-
gorithms have been proposed, most prominently Support Vector Regression (SVR) [37] and
Gaussian Process Regression (GPR) [42].

Kernel methods present an alternative to the parametric approach. Solutions attained by
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these methods are non-parametric in nature and are typically of the form

f̂(x) =
t
∑

i=1

αik(xi,x) , (1.1)

where {xi}t
i=1 are the training data points. The Representer Theorem [40] assures us that in

most practical cases, we need not look any further than an expression of the form (1.1). Since
the number of of tunable parameters in kernel solutions equals the size of the training data-
set, one must introduce some form of regularization. For instance, in SVR regularization is
attained by using the so-called “ε-insensitive” error tolerant cost function, in conjunction
with an additional regularization (penalty) term encouraging “flat” solutions. The end effect
of this form of regularization is that SVR solutions are typically sparse – meaning that many
of the αi variables vanish in the SVR solution (1.1).

In SVR, and more generally in regularization networks [10], sparsity is achieved by elim-
ination. This means that, at the outset, these algorithms consider all training samples as
potential contributing members of the expansion (1.1); and upon solving the optimization
problem they eliminate those samples whose coefficients vanish. An alternative approach is
to obtain sparsity by construction. Here the algorithm starts with an empty representation,
in which all coefficients vanish, and gradually adds samples according to some criterion.
Constructive sparsification is normally used off-line (e.g. [39]), in which case the algorithm
is free to choose any one of the training samples at each step of the construction process.
Due to the intractability of finding the best subset of samples [22], these algorithms usually
resort to employing various greedy selection strategies, in which at each step the sample
selected is the one that maximizes the amount of increase (or decrease) its addition induces
in some fitness (or error) criterion.

In a nutshell, the major obstacles in applying kernel methods to on-line algorithms are:
(i) Many kernel methods require random/multiple access to training samples, (ii) their com-
putational cost (both in time and space) is super-linear in the size of the training set, and
(iii) their prediction (query) time often scales linearly with the training set size.

Clearly, non of the methods described above is suitable for on-line applications. In such
applications the algorithm is presented at each time step with a single training sample and a
simple dichotomic decision has to be made: Either add the next sample into the representa-
tion, or discard it. In [9] we proposed a solution to this problem by an on-line constructive
sparsification method based on sequentially admitting into the kernel representation only
samples that cannot be approximately represented by linear combinations of previously ad-
mitted samples. In [9] our sparsification method was used to construct an on-line SVR-like
algorithm 1.

The main contribution of this report is the introduction of KRLS – a kernel based version
of the RLS algorithm – that is capable of efficiently and recursively solving non-linear least-
squares prediction problems, and that is therefore particularly useful in applications requiring

1We comment that several approaches to sparsification in the context of kernel methods in general, and
kernel regression in particular, have been suggested recently. We compare our method to these in Section 6.
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on-line or real-time operation. In addition, we discuss with further detail our on-line kernel
sparsification procedure, which possesses a merit of its own in the context of kernel based
learning methods and signal processing.

2 On-Line Sparsification

Sparse solutions for kernel algorithms are desirable for two main reasons. First, instead of
storing information pertaining to the entire history of training instances, sparsity allows the
solution to be stored in memory in a compact form and to be easily used later. The sparser
is the solution of a kernel algorithm, the less time and memory are consumed in both the
learning and the operation (query) phases of the kernel machine. Second, sparsity is related
to generalization ability, and is considered a desirable property in learning algorithms (see,
e.g. [27, 15]) as well as in signal processing (e.g. [19]). The ability of a kernel machine to
correctly generalize from its learned experience to new data can be shown to improve as the
number of its free variables decreases (as long as the training error does not increase), which
means that sparsification may be used as a regularization instrument.

In the classic SVM framework sparsity is achieved by making use of error-tolerant cost
functions in conjunction with an additional regularization term encouraging “flat” solutions
by penalizing the squared norm of the weight vector [27]. For SV classification, it has been
shown in [38] that the expected number of of SVs is bounded below by (t−1)E(perr) where t
is the number of training samples and E(perr) is the expectation of the error probability on a
test sample. In spite of claims to the contrary [33], it has been shown, both theoretically and
empirically [2, 8], that the solutions provided by SVMs are not always maximally sparse.
It also stands to reason that once a sufficiently large training set has been learned, any
additional training samples would not contain much new information and therefore should
not cause a linear increase in the size of the solution.

We take a somewhat different approach toward sparsification that is based on the fol-
lowing observation: Although the dimension of the feature space H is usually very high, or
even infinite; the effective dimensionality of the manifold spanned by the training feature
vectors may be significantly lower. Consequently, the solution to any optimization problem
conforming to the conditions required by the Representer Theorem [40], may be expressed,
to arbitrary accuracy, by a set of linearly independent feature vectors that approximately
span this manifold.

As already mentioned above, kernel methods typically output a predictor which is a
function of the training set. This implies that by time t the estimate of f will have the form
(1.1), which as discussed before, is in fact a linear predictor in the Hilbert space H:

f̂(x) =
t
∑

i=1

αi〈φ(xi),φ(x)〉.

A naive approach would be to admit all training points x1, . . . ,xt into an expression of the
form (1.1) and solve the least-squares problem for the coefficients αi. This, however, would
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lead to an algorithm whose complexity grows as more data points are added, and would
additionally result in severe overfitting. Essentially, the problem is that as more points
are considered, t increases and the dimensionality of the space spanned by φ(x1), . . . ,φ(xt)
increases. We note that in the “classic” linear RLS algorithm, the complexity of the update
step depends on the dimensionality of the input samples. While in linear RLS the dimension
of the input samples does not change in time, the dimension of φ(x1), . . . ,φ(xt) may increase
at every time step, depending on the data points and the specific kernel being used. If,
however, the point xt satisfies φ(xt) =

∑t−1
i=1 aiφ(xi), then in the estimate f̂ at time t (and

any subsequent time) there is no need to have a non-zero coefficient for φ(xt) as it can be
absorbed in the other terms. This idea would work when H is low dimensional, or if the
data happens to belong to a low dimensional subspace of the feature space. However, for
many kernels H is high dimensional, or even infinite dimensional. For example, if k is a
Gaussian kernel then dim(H) = ∞ (e.g. [27].) Moreover, in this case unless xt = xi for some
i < t, the feature vector φ(xt) will be linearly independent of {φ(xi)}t−1

i=1. The solution we
propose is to relax the requirement that φ(xt) can be exactly written as a sum of {φ(xi)}t−1

i=1

and to consider instead approximate linear dependency. Given a new sample xt, we will
distinguish between two cases. In the first case, the sample is approximately dependent
of past samples. Such a sample will be considered only through its effect on the estimate
f̂ . A sample whose feature vector is not approximately dependent on past samples will be
admitted into a “dictionary.” From the RLS point of view, our approach is based on an
on-line projection of the feature vectors encountered during training to a low dimensional
subspace spanned by a small subset of the training samples – the dictionary.

Next, in Section 2.1 we describe the on-line sparsification algorithm in detail. Section 2.2
proves and discusses some desirable theoretical properties of the algorithm, while Section 2.3
illuminates its connection to kernel PCA. In Section 2.4 we overview current sparsification
methods and compare our method to them.

2.1 The Sparsification Procedure

The on-line prediction setup assumes we sequentially sample a stream of input/output pairs
{(x1, y1), (x2, y2), . . .}, xi ∈ X , yi ∈ R. Assume that at time step t, after having observed
t − 1 training samples {xi}t−1

i=1, we have collected a dictionary consisting of a subset of the
training samples Dt−1 = {x̃j}mt−1

j=1 , where by construction {φ(x̃j)}mt−1

j=1 are linearly indepen-
dent feature vectors. Now we are presented with a new sample xt. We test whether φ(xt)
is approximately linearly dependent on the dictionary vectors. If not, we add it to the
dictionary. Consequently, all training samples up to time t can be approximated as linear
combinations of the vectors in Dt.

To avoid adding the training sample xt to the dictionary, we need to find coefficients
a = (a1, . . . , amt−1

)> satisfying the approximate linear dependence (ALD) condition

δt
def

= min
a

∥

∥

∥

∥

∥

mt−1
∑

j=1

ajφ(x̃j) − φ(xt)

∥

∥

∥

∥

∥

2

≤ ν , (2.2)
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where ν is an accuracy parameter determining the level of sparsity. If the ALD condition in
(2.2) holds, φ(xt) can be approximated within a squared error ν by some linear combination
of current dictionary members. Performing the minimization in (2.2) we can simultaneously
check whether this condition is satisfiable and obtain the optimal coefficient vector ãt. Ex-
panding (2.2) we note that it may be written entirely in terms of inner products (in H)
between feature vectors φ(·),

δt = min
a

{

mt−1
∑

i,j=1

aiaj

〈

φ(x̃i),φ(x̃j)
〉

− 2

mt−1
∑

j=1

aj

〈

φ(x̃j),φ(xt)
〉

+
〈

φ(xt),φ(xt)
〉

}

.

We employ the kernel trick by replacing the inner product between feature space vectors with
the kernel defined over pairs of vectors in input space. We therefore make the substitution
〈

φ(x),φ(x′)
〉

= k(x,x′), obtaining

δt = min
a

{

a>K̃t−1a− 2a>k̃t−1(xt) + ktt

}

, (2.3)

where [K̃t−1]i,j = k(x̃i, x̃j), (k̃t−1(xt))i = k(x̃i,xt), ktt = k(xt,xt), with i, j = 1, . . . ,mt−1.
Solving (2.3) yields the optimal ãt and the ALD condition

ãt = K̃−1
t−1k̃t−1(xt) , δt = ktt − k̃t−1(xt)

>ãt ≤ ν, (2.4)

respectively. If δt > ν then we must expand the current dictionary by augmenting it with
xt: Dt = Dt−1 ∪ {xt} and mt = mt−1 + 1. Using the expanded dictionary, φ(xt) may be
exactly represented (by itself) and δt is therefore set to zero.

Consequently, for every time-step i up to t we have

φ(xi) =

mi
∑

j=1

ai,jφ(x̃j) + φres
i , (‖φres

i ‖2 ≤ ν), (2.5)

and φres
i denotes the residual component vector. By choosing ν to be sufficiently small

we can make the approximation error in φ(xi) ≈ ∑mi

j=1 ai,jφ(x̃j) correspondingly small.

The corresponding approximation in terms of kernel matrices is Kt ≈ AtK̃tA
>
t , where

[Kt]i,j = k(xi,xj) with i, j = 1, . . . , t is the full kernel matrix and [At]i,j = ai,j. Note
that due to the sequential nature of the algorithm, [At]i,j = 0 for j > mi. In practice, we
will freely make the substitution Kt = AtK̃tA

>
t with the understanding that the resulting

expressions are approximate whenever ν > 0.

2.2 Properties of the Sparsification Method

Let us now study some properties of the sparsification method. We first show that under
mild conditions on the data and the kernel function, the dictionary is finite. We then discuss
the question how good the approximation really is, by showing that the sensitivity parameter
ν controls how well the true kernel matrix is approximated.
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Recall that the data points x1,x2, . . . are assumed to belong to some input set X . Let
φ(X ) = {φ(x) : x ∈ X} ⊂ H. The following theorem holds regardless of the dimensionality
of H, and essentially says that as long as X is compact, the set of dictionary vectors is finite.

Theorem 2.1. Assume that (i) k is a continuous Mercer kernel and (ii) X is a compact
subset of a Banach space. Then for any training sequence {xi}∞i=1, and for any ν > 0, the
number of dictionary vectors is finite.

Proof First, we claim that φ is continuous. Given a sequence z1, z2, . . . of points in X such
that zi → z∗ we have that ‖φ(zi)−φ(z∗)‖2

2 = 〈φ(zi),φ(zi)〉+〈φ(z∗),φ(z∗)〉−〈φ(zi),φ(z∗)〉−
〈φ(z∗),φ(zi)〉. Writing this in terms of kernels we have ‖φ(zi) − φ(z∗)‖2

2 = k(zi, zi) +
k(z∗, z∗)−k(zi, z

∗)−k(z∗, zi). Since k itself is continuous we have that ‖φ(zi)−φ(z∗)‖2
2 → 0,

so φ is continuous.
We now recall several ideas from functional analysis. See [1] for precise definitions and
applications in learning. An `2-norm based cover of φ(X ) at a scale of ε (an ε-cover) is a
collection of `2-balls of radius ε, whose union contains φ(X ). The covering number at scale
ε is the minimal number of balls of radius ε needed to cover the set. The packing number of
the set is the maximal number of points from the set which are separated by an `2 distance
larger than ε. Since X is compact and φ is continuous, we conclude that φ(X ) is compact,
implying that for any ε > 0 a finite ε-cover exists. Recall that the covering number is finite
if, and only if, the packing number is finite (e.g. [1]), implying that the maximal number of
ε-separated points in φ(X ) is finite. Next, observe that by construction of the algorithm,
any two points φ(x̃i) and φ(x̃j) in the dictionary obey ‖φ(x̃i) − φ(x̃j)‖2 >

√
ν, i.e. are√

ν-separated. Since the packing number of φ(X ) at scale
√

ν is finite we conclude that the
number of such separated balls is also finite, implying that the dictionary is finite.

Theorem 2.1 implies that after an initial period, the computational cost per time-step of the
algorithm becomes independent of time and depends only on the dictionary size. It is this
property that makes our framework practical for on-line real-time learning. Precise values
for the size of the cover, and thus for the maximal size of the dictionary, can be obtained by
making further assumptions on φ (or the kernel k).

The next proposition assumes that X ⊆ R
d, and bounds the size of the dictionary as a

function of ν.

Proposition 2.2. Assume that (i) k is a Lipschitz continuous Mercer kernel on X and (ii)
X is a compact subset of R

d. Then there exist a constant C that depends on X and on the
kernel function such that for any training sequence {xi}∞i=1, and for any ν > 0, the number
of dictionary vectors N , satisfies N ≤ Cν−d.

Proof Since X is compact it is contained in BM(0) where BM(x) is the `2 ball of radius
M around x and M > 0. The covering number of X at scale ε is bounded by C1ε

−d (e.g.
[1]) for some C1. The kernel k is Lipschitz continuous function of X × X implying that
there exists a positive constant L such that |k(x,y) − k(x′,y′)| ≤ L‖x− x′‖2 + L‖y − y′‖2.
Now, suppose that a point x ∈ X is admitted to the dictionary. As in Theorem 2.1, we
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know that a point x′ ∈ X will not be admitted to the dictionary if ‖φ(x) − φ(x′)‖2 ≤ √
ν.

We claim that all the points in Bν/2L(x) will not be admitted to the dictionary. Indeed, if
x′ ∈ Bν/2L(x) then ‖φ(x) − φ(x′)‖2

2 = |k(x,x) + k(x′,x′) − k(x,x′) − k(x′,x)| ≤ |k(x,x) −
k(x,x′)| + |k(x′,x′) − k(x′,x)| ≤ 2L‖x − x′‖2 ≤ ν. We therefore have that the size of the
dictionary, N , for a given ν cannot exceed the packing number of X at scale ν/2L. Since
the packing number at scale ε is upper bounded by the covering number at scale ε/2 ([1])
we have that N ≤ C1(ν/4L)−d = Cν−d, for C = C1(4L)d.

We comment that similar results can be obtained if X cannot be embedded in R
d, but a

bound on the covering number is available. Furthermore, tighter bounds can be obtained
by considering the eigenvalues of the kernel function. Since the behavior of the size of the
dictionary is not fundamentally different, this was not pursued further.

After establishing that the dictionary is finite we turn to study the effect of the approxi-
mation level ν on the approximation of the kernel matrix K. In order to simplify the analysis
we first consider an off-line version of the algorithm on a finite data set of size t. In this
case, the dictionary is first constructed in the usual manner, and then the optimal expansion
coefficient matrix A is computed for the entire data set at once. We use essentially the same
notation as before except that now every quantity depending on an incomplete dictionary is
redefined to depend on the entire dictionary. In order to remind us of this change we omit
the time index in each such quantity. For instance, D, m, and K denote the dictionary, its
size, and the full kernel matrix, respectively.

Defining the matrices Φ = [φ(x1), . . . ,φ(xt)], Φ̃ = [φ(x̃1), . . . ,φ(x̃m)], and Φres =
[φres

1 , . . . ,φres
t ], we may write (2.5) for all samples concisely as

Φ = Φ̃A> + Φres. (2.6)

As before, the optimal expansion coefficients for the sample xi are found by ai = K̃−1k̃(xi),
and [A]i,j = ai,j . Pre-multiplying (2.6) by its transpose we get

K = AK̃A> + Φres>Φres. (2.7)

The cross term AΦ̃
>
Φres and its transpose vanish due to the `2-orthogonality of the residuals

to the subspace spanned by the dictionary vectors. Defining the residual kernel matrix by
R = K − AK̃A> it can be easily seen that, in both the on-line and the off-line cases,
(diagR)i = δi. Further, in the off-line case R = Φres>Φres and is therefore positive semi-
definite. As a consequence, in the off-line case we may bound the norm of R, thus justifying
our approximation. Recall that for a matrix R the matrix 2-norm is defined as ‖R‖2 =
maxu:‖u‖2=1 ‖Ru‖2.

Proposition 2.3. In the off-line case ‖R‖2 ≤ tν.

Proof Let λR

i be the i-th eigenvalue of R. We recall from linear algebra that ‖R‖2 =
maxi |λR

i |. Since (diagR)i = δi, we have that
∑t

i=1 λR

i = TrR =
∑t

i=1 δi. Moreover, since
R is positive semi-definite λR

i ≥ 0 for all i. Therefore ‖R‖2 = maxi λ
R

i ≤
∑t

i=1 δi ≤ tν.
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As a corollary, a similar bound can be placed on the covariance of the residuals ‖Cres‖ =
1
t
‖ΦresΦres>‖ = maxi λ

R

i /t ≤∑t
i=1 δi/t ≤ ν.

Considering the on-line case, it is clear that once the dictionary stops growing, for the
remaining samples the algorithm behaves exactly like its off-line counterpart. Using Theorem
2.1 we know that if X is compact for any ν > 0 the dictionary is finite, and therefore a bound
similar to that of Proposition 2.3 holds beyond some finite time. More specifically, in the
on-line case we have ‖R‖2 ≤ tν + B, where B is a random positive constant accounting
for the size of the residuals up to the point when the dictionary reaches its final size. The
corresponding bound for the residual covariance is therefore ‖Cres‖ ≤ ν + B

t
.

2.3 On-Line Sparsification as Approximate PCA

The on-line sparsification method described above has close connections to kernel PCA [28].
PCA is the optimal unsupervised dimensionality reduction method, in the mean squared
error sense, and is used in signal processing, machine learning and other fields involving high
dimensional data. PCA is often used to remove noise from data. In such applications the
noisy data is projected onto the first principal directions (i.e. on the subspace spanned by
the first eigenvectors of the data’s covariance matrix, where the eigenvectors are ordered by
non-increasing eigenvalues), with the implicit assumption that the variance in the remaining
directions is due to noise. In [28] it was shown that solving the eigenvalue problem of the
kernel (Gram) matrix Kt = Φ>

t Φt, is essentially equivalent to performing PCA of the data
in the feature space H. In this section we show that our sparsification method is essentially
an approximate form of PCA in the feature space.

We first describe the optimal dimensionality reduction procedure. Let the covariance
matrix at time t, be Ct

def

= 1
t
ΦtΦ

>
t . Ct has (at most) t positive eigenvalues {λ1, . . . , λt} and

a corresponding orthonormal set of eigenvectors {ψ1, . . . ,ψt}, forming an orthogonal basis
for the subspace of H that contains φ(x1), . . . ,φ(xt). Defining a projection operator PS
onto the span of the set ΨS = {ψi : i ∈ S ⊆ {1, . . . , t}}, it is well known that projecting the
training data onto the subspace spanned by the eigenvectors in ΨS , entails a mean squared
error of 1

t

∑t
i=1 ‖(I − PS)φ(xi)‖2 =

∑

i/∈S λi. An immediate consequence of this is that an
optimal m dimensional projection, with respect to the mean squared error criterion, is one
in which ΨS consists of the first m eigenvectors (i.e. S = {1, . . . ,m}).

Similarly, we can also define a projection operator onto the span of the dictionary vectors

found by our sparsification method. Let PD
def

= Φ̃
(

Φ̃
>
Φ̃
)−1

Φ̃
>

denote this projection oper-

ator. Using the ALD condition (2.4) we can place a bound on the mean squared error due to
the projection PD: 1

t

∑t
i=1 ‖φ(xi) − PD(φ(xi))‖2 = 1

t

∑t
i=1 ‖(I − PD)φ(xi)‖2 = 1

t

∑t
i=1 δi ≤

((t − mt)/t)ν ≤ ν, where the first inequality is due to the fact that for the mt dictionary
vectors the error is zero. However, since the size of the dictionary is not known a priori, the
second inequality provides a more useful bound.

In the preceding paragraph we showed that the mean squared error of the projection
performed by the on-line sparsification procedure is bounded by ν. We now show that the

12



projection performed by the sparsification method, essentially keeps all the “important”
eigenvectors that are used in the optimal PCA projection.

Theorem 2.4. The i-th normalized eigenvector ψi of the empirical covariance matrix C =
1
t
ΦΦ>, with eigenvalue λi > 0, satisfies ‖PDψi‖2 ≥ 1 − ν/λi.

Proof Any ψi for which λi > 0 may be expanded in terms of the feature vectors correspond-
ing to the data points. It is well known (e.g. [28]) that every respective expansion coefficient
vector is itself an eigenvector of the kernel matrix K with eigenvalue tλi. Therefore we
may write ψi = 1√

tλi

Φui where Kui = tλiui and ‖ui‖ = 1. Substituting into ‖PDψi‖2 we

have ‖PDψi‖2 = ψ>
i PDψi = 1

tλi
u>

i Φ>PDΦui. Recalling that PD is the projection operator

onto the span of the dictionary we have PDφ(xi) = Φ̃ai and PDΦ = Φ̃A>. Therefore,
Φ>PDΦ = AK̃A> and

‖PDψi‖2 =
1

tλi

u>
i AK̃A>ui =

1

tλi

u>
i (K − R)ui

= 1 − 1

tλi

u>
i Rui ≥ 1 − ‖R‖2

tλi

≥ 1 − ν

λi

,

where the last inequality is due to Proposition 2.3.

Theorem 2.4 establishes the connection between our sparsification algorithm and kernel
PCA, since it implies that eigenvectors whose eigenvalues are significantly larger than ν are
projected almost in their entirety onto the span of the dictionary vectors, and the quality
of the approximation improves linearly with the ratio λi/ν. In comparison, kernel PCA
projects the data solely onto the span of the first few eigenvectors of C. We are therefore
led to regard our sparsification method as an approximate form of kernel PCA, with the
caveat that our method does not diagonalize C, and so cannot extract individual orthogonal
features, as kernel PCA does. Computationally however, our method is significantly cheaper
(O(m2) memory and O(tm2) time) than exact kernel PCA (O(t2) memory and O(t2p) time
where p is the number of extracted components).

2.4 Comparison to Other Sparsification Schemes

Several approaches to sparsification of kernel-based solutions have been proposed in the lit-
erature. As already mentioned above, SVMs for classification and regression achieve sparsity
by utilizing error insensitive cost functions. The solution produced by an SVM consists of a
linear combination of kernel evaluations, one per training sample, where typically a (some-
times large) fraction of the combination coefficients vanish. This approach has several major
disadvantages. First, with a training set of t samples, during learning the SVM algorithm
must maintain a matrix of size t× t and update a full set of t coefficients. This means that,
even if the end result turns out to be very sparse, the training algorithm will not be able
to take full advantage of this sparsity in terms of efficiency. As a consequence, even the
current state-of-the art SVM algorithm scales super-linearly in t [4]. Second, in SVMs the
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solution’s sparsity depends on the level of noise in the training data; this effect is especially
pronounced in the case of regression. Finally, SVM solutions are known to be non-maximally
sparse. This is due to the special form of the SVM quadratic optimization problem, in which
the constraints limit the level of sparsity attainable [23].

Shortly after the introduction of SVMs to the machine learning community it was realized
[2] that the solutions provided by SVMs, both for classification and regression, may often be
made significantly sparser, without altering the solutions’ weight vectors. It was also shown
in [2] and later in [3] that additional sparsity may be attained by allowing small changes
to be made in the SVM solution, with little or no degradation in generalization ability.
Burges’ idea is based on using a “reduced-set” of feature space vectors to approximate the
weight vector of the original solution. In Burges’ method the reduced-set of feature vectors,
apart from its size, is virtually unconstrained and therefore the algorithmic complexity of
finding reduced-set solutions is rather high, posing a major obstacle to the widespread use
of this method. In [26] and [8] it was suggested that restricting the reduced set to be a
subset of the training samples would help alleviate the computational cost associated with
the original reduced-set method. This was backed by empirical results on several problems
including handwritten digit recognition. All of these reduced-set methods achieve sparsity
by elimination, meaning that they are best used as a post-processing stage, after a kernel
solution is obtained from some main algorithm (e.g. SVM) whose level of sparsity is deemed
unsatisfactory by the user. For a more thorough account of reduced-set methods see Chapter
18 of [27].

Ultimately, reduced-set methods are based on the identification of (approximate) linear
dependencies between feature space vectors and their subsequent elimination. Based on
the same underlying principle, another class, of “sparse-greedy” methods, aim at greedily
constructing a non-redundant set of feature vectors starting with an initially empty set,
rather than a full solution [31, 30, 44] (see also Chapter 10 of [27]). These methods are also
closely related to the kernel Matching Pursuit algorithm [39]. It should be noted that the
reason why greedy strategies are resorted to is due to a general hardness result regarding
the problem of finding the best subset of samples in a sparse approximation framework
[22], along with some positive results concerning the convergence rates for sparse greedy
algorithms [22, 44].

Greedy methods represent the opposite extreme to reduced-set methods along the elimination-
construction axis of sparsification methods. Another (orthogonal) dimension along which
sparsification methods may be measured is the one differentiating between supervised and
unsupervised sparsification. Supervised sparsification is geared toward optimizing a super-
vised error criterion (e.g. the mean-squared error in regression tasks), while unsupervised
sparsification attempts to faithfully reproduce the the images of input samples in feature
space. Examples for supervised sparsification are [2, 34, 30, 39], of which [34] is unique in
that it aims at achieving sparsity by taking a Bayesian approach in which a prior favoring
sparse solutions is employed 2. In [30] a greedy sparsification method is suggested that is

2It should be noted that support vector machines may also be cast within a probabilistic Bayesian
framework, see [32].
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specific to Gaussian Process regression and is similar to kernel Matching Pursuit [39].
Examples of unsupervised sparsification are [31, 43, 11, 35]. In [31] a randomized-greedy

selection strategy is used to reduce the rank of the kernel matrix K while [43] uses a purely
random strategy based on the Nyström method to achieve the same goal. In [11] the in-
complete Cholesky factorization algorithm is used to yield yet another reduced-rank approx-
imation to K. Employing low-rank approximations to K is essentially equivalent to using
low-dimensional approximations of the feature vectors corresponding to the training sam-
ples. As principal component analysis (PCA) is known to deliver the optimal unsupervised
dimensionality reduction for the mean-squared reconstruction error criterion, it is therefore
natural to turn to kernel PCA [28] as a sparsification device. Indeed, many of the unsuper-
vised methods mentioned above are closely related to kernel PCA. In [35] a sparse variant
of kernel PCA is proposed, based on a Gaussian generative model. The general idea in
both cases is to project the entire feature space onto the low dimensional manifold spanned
by the first eigenvectors of the sample covariance in feature space, corresponding to the
leading/non-zero eigenvalues.

While many of the sparsification methods discussed above are constructive in nature,
progressively building increasingly richer representations with time, they are not applicable
to the on-line setting. In this setting input samples are not randomly accessible, instead
they are given as a stream of data in which only one sample may be observed at any given
time. This imposes an additional constraint on any sparsification method that attempts to
represent the entire training history using some representative sample. Namely, at any point
in time the algorithm must decide whether to add the current sample to its representation, or
discard it. This problem of on-line sparsification is not as well studied in the kernel-methods
community, and is the one we address with our sparsification algorithm.

Our method is most closely related to a sparsification method used By Csató and Opper
[6, 7] in the context of learning with Gaussian Processes [13, 42]. Csató and Opper’s method
also incrementally constructs a dictionary of input samples on which all other data are
projected (with the projection performed in the feature space H). However, while in our
method the criterion used to decide whether a sample should be added to the dictionary
is based only on the distance (in H) between the new sample and the span of previously
stored dictionary samples, their method also takes into account the estimate of the regressor
(or classifier) on the new point and its difference from the target value. Consequently, the
dictionary constructed by their method depends on the function being estimated and on the
sample noise, while our method disregards these completely. We defer further discussion of
the differences between these two methods to Section 6.

3 The Kernel RLS Algorithm

The RLS algorithm is used to incrementally train a linear regression model, parameterized
by a weight vector w, of the form f̂(x) =

〈

w,φ(x)
〉

, where, as before, φ(x) is the feature
vector associated with the input x. We assume that a standard preprocessing step has been
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Table 1: The Kernel RLS Algorithm. On the right we bound the number of operations per
time-step for each line of the pseudo-code. The overall per time-step computational cost is
bounded by O(m2) (we assume that kernel evaluations require O(1) time)

Parameter: ν Cost

Initialize: K̃1 = [k11], K̃−1
1 = [1/k11],

α1 = (y1/k11), P1 = [1], m = 1
for t = 2, 3 . . .

1. Get new sample: (xt, yt)

2. Compute k̃t−1(xt) O(m)
3. ALD test:

at = K̃−1
t−1k̃t−1(xt) O(m2)

δt = ktt − k̃t−1(xt)
>at O(m)

if δt > ν % add xt to dictionary O(1)
Dt = {Dt−1 ∪ {x̃t}} O(1)

Compute K̃−1
t (3.14) with ãt = at O(m2)

at = (0, . . . , 1)> O(m)
Compute Pt (3.15) O(m)
Compute αt (3.16) O(m)
m := m + 1 O(1)

else % dictionary unchanged
Dt = Dt−1

qt = Pt−1at

1+a
>
t
Pt−1at

O(m2)

Compute Pt (3.12) O(m2)
Compute αt (3.13) O(m2)

Output: Dt, αt

performed in order to absorb the bias term into the weight vector w (i.e. by redefining w as
(w>, b)> and φ as (φ>, 1)>); see [9] for details. In the simplest form of the RLS algorithm
we minimize at each time step t the sum of the squared errors:

L(w) =
t
∑

i=1

(

f̂(xi) − yi

)2

= ‖Φ>
t w − yt‖2, (3.8)

where we have defined the vector yt = (y1, . . . , yt)
>. Ordinarily, we would minimize (3.8)

with respect to w and obtain wt = argmin
w
‖Φ>

t w − yt‖2 =
(

Φ>
t

)†
yt, where

(

Φ>
t

)†
is the

pseudo-inverse of Φ>
t . The classic RLS algorithm [17], based on the matrix inversion lemma

allows one to minimize the loss L(w) recursively and on-line without recomputing the matrix
(

Φ>
t

)†
at each step.

As mentioned above, the feature space may be of very high dimensionality, rendering the
handling and manipulation of matrices such as Φt and ΦtΦ

>
t prohibitive. Fortunately, as
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can be easily verified3, we may express the optimal weight vector as

wt =
t
∑

i=1

αiφ(xi) = Φtα , (3.9)

where α = (α1, . . . , αt)
>. Substituting into (3.8), slightly abusing notation, we have

L(α) = ‖Ktα− yt‖2 . (3.10)

Theoretically, the minimizer of (3.10) is given by αt = K†
tyt, which can be computed recur-

sively using the classic RLS algorithm. The problem with this approach is threefold. First,
for large datasets simply maintaining K in memory, estimating the coefficient vector α and
evaluating new points could prove prohibitive both in terms of space and time. Second, the
order of the model produced (i.e. the size of the vector α, which will be dense in general),
would be equal to the number of training samples, causing severe overfitting. Third, in
many cases the eigenvalues of the matrix Kt decay rapidly to 0, which means that inverting
it would be numerically unstable.

By making use of the sparsification method as described in the preceding section we can
overcome these shortcomings. The basic idea is to use the smaller (sometimes much smaller)
set of dictionary samples Dt in the expansion of the weight vector wt, instead of the entire
training set.

Using (2.6) in (3.9) we have wt = Φtαt ≈ Φ̃tA
>
t αt = Φ̃tα̃t, where α̃t

def

= A>
t αt is a vector

of m “reduced” coefficients. The loss becomes

L(α̃) = ‖Φ>
t Φ̃tα̃− yt‖2 = ‖AtK̃tα̃− yt‖2 , (3.11)

and its minimizer is α̃t = (AtK̃t)
†yt = K̃−1

t A†
tyt.

In the on-line scenario, at each time step t we are faced with either one of the following
two cases:
1. φ(xt) is ALD on Dt−1, i.e. δt ≤ ν and at are given by (2.4). In this case Dt = Dt−1, and
consequently mt = mt−1 and K̃t = K̃t−1.
2. δt > ν, therefore φ(xt) is not ALD on Dt−1. xt is added to the dictionary, i.e. Dt =
Dt−1 ∪ {xt}, and therefore mt = mt−1 + 1 and K̃t grows accordingly.

We now derive the KRLS update equations for each of these cases.
Case 1 Here, only A changes between time steps: At = [A>

t−1,at]
>. Therefore A>

t At =

A>
t−1At−1 + ata

>
t , and A>

t yt = A>
t−1yt−1 + atyt. Note that K̃t is unchanged. Defining

Pt = (A>
t At)

−1 we apply the matrix inversion Lemma (e.g. [25]) to obtain a recursive
formula for Pt:

Pt = Pt−1 −
Pt−1ata

>
t Pt−1

1 + a>
t Pt−1at

. (3.12)

3Simply add to wt some vector w̄ orthogonal to {φ(xi)}t

i=1
and substitute into (3.8).
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Defining qt = Pt−1at

1+a
>
t
Pt−1at

we derive the KRLS update rule for α̃:

α̃t = K̃−1
t PtA

>
t yt

= K̃−1
t

(

Pt−1 − qta
>
t Pt−1

) (

A>
t−1yt−1 + atyt

)

= α̃t−1 + K̃−1
t

(

Ptatyt − qta
>
t K̃tα̃t−1

)

= α̃t−1 + K̃−1
t qt

(

yt − k̃t−1(xt)
>α̃t−1

)

, (3.13)

where the last equality is based on qt = Ptat, and k̃t−1(xt) = K̃tat.
Case 2 Here, Kt 6= Kt−1, but a recursive formula for K̃−1

t is easily derived:

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
> ktt

]

⇒

K̃−1
t =

1

δt

[

δtK̃
−1
t−1 + ãtã

>
t −ãt

−ã>
t 1

]

, (3.14)

where ãt = K̃−1
t−1k̃t−1(xt). Note that ãt equals the at computed for the ALD test (2.4), so

there is no need to recompute K̃−1
t−1k̃t−1(xt). Furthermore, at = (0, . . . , 1)> since φ(xt) is

exactly representable by itself. Therefore

At =

[

At−1 0
0> 1

]

, A>
t At =

[

A>
t−1At−1 0

0> 1

]

,

Pt =

[

Pt−1 0
0> 1

]

, (3.15)

where 0 is a vector of zeros of appropriate length. The KRLS update rule for α̃ is:

α̃t = K̃−1
t (A>

t At)
−1A>

t yt

= K̃−1
t

[

(A>
t−1At−1)

−1A>
t−1yt−1

yt

]

=

[

α̃t−1 − ãt

δt
(yt − k̃t−1(xt)

>α̃t−1)
1
δt

(yt − k̃t−1(xt)
>α̃t−1)

]

, (3.16)

where for the final equality we used ã>
t K̃t−1 = k̃t−1(xt)

>. The algorithm in pseudo-code
form is described in Table 1.

4 A Generalization Bound

In this section we present a data-dependent generalization bound whose generality makes
it applicable to the KRLS algorithm, as well as to many other regression and classification

18



algorithms. Most of the currently available bounds for classification and regression assume
a bounded loss function. While this assumption is often acceptable for classification, this
is clearly not the case for regression. Recently a generalization error bound for unbounded
loss functions was established in [20], where the boundedness assumption is replaced by a
moment condition. Theorem 4.1 below is a slightly revised version of Theorem 8 in [20].

We quote the general theorem, and then apply it to the specific case of the squared loss
studied in this work. For each function f , consider the loss function

`f (x, y) = `(y, f(x))

viewed as a function from X × Y to R. In our the context of the present paper we may
take `(y, f(x)) = (y − f(x))2. Moreover, the function f is given by f(x) =

〈

w,φ(x)
〉

. Let
S = {(x1, y1), . . . , (xn, yn)} be a set of n IID samples drawn from some distribution P (X,Y ).
Set L(f) = EX,Y `f (X,Y ) and L̂(f) = 1

n

∑n
i=1 `(yi, f(xi)). Furthermore, let

LF = {`f (x, y) : f ∈ F}

be a class of functions (defined on X × Y).
In order to establish useful generalization bounds we introduce a classic complexity mea-

sure for a class of functions F . Let σ = (σ1, . . . , σn) be a sequence of independent and
identically distributed {±1}-valued random variables, such that Prob(σi = 1) = 1/2. The
empirical Rademacher complexity of F (e.g. [36]) is defined as

R̂n(F) = Eσ sup
f∈F

{

1

n

n
∑

i=1

σif(xi)

}

.

The Rademacher complexity Rn(F) is given by Rn(F) = ER̂n(F), where the expectation is
taken with respect to the marginal product distribution P n over {x1, . . . ,xn}.
Theorem 4.1 ([20]). Let F be a class of functions mapping from a domain X to R, and
let {(xi, yi)}n

i=1, xi ∈ X , yi ∈ R, be independently selected according to a probability measure
P . Assume there exists a positive real number M such that for all positive λ

log EX,Y sup
f∈F

cosh(2λ`(Y, f(X))) ≤ λ2M2/2. (4.17)

Then with probability at least 1 − δ over samples of length n, every f ∈ F satisfies

L(f) ≤ L̂(f) + 2Rn(LF) + M

√

2 log(1/δ)

n
.

Note that the condition (4.17) replaces the standard uniform boundedness used in many
approaches. In order for this result to be useful we need to present an upper bound on
the Rademacher complexity Rn(LF). Assume initially that (1/2)‖w‖2 ≤ A (where ‖w‖2 =
〈

w,w
〉

). We quote the following result from [20] (see Eq. (13)).
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Lemma 4.2. Consider the class of functions FA = {f(x) =
〈

w,φ(x)
〉

: (1/2)‖w‖2 ≤ A}.
Then

R̂n(FA) ≤

√

√

√

√

2A

n

(

1

n

n
∑

i=1

‖φ(xi)‖2

)

. (4.18)

In the present context `f (x, y) = (y− f(x))2. We assume for simplicity that k(x,x′) ≤ B
for all x and x′. In the following sequence of inequalities we use the notation w ∈ ΩA

to indicate that (1/2)‖w‖2 ≤ A. Denoting the expectation with respect to the product
distribution P n over the sample S by ES, and keeping in mind that Eσi = 0 for any i we
have that

Rn(LFA
) = ESEσ sup

w∈ΩA

1

n

n
∑

i=1

σi(yi −
〈

w,φ(xi)
〉

)2

= ESEσ sup
w∈ΩA

1

n

n
∑

i=1

σi[
〈

w,φ(xi)
〉2 − 2

〈

w, yiφ(xi)
〉

]

≤ ESEσ sup
w∈ΩA

1

n

n
∑

i=1

σi(
√

2AB + 2|yi|)
〈

w,φ(xi)
〉

(a)

≤
√

2AB

n
ES

√

√

√

√

n
∑

i=1

(
√

2AB + 2|yi|)2

(b)

≤
√

2AB

n
ES

√

√

√

√

n
∑

i=1

(4AB + 8y2
i )

(c)

≤
√

2AB

n

√

4nAB + 8nE[Y 2]

(d)

≤ 2
√

2AB + 4
√

ABE[Y 2]√
n

.

where (a) used (4.18) with φ(xi) replaced by (
√

2AB+2|yi|)φ(xi) and the fact that k(x,x) =
‖φ(xi)‖2 ≤ B, (b) used (a + b)2 ≤ 2a2 + 2b2, (c) made use of Jensen’s inequality, and (d) is
based on

√
x + y ≤ √

x +
√

y.
The derived bound on Rn(LFA

) is formulated in terms of the parameter A. In order to
remove this dependence we use a (by now) standard trick based on the union bound. Let
{Ai}∞i=1 and {pi}∞i=1 be sets of positive numbers such that lim sup Ai = ∞ and

∑

i pi = 1 (for
example, pi = 1/i(i + 1)). We apply Theorem 4.1 for each value of Ai replacing δ by piδ. A
simple utilization of the union bound, and some algebraic manipulations (described in the
proof of Theorem 10 in [20]) allow one to establish the following bound, where all reference
to the parameter A has been eliminated.

Theorem 4.3. Let F be a class of functions of the form fw(x) =
〈

w, φ(x)
〉

, and let
{(xi, yi)}n

i=1, xi ∈ X , yi ∈ Y, be independently selected according to a probability measure P .
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Assume further that (4.17) holds. Fix any number g0 and set g̃(w) = 2 max((1/2)‖w‖2, g0)
Then with probability at least 1 − δ over samples of length n, every fw ∈ F satisfies

E (Y − fw(X))2 ≤ 1

n

n
∑

i=1

(yi − fw(xi))
2 +

4
√

2Bg̃(w) + 8
√

Bg̃(w)E[Y 2]√
n

+ M

√

4 log log2(2g̃(w)/g0) + 2 log(1/δ)

n
.

The essential feature of the bound in Theorem 4.3 is that it holds uniformly for any w,
and thus in particular to the weight vector w obtained using the KRLS algorithm. Observe
that the price paid for eliminating the parameter A is an extra term of order log log g̃(w).
Note also that using the dual representation w =

∑

i αiφ(xi) the bound can be phrased in
terms of the coefficients αi using ‖w‖2 = α>Kα.

5 Experiments

In this section we experimentally demonstrate the potential utility and efficacy of the KRLS
algorithm in a range of machine learning and signal processing applications. We begin by
exploring the scaling behavior of KRLS on a simple non-linear static regression problem.
We then move on to test KRLS on several well-known benchmark regression problems, both
synthetic and real. As a point of reference we use the highly efficient SVM package SVMTorch
[4], with which we compare our algorithm. Next, we move to the domain of time series
prediction (TSP). The most common approach to the TSP problem is based on identifying
a generally non-linear auto-regressive model of the series. This approach essentially reduces
the TSP problem to a regression problem with the caveat that samples can no longer be
assumed to be IID. Numerous learning architectures and algorithms have been thrown at
this problem with mixed results (see e.g. [41]). One of the more successful general purpose
algorithms tested on TSP is again the SVM [21]; however SVMs are inherently limited by
their off-line (batch) mode of training, and their poor scaling properties. We argue that
KRLS is a more appropriate tool in this domain and to support this claim we test KRLS on
two well known and difficult time series prediction problems. Finally, we apply KRLS to a
non-linear channel equalization problem, on which SVMs were reported to perform well [29].
All tests were run on a 256Mb, 667MHz Pentium 3 Linux workstation.

5.1 Non-Linear Regression

We report the results of experiments comparing the KRLS algorithm (coded in C) to the
state-of-the-art SVR implementation SVMTorch [4]. Throughout, the best parameter values
(for C, ε, ν)4 were found by using a 10-fold cross-validation procedure in which we looked for

4See Chapter 9 of [27] for the definition of C and ε.
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the minimum average root-mean-squared error (RMSE) over a range of parameter values,
spaced logarithmically. The kernel we use throughout this section is the Gaussian kernel

k(x,x′) = exp

(

−‖x − x′‖2

2σ2

)

, (5.19)

and a similar procedure was used to find the value of the kernel width parameter σ for which
SVMTorch performed best. This value was then used by both SVMTorch and KRLS. All
the results reported below are averaged over 50 independent randomly generated training
sets.

We first used KRLS for learning the 2-dimensional Sinc-Linear function sin(x1)/x1+x2/10
defined on the domain [−10, 10]2. The kernel width parameter is σ = 4.25. The SVR pa-
rameters are C = 105 and ε = 0.1, while the KRLS parameter is ν = 10−3. Learning was
performed on a random set of samples corrupted by additive IID zero-mean Gaussian noise.
Testing was performed on an independent random sample of 1000 noise-free points. Figure
1 depicts the results of two tests. In the first we fixed the noise level (noise STD 0.1) and
varied the number of training samples from 5 to 50000, with each training set drawn inde-
pendently. We then plotted the test-set error (top left), the number of support/dictionary
vectors as a percentage of the training set (top-center), and the CPU time (top-right) for
each algorithm. As can be seen, the solution produced by KRLS significantly improves upon
the SVR solution, both in terms of generalization performance and sparsity (with a max-
imum of 75 dictionary samples) for training set sizes of 500 samples or more. In terms of
speed, KRLS outperforms SVMTorch over the entire range of training set sizes, by one to
two orders of magnitude. In fact, looking at the asymptotic slopes of the two CPU-time
graphs we observe that, while SVMTorch exhibits a super-linear dependence on the sample
size (slope 1.82), KRLS scales linearly (slope 1.00) as required of a real-time algorithm.

In the second test we fixed the training sample size at 1000 and varied the level of noise
in the range 10−6 to 10. We note that SVMTorch suffers from an incorrect estimation of the
noise level by its ε parameter, in all respects. Most notably, in the presence of high noise,
the sparsity of its solution deteriorates drastically. In contrast, KRLS produces a sparse
solution with complete disregard of the level of noise. Moreover, in terms of generalization,
the KRLS solution is at least as good as the SVR solution.

We tested our algorithm on three additional synthetic data-sets, Friedman 1,2 and 3, due
to [12]. Both training and test sets were 1000 samples long, and introduced noise was zero-
mean Gaussian with a standard deviation of 0.1. For these data-sets a simple preprocessing
step was performed which consisted of scaling the input variables to the unit hyper-cube,
based on their minimum and maximum values. The results are summarized in Table 2.

We also tested KRLS on two real-world data-sets - Boston housing and Comp-activ, both
from Delve5. The task in the Boston data-set (506 samples, 13 dimensions) is to predict
median value of owner-occupied homes in $1000’s for various Boston neighborhoods, based
on census data. In the Comp-activ (cpuSmall) data-set (8192 samples, 12 dimensions) the

5http://www.cs.toronto.edu/˜delve/data/datasets.html
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Figure 1: Scaling properties of KRLS and SVMTorch with respect to sample size (top)
and noise magnitude (bottom), on the Sinc-Linear function. Error bars mark one standard
deviation above and below the mean.
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Parameters: t = 1000, Friedman-1 RMSE STD % SV CPU
d = 10, C = 104, ε =
0.01,

SVMTorch 0.61 0.03 91.9 24.63

σ = 0.8, ν = 10−3 KRLS 0.55 0.02 100.0 26.97

Parameters: t = 1000, Friedman-2 RMSE STD % SV CPU
d = 4, C = 106, ε =
10−4,

SVMTorch 0.20 0.01 97.3 725.22

σ = 0.5, ν = 10−4 KRLS 0.18 0.02 36.1 10.24

Parameters: t = 1000, Friedman-3 RMSE STD % SV CPU
d = 4, C = 105, ε = 0.1, SVMTorch 0.09 0.01 37.6 2.32
σ = 0.5, ν = 10−3 KRLS 0.09 0.01 23.3 4.74

Table 2: Results on the synthetic Friedman data-sets. The columns, from left to right,
list the average R.M.S. test-set error, its standard deviation, average percentage of sup-
port/dictionary vectors, and the average CPU time in seconds used by the respective algo-
rithm.

task is to predict the users’ CPU utilization percentage in a multi-processor, multi-user
computer system, based on measures of system activity. A preprocessing step, like the one
used on the Friedman data-sets, was performed here as well. Generalization performance
was checked using 106 (Boston) and 2192 (Comp-activ) left-out test samples. The results
are summarized in Table 3.

Parameters: t = 6000, Comp-activ RMSE STD % SV CPU
d = 12, C = 106, ε = 0.5, SVMTorch 3.13 0.07 81.9 130.4
σ = 0.9, ν = 0.001 KRLS 3.09 0.08 3.4 19.52

Parameters: t = 400, Boston RMSE STD % SV CPU
d = 13, C = 106, ε = 1, SVMTorch 3.16 0.49 58.0 5.57
σ = 1.3, ν = 0.001 KRLS 3.52 0.48 38.6 0.53

Table 3: Results on the real-world Comp-activ and Boston data-sets.

5.2 Time Series Prediction

Digital signal processing is a rich application domain in which the classic RLS algorithm has
been applied extensively. On-line and real-time constraints are often imposed upon signal
processing algorithms, making many of the recently developed kernel-based machine learning
algorithms irrelevant for such tasks. The development of KRLS was aimed at filling this gap,
indeed, it is in such tasks that the recursive on-line operation of KRLS becomes particularly
useful, if not essential.
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An important and well studied problem in both the machine learning and the signal
processing communities is the prediction of time series. We tested KRLS on both syntheti-
cally generated and real-world time series – The well studied Mackey–Glass time series, and
the Laser (A) time series from the Santa Fe time series prediction competition [41]. The
Mackey–Glass series is synthetically generated by numerical integration of a time-delay dif-
ferential equation. The Laser time series is taken from real measurements of the intensity of
a far-infrared NH3 laser. Both of these series exhibit chaotic behavior, making the task of
multi-step prediction exponentially difficult as a function of the prediction horizon. Never-
theless, short-term multi-step prediction is feasible, depending on the intrinsic predictability
of the dynamics. In the Mackey–Glass series it is possible to make accurate predictions 100’s
of time steps into the future, while for the Laser series the useful limit seems to be about
100. Throughout the time-series experiments we used the Gaussian kernel (5.19).

5.2.1 Mackey–Glass Time Series

Our first experiment is with the Mackey–Glass chaotic time series. This time series may be
generated by numerical integration of a time-delay differential equation that was proposed
as a model of white blood cell production [18]:

dy

dt
=

ay(t − τ)

1 + y(t − τ)10
− by(t), (5.20)

where a = 0.2, b = 0.1. For τ > 16.8 the dynamics become chaotic; we therefore conducted
our tests using two value for τ , corresponding to weakly chaotic behavior at τ = 17 and a
more difficult case at τ = 30. Eq. 5.20 was numerically integrated using the Euler method
and uniformly distributed initial conditions x0 ∈ [0.1, 2] and xt = 0 for t < 0.

Training sets 1000 samples long were generated by sampling the series at 1 time-unit
intervals, with the respective test sets consisting of the subsequent 200 samples. The
embedding dimension was fixed at 10 with an embedding delay of 4 samples, i.e. xt =
(y(t − 4), y(t − 8), . . . , y(t − 40)). The parameters for each algorithm were selected by search-
ing for the minimum 200-step RMS iterated prediction error, averaged over 10 independent
training and validation sets. The parameters found for the Mackey–Glass(17) series are, for
SVMTorch σ = 0.7, C = 103, ε = 10−5, while for KRLS they are σ = 0.5, ν = 10−4. For
the Mackey–Glass(30) series the SVMTorch parameters were unchanged, while for KRLS ν
remained the same and σ = 0.6. The test results for SVMTorch and KRLS on both series,
averaged over 50 independent trials, are given in Table 4.

On the Mackey–Glass(30) series KRLS and SVM perform comparably, both in terms
of prediction accuracy and in terms of sparsity. However, on the Mackey–Glass(17) series
KRLS significantly outperforms SVM in its prediction accuracy; why this should be the case
remains to be clarified. Fig. (2) shows examples of two test sets, one for each series, and the
iterated predictions produced by the two algorithms.
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MG(17) RMSE(1) STD(1) RMSE(200) STD(200) % SV CPU
SVMTorch 0.0023 0.0003 0.0187 0.0080 30.48 4.18
KRLS 0.0004 0.0002 0.0027 0.0016 27.05 6.85

MG(30) RMSE(1) STD(1) RMSE(200) STD(200) % SV CPU
SVMTorch 0.006 0.003 0.034 0.036 50.2 7.23
KRLS 0.006 0.004 0.033 0.028 51.9 12.00

Table 4: 1-step and 200-step iterated prediction results on the Mackey–Glass time series
with τ = 17 (MG(17)) and τ = 30 (MG(30))
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Figure 2: Multi-step iterated predictions for the Mackey–Glass time series with τ = 17 (top)
and τ = 30 (bottom).

5.2.2 Santa Fe Laser Time Series

Our next experiment is with the chaotic laser time series (data set A) from the Santa Fe
time series competition [41] 6 This is a particularly difficult time series to predict, due both

6http://www-psych.stanford.edu/ãndreas/Time-Series/SantaFe.html
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to its chaotic dynamics and to the fact that only three “intensity collapse” events occur
in the training set. The accurate prediction of these events is crucial to achieving a low
prediction error on the test set. The training data consists of 1000 samples, with the test
data being the subsequent 100 samples (see Fig. 3). The task is to predict the test series
with minimum mean squared error. Looking at the competition results the difficulty of this
task becomes apparent, as only two of the 14 contestants achieved prediction accuracies that
are significantly better than simply predicting the mean of the training series. The winning
entry achieved a normalized mean squared error (NMSE - the mean squared error divided by
the series’ variance) of 0.028, by utilizing a complex and highly specialized neural network
architecture adapted by a temporal version of the backpropagation algorithm. Moreover, the
final 25 steps of the predicted sequence were hand-picked by adjoining to the initial 75–step
prediction a similar sequence taken from the training set. The second place entry used an
approach based on local linear models and achieved a NMSE of 0.080 on the test set.
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Figure 3: The Santa Fe competition laser training series (data set A)

We attempted to learn this series with the KRLS algorithm. The naive approach, as
used above for the Mackey–Glass series, would be to minimize the 1-step prediction error by
defining the training samples as {(xi, yi)}t

i=1 with xi = (yi−1, yi−2, . . . , yi−d), where d is the
model order and t the number of training samples 7. Predicting the test series is performed
by iterated prediction in which successive 1-step predictions are fed back into the predictor
as inputs for the prediction of subsequent series values. Unfortunately this naive approach
works well for this series only if we are really interested in 1-step prediction. Since our
goal is to provide multi-step predictions, a more sophisticated method is called for. The
method we used is as follows: Run KRLS to minimize the 1-step prediction MSE, as in the
naive approach. After this pass over the training set is complete, we compute the optimal
1-step estimates (ŷ1

1, . . . , ŷ
1
t ). Next, we continue running KRLS on a new data set, which is

of the same length as the original data, and in which xt = (ŷ1
t−1, yt−2, . . . , yt−d). We now

7y0, . . . , y1−d are assumed to be equal to zero.
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have 2-step estimates (ŷ2
1, . . . , ŷ

2
t ), based on the real data and the 1-step estimates obtained

in the previous step. On the i’th step of this iterative process the appended training set
consists of samples of the form xt = (ŷi−1

t−1, ŷ
i−2
t−2, ŷ

i−3
t−3, . . . , ŷ

1
t−i+1, yt−i, . . . , yt−d) if i ≤ d; or

xt = (ŷi−1
t−1, ŷ

i−2
t−2, ŷ

i−3
t−3, . . . , ŷ

i−d
t−d) if i > d.

We may iterate this process until some prespecified prediction horizon n is reached. As-
suming that the dictionary ceases to grow at an early stage, The end result is a good ap-
proximation to the minimizer of the mean squared error over the entire n× t - long dataset,
in which equal weight is given to 1-step through n-step prediction accuracy. The idea be-
hind this somewhat complex scheme is to improve the stability of the iterative multi-step
predictor with respect to small errors in its predicted values, since these are fed back into
the predictor as inputs for predictions at subsequent time steps. Note that this scheme relies
heavily on the recursiveness of KRLS; the implementation of such a scheme using a batch
algorithm such as SVM would be considerably more difficult and costly.

The free parameters of the algorithm were tuned as follows. First we normalized the series,
so that its values lie in the range [0, 1]. We then performed hold-out tests to determine the
values of σ, ν, d and n, where ν is the ALD threshold parameter, d is the model order and n
is the prediction horizon for the iterations described above. The training sets we used were
a. samples 1-700, b. samples 1-800, and c. samples 1-900. Their respective held-out sets
were a. 701-800, b. 801-900 and c. 901-1000. The parameters were optimized with respect
to the mean squared error of the multi-step iterated prediction on the held out sets. When
insignificant differences in prediction accuracy were observed, the parameter value incurring
a lower computational cost was preferred (i.e. preference to high values of ν and σ and low
values of d and n). The values found are: σ = 0.9, ν = 0.01, d = 40 and n = 6. The NMSE
prediction error on the competition test set (samples 1001-1100) achieved by KRLS is 0.026,
which is slightly better than the winning entry in the competition. The KRLS prediction
and the true continuation are shown in Fig. 4. 8

5.3 Channel Equalization

In [29] SVMs were applied to non-linear channel equalization problems with considerable
success. One of the reservations made by the authors concerning the use of SVMs in this
application domain was due to the inability of SVMs to be trained on-line. We suggest
KRLS as a viable alternative that performs similarly in terms of error rates, but may be
trained on-line, and often produces solutions that are much sparser than SVM solutions in
less time, especially for large amounts of data.

Let us briefly state the channel equalization problem. A binary signal is fed into a
generally non-linear channel. At the receiver end of the channel the signal is further corrupted
by additive IID (usually Gaussian) noise, and is then observed as (y1, . . . , yt). The aim
of channel equalization is to construct an “inverse” filter that reproduces (possibly with
some delay) the original signal with as low an error rate as possible. In order to attain

8In this experiment we used a Matlab version of KRLS, for which the entire training session took less
than 5 minutes. The C implementation typically runs 5–10 times faster.
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Figure 4: KRLS predicting 100 steps into the future (dashed line) on the laser time series.
The true continuation is shown as a solid line. Note that on the first 60 steps the prediction
error is hardly noticeable.

this goal a known random binary signal (u1, . . . , ut) is sent through the channel and the
corresponding noisy observations (y1, . . . , yt) are used to adapt the equalizer. Just as the
time-series prediction problem can be cast as a regression problem, it is easy to see that
channel equalization may be reduced to a classification problem, with samples {(xi, ui)}t

i=1,
xi = (yi+D, yi+D−1, . . . , yi+D−d+1), where d is the model order and D is the equalization time
lag. As KRLS minimizes the MSE, its choice as a learning algorithm for equalization seems
questionable, since equalization aims at reducing the bit error rate (BER), which is the
number of misclassifications. Nevertheless we show that the performance of KRLS solutions,
as measured by the BER criterion, is at least as good as SVM classification solutions.

In this experiment we replicate the setup used in the first simulation in [29]. The non-
linear channel model is defined by xt = ut + 0.5ut−1, yt = xt − 0.9x3

t + nσ, where nσ is white
Gaussian noise with variance 0.2. As in [29] a SVM with a third degree polynomial kernel

k(x,x′) =
(〈

x,x′〉+ 1
)3

was used, the other parameters being t = 500 and C/t = 5. Testing
was performed on a 5000 samples long random test sequence. The results are presented in
Table 5; each entry is the result of averaging over 50 repeated independent tests.

The results for the SVM as reported in [29] are significantly better, especially for D = 0;
we currently have no explanation to this discrepancy. The most remarkable result of this
experiment are the differences in the sparsities of the solutions provided by the respective
algorithms. KRLS uses 2% of the dataset for its dictionary throughout while the SVM uses
anywhere between 10% to 68% of the data as support vectors. Still, KRLS outperforms the
SVM.

29



Table 5: Results of the non-linear channel equalization experiment
SVM KRLS

D=0 BER 0.302 ± 0.013 0.279 ± 0.017
Sparsity (%) 63.8 ± 3.5 2.0± 0.0

D=1 BER 0.087 ± 0.020 0.070 ± 0.004
Sparsity (%) 19.6 ± 2.4 2.0 ± 0.0

D=2 BER 0.047 ± 0.006 0.043 ± 0.004
Sparsity (%) 12.2 ± 2.2 2.0 ± 0.0

6 Discussion and Conclusion

We have presented a non-linear Kernel based version of the popular RLS algorithm. The
algorithm requires two key ingredients: expressing all RLS related operations in terms of
inner products in the feature space (which can be calculated using the kernel function in the
input space), and sparsifying the data so that the dimension of the samples in the feature
space remains bounded.

As mentioned in Section 2.4, the approach closest to ours is probably that of Csató and
Opper [7], which introduced an on-line algorithm for sparse Gaussian Process (GP) regres-
sion. Since in GP regression the posterior moments are evaluated, the method described in
[7] requires an additional parameter for the estimated measurement noise variance that is
not needed in our method. The distinction between sparse GP regression and our sparsifi-
cation method becomes apparent if this parameter is given a lower value than the true noise
variance. In this case, given some fixed dictionary, sparse GP regression would favor fitting
the dictionary points at the price of increased error on the other points. In the limit, GP
regression would fit only the dictionary points and ignore completely all other points. This
means that to compensate for an erroneous noise model, sparse GP regression would need to
increase the size of its dictionary, sacrificing sparsity much like the observed behavior of SVR.
In comparison, our sparsification method weights all points equally and maintains the same
level of sparsity irrespective of the level of noise. Further, the sparsification algorithm used
in [7] also differs in that it considers the error performed in estimating each new sample’s
target value (yt) if that sample is not added to the dictionary, while our method considers
the error incurred in approximating the sample point φ(xt) itself. This is essentially the
distinction between supervised and unsupervised sparsification. By taking the unsupervised
path we were able to prove the finiteness of the dictionary and derive the PCA-like properties
of our framework.

Let us summarize the main contributions of this work. We presented a computationally
efficient on-line algorithm possessing performance guarantees similar to those of the RLS
algorithm (e.g. [25]). Essentially, this means that the information content of each sample
is fully extracted before that sample is disposed, since a second iteration over a previously
learned training set would cause no change, while on-line gradient-based algorithms usually
benefit from data recycling. Due to the unsupervised nature of our sparsification mecha-

30



nism the sparsity of the solution is immune both to increase in noise and in training set
size. Moreover, we formally proved the relationship of our on-line sparsification approach
to kernel PCA with its known optimality properties. We have also been able to present
data-dependent generalization bounds that use only the dictionary obtained. Finally, ex-
periments indicate that the algorithm compares very favorably with the state-of-the-art SVR
algorithm SVMTorch in both generalization performance and computation time. In some
cases the KRLS algorithm produces much sparser solutions with higher robustness to noise.
The usefulness of KRLS was also demonstrated in the RLS algorithm’s traditional applica-
tion domain – signal processing. Here too, our algorithm compares favorably with current
state-of-the-art algorithms and results

An important future research direction would be to employ our on-line sparsification
method, in conjunction with the kernel trick, to “kernelize” other algorithms that are recur-
sive in nature, such as the Kalman filter (e.g. [14]). A non-linear kernelized version of the
Kalman filter may be able to circumvent the inherent problem of handling non-linearities,
which was only partially resolved by the extended Kalman filter.

As far as the KRLS algorithm is concerned, many directions for modification and improve-
ment are open. Further exploration into the connection of KRLS with maximum likelihood
estimation is in order. Other directions include the utilization of specialized kernels tailored
to specific problems, such as time series prediction; optimization of the kernel function by
tuning its hyper-parameters; noise estimation (in the spirit of adaptive RLS); an exponen-
tially weighted version of KRLS; and adaptive model order identification, as in [24].
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