0026-895X/91/061006-8\$03.00/0 Copyright © by The American Society for Pharmacology and Experimental Therapeutics All rights of reproduction in any form reserved. **MOLECULAR PHARMAcoLoGY, 40:1006-1013 Halothane Inhibits Agonist-induced Inositol Phosphate and Ca2 SORE-BOEX/D1/081006-8403.00/0**
Computation in any form reserved
All rights of reproduction in any form reserved
Discussion Phanometers, 40:1005-1013
Signaling in A7r5 Cultured Vascular Smooth Muscle Cells
Signaling in A7r **Signaling in A7r5 Cultured Vascular Smooth Muscle Cells**
J. CHRISTOPHER SILL, CINDY UHL, SCOTT ESKURI, RUSSELL VAN DYKE, and JAMES TARARA

J. CHRISTOPHER SILL, CINDY UHL, SCOTT ESKURI, RUSSELL VAN DYKE, and JAMES TARARA
Departments of Anesthesiology (J.C.S., C.U., S.E., R.V.D.) and of Biochemistry and Molecular Biology (J.T.), Mayo Clinic, Rochester, Minnesot 55905 J. CHRISTOPHER SILL, CINDY UHL, SCOTT ESKURI, I
Departments of Anesthesiology (J.C.S., C.U., S.E., R.V.D.) and of
55905
Received June 5, 1991; Accepted September 13, 1991

SUMMARY

EUMMARY
Halothane, an anesthetic with marked depressant effects on the only
circulation, was studied for its ability to inhibit inositol phosphate is m **SUMMARY**
Circulation, an anesthetic with marked depressant effects on the
circulation, was studied for its ability to inhibit inositol phosphate is
and Ca²⁺ signaling evoked by the vasoactive hormone arginine ha **SUMMARY**
Halothane, an anesthetic with marked depressant effects on the
circulation, was studied for its ability to inhibit inositol phosphate
and Ca²⁺ signaling evoked by the vasoactive hormone arginine
vasopressin (AV Halothane, an anesthetic with marked depressant effects on the circulation, was studied for its ability to inhibit inositol phosphate and Ca^{2+} signaling evoked by the vasoactive hormone arginine vasopressin (AVP) and rial
outline, an arestretic with marked depressant effects on the circulation, was studied for its ability to inhibit inositol phosphat
and Ca²⁺ signaling evoked by the vasoactive hormone arginin
vasopressin (AVP) and C circulation, was studied for its ability to immote inostic prospirate is
and Ca^{2+} signaling evoked by the vasoactive hormone arginine has
vasopressin (AVP) and Ca^{2+} responses elicited by platelet-de-
arived growth f and Ca²¹ signaling evoked by the vasoactive hormone argininy
asopressin (AVP) and Ca²⁺ responses elicited by platelet-derived growth factor and by thapsigargin in cultured A7r5 vascula
smooth muscle cells. Changes in vasopressin (AVP) and Ca⁻¹ responses elicited by platelet-de-
rived growth factor and by thapsigargin in cultured A7r5 vascular
smooth muscle cells. Changes in apparent $[Ca^{2+}]$, were meas-
ured using the indicator indorived growth ractor and by thapsigargin in cultured A715 vasculations and column scheens. Changes in apparent $[Ca^{2+}]$, were measured using the indicator indo-1 and flow cytometry, whereas inositol phosphate levels were de since of this constrained in applement [Ca²], were measured using the indicator indo-1 and flow cytometry, whereas
inositol phosphate levels were determined using myo-[³H]inositol
and column chromatography. Preincubat inositol phosphate levels were determined using *myo*-[³H]inositol by
and column chromatography. Preincubation with clinically rele-
want concentrations of halothane resulted in dose-dependent als
depression of [Ca²⁺], and column chromatography. Preniculoation with clinically relevant concentrations of halothane resulted in dose-dependent depression of $[Ca^{2+}]$, responses evoked on stimulation with AVP. Halothane (2.0%) inhibited the in vant concentrations of halothane resulted in loose-dependent also
depression of $[Ca^{2+}]$, responses evoked on stimulation with AVP. to
Halothane (2.0%) inhibited the increases in $[Ca^{2+}]$, by 34-45%. tidd
in cells incubat depression of [Ca⁻⁻⁻ j_i responses evoked on sumulation with AVP.
Halothane (2.0%) inhibited the increases in $[Ca^{2+}$ ₁, by 34-45%.
In cells incubated in Ca²⁺-free medium plus 0.5 mm ethylene
glycol bis(*ß*-aminoet malouriane (2.0%) inhibited the increases in $[Ca^{2+}]$, by 34–43%. The cells incubated in Ca²⁺-free medium plus 0.5 mm ethylene splycol bis(β -aminoethyl ether)- N, N, N', N' -tetraacetic acid, the hather bothane effect w In cells includated in Ca²¹-iree medium plus 0.5 mm emyene spot glycol bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid, the hatiothane effect was more marked, with 1.5% halothane inhibiting The the responses by ap

only 15%, suggesting that release of Ca²⁺ rather than Ca²⁺ influx is more sensitive to inhibition by the anesthetic. The effects of only 15%, suggesting that release of Ca²⁺ rather than Ca²⁺ influx
is more sensitive to inhibition by the anesthetic. The effects of
halothane on Ca²⁺ homeostasis are not explained solely by only 15%, suggesting that release of Ca²⁺ rather than Ca²⁺ influx
is more sensitive to inhibition by the anesthetic. The effects of
halothane on Ca²⁺ homeostasis are not explained solely by
anesthetic-induced deplet only 15%, suggesting that release of Ca²⁺ rather than Ca²⁺ influx
is more sensitive to inhibition by the anesthetic. The effects of
halothane on Ca²⁺ homeostasis are not explained solely by
anesthetic-induced deplet only 15%, suggesting that release of Ca²⁺ rather than Ca²⁺ influx
is more sensitive to inhibition by the anesthetic. The effects of
halothane on Ca²⁺ homeostasis are not explained solely by
anesthetic-induced deplet only 15%, suggesting that release of Ca⁻¹ rather than Ca⁻¹ limitx
is more sensitive to inhibition by the anesthetic. The effects of
halothane on Ca^{2+} homeostasis are not explained solely by
anesthetic-induced deple Is more sensitive to inhibition by the anesthetic. The emects of
halothane on Ca²⁺ homeostasis are not explained solely by
anesthetic-induced depletion of Ca²⁺ from intracellular stores,
because the anesthetic inhibite malouriane on Ca²¹ homeostasis are not explained solety by
anesthetic-induced depletion of Ca²⁺ from intracellular stores,
because the anesthetic inhibited increases in $[Ca^{2+}]$, elicited by
thapsigargin in cells susp anesmetic-induced depietion or Ca⁻⁻ from intracellular stores,
because the anesthetic inhibited increases in $[Ca^{2+}]$, elicited by
thapsigargin in cells suspended in Ca^{2+} -free medium by only
31%. Halothane inhibited because the anesthetic inhibited increases in [Ca⁻¹], encited by thapsigargin in cells suspended in Ca²⁺-free medium by only 31%. Halothane inhibited inositol phosphate formation elicited by AVP, suggesting an additio thapsigargin in cells suspended in Ca⁻⁻⁻-free medium by or
31%. Halothane inhibited inositol phosphate formation elicite
by AVP, suggesting an additional means by which the anesther
may alter agonist-induced Ca²⁺ respo 51% . Halouraine inhibited inostic prosphate formation elictied
by AVP, suggesting an additional means by which the anesthetic
may alter agonist-induced Ca²⁺ responses. The current results
also demonstrate that haloth by AVP, suggesting an additional means by which the anesthetic
may after agonist-induced Ca²⁺ responses. The current results
also demonstrate that halothane actions are not specific solely
to responses evoked by AVP, wh also demonstrate that halothane actions are not specific solely
to responses evoked by AVP, which acts via a guanine nucleo-
tide-binding protein-linked signaling pathway, but include re-
sponses stimulated by platelet-der also demonstrate that handline actions are not specific solely
to responses evoked by AVP, which acts via a guanine nucleo-
tide-binding protein-linked signaling pathway, but include re-
sponses stimulated by platelet-der to responses evoked by Avr, which acts via a guarime nucleotide-binding protein-linked signaling pathway, but include responses stimulated by platelet-derived growth factor, an agonist that elevates $[Ca^{2+}]_i$ via recepto ude-unraing protein-inned signaling patriway, but inclusionses stimulated by platelet-derived growth factor, an a
that elevates $[Ca^{2+}]$, via receptor-latent tyrosine kinase a
The current results demonstrate that, in vasc

Volatile anesthetics such as halothane not only abolish con-Volatile anesthetics such as halothane not only abolish consciousness but also depress the circulation, in part by a direct action on arteries and arterioles (1, 2). Despite important Volatile anesthetics such as halothane not only abolish consciousness but also depress the circulation, in part by a direct action on arteries and arterioles (1, 2). Despite important clinical consequences, which include b Volatile anesthetics such as halothane not only abolish consciousness but also depress the circulation, in part by a direct action on arteries and arterioles (1, 2). Despite important clinical consequences, which include b Volatile anesthetics such as halothane not only abolish cosciousness but also depress the circulation, in part by a dire
action on arteries and arterioles (1, 2). Despite importa
clinical consequences, which include both d sciousness but also depress the circulation, in part by a direct ion action on arteries and arterioles (1, 2). Despite important althe clinical consequences, which include both decreased arterial halo blood pressure and in action on arteries and arterioles (1, 2). Despite important
clinical consequences, which include both decreased arterial
blood pressure and increased blood flow to vital organs, includ-
ing the heart (2) and brain (3), lit nical consequences, which include both decreased arterial
ood pressure and increased blood flow to vital organs, includ-
g the heart (2) and brain (3), little is known concerning the
echanisms of the vascular smooth muscle blood pressure and increased blood flow to vital organs, includ-
ing the heart (2) and brain (3), little is known concerning the
oper-
mechanisms of the vascular smooth muscle effects of halothane.
Theories of general ane

ing the heart (2) and brain (3), little is known concerning the mechanisms of the vascular smooth muscle effects of halothane
Theories of general anesthesia suggest that lipid-soluble volatile anesthetics have actions pred mechanisms of the vascular smooth muscle effects of halothane.
Theories of general anesthesia suggest that lipid-soluble vol-
atile anesthetics have actions predominantly at cell surface and
intracellular membranes, rather Theories of general anesthesia suggest that lipid-soluble vol-
atile anesthetics have actions predominantly at cell surface and Ca^{2}
intracellular membranes, rather than at sites within the cyto-
plasm $(3, 4)$. Althoug atile anesthetics have actions predominantly at cell surface and
intracellular membranes, rather than at sites within the cyto-
plasm (3, 4). Although halothane has been suggested to disorder
membrane bulk lipid bilayers, meracenuar memoranes, rather than at sites within the cyto-
plasm (3, 4). Although halothane has been suggested to disorder
in membrane bulk lipid bilayers, current opinion favors more
precise sites of action, with protein and hydrophobic pockets on sensitive proteins within membranes being possible targets (4, 5). Consequently, anesthetics
This work was supported by National Institutes of Health Grant HL 38668.

may alter the functions of regulatory proteins, enzymes, and
ion channels and interfere with cell signaling (5). Evidence, may alter the functions of regulatory proteins, enzymes, and
ion channels and interfere with cell signaling (5). Evidence,
although limited, exists to support this prediction. In neurons, may alter the functions of regulatory proteins, enzymes, and
ion channels and interfere with cell signaling (5). Evidence,
although limited, exists to support this prediction. In neurons,
halothane alters conductance thro may alter the functions of regulatory proteins, enzymes, an
ion channels and interfere with cell signaling (5). Evidence
although limited, exists to support this prediction. In neuron
halothane alters conductance through may alter the functions of regulatory proteins, enzymes, a
ion channels and interfere with cell signaling (5). Eviden
although limited, exists to support this prediction. In neuro
halothane alters conductance through Ca^{2 ion channels and interfere with cell signaling (5). Evidence, although limited, exists to support this prediction. In neurons, halothane alters conductance through Ca^{2+} -sensitive K⁺ channels (6) and inhibits increase although limited, exists to support this prediction. In neurons,
halothane alters conductance through Ca^{2+} -sensitive K⁺ chan-
nels (6) and inhibits increases in $[Ca^{2+}]_i$ due to receptor-
operated and voltage-gated halothane alters conductance through \hat{Ca}^{2+} -sensitive K⁺ chan-
nels (6) and inhibits increases in $[Ca^{2+}]_i$ due to receptor-
operated and voltage-gated Ca^{2+} influx (7). In cardiac myocytes,
halothane may alter nels (6) and inhibits increases in $[Ca^{2+}]_i$ due to receptor-
operated and voltage-gated Ca^{2+} influx (7). In cardiac myocytes,
halothane may alter sarcolemmal muscarinic receptor G protein
function (8), inhibit voltag operated and voltage-gated Ca^{2+} influx (7). In cardiac myocytes,
halothane may alter sarcolemmal muscarinic receptor G protein
function (8), inhibit voltage-gated Ca^{2+} influx (9), and impair
 Ca^{2+} storage in the s halothane n
function (8)
Ca²⁺ storag
the effects o
ill defined.
In the cu nction (8), inhibit voltage-gated Ca²⁺ influx (9), and impair a^{2+} storage in the sarcoplasmic reticulum (10). In contrast, e effects of halothane on vascular smooth muscle cells remain defined.
In the current experi Ca^{2+} storage in the sarcoplasmic reticulum (10). In contrast,
the effects of halothane on vascular smooth muscle cells remain
ill defined.
In the current experiments, halothane was investigated for
its ability to inhib

the effects of halothane on vascular smooth muscle cells remain
ill defined.
In the current experiments, halothane was investigated for
its ability to inhibit inositol phosphate and Ca²⁺ responses
stimulated by AVP. Many In defined.
In the current experiments, halothane was investigated fo
its ability to inhibit inositol phosphate and Ca^{2+} response
stimulated by AVP. Many vasoactive hormones, includin
AVP, which has an important role i In the current experiments, halothane was investigated for
its ability to inhibit inositol phosphate and Ca^{2+} responses
stimulated by AVP. Many vasoactive hormones, including
AVP, which has an important role in regulat stimulated by AVP. Many vasoactive hormones, including AVP, which has an important role in regulating peripheral vascular resistance (11), interact with receptors linked via G proteins to phosphoinositide-specific phosphol

vascular resistance (11), interact with receptors linked via G
This work was supported by National Institutes of Health Grant HL 38668. proteins to phosphoinositide-specific phospholipase C (12).
ABBREVIATIONS: G protein, **ABBREVIATIONS:** G protein, guanine nucleotide-binding protein; AVP, arginine vasopressin; PDGF, platelet-derived growth factor; [Ca²⁺],
intracellular free Ca²⁺ concentration; EGTA, ethylene glycol bis(*j)*-aminoethyl intracellular free Ca²⁺ concentration; EGTA, ethylene glycol bis(*β*-aminoethyl ether)-*N,N,N',N'*-tetraacetic acid; Ins(1,4,5)P₃, inositol 1,4,5-trisphos-
phate; HEPES, 4-(2-hydroxyethyl)-l-piperazineethanesulfonic ac

This enzyme hydrolyzes membrane-bound phosphatidylinositol 4.5 -bisphosphate to release Ins $(1.4.5)P_3$ and diacylglycerol (13). H
This enzyme hydrolyzes membrane-bound phosphatidylinositol
4,5-bisphosphate to release Ins(1,4,5)P₃ and diacylglycerol (13).
Whereas diacylglycerol regulates cell activity via protein kinase Half This enzyme hydrolyzes membrane-bound phosphatidylinositol
4,5-bisphosphate to release Ins(1,4,5)P₃ and diacylglycerol (13).
Whereas diacylglycerol regulates cell activity via protein kinase
C, Ins(1,4,5)IP₃ inter This enzyme hydrolyzes membrane-bound phosphatidylinositol A4,5-bisphosphate to release $\text{Ins}(1,4,5)\text{P}_3$ and diacylglycerol (13). pa
Whereas diacylglycerol regulates cell activity via protein kinase de
C, Ins(1,4,5)IP₃ I insenzyme nydrotyzes memorane-bound phosphatidy
infosion 4,5-bisphosphate to release Ins $(1,4,5)P_3$ and diacylglycerol (13).
Whereas diacylglycerol regulates cell activity via protein kinase
C, Ins $(1,4,5)IP_3$ interact Whereas diacylglycerol regulates cell activity via protein kinase C, Ins(1,4,5)IP₃ interacts with receptors on intracellular storage sites to release Ca^{2+} from portions of these stores. Pressor hormones, including AV ces to release Ca²⁺ from portions of these stores. Pressor

specifically, in addition promote extracellar Ca²⁺ entry into cells via channels in cell surface mem-

anes (15).

Specifically, the current study sought fir hormones, including AVP (14), in addition promote extracel-
lular Ca²⁺ entry into cells via channels in cell surface mem-
branes (15).
Specifically, the current study sought first to determine
whether halothane (a) alte

lular Ca²⁺ entry into cells via channels in cell surface mem-
branes (15).
Specifically, the current study sought first to determine
whether halothane (a) altered resting $[Ca^{2+}]$; in quiescent cells,
(b) attenuated inc branes (15).

Specifically, the current study sought first to determine

whether halothane (a) altered resting $[Ca^{2+}]$; in quiescent cells,

im

(b) attenuated increases in $[Ca^{2+}]$; evoked by AVP, (c) decreased

but rel Specifically, the current study sought first to determine
whether halothane (a) altered resting $[Ca^{2+}]_i$ in quiescent cells,
(b) attenuated increases in $[Ca^{2+}]_i$ evoked by AVP, (c) decreased
release of Ca^{2+} from in whether halothane (a) altered resting $|Ca^{2+}|\right|$; in quiescent cells, ime

(b) attenuated increases in $[Ca^{2+}]\right|$; evoked by AVP, (c) decreased but

release of Ca^{2+} from internal stores, (d) attenuated Ca^{2+} influx (b) attenuated increases in $[Ca^{2+}]_i$ evoked by AVP, (c) decreased bu
release of Ca^{2+} from internal stores, (d) attenuated Ca^{2+} influx tio
via cell surface membranes, and (e) inhibited AVP-induced
inositol phosphat release of Ca²⁺ from internal stores, (d) attenuated Ca²⁺ influ
via cell surface membranes, and (e) inhibited AVP-induce
inositol phosphate formation. Secondly, because halothane
believed to decrease Ca²⁺ availabili via cell surface membranes, and (e) inhibited AVP-induced
inositol phosphate formation. Secondly, because halothane is
believed to decrease Ca^{2+} availability for contraction in cardiac
muscle, in part by depleting Ca^{2 smooth phosphate formation. Secondly, because halo that is
believed to decrease Ca^{2+} availability for contraction in cardiac
muscle, in part by depleting Ca^{2+} from the sarcoplasmic retic-
ulum (16), the effects of h believed to decrease Ca^{2+} availability for contraction in cardiac muscle, in part by depleting Ca^{2+} from the sarcoplasmic retic-
ulum (16), the effects of halothane on Ca^{2+} storage in vascular
smooth muscle cells muscle, in part by depleting Ca^{2+} from the sarcoplasmic retic-
ulum (16), the effects of halothane on Ca^{2+} storage in vascular
smooth muscle cells were addressed by stimulating cells with
thapsigargin. This probe di ulum (16), the effects of halothane on Ca^{2+} storage in vascular smooth muscle cells were addressed by stimulating cells with thapsigargin. This probe discharges Ca^{2+} from $Ins(1,4,5)P_3$ -sensitive intracellular store smooth muscle cells were addressed by stimulating cells with
thapsigargin. This probe discharges Ca^{2+} from $Ins(1,4,5)P_3$ -
sensitive intracellular stores (17), with the magnitude of the
 $[Ca^{2+}]$; response representing t sensitive intracellular stores (17), with the magnitude of the [Ca²⁺]; response representing the amount of releasable Ca²⁺ is present in the stores. Finally, in order to exclude a halothane effect specific to AVP, whi $[Ca²⁺]$; response representing the amount of releasable Ca⁻¹
present in the stores. Finally, in order to exclude a halothane
effect specific to AVP, which elevates $[Ca²⁺]$; via a G protein-
linked signaling syst present in the stores. Finany, in other to exclude a harothane effect specific to AVP, which elevates $[Ca^{2+}]_i$ via a G protein-
linked signaling system (12), experiments were also performed
by stimulating the cells with linked signaling system (12), experiments were also performed
by stimulating the cells with PDGF. This agonist, in contrast
to AVP, evokes an increase in $[Ca^{2+}]$; via receptor dimerization,
autophosphorylation, and uncov by stimulating the complete to AVP, evokes an inductional state of the state of the state of the control pholipase C (18).
Experiments were AVP, evokes an increase in $[Ca^{2+}]$; via receptor dimerization, and tophosphorylation, and uncovering of latent receptor tyro-
ne kinase activity, with possible direct stimulation of phos-
lase C (18).
Experiments were pe

autophosphorylation, and uncovering of latent receptor tyrosine kinase activity, with possible direct stimulation of phospholipase C (18).

Experiments were performed using a vascular smooth muscle

cell line derived origi sine kinase activity, with possible direct stimulation of phos-
pholipase C (18).

Experiments were performed using a vascular smooth muscle

cell line derived originally from rat aorta (19), which exhibits

well character Experiments were performed using a vascular smooth muscle cell line derived originally from rat aorta (19) , which exhibits well characterized responses to vasoactive hormones including $AVP (20)$. The cells were preincuba well characterized responses to vasoactive hormones including AVP (20). The cells were preincubated with halothane concentrations corresponding to those used in clinical practice, i.e., 0.5-2.0% in the gas phase. trations corresponding to those used in clinical practice, i.e., 0.5–2.0% in the gas phase.
Experimental Procedures

Experimental Procedures
Experimental Procedures
Materials and chemicals. AVP and thapsigargin were obtained
from Calbiochem (San Diego, CA). Human recombinant PDGF β chain
homodimer was purchased from Bachem Inc. **Experimental Procedures**
Materials and chemicals. AVP and thapsigargin were obtaine
from Calbiochem (San Diego, CA). Human recombinant PDGF β chai
homodimer was purchased from Bachem Inc. (Torrance, CA). Halo
thane wa **Materials and chemicals**. AVP and thapsigargin were obtained from Calbiochem (San Diego, CA). Human recombinant PDGF β chain homodimer was purchased from Bachem Inc. (Torrance, CA). Halo-
thane was purchased from Ayer from Calbiochem (San Diego, CA). Human recombinant PDGF β chain
homodimer was purchased from Bachem Inc. (Torrance, CA). Halo-
thane was purchased from Ayerst Laboratories (New York, NY). Indo-
1 pentaacetoxymethyl est homodimer was purchased from Bachem Inc. (Torrance, CA). Halo-

thane was purchased from Ayerst Laboratories (New York, NY). Indo-

1 pentaacetoxymethyl ester was purchased from Molecular Probes

(Eugene, OR) and digitoni 1 pentaacetoxymethyl ester was purchased from Molecular Probes (Eugene, OR) and digitonin from the Sigma Chemical Company (St. Louis, MO). myo ^{[3}H]Inositol was purchased from Amersham Corp. (Arlington Heights, IL). DMEM, (Eugene, OR) and digitonin from the Sigma Chemical Company (St. Louis, MO). myo -[³H]Inositol was purchased from Amersham Corp. (Arlington Heights, IL). DMEM, MEM (no Ca²⁺), inositol-free medium (medium 199), HEPES, a (Arlington Heights, IL). DMEM, MEM (no Ca²⁺), inositol-free medium (medium 199), HEPES, and trypsin were obtained from GIBCO. Fetal bovine serum was acquired from Hyclone (Logan, VT).
Cell culture. The A7r5 cell line was

(medium 199), HEPES, and trypsin were obtained from GIBCO. Fetal
bovine serum was acquired from Hyclone (Logan, VT).
Cell culture. The A7r5 cell line was obtained from the American
Type Culture Collection (Rockville, MD bovine serum was acquired from Hyclone (Logan, VT).

Cell culture. The A7r5 cell line was obtained from the American

Type Culture Collection (Rockville, MD), (ATCC number CRL 1444).

The cells were grown in flasks contain The cens were grown in hasks containing DNEN1 with 10% letained
bovine serum, 100 units/ml penicillin, and 100 μ g/ml streptomycin, at
37° in a humidified 95% air/5% CO_2 atmosphere. Experiments were and ther
performed 37° in a humidified 95% air/5% CO_2 atmosphere. Experiments were performed with cells passaged once every 5-7 days for not more than 12 weeks.
 Estimation of [Ca²⁺]₁. The cultured cells were incubated with 4 μ M

37* (20) (indo-1/acetoxymethyl ester is hydrolyzed in the cells were incubated with 4μ M
 μ indo-1/acetoxymethyl ester plus 0.1% pluronic acid for 35-40 min at 37° (20) (indo-1/acetoxymethyl ester is hydrolyzed i saline, the cells were gently dissociated with $\frac{1}{2}$ plurid and -1 /acetoxymethyl ester is hydrolyzed in the cell to the incell-impermeant acidic form). After washing with phosphate-buffered saline, the cells were ge served in the containing 25 mM Hernandical sum containing with phosphate-buffered saline, the cells were gently dissociated with 0.05% trypsin for 5 min, representing 25 mM HEPES. The cell suspension was centrifuged, a saline, the cells were gently dissociated with 0.05% trypsin for 5 min, centrifuged, washed, and resuspended in DMEM plus 10% fetal bovine serum containing 25 mM HEPES. The cell suspension was centrifuged, and the concentr

Iothane Inhibits Inositol Phosphate and [Ca²⁺], Responses 1007
Aeration with halothane was performed before addition of the cells, by
passage of 95% $O_2/5\%$ CO₂ gas mixture containing the anesthetic, **Iothane Inhibits Inositol Phosphate and** $[Ca^{2+}]$ **Responses** 1007
Aeration with halothane was performed before addition of the cells, by
passage of 95% $O_2/5\%$ CO_2 gas mixture containing the anesthetic
delivered by a **lothane inhibits inositol Phosphate and [Ca²⁺], Responses 1007**
Aeration with halothane was performed before addition of the cells, by
passage of 95% O₂/5% CO₂ gas mixture containing the anesthetic,
delivered by Aeration with halothane was performed before addition of the cells, passage of 95% O₂/5% CO₂ gas mixture containing the anesthe delivered by a calibrated vaporizer at 150 ml/min for 20 min, throu 25 ml of medium at Aeration with halothane was performed before addition of the cells, by passage of 95% $O_2/5\%$ CO_2 gas mixture containing the anesthetic, delivered by a calibrated vaporizer at 150 ml/min for 20 min, through 25 delivered by a calibrated vaporizer at 150 ml/min for 20 min, through 25 ml of medium at 37°, in a semiclosed container. Halothane concentration in the aerating gas was adjusted using an anesthetic analyzer (Siemens 120, S 25 ml of medium at 37°, in a semiclosed container. Halothane concentration in the aerating gas was adjusted using an anesthetic analyzer (Siemens 120, Solna, Sweden), which itself had been calibrated using commercially ava tration in the aerating gas was adjusted using an anesthetic analyzer (Siemens 120, Solna, Sweden), which itself had been calibrated using commercially available gas mixtures of known concentration (Scott Medical, Plumstea commercially available gas mixtures of known concentration (Sc
Medical, Plumstead PA) and by using a mass spectrometer (Perk
Elmer 1100, Pomona, CA). The medium was aspirated into airtiglass syringes to prevent evaporation Medical, Plumstead PA) and by using a mass spectrometer (Perkins Elmer 1100, Pomona, CA). The medium was aspirated into airtight glass syringes to prevent evaporation of the anesthetic. Control experiments were performed u glass syringes to prevent evaporation of the anesthetic. Control experiments were performed using medium treated in an identical manner but in the absence of the anesthetic. Appropriate halothane concentrations in the medi glass syringes to prevent evaporation of the anesthetic. Control experiments were performed using medium treated in an identical manner but in the absence of the anesthetic. Appropriate halothane concentrations in the med iments were performed using medium treated in an identical manner
but in the absence of the anesthetic. Appropriate halothane concentra-
tions in the medium were confirmed by extracting the anesthetic from
 400μ of medi but in the absence of the anesthetic. Appropriate halothane concentra-
tions in the medium were confirmed by extracting the anesthetic from
400 μ l of medium into 2 ml of hexane and analyzing for halothane
content by ga tions in the medium were confirmed by extracting the anesthetic from 400μ of medium into 2 ml of hexane and analyzing for halothane content by gas chromatography with electron capture (Hewlett Packard 5880A), in argon/ content by gas chromatography with electron capture (Hewlett Packard 5880A), in argon/methane carrier gas. During the period of the experiment, a close correlation was achieved between desired anesthetic concentrations and 5880A), in argon/methane carrier gas. During the period of the experiment, a close correlation was achieved between desired anesthetic concentrations and actual concentrations measured in the culture medium. (Halothane lev concentrations and actual concentrations measured in the culture
medium. (Halothane levels in the medium were expressed as gas phase
concentrations predicted using known partition coefficients for distri-
bution between aq medium. (Halothane levels in the medium were expressed as gas phase
concentrations predicted using known partition coefficients for distri-
bution between aqueous and gas phases.) Anesthetic concentrations
in the aerating bution between aqueous and gas phases.) Anesthetic concentrations in the aerating gas of 0.5, 1.25, 1.5, and 2.0% resulted in concentrations in the culture medium that corresponded to 0.69 \pm 0.04, 1.09 \pm 0.07, 1.62

0.5–2.0% in the gas phase.
 Experimental Procedures
 Experimental Procedures

Materials and chemicals. AVP and thapsigargin were obtained

Materials and chemicals. AVP and thapsigargin were obtained

Materials and che the aerating gas of 0.5, 1.25, 1.5, and 2.0% resulted in concentrations
in the culture medium that corresponded to 0.69 \pm 0.04, 1.09 \pm 0.07,
1.62 \pm 0.05, and 2.08 \pm 0.09%, respectively.
The cells were preincub in the culture medium that corresponded to 0.69 ± 0.04 , 1.09 ± 0.07 , 1.62 ± 0.05 , and $2.08 \pm 0.09\%$, respectively.
The cells were preincubated at room temperature in medium with or without halothane for 10 min, to 1.62 \pm 0.05, and 2.08 \pm 0.09%, respectively.
The cells were preincubated at room temperature in medium with
or without halothane for 10 min, to allow anesthetic uptake and
equilibration. Apparent $[Ca^{2+}]_i$ was meas The cells were preincubated at room temperature in medium with
or without halothane for 10 min, to allow anesthetic uptake and
equilibration. Apparent $[Ca^{2+}]_i$ was measured by passing cells through
a flow cytometer (20) or without halothane for 10 min, to allow anesthetic uptake and
equilibration. Apparent $[Ca^{2+}]$, was measured by passing cells through
a flow cytometer (20) (FACStar-Plus; Beckton Dickinson, Mountain
View, CA) (adapted f a flow cytometer (20) (FACStar-Plus; Beckton Dickinson, Mountain View, CA) (adapted for this purpose) (21), where a stream of cells (300–500 cells/sec) was excited with 351–364-nm light emitted from an argon laser. Fluores 385-395 nm, using appropriate band pass filters in front of photomul-500 cells/sec) was excited with 351-364-nm light emitted from an argon
laser. Fluorescence was measured simultaneously at 480-520 nm and
385-395 nm, using appropriate band pass filters in front of photomul-
tiplier tubes 385-395 nm, using appropriate band pass filters in front of photomul-
tiplier tubes and fluorescence ratios calculated for each cell. The cells
were stimulated by addition of 10^{-9} M or 10^{-7} M AVP, 3.3×10^{-6} M
PD tiplier tubes and fluorescence ratios calculated for each cell. The cells
were stimulated by addition of 10^{-9} M or 10^{-7} M AVP, 3.3×10^{-9} M
PDGF, or 5×10^{-5} M thapsigargin directly into the cell suspension,
w concentrations and actual concentrations measured in the culture medium. (Halothane levels in the medium were repressed as age phase.) Antention coefficients for distribution between aquosus and gas phases.) Anesthetic co cells (20) and contracts isolated blood vessels. The PDGF dose was chosen because it evokes marked $[Ca^{2+}]_i$ responses in Swiss 3T3 cells.
The thapsigargin dose was chosen after pilot experiments.] In some experiments, c chosen because it evokes marked $[Ca^{2+}]$; responses in Swiss 3T3 cells.
The thapsigargin dose was chosen after pilot experiments.] In some
experiments, cells were suspended in Ca^{2+} -free MEM plus 0.5 mM
EGTA and stimula experiments, cells were suspended in Ca²⁺-free MEM plus 0.5 mM EGTA and stimulated with AVP or with thapsigargin, in order to evoke increases in $[Ca^{2+}]_i$ due to Ca^{2+} discharge from intracellular stores. In other ex EGTA and stimulated with AVP or with thapsigargin, in order to evoke
increases in $[Ca^{2+}]_i$ due to Ca^{2+} discharge from intracellular stores. In
other experiments, Ca^{2+} influx from extracellular sources was investi-EGTA and stimulated with AVP or with thapsigargin, in order to evoke
increases in $[Ca^{2+}]_i$ due to Ca^{2+} discharge from intracellular stores. In
other experiments, Ca^{2+} influx from extracellular sources was investiincreases in $[Ca^{2+}]_i$ due to Ca^{2+} discharge from intracellular stores. In other experiments, Ca^{2+} influx from extracellular sources was investigated by stimulation of cells with 10^{-7} M AVP while they were suspe gated by stimulation of cells with 10^{-7} M AVP while they were suspended in Ca²⁺-free MEM plus 0.5 mM EGTA. After completion of the initial $[Ca^{2+}]_i$ transient, 5 mM CaCl₂ was added in the continued presence of AVP 15). nded in Ca^{2+} -free MEM plus 0.5 mM EGTA. After completion of the
itial $[Ca^{2+}]_i$ transient, 5 mM CaCl₂ was added in the continued
esence of AVP, resulting in a second, sustained, $[Ca^{2+}]_i$ response (14,
).
The immed initial $[Ca^{2+}]_i$ transient, 5 mM CaCl₂ was added in the continued
presence of AVP, resulting in a second, sustained, $[Ca^{2+}]_i$ response (14,
15).
The immediate effects of acute addition of halothane solution on
 $[Ca^{2$

presence of AVP, resulting in a second, sustained, $[Ca^{2+}]$, response (14
15).
The immediate effects of acute addition of halothane solution or
 $[Ca^{2+}]$, in quiescent unstimulated cells were assessed by addition of
haloth The immediate effects of acute addition of halothane solution on $[Ca^{2+}]_i$ in quiescent unstimulated cells were assessed by addition of halothane dissolved in culture medium directly into the suspension, without interrup halothane dissolved in culture medium directly into the suspension,
without interruption of the flow of the cells, to obtain levels correspond-
ing to 1% and 2% gas phase concentrations. (The halothane solution
was prepar ing to 1% and 2% gas phase concentrations. (The halothane solution was prepared by dissolving 25 μ l of liquid halothane in 975 μ l of DMSO and then diluting this solution further in predetermined volumes of medium. D was prepared by dissolving 25 μ l of liquid halothane in 975 μ l of DMSO and then diluting this solution further in predetermined volumes of medium. DMSO at this concentration had no independent effect on $[Ca^{2+}]_i$.) and then diluting this solution further in predetermined volumes of medium. DMSO at this concentration had no independent effect on $[Ca^{2+}]_i$.) The gas phase above the cell suspension was flushed with O_2 / CO_2 mixture medium. DMSO at this concentration had no independent ${[Ca^{2+}]_i}$.) The gas phase above the cell suspension was flushed CO_2 mixture containing 1% or 2% halothane, in order to evaporation of the anesthetic. Appropriate a^{2+}]..) The gas phase above the cell suspension was flushed with O_{2} , mixture containing 1% or 2% halothane, in order to preven aporation of the anesthetic. Appropriate halothane concentration the aqueous phase wer CO₂ mixture containing 1% or 2% halothane, in order to prever evaporation of the anesthetic. Appropriate halothane concentration the aqueous phase were confirmed using gas chromatography.
Absence of nonspecific halothan

evaporation of the anesthetic. Appropriate halothane concentrations
in the aqueous phase were confirmed using gas chromatography.
Absence of nonspecific halothane effects on indo-1 fluorescence,
reported by others (22), w in the aqueous phase were confirmed using gas chromatography.
Absence of nonspecific halothane effects on indo-1 fluorescence,
reported by others (22), was reassessed by measuring indo-1 fluores-
cence ratios in cells tre Absence of nonspecific halothane
reported by others (22), was reassesse
cence ratios in cells treated with 2 μ h
absence of the anesthetic. Peak fluore
 \pm 0.01; 1.5% halothane, 0.60 \pm 0.01.
All protocols were repea ported by others (22), was reassessed by measuring indo-1 fluores-
nce ratios in cells treated with $2 \mu M$ digitonin, in the presence and
sence of the anesthetic. Peak fluorescence ratios were controls, 0.62
0.01; 1.5% ha

1008 Sill of al.
minimum of three separate periods. Each individual experiment was TABLE 1
accompanied by a control. Indo-1 fluorescence ratios were converted immedia **1008 Sill of al.**
minimum of three separate periods. Each individual experiment was
accompanied by a control. Indo-1 fluorescence ratios were converted
to $[Ca^{2+}]_i$ values by exposing cells acutely permeabalized with **1008 Sill of al.**

minimum of three separate periods. Each individual experiment was TABLE 1

accompanied by a control. Indo-1 fluorescence ratios were converted immedia

to $[Ca^{2+}]$, values by exposing cells acutely accompanied by a control. Indo-1 fluorescence ratios were converted
to $[Ca^{2+}]_i$ values by exposing cells acutely permeabalized with 10 μ M
digitonin to different concentrations of extracellular Ca^{2+} and then,
using to $[Ca^{2+}]_i$ values by exposing cells acutely permeabalized with 10 μ M digitonin to different concentrations of extracellular Ca^{2+} and then, using an indo K_D of 250 nM and measuring and calculating the ratio of f digitonin to different concentrations of extracellular Ca^{2+} and then, applying an indo K_D of 250 nM and measuring and calculating the ratio of from fluorescence of Ca^{2+} -free indicator and Ca^{2+} -bound indicator, many an material fluorescence of Ca^{2+} -
(2.5), maximum fluor
ratio (0.1), solving the used by others (21).
Measurement of i mg an into Kp or 200 lim and measuring and calculating the ratio of orescence of Ca^{2+} -free indicator and Ca^{2+} -bound indicator, S_f/S_b in cell (5), maximum fluorescence ratio (1.1), and minimum fluorescence the cel

(2.5), maximum fluorescence ratio (1.1), and minimum fluorescence
ratio (0.1), solving the equation described by Grynkiewicz (23) and
used by others (21).
Measurement of inositol phosphates. Cells were grown in 35-mm
cu ratio (0.1), solving the equation described by Grynkiewicz (23) and
used by others (21).
Measurement of inositol phosphates. Cells were grown in 35-mm
culture dishes for 5-7 days, to reach confluence, and were labeled f used by others (21).
 Measurement of inositol phosphates. Cells were grown in 35-mm

culture dishes for 5-7 days, to reach confluence, and were labeled for

21 hr with myo -[³H]inositol (18.2 Ci/mmol in inositol-free **Measurement of inositol phosphates.** Cells were grown in 35-mm culture dishes for 5-7 days, to reach confluence, and were labeled for 21 hr with myo -[³H]inositol (18.2 Ci/mmol in inositol-free medium without fetal bov 21 hr with myo -[³H]inositol (18.2 Ci/mmol in inositol-free medium without fetal bovine serum, buffered with 10 mM HEPES. They were washed with balanced salt solution containing 3.0 mM HEPES, pH 7.4, and then harvested, without fetal bovine serum, buffered with 10 mM HEPES. They were washed with balanced salt solution containing 3.0 mM HEPES, pH 7.4,

washed with balanced salt solution containing 3.0 mM HEPES, pH 7.4,
and then harvested, using 0.05% trypsin for 10 min, and centrifuged.
Experiments were performed after addition of the cell suspension to
balanced salt and then harvested, using 0.05% trypsin for 10 min, and centrifuged.
Experiments were performed after addition of the cell suspension to
balanced salt solution, with or without halothane, in a closed container
at 37°. Experiments were performed after addition of the cell suspension to
balanced salt solution, with or without halothane, in a closed container
at 37°. Addition of halothane was performed before addition of the
cells, by pre balanced salt solution, with or without halothane, in a closed container
at 37°. Addition of halothane was performed before addition of the
cells, by preparing halothane in DMSO (described above) and balanced
salt solutio at 37°. Addition of halothane was performed before addition of the cells, by preparing halothane in DMSO (described above) and balanced meal solution. After preincubation for 10 min and addition of 20 mM LiCl to prevent in solution. After preincubation for 10 min and addition of 20 mM lto prevent inositol phosphate breakdown, 0.5 ml of cell suspension transferred to test tubes in a water bath at 37° in a semiclosed cham Halothane loss by eva to prevent inositol phosphate breakdown, 0.5 ml of cell suspension was
transferred to test tubes in a water bath at 37° in a semiclosed chamber.
Halothane loss by evaporation was prevented by continuously passing
air-conta Flalothane loss by evaporation was prevented by continuously parain-containing halothane through the chamber. Anesthetic concentrations were monitored and adjusted as described above. Anest concentrations of 1% and 2% in air-containing halothane through the chamber. Anesthetic concentra-
tions were monitored and adjusted as described above. Anesthetic
concentrations of 1% and 2% in the aerating gas resulted in concentra-
tions in the bala respectively. tions were monitored and adjusted as described above. Anesthetic EGTA v

concentrations of 1% and 2% in the aerating gas resulted in concentra-

tions in the balanced salt solution of 1.01 \pm 0.02% and 2.16 \pm 0.03%,

respectively.

Inositol phosphate formation was stimulated by addition of 10^{-7} M

AVP to the test tubes, and the effect was terminated at predetermined

times by lysing of the cells with 120 μ l of 0.22 N HCl and 900 Inositol phosphate formation was stimulated by addition of 10^{-7} M
AVP to the test tubes, and the effect was terminated at predetermined
times by lysing of the cells with 120 μ l of 0.22 N HCl and 900 μ l of
chlorof times by lysing of the cells with 120 μ l of 0.22 N HCl and 900 μ l chloroform/methanol (1:2). Chloroform/water (1:1) (1.8 ml) was add
in order to extract inositol phosphates into the aqueous phase a
after centrifugat chloroform/methanol (1:2). Chloroform/water (1:1) (1.8 ml) was added
in order to extract inositol phosphates into the aqueous phase and,
after centrifugation, the aqueous phase was removed, diluted 8-fold in
water, and app after centrifugation, the aqueous phase was removed, diluted 8-fold in increase in $[Ca^{2+}]$, followed by a rapid and more complete water, and applied to anion exchange columns containing approximately the metally 0.5 ml o after centrifugation, the aqueous phase was removed, diluted 8-fold in water, and applied to anion exchange columns containing approximately 0.5 ml of mixed bed resin (Dowex AG 1-×8, 200–400 mesh, in the formate form; Biowater, and applied to anion exchange columns containing approximately 0.5 ml of mixed bed resin (Dowex AG 1-×8, 200–400 mesh, in in ithe formate form; Bio-Rad, Irvine, CA). The columns were washed and with 20 ml of 60 mM s the formate form; Bio-Rad, Irvine, CA). The columns were washed
with 20 ml of 60 mM sodium formate, 5 mM sodium borate, before total
inositol phosphates were eluted with 5 ml of 1.2 M ammonium formate,
100 mM formic acid. inositol phosphates were eluted with 5 ml of 1.2 M ammonium formate,
100 mM formic acid. Radioactivity in the eluate was determined by
liquid scintillation counting (Aquassure scintillation solution; DuPont,
and Beckman L

liquid scintillation counting (Aquassure scintillation solution; DuPont,
and Beckman LS 5000 TD counter).
Data analysis. Results are expressed as mean \pm standard error.
Changes in indo-1 fluorescence signal ratio are and Beckman LS 5000 TD counter).
 Data analysis. Results are expressed as mean \pm standard error.

Changes in indo-1 fluorescence signal ratio are expressed as apparent
 $[Ca^{2+}]_i$. Integrated areas under time-respons Changes in indo-1 fluorescence signal ratio are expressed as apparent $[Ca^{2+}]$. Integrated areas under time-response curves were obtained using apparent $[Ca^{2+}]$, values. Inositol phosphate levels are expressed as emissio [Ca²⁺]_i. Integrated areas under time-response curves were of using apparent $[Ca^{2+}]_i$ values. Inositol phosphate levels are ex as emission cpm. The *n* value represents the number of inceperiments. Data were analyzed

Results

Acute effects of halothane on [Ca²⁺], in quiescent cells.

dition of halothane on [Ca²⁺], in quiescent cells.

dition of halothane solution directly into quiescent cell sus-Results

Addition of halothane on $[Ca^{2+}]$, in quiescent cells.

Addition of halothane solution directly into quiescent cell sus-

pensions, to achieve anesthetic concentrations corresponding

to 1% and 2%, produced immedi Acute effects of halothane on $[Ca^{2+}]_1$ in quiescent cells.
Addition of halothane solution directly into quiescent cell sus-
pensions, to achieve anesthetic concentrations corresponding
to 1% and 2%, produced immediate b **Acute effects of halothane on** $[Ca^{2+}]_i$ **in quiescent cells.** haddition of halothane solution directly into quiescent cell sus-
pensions, to achieve anesthetic concentrations corresponding Tto 1% and 2%, produced immedia Addition of halothane solution directly into quiescent cell sus-
pensions, to achieve anesthetic concentrations corresponding Tables 2 and 3. Inhibition of the $[Ca^{2+}]$, response, expressed as
to 1% and 2%, produced immed pensions, to achieve anesthetic concentrations corresponding
to 1% and 2%, produced immediate but very small and brief
(approximately 50 sec.) increases in $[Ca^{2+}]_i$. The responses
could barely be distinguished from the b to 1% and 2%, produced immediate but very small and brief are (approximately 50 sec.) increases in $[Ca^{2+}]$. The responses Fig could barely be distinguished from the background effect of shot turbulence caused by addition (approximately 50 sec.) increases in $[Ca^{2+}]$. The responses Fig
could barely be distinguished from the background effect of shc
turbulence caused by addition of control or anesthetic solutions. In
Direct addition of halo could barely be distinguished from the backgroturbulence caused by addition of control or anesth
Direct addition of halothane solution to cells
medium plus EGTA also resulted in immediate
small and brief increases in $[Ca^{$ rbulence caused by addition of control or anesthetic solutions. Einerct addition of halothane solution to cells in Ca^{2+} -free in [Cadium plus EGTA also resulted in immediate but also very suspeall and brief increases in Direct addition of halothane solution to cells in Ca^{2+} -free in medium plus EGTA also resulted in immediate but also very sus small and brief increases in $[Ca^{2+}]_i$ (Table 1). 10⁻
Effects of preincubation with halot

medium plus EGTA also resulted in immediate but also very s
small and brief increases in $[Ca^{2+}]_i$ (Table 1).
Effects of preincubation with halothane on $[Ca^{2+}]_i$ **in s
quiescent cells.** In a separate experiment, base-l

TABLE 1
TABLE 1
Immediate effect: TABLE 1
Immediate effects of acute addition of halothane solution on [Ca²⁺],
in quiescent cells **TABLE 1
Immediate effects of act
in quiescent cells
Apparent [Ca²⁺], was calculate**

TABLE 1
I**mmediate effects of acute addition of halothane solution on [Ca²⁺],
in quiescent cells
Apparent [Ca²⁺], was calculated using the ratios of light emitted at dual wavelengths
from indo-1-loaded A7r5 cells image** TABLE 1
Immediate effects of acute addition of halothane solution on $[Ca^{2+}]$,
in quiescent cells
Apparent $[Ca^{2+}]$, was calculated using the ratios of light emitted at dual wavelengths
from indo-1-loaded A775 cells image from indo-1-loaded A7r5 cells imaged using flow cytometry. Halothane dissolved
in cell culture medium or control solution (no halothane) was acutely injected into

Final concentration in the cell suspension.

"Increases in [Ca²⁺] observed after injection of control solution (no halothane)

may represent the effect of turbulence.
 ${}^{\circ} \rho < 0.01$, in comparison with control.

10 mi Thereases in [Car' j observed after injection of control solution (no halomane)
may represent the effect of turbulence.
 $\degree \rho$ < 0.01, in comparison with control.
10 min was slightly lower than that in control untreated c $\epsilon_p < 0.01$, in comparison with control.
10 min was slightly lower than that in control untreated cells.
Small depressant effects of the anesthetic were observed at
both 1.25 and 2.0% halothane concentrations but not afte 10 min was slightly lower than that in control untreated cells.
Small depressant effects of the anesthetic were observed at
both 1.25 and 2.0% halothane concentrations but not after
0.5% halothane. Preincubating cells in Small depressant effects of the anesthetic were observed at both 1.25 and 2.0% halothane concentrations but not after 0.5% halothane. Preincubating cells in Ca^{2+} -free medium plus EGTA with 1.5% halothane also decreased both 1.25 and 2.0% halothane concentrations
0.5% halothane. Preincubating cells in Ca^{2+} -fre
EGTA with 1.5% halothane also decreased resti
bles 2 and 3). Base-line $[Ca^{2+}]$, varied with each
but the effects of halothane 5% halothane. Preincubating cells in Ca^{2+} -free medium plus GTA with 1.5% halothane also decreased resting $[Ca^{2+}]_i$ (Ta-
es 2 and 3). Base-line $[Ca^{2+}]_i$ varied with each batch of cells,
t the effects of preincubatio

EGTA with 1.5% halothane also decreased resting $[Ca^{2+}]_i$ (Tables 2 and 3). Base-line $[Ca^{2+}]_i$ varied with each batch of cells, but the effects of halothane remained consistent.
Effects of preincubation with halothane but the effects of halothane remained consistent.
 Effects of preincubation with halothane on increases

in $[Ca^{2+}]_i$ evoked by AVP. Stimulation of untreated control

cells with 10^{-9} M AVP produced a rapid increase control cells with 10^{-7} M AVP evoked a rapid and more marked **Effects of preincubation with halothane on increases**
in $[Ca^{2+}]_i$ evoked by AVP. Stimulation of untreated control
cells with 10^{-9} M AVP produced a rapid increase in $[Ca^{2+}]_{i}$,
followed by a gradual return towards in $[Ca^{2+}]_i$ evoked by AVP. Stimulation of untreated control
cells with 10^{-9} M AVP produced a rapid increase in $[Ca^{2+}]_i$,
followed by a gradual return towards base-line. Stimulation of
control cells with 10^{-7} M A return towards base-line. Stimulation of control cells with 10^{-7} M AVP evoked a rapid and more marked increase in $[Ca^{2+}]_i$, followed by a rapid and more complete return towards base line. Preincubation with halothane control cells with 10 'MAVP evoked a rapid and more marked
increase in $[(Ca^{2+}]_i,$ followed by a rapid and more complete
return towards base line. Preincubation with halothane resulted
in inhibition of the responses evoke anesthetic on peak $[Ca^{2+}]_i$ and $[Ca^{2+}]_i$ at 180 sec after AVP are
shown in Tables 2 and 3. Tracings from typical individual
experiments during stimulation with 10^{-9} M and 10^{-7} M AVP **return towards base line. Preincubation with halothane resulted**
in inhibition of the responses evoked by AVP. Effects of the
anesthetic on peak $[Ca^{2+}]_i$ and $[Ca^{2+}]_i$ at 180 sec after AVP are
shown in Tables 2 and 3. in initiation of the responses evoked by AVY . Effects of the
anesthetic on peak $[Ca^{2+}]_i$ and $[Ca^{2+}]_i$ at 180 sec after AVP are
shown in Tables 2 and 3. Tracings from typical individual
experiments during stimulation experiments during stimulation with 10^{-9} M and 10^{-7} M AVP are presented in Figs. 1 and 2, respectively. Dose-dependent percentage of inhibition of the responses evoked by AVP, expressed as integrated areas under ind is presented in Figs. 1 and 2, respectively. Dose-dependent rcentage of inhibition of the responses evoked by AVP, pressed as integrated areas under individual time-response rves, are shown in Fig. 3. Effects of preincuba

percentage of inhibition of the responses evoked by AVP,
expressed as integrated areas under individual time-response
curves, are shown in Fig. 3.
Effects of preincubation with halothane on increases
in $[Ca^{2+}]_i$ resul expressed as integrated areas under individual time-response
curves, are shown in Fig. 3.
Effects of preincubation with halothane on increases
in [Ca²⁺], **resulting from AVP-induced Ca²⁺ release from
intracellular st** curves, are shown in Fig. 3.
 Effects of preincubation with halothane on increases

in $[Ca^{2+}]$, resulting from AVP-induced Ca^{2+} release from

intracellular stores. The cells were suspended in Ca^{2+} -free

medium pl Effects of preincubation with halothane on increases
in $[Ca^{2+}]_i$ resulting from AVP-induced Ca^{2+} release from
intracellular stores. The cells were suspended in Ca^{2+} -free
medium plus EGTA, in order that increases i in $[Ca^{2+}]_i$ resulting from AVP-induced Ca^{2+} release from
intracellular stores. The cells were suspended in Ca^{2+} -free
medium plus EGTA, in order that increases in $[Ca^{2+}]_i$ evoked
by AVP would result primarily fro intracellular stores. The cells were suspended in Ca^{2+} -free
medium plus EGTA, in order that increases in $[Ca^{2+}]$, evoked
by AVP would result primarily from Ca^{2+} release from intra-
cellular stores. Stimulation with by AVP would result primarily from Ca^{2+} release from intra-
cellular stores. Stimulation with 10^{-9} M and 10^{-7} M AVP caused
responses that were of a lesser magnitude than those observed
in the presence of extracel cellular stores. Stimulation with 10^{-9} M and 10^{-7} M AVP caused
responses that were of a lesser magnitude than those observed
in the presence of extracellular Ca²⁺. Pretreatment with 1.5%
halothane attenuated the r responses that were of a lesser magnitude than those observed
in the presence of extracellular Ca^{2+} . Pretreatment with 1.5%
halothane attenuated the responses. The effects of halothane
on peak $[Ca^{2+}]$; and $[Ca^{2+}]$; a in the presence of extracellular Ca^{2+} . Pretreatment with 1.5% halothane attenuated the responses. The effects of halothane on peak $[Ca^{2+}]$ _i and $[Ca^{2+}]$ _i at 180 sec after AVP are shown in Tables 2 and 3. Inhibitio on peak $[Ca^{2+}]_i$ and $[Ca^{2+}]_i$ at 180 sec after AVP are shown in Tables 2 and 3. Inhibition of the $[Ca^{2+}]_i$ response, expressed as areas under the integrated time response curves, is shown in Fig. 3. Recordings from

in $[Ca^{2+}]_i$ due to AVP-induced Ca^{2+} influx. The cells were areas under the integrated time response curves, is shown in Fig. 3. Recordings from typical individual experiments are shown in Fig. 4.
 Effects of preincubation with halothane on increases in [Ca²⁺], due to AVP-induc Fig. 3. Recordings from typical individual experiments are
shown in Fig. 4.
Effects of preincubation with halothane on increases
in $[Ca^{2+}]_1$ due to AVP-induced Ca^{2+} influx. The cells were
suspended in Ca^{2+} -free **Effects of preincubation with halothane on increases** in $[Ca^{2+}]$, due to AVP-induced Ca^{2+} influx. The cells were suspended in Ca^{2+} -free MEM plus EGTA and stimulated with 10^{-7} M AVP and then, on completion of th in $[Ca^{2+}]$, due to AVP-induced Ca^{2+} influx. The cells were
suspended in Ca^{2+} -free MEM plus EGTA and stimulated with
 10^{-7} M AVP and then, on completion of the initial Ca^{2+} tran-
sient, 5 mM Ca^{2+} was added i suspended in Ca²¹-free MEM plus EGTA and stimulated with 10^{-7} M AVP and then, on completion of the initial Ca²⁺ transient, 5 mM Ca²⁺ was added in the continued presence of AVP. Ca²⁺ influx occurred, resulting i

TABLE 2
Effects of preincubation with halothane upon base-line [Ca²⁺], and upon increases in Ca²⁺], evoked by 10⁻⁹ м AVP

The indo-1-loaded A7r5 cells were preincubated for 10 min at room temperature in culture medium, with or without halothane. Apparent [Ca²⁺], was obtained by Halothane Inhibits inositol Phosphate and [Ca²⁺], Responses 1009
Effects of preincubation with halothane upon base-line [Ca²⁺], and upon increases in Ca²⁺], evoked by 10^{-e} м AVP
The indo-1-loaded A7r5 cells were p TABLE 2
Effects of preincubation with halothane upon base-line $[Ca^{2+}]$, and upon increases in Ca^{2+} , evoked by 10^{-9} M AVP
The indo-1-loaded A7r5 cells were preincubated for 10 min at room temperature in culture medi

a Base-line [Ca²⁺], varied with each batch of cells. A minimum of three batches of cells were used in each experiment.
 $P \sim 0.01$, in comparison with control.
 $P \sim 0.0001$, in comparison with control.

Base-line [Ca²⁺]
 ${}^b p < 0.01$, in com
 ${}^c p < 0.0001$, in com

TABLE 3
 Effects of preincu $\epsilon_p < 0.0001$, in comparison with control.

TABLE 3
 **Effects of preincubation with halothane upon base-line [Ca²⁺], and upon increases in Ca²⁺], evoked by 10⁻⁷ M AVP

Beseline [Ca²⁺]**

 $\frac{b}{\rho}$ < 0.01, in comparison with control.
 $\frac{c}{\rho}$ < 0.0001, in comparison with control.

8, 0.5, 1.25, or 2.0% halothane for 10 min or incubated without the anesthetic (controls). Cell suspension was passed through a flow cytometer at 300–500 cells/sec. AVP was added without \overline{C} dual wavelengths,
 \overline{C} dual wavelengths,
 \overline{C} ent $[Ca^{2+}$]. Results

iments are shown. **Fig. 1.** Effects of preincubation with halothane

on increases in [Ca²⁺], evoked by 10⁻⁹ M AVP in

cultured A7r5 vascular smooth muscle cells. The

indo-1-loaded cells were incubated with either **Fig. 1.** Effects of preincubation with halothane
on increases in $[Ca^{2+}]$, evoked by 10^{-9} m AVP in
cultured A7r5 vascular smooth muscle cells. The
indo-1-loaded cells were incubated with either
0.5, 1.25, or 2.0% halo **Fig. 1.** Effects of preincubation with halothane
on increases in [Ca²⁺], evoked by 10⁻⁹ M AVP in
cultured A7r5 vascular smooth muscle cells. The
indo-1-loaded cells were incubated with either
0.5, 1.25, or 2.0% haloth Fig. 1. Effects of preincubation with nationale on increases in $[Ca^{2+}]_i$ evoked by 10^{-9} M AVP in cultured A7F5 vascular smooth muscle cells. The indo-1-loaded cells were incubated with either 0.5, 1.25, or 2.0% halot on increases in [Ca⁻¹]_i evoked by 10 ° M AVP in
cultured A7r5 vascular smooth muscle cells. The
indo-1-baded cells were incubated with either
0.5, 1.25, or 2.0% halothane for 10 min or incu-
bated without the anestheti cultured A/r5 vascular smooth muscle cells. The
indo-1-loaded cells were incubated with either
0.5, 1.25, or 2.0% halothane for 10 min or incu-
bated without the anesthetic (controls). Cell sus-
pension was passed through into-1-loaded cells were includated with either
0.5, 1.25, or 2.0% halothane for 10 min or incu-
bated without the anesthetic (controls). Cell sus-
pension was passed through a flow cytometer
at 300–500 cells/sec. AVP was $0.5, 1.25, 0t \ge 0.0\%$ haloulate for 10 mm or included without the anesthetic (controls). Cell supersion was passed through a flow cytomet
at 300-500 cells/sec. AVP was added without
at 300-500 cells/sec. AVP was added w bated without the anesthetic (controls). Cell supersion was passed through a flow cytomet
at 300-500 cells/sec. AVP was added without
interruption of the flow of cells. Fluorescence,
dual wavelengths, was used to calculate pension was passed
at 300–500 cells/see
interruption of the flo
dual wavelengths, w
ent [Ca²⁺],. Results finents are shown. dual wavelengths, was used to calculate apparent [Ca²⁺]. Results from typical individual experiments are shown.
Fig. 2. Effects of preincubation with halothane
on increases in [Ca²⁺], evoked by 10⁻⁷ m AVP
in cultur

It [Ca²]. Hesults from typical incrviously experients are shown.

Fig. 2. Effects of preincubation with halothane

on increases in [Ca²⁺], evoked by 10⁻⁷ M AVP

in cultured A7r5 vascular smooth muscle cells. ients are shown.
Fig. 2. Effects of preincubation with halothane
on increases in [Ca²⁺], evoked by 10⁻⁷ m AVP
in cultured A7r5 vascular smooth muscle cells.
The indo-1-loaded cells were incubated with **Fig. 2.** Effects of preincubation with halothane
on increases in $[Ca^{2+}]$, evoked by 10^{-7} M AVP
in cultured A7r5 vascular smooth muscle cells.
The indo-1-loaded cells were incubated with
either 0.5, 1.25, or 2.0% halo Fig. 2. Effects of preincubation with halothane
on increases in $[Ca^{2+}]$, evoked by 10^{-7} M AVP
in cultured A7r5 vascular smooth muscle cells.
The indo-1-loaded cells were incubated with
either 0.5, 1.25, or 2.0% halot Fig. 2. Effects of preincubation with halomane
on increases in $[Ca^{2+}]}$, evoked by 10^{-7} M AVP
in cultured A775 vascular smooth muscle cells.
The indo-1-loaded cells were incubated with
either 0.5, 1.25, or 2.0% haloth on increases in [Car⁻], evoked by 10 ' M AVP
in cultured A7r5 vascular smooth muscle cells.
The indo-1-loaded cells were incubated with
either 0.5, 1.25, or 2.0% halothane for 10 min
or incubated without the anesthetic in cultured Arrs vascular smooth muscle cells.
The indo-1-loaded cells were incubated with
or incubated without the anesthetic (controls).
Cell suspension was passed through a flow
cytometer at 300-500 cells/sec. AVP was
a The line-1-loaded casts were linculated with
either 0.5, 1.25, or 2.0% halothane for 10 min
or incubated without the anesthetic (controls).
Cell suspension was passed through a flow
cytometer at 300-500 cells/sec. AVP was
 Fluorescence at the mass and the method of included without the anesthetic (controls).
Cell suspension was passed through a flow
cytometer at 300–500 cells/sec. AVP was
added without interruption of the flow of cells.
Fluo or includated without the anesthetic (controls).
Cell suspension was passed through a flow
cytometer at 300-500 cells/sec. AVP was
added without interruption of the flow of cells.
Fluorescence, at dual wavelengths, was us Less suspension was passed triough and ded without interruption of the flow of Fluorescence, at dual wavelengths, was to calculate apparent $[Ca^{2+}]$. Results fro ical individual experiments are shown. added without interruption of the flow of cells.

The added without interruption of the flow of cells.

Fluorescence, at dual wavelengths, was used

to calculate apparent $[Ca^{2+}]$. Results from typ-

ical individual exper

E
result from receptor-operated Ca²⁺ influx, because it was not
inhibited by 10^{-6} M diltiazem, a voltage-operated Ca²⁺ channel
blocker. Sustained phase [Ca²⁺], was 183 ± 27 nM in control
cells and 174 ± 24 result from receptor-operated Ca²⁺ influx, because it was not
inhibited by 10^{-6} M diltiazem, a voltage-operated Ca²⁺ channel
blocker. Sustained phase $[Ca^{2+}]_i$ was 183 ± 27 nM in control
cells and 174 ± 24 nM result from receptor-operated Ca²⁺ influx, because it was not
inhibited by 10^{-6} M diltiazem, a voltage-operated Ca²⁺ channel hibit
blocker. Sustained phase $[Ca^{2+}]$; was 183 ± 27 nM in control inhi
cells and 174 blocker. Sustained phase $[Ca^{2+}]$; was 183 ± 27 nM in control in cells and 174 ± 24 nM in the presence of diltiazem. In addition, from pretreatment with 1 nM La^{3+} , an inorganic nonspecific Ca^{2+} plateau phase fro cells and 174 \pm 24 nM in the presence of diltiazem. In addition, from pretreatment with 1 nM La^{3+} , an inorganic nonspecific Ca^{2+} plackennel blocker, decreased the sustained phase from 184 ± 28 exp nM to 45 ± 1 increased $[Ca^{2+}]_i$ by only 49 \pm 11 nM.

channel blocker, decreased the sustained phase from 184 ± 28 experiments are presented in Fig. 5. Comparisons of integrated
nM to 45 ± 19 nM, suggesting that the plateau phase was caused areas under the time-response $\frac{1}{10}$ to calculate apparent $[Ca^{2+}]$. Results from typical individual experiments are shown.
Preincubation with 1.5% halothane resulted in marked in-
hibition of the Ca²⁺ release transient but had only modest
inhib in the second superiments are shown.

Freincubation with 1.5% halothane resulted in marked in-

hibition of the Ca²⁺ release transient but had only modest

inhibitory effects on the second sustained response resulting
 Freincubation with 1.5% halothane resulted in marked in-
hibition of the Ca²⁺ release transient but had only modest
inhibitory effects on the second sustained response resulting
from Ca²⁺ influx. The effects of haloth Preincubation with 1.5% halothane resulted in marked in hibition of the Ca^{2+} release transient but had only modes inhibitory effects on the second sustained response resultin from Ca^{2+} influx. The effects of halotha multion of the Ca²⁺ release transient but had only modest
inhibitory effects on the second sustained response resulting
from Ca²⁺ influx. The effects of halothane on the Ca²⁺ influx
plateau are shown in Table 4. The inhibitory effects on the second sustained response resulting
from Ca^{2+} influx. The effects of halothane on the Ca^{2+} influx
plateau are shown in Table 4. The results of typical individual
experiments are presented i from Ca²⁺ influx. The effects of halothane on the Ca²⁺ influx
plateau are shown in Table 4. The results of typical individual
experiments are presented in Fig. 5. Comparisons of integrated
areas under the time-respons plateau are shown in Table 4. The results of typical individual
experiments are presented in Fig. 5. Comparisons of integrated
areas under the time-response curves indicated that halothane
inhibited the response due to Ca experiments are presente
areas under the time-respinhibited the response d
0.0001), whereas the subs
by only $15 \pm 4\%$ ($p < 0.0$

Fig. 3. Percentage of inhibition by halothane of increases in $[Ca^{2+}]$ induced by 10⁻⁹ and 10⁻⁷ M AVP in cultured A7r5 vascular smooth muscle cells. Left, cells were incubated in DMEM, with or without 0.5, 1.25, or 2.0% halothane, for 10 min and then stimulated with AVP. Right, cells were incubated with or without halothane in Ca²⁺-free MEM plus 0.5 mm EGTA, to decrease extracellular [Ca²⁺]. (On stimulation with AVP, the increase in $[Ca^{2+}]$, was due to Ca^{2+} release from intracellular stores.) Integrated areas under time-response curves were used to indicate changes in $[Ca^{2+}]_i$. $n = 8-13$ pairs for each experiment. *, $p <$ $0.01;$ t, $p < 0.0001$.

Fig. 4. Effects of preincubation with halothane on increases in $[Ca^{2+}]$ evoked by AVP (left, 10⁻⁹ M; right, 10⁻⁷ M in A7r5 cultured vascular smooth muscle cells. The indo-1-loaded cells were incubated either with or without 1.5% halothane in Ca²⁺-free MEM plus 0.5 mm EGTA, to decrease extracellular [Ca²⁺]. Apparent [Ca²⁺], was measured using dualwavelength sampling from cells imaged during flow cytometry. The increase in [Ca²⁺], represents Ca²⁺ release from intracellular stores evoked by AVP. Tracings from typical experiments are presented.

Effects of preincubation with halothane on increases in $[Ca²⁺]$ evoked by thapsigargin. The effects of preincubation with halothane on the Ca²⁺ content of intracellular stores was assessed by suspending the cells in $Ca²⁺$ -free medium plus EGTA and stimulating them with thapsigargin. [This agent discharges Ca^{2+} from $Ins(1,4,5)P_3$ -sensitive stores, with the magnitude of the Ca^{2+} response reflecting the amount of releasable Ca^{2+} present (17).] Thapsigargin induced a gradual increase in $[Ca^{2+}]$, with maximum levels occurring at approximately 200 sec, followed by a gradual return towards base line. The amplitude of the increase in $[Ca^{2+}]_i$ was 59 \pm 3 nM in control cells and decreased to 41 ± 2 nM in cells preincubated with 1.5% halothane ($p < 0.0001$). Comparisons of integrated areas under time-response curves indicated that halothane inhibited the response by 31 \pm 5% (p < 0.001). Tracings from typical individual experiments are shown in Fig. 6.

Effects of preincubation with halothane on increases in [Ca²⁺], evoked by PDGF. Stimulation of untreated cells with 3.3 \times 10⁻⁹ M PDGF resulted in increases in [Ca²⁺]; with maximum levels occurring at approximately 100 sec, followed by return towards base line. The responses were inhibited in cells preincubated with 1.5% halothane. Base-line, peak, and 250-sec $[Ca^{2+}]$ levels are shown in Table 5. Comparison of integrated areas under the time-response curves indicated halothane decreased the PDGF-induced $[Ca^{2+}]$; responses by 43 \pm 5% ($p < 0.0001$). Tracings from typical individual experiments are presented in Fig. 7.

Effects of preincubation with halothane on increases in total inositol phosphates evoked by AVP. The aim was to determine whether preincubation with halothane inhibited increases in inositol phosphates evoked by 10^{-7} M AVP. Total inositol phosphate levels were first measured 2 min before addition of AVP when results demonstrated that resting inositol phosphate levels in quiescent cells did not differ between cells treated with halothane and untreated cells. AVP was then added and induced a sustained increase in total inositol phosphate levels. (Degradation of inositol phosphates was inhibited due to the presence of LiCl.) The response was attenuated after pretreatment of cells with both 1 and 2% halothane. Levels of inositol phosphates in cells untreated with either AVP or halothane remained stable during the experiment and provided time control data. Comparisons of integrated areas under the time-response curves, calculated using time-control measurements as base-line, indicated that 1% halothane inhibited the AVP-induced increase in inositol phosphates by $46 \pm 15\%$ (p $<$ 0.02) and that 2% halothane inhibited the response by 61 \pm 19% ($p < 0.02$). The results are displayed in Fig. 8.

Discussion

The mechanisms of action of anesthetics are not understood. Current theories predict that the anesthetic state and related side effects such as vasodilatation may arise from interference with cell signaling (5). Results from the current experiments suggest that agonist-induced increases in $[Ca^{2+}]_i$ and in inositol phosphates, two uniquely important steps in cell signaling, are inhibited by halothane. Preincubation with clinically relevant concentrations of halothane resulted in attenuation of the

TABLE 4

Effects of preincubation with halothane upon Ca²⁺ release from intracellular stores and upon Ca²⁺ influx, both evoked by 10⁻⁷ M AVP The indo-1-loaded cells were preincubated for 10 min, with or without halothane, in Ca²⁺-free culture medium plus 0.5 mm EGTA. Apparent [Ca²⁺], was obtained using flow cytometry. AVP was injected into the cell suspension without interruption of the flow of cells. After completion of the initial transient, which represents Ca²⁺ release from intracellular stores, 5 mm Ca²⁺ was added to the cell suspension in the continued presence of AVP. The second response represents Ca²⁺ influx.

Halothane		Peak $[Ca2+]$ due to $Ca2+$ release		Peak $[Ca^{2+}]$ due to Ca^{2+} influx		$[Ca2+]$ at 250 sec during $Ca2+$ influx	
concentration	п	Control	Halothane	Control	Halothane	Control	Halothane
%		nM		nM		nм	
1.5	12	449 ± 28	$184 \pm 18^{\circ}$	188 ± 24	$150 \pm 17^{\circ}$	152 ± 9	132 ± 15^b

 $p < 0.0001$, in comparison with control.

 \dot{p} < 0.01, in comparison with control.

Fig. 5. Effects of preincubation with 1.5% halothane on increases in $[Ca²⁺]$ due to $Ca²⁺$ release and $Ca²⁺$ influx in A7r5 cultured vascular smooth muscle cells stimulated with 10^{-7} M AVP. The indo-1-loaded cells were incubated either with or without halothane in Ca²⁺-free MEM plus 0.5 mm EGTA, to decrease extracellular [Ca²⁺]. Apparent [Ca²⁺], was measured using dual-wavelength sampling of light emitted from cells during flow cytometry. The initial peak (left) represented [Ca²⁺], increase due to Ca²⁺ release from intracellular stores. The second sustained increase occurred when 5 mm $Ca²⁺$ was added after completion of the initial transient, in the continued presence of AVP, and represented Ca²⁺ influx. Tracings from typical individual experiments are shown.

Fig. 6. Effects of preincubation with 1.5% halothane on increases in $^{\text{+}}$], elicited in cultured A7r5 vascular smooth muscle cells by 5 \times 10⁻⁵ M thapsigargin. [Thapsigargin is believed to elevate $[Ca²⁺]$ by discharging Ca^{2+} from $Ins(1,4,5)P_3$ -sensitive intracellular Ca^{2+} stores.] Cells were suspended in Ca²⁺-free MEM plus 0.5 mm EGTA to decrease extracellular [Ca²⁺]. Results from an individual experiments are shown.

 $[Ca^{2+}]$ responses evoked in cultured vascular smooth muscle cells by the vasoactive hormone AVP. The anesthetic effect was dose dependent and the dose-response relationship was surprisingly steep. The effects of halothane on Ca^{2+} release were apparently much greater than those on Ca^{2+} influx. The actions of the anesthetic on Ca^{2+} homeostasis cannot be explained solely by depletion of Ca^{2+} from intracellular stores, because preincubation with halothane resulted in only a moderate inhibition of the $[Ca^{2+}]$, responses elicited by thapsigargin in cells suspended in Ca²⁺-free medium. Halothane inhibited inositol phosphate formation elicited by AVP, suggesting an additional action by which the anesthetic may alter agonistinduced $[Ca^{2+}]$ responses. Halothane actions were not specific solely to responses elicited by AVP, which acts via a G proteinlinked signaling system, because the anesthetic also inhibited those evoked by PDGF, an agonist that elevates $[Ca^{2+}]$, via receptor-latent tyrosine kinase activity.

Vasoactive hormones, including AVP, elevate inositol phosphates and $[Ca^{2+}]$; by activating a signaling system consisting of cell surface receptors that are presumed to possess a topography of seven membrane-spanning domains and are coupled to effector enzymes and ion channels via intermediary G proteins (12). Phosphoinositide-specific phospholipase C is the membrane-bound enzyme responsible for hydrolysis of the major substrate, phosphatidylinositol 4,5-bisphosphate, to form the cytosolic second messengers $Ins(1,4,5)P_3$ and diacylgiveerol (13). The $Ins(1,4,5)P_3$ receptor on membranes enclosing intracellular Ca²⁺ stores has been purified and cloned, and its activation results in discharge of Ca^{2+} from portions of the endoplasmic reticulum. In some cells, $Ins(1,4,5)P_3$ is believed to act in conjunction with its metabolite inositol 1.3.4.5-tetrakisphosphate in regulating Ca^{2+} movement (13). In contrast to release of Ca^{2+} , an understanding of the mechanisms regulating $Ca²⁺$ influx has remained more elusive (15, 17).

Halothane had a marked inhibitory effect on increases in $[Ca²⁺]$ caused by $Ca²⁺$ release. This action could be explained by interference with the signaling system responsible for Ca^{2+} release or, alternatively, by depletion of Ca²⁺ from intracellular stores. The current results suggest that both occur. In the current study, the effects of halothane upon Ca²⁺ content of intracellular storage pools were addressed by preincubating cells with the anesthetic and then stimulating them with thapsigargin. The increase in $[Ca^{2+}]$ elicited by this agent results from Ca^{2+} discharge from $Ins(1,4,5)P_3$ -sensitive storage sites (17), with the magnitude of the response reflecting releasable $Ca²⁺$ remaining in the pools. Preincubation with halothane inhibited the response, suggesting that Ca²⁺ storage is impaired by the anesthetic. However, the magnitude of the depletion of $Ca²⁺$ was not sufficiently great to completely account for inhibition of the $[Ca^{2+}]$ responses evoked by AVP and by PDGF. The results are in agreement with observations made in cardiac tissue, where halothane is thought to deplete Ca^{2+} from the sarcoplasmic reticulum by decreasing uptake via the Ca²⁺-ATPase pump (16, 24) or by discharging Ca²⁺ via caffeinesensitive Ca²⁺-release channels (25). Less is known concerning the actions of halothane in vascular smooth muscle, although halothane promotes Ca^{2+} loss from caffeine-sensitive stores in rabbit aortic strips (26). The current results indicate that Ins $(1,4,5)P_3$ -sensitive Ca²⁺ stores in vascular smooth muscle cells are susceptible to depletion by halothane.

The absence of immediate and pronounced increases in $[Ca²⁺]$; upon acute addition of halothane to quiescent cells suggests that the anesthetic does not discharge Ca^{2+} from stores in a rapid manner. This absence of immediate effect was surprising, because it contrasts sharply with responses reported

TABLE 5

Effects of preincubation with halothane upon base-line [Ca²⁺], and upon increases in [Ca²⁺], evoked by 3.3 x 10⁻⁹ M PDGF

Base-line [Ca ²⁺]		Peak [Ca ²⁺]		$[Ca2+]$ at 250 sec	
Control	Halothane	Control	Halothane	Control	Halothane
nм		nu		nM	
50 ± 1	$46 \pm 1^{\circ}$	390 ± 17	$217 \pm 19^{\circ}$	102 ± 5	78 ± 4^b

 $p < 0.01$, in comparison with control.

 \degree p < 0.0001, in comparison wtih control.

Fig. 7. Effects of preincubation with 1.5% halothane on increases in ever,
[Ca²⁺] in cultured A7r5 vascular smooth muscle cells stimulated with 3.3
x 10⁻⁹ M PDGF. The indo-1-loaded cells were incubated either with or
w **Example 10** methods and **Fig. 7.** Effects of preincubation with 1.5% halothane on increases in $[Ca^{2+}j]$ in cultured A7r5 vascular smooth muscle cells stimulated with 3.3 \div 10⁻⁹ m PDGF. The indo-1-loaded cells were Fig. 7. Effects
 $[Ca^{2+}$ ₁ in culture
 \times 10⁻⁹ M PDGF
without halothar
are presented.

Fig. 8. Effects of halothane on inositol phosphate formation stimulated
Fig. 8. Effects of halothane on inositol phosphate formation stimulated tion.
which 10⁻⁷ M AVP in cultured A7r5 vascular smooth muscle cells. The H Fig. 8. Errects or natomane on inostrol phosphate formation stimulated with 10^{-7} M AVP in cultured A7r5 vascular smooth muscle cells. The myo-[³H]inositol-labeled cells were incubated either with or without 1% or $2\$ with 10 $^{\circ}$ M AVP in cultured A/15 vascular smooth muscle cells. The myo-[³H]inositol-labeled cells were incubated either with or without 1% contexts and the main timulated with AVP. (Control cells were exposed to ne myo-["H]inosito-labeled cells were included either with or without 1%
or 2% halothane, for 10 min, and then stimulated with AVP. (Control
cells were expoosed to neither halothane nor AVP.) Comparison of
responses evoked b or 2% natomane, for 10 min, and then stime
cells were exposed to neither halothane no
responses evoked by AVP alone versus respo
preincubation with halothane indicated statistic
effects at each anesthetic concentration (co responses evoked by AVP alone versus responses evoked by AVP after
preincubation with halothane indicated statistically significant depressant
effects at each anesthetic concentration (comparison of slopes, $\rho < 0.05$.
Co

effects at each anesthetic concentration (comparison of slopes, $\rho < 0.05$.
Comparison of integrated areas, $\rho < 0.02$).
in many types of cells, including those originating from heart
(10), liver (27), skeletal muscle (28 Comparison or integrated areas, $p < 0.02$).

in many types of cells, including those originating from heart

(10), liver (27), skeletal muscle (28), blood (22), and brain (29),

where halothane acutely elevates $[Ca^{2+}]_i$ in many types of cells, including those originating from heart

(10), liver (27), skeletal muscle (28), blood (22), and brain (29),

where halothane acutely elevates $[Ca^{2+}]_i$. Increase in $[Ca^{2+}]_i$ is

a marker of cell (10), liver (27), skeletal muscle (28), blood (22), and brain (29),
where halothane acutely elevates $[Ca^{2+}]_i$. Increase in $[Ca^{2+}]_i$ is
a marker of cell activation. In neuronal cells, increased $[Ca^{2+}]_i$
has been asso where halothane acutely elevates $[Ca^+]_i$. Increase in $[Ca^2']_i$ is
a marker of cell activation. In neuronal cells, increased $[Ca^2^+]_i$
has been associated with activation of K^+ channels, and the
resulting depression a marker of central activation. In heuronal cents, increased [Ca] is
has been associated with activation of K^+ channels, and the
resulting depression of excitability has served as a model of
general anesthesia (6, 29) has been associated with activation of K⁻ channels, and the resulting depression of excitability has served as a model of general anesthesia (6, 29). However, gradual depletion of Ca²⁺ from internal stores noted in the general anesthesia (o, 29). However, gradual defrom internal stores noted in the current experient than abrupt acute discharge of Ca^{2+} into the cyto in other cell types, is more compatible with the effects of halothane an abrupt acute discharge of Ca^{2+} into the cytoplasm observed
other cell types, is more compatible with the *in vivo* vascular
fects of halothane, which involve vasodilatation.
Attenuation of AVP-induced Ca^{2+} releas

Final abrupt acute unscharge of Ca and the cytopiasm observed
in other cell types, is more compatible with the *in vivo* vascular
effects of halothane, which involve vasodilatation.
Attenuation of AVP-induced Ca^{2+} rele Attenuation of AVP-induced Ca^{2+} release may be also explained by the inhibitory effect of halothane on AVP-induced inositol phosphate formation, a finding that represents a previously unreported action of volatile anes Muslim 45 section of AVP -induced Callierate may be also ex-
plained by the inhibitory effect of halothane on AVP-induced
inositol phosphate formation, a finding that represents a pre-
was present 45 sec after stimulation individually unreported action of volatile anesthetics. The effect
was present 45 sec after stimulation with AVP and persisted at
8 min when inositol phosphate formation was maximal (due to
inhibited breakdown in the prese whously unreported action of volatile anesthetics. The enections of the sum as present 45 sec after stimulation with AVP and persisted a 8 min when inositol phosphate formation was maximal (due the inhibited breakdown in t 8 min when inositol phosphate formation was maximal (due to inhibited breakdown in the presence of LiCl). Although the experiments did not define the locus of the actions of halothane, the results may be explained by direc pase C, by depletion of phosphatidylinositol 4,5-bisphosphate as ^a substrate for phospholipase C, or by increased breakdown experiments and not define the focus of the actions of halothane,
the results may be explained by direct inhibition of phospholi-
pase C, by depletion of phosphatidylinositol 4,5-bisphosphate
as a substrate for phospholipa the results hay be explained by direct inhibition of phosphon-
pase C, by depletion of phosphatidylinositol 4,5-bisphosphate
as a substrate for phospholipase C, or by increased breakdown
of inositol phosphates. Enzymes are

Fig. 7. Effects of preincubation with 1.5% halothane on increases in [Ca²⁺] in cultured A7r5 vascular smooth muscle cells stimulated with 3.3 mosticl phospholipids, the levels of total inositol phosphates of preincuba exist, with the most well characterized example being inhibition
of the light-emitting enzyme firefly luciferase by halothane (5). exist, with the most well characterized example being inhibition
of the light-emitting enzyme firefly luciferase by halothane (5).
In this instance, the anesthetic competes with the subtrate exist, with the most well characterized example being inhibition
of the light-emitting enzyme firefly luciferase by halothane (5).
In this instance, the anesthetic competes with the subtrate
firefly luciferin for binding s exist, with the most well characterized example being inhibition
of the light-emitting enzyme firefly luciferase by halothane (5).
In this instance, the anesthetic competes with the subtrate
firefly luciferin for binding s **stast,** with the most wen characterized example being inhibition of the light-emitting enzyme firefly luciferase by halothane (5). In this instance, the anesthetic competes with the subtrate firefly luciferin for binding in this instance, the anesthetic competes with the subtrate
firefly luciferin for binding sites on luciferase. In the current
study, the proposed relationship between inhibition of inositol
phosphate formation and attenua bloogues in an interest in minimized of messic
phosphate formation and attenuation of Ca^{2+} release should b
viewed with a degree of caution, because total inositol pho
phates were measured rather than concentrations
In phosphate formation and attenuation of Ca¹ release should be
viewed with a degree of caution, because total inositol phos-
phates were measured rather than concentrations of
Ins(1,4,5)P₃, the messenger responsible for viewed with a degree of caution, because total inositol photos were measured rather than concentrations (Ins(1,4,5)P₃, the messenger responsible for Ca²⁺ release. However, because phosphatidylinositol 4,5-biphosphate d phaces were measured rather than concentrations of
Ins(1,4,5)P₃, the messenger responsible for Ca^{2+} release. How-
ever, because phosphatidylinositol 4,5-biphosphate degradation
results in the formation of inositol ph ins(1,4,0)F₃, the messenger responsible for Ca Telease. However, because phosphatidylinositol 4,5-biphosphate degradation results in the formation of inositol phosphates via Ins(1,4,5)P₃, with only small amounts being results in the formation of inositol phosphates via Ins(1,4,5)P₃, with only small amounts being formed by hydrolysis of other inositol phospholipids, the levels of total inositol phosphates should reflect concentrations sults in the formation of mositor phosphates via $ins(1,4,5)F_3$,
th only small amounts being formed by hydrolysis of other
ositol phospholipids, the levels of total inositol phosphates
ould reflect concentrations of $Ins(1,4$

with only small amounts being formed by hydrolysis of other
inositol phospholipids, the levels of total inositol phosphates
should reflect concentrations of $\text{Ins}(1,4,5)P_3$ (30).
In contrast to the marked inhibitory effe mositol phospholipids, the levels of total inositol phosphates
should reflect concentrations of $\text{Ins}(1,4,5)P_3$ (30).
In contrast to the marked inhibitory effect of halothane on
AVP-induced Ca²⁺ release, Ca²⁺ influx In contrast to the marked inhibitory effect of halothane on
AVP-induced Ca²⁺ release, Ca²⁺ influx was apparently only
modestly decreased by the anesthetic. This observation was
surprising because, in many types of cel AVP -induced Ca²⁺ release, Ca²⁺ influx was apparently only modestly decreased by the anesthetic. This observation was surprising because, in many types of cells, Ca^{2+} release and Ca^{2+} influx are tightly coupled, modestry decreased by the anesthetic. This observation was
surprising because, in many types of cells, Ca^{2+} release and
 Ca^{2+} influx are tightly coupled, with depletion of Ca^{2+} from
intracellular stores serving to surprising because, in many types of cells, Ca²⁺ release and Ca^{2+} influx are tightly coupled, with depletion of Ca^{2+} from intracellular stores serving to initiate Ca^{2+} entry (17). An alternative but related mod intracellular stores serving to initiate Ca^{2+} entry (17). An alternative but related model of influx control suggests that activated receptors directly open cell membrane Ca^{2+} channels (15). The current divergent ef atternative but related model of minds control suggests that
activated receptors directly open cell membrane Ca^{2+} channels
(15). The current divergent effects of halothane on release
versus influx may suggest that dire The carrent divergent enects of nanothane on release
versus influx may suggest that direct opening of channels b
receptors, followed by Ca^{2+} influx, is not sensitive to inhibition
by the anesthetic. The current results preceptors, followed by Ca^{2+} influx, is not sensitive to inhibition
by the anesthetic. The current results differ from observations
made in isolated ventricular myocytes, where halothane de-
pressed the inward Ca^{2+} by the anesthetic. The current results differ from observation
by the anesthetic. The current results differ from observation
made in isolated ventricular myocytes, where halothane
pressed the inward Ca^{2+} current (9); tion. Halothane inhibited increases in [Ca²⁺], elicited by PDGF,
Halothane inhibited increases in [Ca²⁺], elicited by PDGF,
an agonist that acts via an intracellular effector system that
differs from the signaling pathway ac

were evoked by depolarization rather than by receptor activa-
tion.
Halothane inhibited increases in $[Ca^{2+}]_i$ elicited by PDGF
an agonist that acts via an intracellular effector system that
differs from the signaling pat Halothane inhibited increases in $[Ca^{2+}]$; elicited by PDG an agonist that acts via an intracellular effector system the differs from the signaling pathway activated by pressor he mones. Receptors for this growth factor p Halothane inhibited increases in [Ca²¹], elicited by PDGF,
an agonist that acts via an intracellular effector system that
differs from the signaling pathway activated by pressor hor-
mones. Receptors for this growth fact mones. Receptors for this growth factor possess a single trans-
membrane region and a cytoplasmic domain that, on receptor
dimerization, exhibits tyrosine kinase activity, resulting in
phosphorylation of phospholipase C, p actions of halothane are not restricted solely to responses membrane region and a cytoplasmic domain that, on receptor
dimerization, exhibits tyrosine kinase activity, resulting in
phosphorylation of phospholipase C, possibly without the in-
volvement of G proteins (18). The result dimerization, exhibits tyrosine kinase activity, resulting in
phosphorylation of phospholipase C, possibly without the in-
volvement of G proteins (18). The results indicate that the
actions of halothane are not restricted phosphorylation of phosphorylation
volvement of G proteins (1
actions of halothane are n
evoked by AVP but include
different signaling pathways
In conclusion, it is tempt In conclusion, it is tempting to speculate that the
ideas of halothane are not restricted solely to responses
oked by AVP but include responses elicited via distinctly
fferent signaling pathways.
In conclusion, it is tempt

actions of halothane are not restricted solety to responses
evoked by AVP but include responses elicited via distinctly
different signaling pathways.
In conclusion, it is tempting to speculate that, in humans
undergoing a different signaling pathways.
In conclusion, it is tempting to speculate that, in humans
undergoing anesthesia, the vasodilator effects of halothane
result from a direct effect of the anesthetic on Ca^{2+} homeostasis
in different signaling pathways.
In conclusion, it is tempting to speculate that, in humans
undergoing anesthesia, the vasodilator effects of halothane
result from a direct effect of the anesthetic on Ca^{2+} homeostasis
in In conclusion, it is tempting to speculate that, in numalis
undergoing anesthesia, the vasodilator effects of halothane
result from a direct effect of the anesthetic on Ca^{2+} homeostasis
in vascular smooth muscle cells. undergoing anesthesia, the vasodilator effects of halotharesult from a direct effect of the anesthetic on Ca²⁺ homeostain vascular smooth muscle cells. However, the cell culture moshould be viewed with a degree of cautio

Acknowledgments

with which cell culture experiments represent in vivo physio-
logical events always remains uncertain.
Acknowledgments
The authors would like to thank Garth Powis, James Lechleiter, and Carol
Williams, from the Departments Acknowledgments
The authors would like to thank Garth Powis, James Lechleiter, and Carol
Williams, from the Departments of Pharmacology and Immunology, for their
advice concerning study design and for reviewing the manuscr Acknowledgments
The authors would like to thank Garth Powis, James Lechleiter, and Caro
Williams, from the Departments of Pharmacology and Immunology, for the
advice concerning study design and for reviewing the manuscript The authors would like to thank Garth Powin
Williams, from the Departments of Pharmacolo
advice concerning study design and for reviewing
assistance of Janet Beckman is greatly appreciate

References

-
- 1. Longnecker, D. E., and P. D. Harris. Microcirculatory actions of general anesthetics. *Fed. Proc.* 39:1580–1583 (1980).
2. Larach, D. R., H. G. Schuler, T. M. Skeehan, and C. J. Peterson. Direct effects of myocardial de **Exercises**
 Exercise Congrecter, D. E., and P. D. Harris. Microcirculatory actions of general
 anesthetics. Fed. Proc. 39:1580-1583 (1980).
 Larach, D. R., H. G. Schuler, T. M. Skeehan, and C. J. Peterson. Direct
 anesthetics. Fed. Proc. 39:1580-1583 (1980).
2. Larach, D. R., H. G. Schuler, T. M. Skeehan, and C. J. Peterson. Direct
effects of myocardial depressant drugs on coronary vascular tone: anesthetic
vasodilation by halothane 2. Larach, D. R., H. G. Schuler, T. M. Skeehan, and C. J. Peterson. Directions effects of myocardial depressant drugs on coronary vascular tone: anesthetivasodilation by halothane and isoflurane. *J. Pharmacol. Exp. Ther.*
-

Halothane Inhibits Inositol Phosphate and [Ca2] Responses ¹⁰¹³

- *4.* Franks, N. P., and W. R. Lieb. Molecular mechanisms of general anaesthesia. *Franks, N. P., and W. R. Lieb. Molecu*
Nature (Lond.) 300:487–492 (1982).
Moss, G. W. J., N. P. Franks, and W
- **4. Franks, N. P., and W. R. Lieb. Molecular mechanisms of general anaesthesia.**
 Nature (Lond.) **300:487–492** (1982).

5. Moss, G. W. J., N. P. Franks, and W. R. Lieb. Modulation of the general

anesthetic sensitivity o 1. Pranks, N. P., and W. R. Lieb. Molecular mechanisms of general anaesthesia.
 Nature (Lond.) 300:487-492 (1982).

5. Moss, G. W. J., N. P. Franks, and W. R. Lieb. Modulation of the general

anesthetic sensitivity of a
- anesthetic sensitivity of a protein: a transition between two forms of firefly
luciferase. Proc. Natl. Acad. Sci. USA 88:134-138 (1991).
6. Nicoll, R. A., and D. V. Madison. General anesthetics hyperpolarize neurons
in the 7. Puil, E., H. El. Beheiry, and K. G. Baimbridge. Anesthetic effects on gluta-
217:1055-1057 (1982).
7. Puil, E., H. El-Beheiry, and K. G. Baimbridge. Anesthetic effects on gluta-
mate-stimulated increase in intraneuronal
- Extra the vertebrate center of the vertebrate center of 217:1055-1057 (1982).
217:1055-1057 (1982).
Puil, E., H. El-Beheir, mate-stimulated increases
- 8. Narayanan, T. K., R. A. Confer, R. L. Dennison, Jr., B. L. Anthony, and R. 255:955-961 (1990).

255:955-961 (1990).

8. Narayanan, T. K., R. A. Confer, R. L. Dennison, Jr., B. L. Anthony, and R.

8. Aronstam. Halothane cyclase in rate-stimulated increase in intraneuronal calcium. *J. Pharmacol. Exp. Ther.*
 255:955-961 (1990).

8. Narayanan, T. K., R. A. Confer, R. L. Dennison, Jr., B. L. Anthony, and R.

S. Aronstam. Halothane, attenu Narayanan, T. K., R. A. Confer, R. L. Dennison, Jr., B. L. Anthony, and R.
S. Aronstam. Halothane attenuation of muscarinic inhibition of adenylate
cyclase in rat heart. *Biochem. Pharmacol*. 37:1219-1223 (1988).
 Bosnjak
- 10. Wheeler, D. M., T. Richelm. Dharmacol. 37:1219-1223 (1988).

20. Bosnjak, Z. J., F. D. Supan, and N. J. Rusch. The effects of halothane,

enflurane, and isoflurane on calcium current in isolated canine ventricular

cel
- cells. Anesthesiology 74:340-345 (1991).

10. Wheeler, D. M., T. Rice, R. G. Hansford, and E. G. Lakatta. The effect of

halothane on the free intracellular calcium concentration of isolated rat heart

cells. Anesthesiolog
- Wheeler, D. M., T. Rice, R. G. Hansford, and E. G. Lakatta. The effect of halothane on the free intracellular calcium concentration of isolated rat heart cells. Anesthesiology 69:578-583 (1988).
Brand, P. H., P. J. Metting
- family of receptors coupled to GTP-binding proteins. *Eur. J. Biochem.* 196:1-10 (1991).
Rerridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling. *Nature (Lond.)* 341:197-205 (1989). 25. Berridge, M. D. Structure/function relationship of proteins belonging to the
family of receptors coupled to GTP-binding proteins. Eur. J. Biochem.
196:1-10 (1999).
31. Berridge, M. J., and R. F. Irvine. Inositol phosph 196:1-10 (1991).

14. Chardonnens, Coupled to GTP-binding proteins. Eur. J. Biochem.

196:1-10 (1991).

13. Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling.

2. Nature (Lond.) 341:197-205 (1989).
-
- 196:1-10 (1991).

Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling.

Nature (Lond.) 341:197-205 (1989).

Chardronnens, D., U. Lang, M. F. Rossier, A. M. Capponi, and M. B. Vallotton.

Chardronnens Berridge, M. J., and R. F. Irvine. Inositol phosphates and cell signalling.
Nature (Lond.) 341:197-205 (1989).
Chardonnens, D., U. Lang, M. F. Rossier, A. M. Capponi, and M. B. Vallotton.
Inhibitory and stimulatory effects 14. Chardonnens, D., U. Lang, M. F. Rossier, A. M. Capponi, and M. B. Vallotton.

Inhibitory and stimulatory effects of phorbol ester on vasopressin-induced

cellular responses in cultured rat aortic smooth muscle cells.
- (1991). 16. Rusy, B. F., and H. Komai. Anesthetic depression of myocardial contractility: a review of possible mechanisms. *Anesthesiology* 67:745-766 (1987).
16. Rusy, B. F., and H. Komai. Anesthetic depression of myocardial cont 15. Meldolesi, J., E. Clementi, C. Fasolato, D. Zacchetti, and T. Pozzan. Ca²⁺

influx following receptor activation. *Trends Pharmacol. Sci.* 12:289-291

16. Rusy, B. F., and H. Komai. Anesthetic depression of myocardia
-
- (1991).
Rusy, B. F., and H. Komai. Anesthetic depression of myocardial contractility:
a review of possible mechanisms. Anesthesiology 67:745–766 (1987).
Takemura, H., A. R. Hughes, O. Thastrup, and J. W. Putney. Activation
- **18. Ullrich, A., and J. Schlessinger. Signal transduction by receptors with tyrosine**

18. Ullrich, A., and J. Schlessinger. Signal transduction by receptors with tyrosine

kinase activity. *Cell* 61:203-212 (1990).

19.
-
- **Iothane Inhibits Inositol Phosphate and [Ca²⁺], Responses 1013**
18. Ullrich, A., and J. Schlessinger. Signal transduction by receptors with tyrosine
kinase activity. Cell 61:203-212 (1990).
19. Kines, B. W., and B. L. Xalianse activity. Cell 61:203-212 (1990).

19. Kimes, B. W., and B. L. Brandt. Characterization of two putative smooth muscle cell lines from rat thoracic aorta. *Exp. Cell Res.* 96:349-366 (1976).

20. Vigne, P., J. P. B receptors inhibits voltage-dependent calcium influx in small cell lung carci-
Na⁺/Ca²⁺ antiporter in aortic smooth muscle cells. *J. Biol. Chem.* 263:8078-
8083 (1988).
Williams, C. L., and V. A. Lennon. Activation of
-
- 22. Klip, A., G. B. Mills, B. A. Britt, and M. E. Elliott. Halothane-dependent receptors inhibits voltage-dependent release of intracellular Ca²⁺ in blood cells in malignant hyperthermia. *Am. J. Physiol.* 258:C495-C50 noma. J. Biol. Chem. 265:1443-1447 (1990).

22. Klip, A., G. B. Mills, B. A. Britt, and M. E. Elliott. Halothane-dependent

release of intracellular Ca²⁺ in blood cells in malignant hyperthermia. Am. J.

Physiol. 258:C49 Klip, A., G. B. Mills, B. A. Britt, and M. E. Elliott. Halothane-dependent
release of intracellular Ca²⁺ in blood cells in malignant hyperthermia. Am. J.
Physiol. **258:**C495-C503 (1990).
Grynkiewicz, G., M. Poenie, and
- Physiol. 258:C495-C503 (1990).

23. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca²⁺

indicators with greatly improved fluorescence properties. J. Biol. Chem.

260:3440-3450 (1985).

24. Malinconico,
- Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca²⁺
indicators with greatly improved fluorescence properties. *J. Biol. Chem.*
260:3440-3450 (1985).
Malinconico, S. M., and R. L. McCarl. Effect of hal
- halothane on the free intracellular calcium concentration of isolated rat heart

cells. Anesthesiology 80:578-583 (1988).

25. Herland, D. H., P. J. J. D. Stephenson. Support of arterial blood

25. Herland, D. H., P. J. D. 260:3440-3450 (1985).

24. Malinconico, S. M., and R. L. McCarl. Effect of halothane on cardiac

sarcoplasmic reticulum Ca²⁺-ATPase at low calcium concentrations. Mol.
 Pharmacol. 22:8-10 (1982).

25. Herland, J. S., F mannolation of including Ca²⁺-ATPase at low calci
sarcoplasmic reticulum Ca²⁺-ATPase at low calci
Pharmacol. 22:8-10 (1982).
efflux via Ca²⁺ channels of sarcoplasmic reticulum
myocardium. *J. Physiol.* (*Lond.)* 42 Pharmacol. 22:8-10 (1982).

25. Herland, J. S., F. J. Julian, and D. G. Stephenson. Halothane increases Ca^{2+}

efflux via Ca^{2+} channels of sarcoplasmic reticulum in chemically skinned rat

myocardium. J. Physiol. (Lo
	-
	- myocardium. J. Physiol. (Lond.) 426:1-18 (1990).
Su, J. Y., and C. C. Zhang. Intracellular mechanisms of halothane's effect on
isolated aortic strips of the rabbit. Anesthesiology 71:409-417 (1989).
Iaizzo, P. A., R. A. Ol 28. Key, A., R. A. Olsen, M. J. Seewald, G. Powis, A. Stier, and R. A. Van Dyke. Transient increases of intracellular Ca²⁺ induced by volatile anesthetics in rat hepatocytes. Cell Calcium 11:515-524 (1990).
28. Kip, A.,
	- in rat hepatocytes. Cell Calcium 11:515-524 (1990).

	28. Klip, A., M. Hill, and T. Ramlal. Halothane increases cytosolic Ca²⁺

	inhibits Na⁺/H⁺ exchange in L6 muscle cells. J. Pharmacol. Exp. 7

	29. Daniell, L. C., a Klip, A., M. Hill, and T. Ramlal. Halothane increases cytosolic Ca²⁺ and inhibits Na⁺/H⁺ exchange in L6 muscle cells. *J. Pharmacol. Exp. Ther.* **254:**552-559 (1990).
Daniell, L. C., and R. A. Harris. Neuronal intrac
	-
	- 254:552-559 (1990).

	29. Daniell, L. C., and R. A. Harris. Neuronal intracellular calcium concentri

	tions are altered by anesthetics: relationship to membrane fluidization.

	29. Tharmacol. Exp. Ther. 245:1-7 (1988).

	30. Send reprint requests to: J. Christopher Sill, M.D., Department of Anesthe-Cological consequences. Trends Pharmacol. Sci. 12:297-303 (1991).
 Send reprint requests to: J. Christopher Sill, M.D., Department of Anesthelogy