
Multiparty Contracts: Agreeing and

Implementing Interorganizational

Processes

WIL M.P. VAN DER AALST1, NIELS LOHMANN2, PETER MASSUTHE1,3, CHRISTIAN STAHL1,3,*

AND KARSTEN WOLF2

1Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, PO Box 513,

5600 MB Eindhoven, The Netherlands
2Universität Rostock, Institut für Informatik, 18051 Rostock, Germany

3Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany

*Corresponding author: stahl@informatik.hu-berlin.de

To implement an interorganizational process between different enterprizes, one needs to agree on

the ‘rules of engagement’. These can be specified in terms of a contract that describes the overall

intended process and the duties of all parties involved. We propose to use such a process-oriented

contract which can be seen as the composition of the public views of all participating parties. Based

on this contract, each party may locally implement its part of the contract such that the implemen-

tation (the private view) agrees on the contract. In this paper, we propose a formal notion for such

process-oriented contracts and give a criterion for accordance between a private view and its public

view. The public view of a party can be substituted by a private view if and only if the private view

accords with the public view. Using the notion of accordance, the overall implemented process is

guaranteed to be deadlock-free and it is always possible to terminate properly. In addition, we

present a technique for automatically checking our accordance criterion. A case study illustrates

how our proposed approach can be used in practice.

Keywords: Petri nets; service contracts; operating guidelines

Received 18 February 2008; revised 31 July 2008

Handling editor: Franco Zambonelli

1. INTRODUCTION

During the last years, interorganizational cooperation between

enterprizes distributed all over the world has become increas-

ingly important. To meet the challenges of ever-changing

markets, IT systems must provide high flexibility and allow

for rapid change. Service-oriented computing (SOC) [1, 2]

has become the new computing paradigm. A service serves

as a building block for designing flexible business processes

by composing multiple services. That way, SOC—and in par-

ticular the use of web services—reduce the complexity of inte-

grating business processes within and across organizational

boundaries. Service-oriented architectures serve as an

enabler for publishing services via the internet such that

these services can be automatically found. By dynamically

binding published services with services of other enterprizes,

interorganizational cooperation can be achieved. The process

of publishing, finding and dynamically binding of services is

known as service brokering.

Although there are promising approaches, service brokering

for interorganizational processes has not become accepted in

practice, mainly because there is no accepted standard that

can handle syntax, semantics, behavior and quality of services

(QoS). An additional limiting factor is that enterprizes usually

cooperate only with enterprizes they already know.

Therefore, instead of dynamically binding services using

service brokering, interorganizational cooperation between

enterprizes is realized by specifying an abstract description of

the overall interorganizational process, the choreography. The

choreography serves as a common contract between the

parties involved in the overall process, which is the focus of

this paper. This contract has the form of an agreed upon

process model, similar to [3, 4]. Examples of choreography

languages are Web Services Choreography Description

Language (WS-CDL) [5], Let’s dance [6] and BPEL4Chor [7].

The challenge of the contract approach is to balance the fol-

lowing two conflicting requirements. On the one hand, there is

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on December 4, 2008 doi:10.1093/comjnl/bxn064

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

a strong need for coordination to optimize the flow of work in

and between the different organizations. On the other hand, the

organizations involved are essentially autonomous and have

the freedom to create or modify their services at any point

in time. Furthermore, the organizations involved in the

cooperation do not want to reveal their trade secrets. There-

fore, we propose to use a process-oriented contract that

defines ‘rules of engagement’ without describing the internal

processes executed within each party [3, 4].

After having specified the contract, each party will

implement its part of the contract (its public view) on its

own. The implemented version, the private view, will

usually deviate significantly from its public view. Obviously,

these local modifications have to accord to the agreed contract.

This is, in fact, a nontrivial task, because it may cause global

errors such as deadlocks, as shown in [4], for instance.

Because all parties are autonomous, none of them owns the

overall contract implementation. Therefore, none of the

parties can verify this implementation or verify whether its

private view behaves correctly within the contract implemen-

tation. As a result, an approach is needed such that each party

can locally check whether its implementation guarantees

global correctness of the overall process.

Figure 1 illustrates the basic idea. The starting point is a con-

tract partitioned over the four parties involved. The public view

of each of the four parties corresponds to a fragment of the con-

tract. Based on the public view, each party will implement its

private view. Hence, the actual implementation of the overall

process consists of the four private views glued together (as

shown in the top-right corner of Fig. 1). We will show that it

is possible to ensure that the implementation is free of dead-

locks and able to terminate while only locally checking correct-

ness and without restricting the private views unnecessarily.

In this paper, we propose a formalization of service

contracts taking the above restrictions into account. The

contribution of this paper is 3-fold.

First, we present a notion of a contract specifying the

interplay of the participating parties. A party’s share of the

interaction can be seen as a service and the corresponding

part of the contract as the public view of the service. The inter-

action between services is modeled by asynchronous message

passing, thus conforming to the idea of SOC. Each public view

is modeled as an open net [8]. Open nets, also known as open

workflow nets (oWFNs), are a special class of Petri nets [9]

that has been proven to be an adequate service model. The

composition of the public view open nets is an open net mod-

eling the contract.

Secondly, we define a notion of accordance between the

private view of a party, which is represented as an open net

as well, with the public view. An open net N0 accords with

an open net N if it has the same (static) interface and any

environment that can cooperate with N can also cooperate

with N0. This way, we can decide whether a private view of

a party agrees on a contract just by comparing it with its

public view. Thus, the value of our accordance notion is that

it gives a criterion that can be locally verified for asserting

global correctness of the overall contract.

Thirdly, we show how accordance can be automatically

decided for open nets with acyclic behavior by using the

concept of an operating guideline [10] of a service as an

abstract representation of all environments that the service

can cooperate with.

To justify the practical applicability of our approach, we

translate a real-life BPEL4Chor choreography into our

formal model, yielding a contract. The public view of a

party of the derived contract is then manually refined into a

private view and we decide if this private view is a correct

implementation of the party’s public view by the help of the

operating guidelines of both models.

The remainder of this paper is structured as follows. We

start explaining our approach by using an example contract

in Section 2. Then, Section 3 defines open nets and contracts.

The notion of accordance is defined in Section 4 where it is

applied to relate the private and public views of a contract.

Section 5 presents an algorithm to decide accordance using

operating guidelines. In Section 6, we show how our proposed

approach can be used in practice. Related work is presented in

Section 7. Finally, Section 8 concludes the paper.

2. EXAMPLE

In this section, we introduce our running example of a

contract organizing the registration process for a passport or

an ID card. Its open net model is depicted in Fig. 2a. Open

nets are a special class of Petri nets. Before describing the

contract, we shortly introduce the main concepts of Petri

nets and open nets.

Petri nets have two kinds of nodes, places and transitions,

which are connected by a flow relation. Graphically, a place

is represented by a circle, a transition by a box and the flow

relation by directed arcs between them. Although transitions
FIGURE 1. If each of the private views accords with its public view,

then the resulting overall implementation is ‘correct’.

MULTIPARTY CONTRACTS 91

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

represent dynamic elements, for example, an activity in a

process, places represent static elements, such as causality

between activities or a message channel. A state of the Petri

net is represented by a marking which is a distribution of

tokens (graphically represented by black dots) over a

(sub-)set of places. The dynamics of a Petri net is defined by

its markings and the firing rule. The firing rule defines

enabledness of Petri net transitions and their effects. A tran-

sition, say t, is enabled if there is a token on every place in

its pre-set (i.e. those places that have an arc to t). The firing

of an enabled transition t yields in a new marking, which is

derived from its predecessor marking by consuming (i.e.

removing) a token from each place of t’s pre-set and producing

(i.e. adding) a token on each place of t’s post-set (i.e. those

places p with an arc from t to p).

Open nets are a special class of Petri nets that extend clas-

sical Petri nets by an interface for communication with other

open nets. The net of Fig. 2a modeling the contract is an

example for an open net. For the moment, ignore the dotted

lines separating Fig. 2a into three parts. Graphically, an

open net is framed by a dashed line with its interface places

depicted on this line. Since our contract has an empty inter-

face, no places are situated on the outer frame in Fig. 2a.

Three parties are involved in our contract: a customer who

wants to register at the registration office for either a passport

or an ID card; a registration office that receives the form from

the customer, stores his fingerprint (if needed) and forwards all

information to the print office and a print office that prints the

document and sends it to the customer. The three parties are

modeled by the three open nets Ncust, Nreg and Nprint, respect-

ively, which are highlighted in Fig. 2a by the dotted lines

inside the contract. The respective interface places are situated

along the dotted lines.

The contract in Fig. 2a organizes the registration for a pass-

port or an ID card as follows. Initially, the customer either

sends the registration form for a passport (transition a) or

an ID card (transition b) to the registration office. This

is modeled by an explicit choice of transitions a and b; that

is, both transitions are enabled by the token on place p1

but only one of them can fire. If transition a fires, the token

on p1 is consumed and a token is produced on the

two places p2 and reqPass. Firing transition b results in

FIGURE 2. An example contract for an ID card or passport registration (a) and a possible implementation of the registration office (b).

92 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

consuming the token on p1 and producing a token on the

places p3 and reqID.

In both markings, the customer waits for a price message

(i.e. a token on the place price) which is sent by the regis-

tration office. Next, the registration office can receive the

respective form. In case the customer requested for a passport

(respectively, for an ID card) there is a token on the place

reqPass (respectively, reqID) and thus enabling the transition

i (respectively, j). Both transitions model a deferred choice.

Firing of transition i (respectively, j) models the receiving of

the respective form and results in consuming the token from

the interface place p8 and yielding a token on p9 (respectively,

p10). In either way, the registration office returns a message

containing the price of the requested document to the customer

(transitions k and l, respectively).

Afterwards, the customer receives the price message (tran-

sitions c and d, respectively). In case the customer requested

for a passport, he can decide whether his biometrical data

(i.e. a fingerprint) is stored (transition f) or not (transition e).

For an ID card, however, a fingerprint is mandatory (transition

g). The registration office receives the data (by firing tran-

sitions m, n and o, respectively). After having received the

form and the biometrical data, the registration office forwards

all information to the print office (transition p). The print

office receives this information (transition q), prints the

requested document and sends it directly to the customer

(transition r). Finally, the customer receives his document

(transition h).

The three open nets Ncust, Nreg and Nprint of Fig. 2a specify

the public view of each of the parties involved. In contrast to

the overall open net of the contract, each such open net has

interface places. For example, Nprint has one input place (print-

Doc) and one output place (sendDoc). Ncust has (among

others) the input place sendDoc and the open net Nreg has

(among others) the output place printDoc. By merging these

interface places, the public views can be plugged together

into the global contract. For example, the output place print-

Doc of Nreg is merged with the input place printDoc of Nprint

and the input place sendDoc of Ncust is merged with the

output place sendDoc of Nprint.

After the parties agreed on such a contract, each of them

now may implement its public view. The resulting private

view may again be expressed as an open net. Figure 2b

shows an example for a private view of the registration

office; that is, the open net N 0reg is an implementation of the

open net Nreg. Within an reorganization, the registration

office is divided into two departments. One department is

responsible for storing the biometrical data (transitions v and

w) and the other department has to receive and to check the

forms (transitions t and u) and to send the pricing information

(transitions x and y). The service that each department offers

can be used independently from the other department. That

way, the office hopes to serve the customer faster and thus

reduce costs. As a result, in the private view in Fig. 2b both

departments run concurrently. This is modeled by transitions

split and join. Firing of transition split yields a token on

places p19 and p20. Then, both branches can be executed inde-

pendently of each other, finally yielding a marking where

places p23 and p24 have a token. Firing transition join then syn-

chronizes both branches.

For the sake of simplicity, this example is rather atypical in

the sense that an implementation usually tends to have much

more internal tasks than the public view. However, N 0reg

allows for behavior not possible in Nreg, viz. a fingerprint

can be stored before the registration form is received. That

is, in Nreg transition o can never fire before transition j but

in N 0reg transition v can fire before transition t.

The question we have to answer is whether the public view

of the registration office can be substituted by its private view

while still guaranteeing correctness of the contract. To this

end, we will formalize our model for service contracts and

provide an accordance notion between public and private

views in the next sections.

It is important to note that we consider only a single

instance of the registration process. More precisely, in

Fig. 2a, there are three tokens in the three source places p1,

p8 and p15. It is assumed that these tokens correspond to the

same instance. Therefore, we do not need to correlate tokens

on the interface places to tokens in the local processes. If

there were multiple instances, this could be handled separately

(e.g. using colored tokens or a private open net for each

instance). We acknowledge that multiple instances are an

important topic, but in this paper we assume that correlation

is taken care of elsewhere, for example, by using the corre-

lation mechanisms in the context of Web Services Business

Process Execution Language (WS-BPEL) [11]. Hence, we

only need to consider a single instance in isolation.

3. FORMALIZING CONTRACTS

To design an overall interorganizational process, the involved

parties specify a public view of this process together with a

distribution of responsibilities for the activities among them

(i.e. a partitioning). The global public view and its partitioning

serve as a contract.

For specifying the overall contract as well as the processes it

consists of, we use the concept of open nets [8]. Open nets are

a more liberal notion of the well-known concept of workflow

nets (WFNs) [12], which have been proven successful for

the modeling of business processes and workflows. As a sub-

stantial difference, open nets introduce interface places to

communicate with other open nets. This idea is based on the

module concept for Petri nets which was proposed by

Kindler [13]. However, we consider the overall process (i.e.

the contract) as being self-contained. This fact is reflected

by its representation as an open net with empty interface. An

immediate alternative to our approach would be to represent

MULTIPARTY CONTRACTS 93

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

the contract itself within the much more established frame-

work of WFNs. However, by using open nets only, we avoid

duplicate definitions and some of the technicalities related to

having unique source and sink places.

The basis of open nets are classical (place/transition) Petri

nets (see [9], for instance). A Petri net N ¼ (P, T, F) consists

of two finite sets P and T of places and transitions and a flow

relation F#(P � T) < (T � P). We use the standard notation

to denote the pre- and postsets of a place or a transition:
†x ¼ fyj(y, x) [Fg and x† ¼ fyj(x, y) [Fg.

The behavior of a Petri net is defined using the standard

Petri net semantics [9]: a transition is enabled if each place

of its pre-set holds a token; an enabled transition t can fire

in a marking m by consuming tokens from the pre-set places

and producing tokens for the post-set places, yielding a

marking m0. The firing of t is denoted by m!
t

m0, the succes-

sively firing of a sequence of transitions is denoted by m!
�

m0.

DEFINITION 3.1 (OPEN NET). An open net N ¼ (P, T, F, I, O,

m0, V) consists of a Petri net (P, T, F) together with

(i) an interface defined as a set I#P of input places such

that †p ¼ 0= for any p [I and a set O #P of output

places such that p† ¼ 0= for any p [O and I > O ¼ 0=,
(ii) a distinguished initial marking m0 and

(iii) a set V of final markings such that no transition of N is

enabled at any m [V.

We further require that m [V < fm0g implies m(p) ¼ 0 for

all p [I < O; that is, in the initial and the final markings, the

interface places are not marked.

Our formalism of open nets is quite liberal and serves as a

model for the overall process of the contract as well as for

the processes of the parties participating in the contract. All

these processes are assumed to have a control structure with

a unique starting point (modeled by the corresponding initial

marking) and one or more final, i.e. terminal, states

(modeled by the set of final markings).

Communication between the party’s processes is achieved

by asynchronous message passing via message channels

(modeled by the interface places). Asynchronous message

passing means that after a party has sent a message it can con-

tinue its execution and does not have to wait until this message

is received. Furthermore, messages can ‘overtake’ each other;

that is, the order in which the messages are sent is not necess-

arily the order in which they are received.

In order to assign an intuitively consistent meaning to final

states, we restrict our approach to such open nets where a final

marking in V does not enable any transition.

We use indices to distinguish the constituents of different

open nets (e.g. Ij refers to the set of input places of open

net Nj).

As an example, the whole process shown in Fig. 2a rep-

resents an open net N with empty interface I ¼ O ¼ 0=. N has

the initial marking m0 ¼ [p1, p8, p15] (i.e. the marking

shown in Fig. 2a) and we define V ¼ f[p7, p14, p17]g (i.e.

there is only one final marking and this marking marks all

sink places). The final marking mirrors the fact that all

parties have been completed. Nprint, also shown in Fig. 2a, is

an open net with nonempty interface Iprint ¼fprintDocg and

Oprint ¼fsendDocg.

It is easy to check in the open net N of Fig. 2a that from any

marking reachable from the initial marking, the final marking

[p7, p14, p17] is reachable. This means that it is always possible

to terminate properly. This property is formalized in the fol-

lowing definition.

DEFINITION 3.2 (WEAK TERMINATION). An open net N ¼ (P, T,

F, I, O, m0, V) weakly terminates iff for each m with m0!
�

m

there is an mf [V with m!
�

mf .

Weak termination of an open net N ensures that N is free of

deadlocks and free of livelocks. Deadlock-freedom means that

each nonfinal marking has at least one successor, whereas

livelock-freedom means that each cycle of nonfinal markings

can be left to reach a final marking.

The open net N representing the contract of Fig. 2a is com-

posed of multiple open nets representing the parties. For the

composition of open nets, we assume that all constituents

(except for the interfaces) are pairwise disjoint. This can be

achieved easily by renaming. In contrast, the interfaces inten-

tionally overlap. For a reasonable concept of composition of

open nets it is, however, convenient to require that all com-

munication is bilateral and directed; that is, every interface

place p [I < O has only one party that sends into p and

one party that receives from p. For a third party C, a communi-

cation taking place inside the composition of parties A and B is

internal matter. We will refer to open nets that fulfill these

properties as composable. Composition is only defined for

composable open nets. These considerations lead to the fol-

lowing definition of composition.

DEFINITION 3.3 (COMPOSITION OF OPEN NETS). Let N1, . . . , Nk

be open nets with pairwise disjoint constituents, except

for the interfaces. N1, . . . , Nk are composable if, for all

i [f1, . . . , kg,

(i) p [Ii implies that there is no j = i such that p[Ij and

there is at most one j such that p [Oj, and

(ii) p [Oi implies that there is no j = i such that p [Oj

and there is at most one j such that p [Ij.

For markings m1[N1, . . . , mk [Nk which do not mark

interface places, their composition m ¼ m1 � . . . � mk is

defined by m(p) ¼ mi(p) if p [Pi.

If N1, . . . , Nk are composable, their composition is the open

net N ¼ N1 � . . . � Nk defined as follows:

(i) P ¼ P1 < . . . < Pk,

(ii) T ¼ T1 < . . . < Tk,

(iii) F ¼ F1 < . . . < Fk,

(iv) I ¼ (I1 < . . . < Ik) n (O1 < . . . < Ok),

94 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

(v) O ¼ (O1 < ... < Ok) n (I1 < ... < Ik),

(vi) m0 ¼ m01
� ... � m0k

and

(vii) V ¼ fm1 � ... � mkjm1 [V1, . . . , mk [Vkg.

Composition of two open nets M and N results in an open

net again. Composing M and N means merging input places

of M with equally labeled output places of N (and vice

versa). Therein, bilateral and directed communication

between the components is guaranteed. The initial marking

of the composition is the sum of the initial markings of the

components, and the set of final markings of the composition

is the Cartesian product of the sets of final markings of the

components. This is reasonable because Definition 3.1

ensures that the only shared constituents of the components

(i.e. the interface places) are not marked in the initial or

final markings.

Consider again the three open nets Ncust, Nreg, and Nprint of

Fig. 2a. We define the sets of final markings of these nets as

f[p7]g, f[p14]g and f[p17]g, respectively. Clearly, these open

nets are composable: N ¼ Ncust � Nreg � Nprint is the overall

process shown in Fig. 2a. It is easy to see that the composition

has the final marking [p7, p14, p17].

Note that any subset of a set of composable open nets is

composable as well. Furthermore, we have N1 � N2 � N3 ¼

(N1 � N2) � N3 ¼ N1 � (N2 � N3), and N1 � N2 ¼ N2 � N1;

that is, the composition of open nets is associative and commu-

tative. Thus, composition of a set of open nets can be broken

into single steps without affecting the final result.

Basically, we see a contract as an open net where every

activity is assigned to one of the involved parties. We

impose only one restriction: if a place is accessed by more

than one party, it should act as a directed bilateral communi-

cation place. In the following, jXj denotes the cardinality of

a set X.

DEFINITION 3.4 (CONTRACT). Let A be a set representing the

parties involved in a contract.

Then, a contract [N, r] consists of an open net N ¼ (P, T, F,

I, O, m0, V) with an empty interface (I ¼ O ¼ 0=) (the agreed

public view of the process) and a mapping r : T! A (the par-

titioning) such that, for all places p [P, j fr(t) j t[†pg j � 1

and jfr(t) j t [p†
g j � 1.

For technical purposes, we further require that the set of

final markings V is Cartesian closed. That is, for two final

markings m1, m2 [V and a party A [A, the marking m12

with m12(p) ¼ m1(p) if r(p) ¼ A and m12(p) ¼ m2(p) if r(p)

= A is also a final marking (i.e. m12 [V). We also require

that m [V < fm0g implies m(p) ¼ 0 for all p [P such that

9t1[†p : 9t2 [p† : r(t1) = r(t2); that is, in the initial and

the final markings, the internal interface places are not

marked.

The overall open net N shown in Fig. 2a is an example for a

contract involving the parties A ¼ fcustomer, registration

office, print officeg. The dotted lines in the figure show the

partitioning of transitions over the parties involved in the con-

tract; r(a) ¼ customer, r(k) ¼ registration office and r(q) ¼

print office, for instance.

A contract can be cut into parts, each representing the

agreed share of a single party. If [N, r] is a contract of

parties A ¼ fA1, . . . , Akg, these parts are modeled by the

open nets NA1
, . . . , NAk

. For this purpose, the definition of a

contract guarantees that every part is an open net again (satis-

fying the properties for initial and final markings), this time

typically with a nonempty interface. It is obviously desirable

that recomposing the parts afterwards, the resulting composed

open net is the net N of the contract again. In this respect, the

restriction that the set of final markings V of a contract is Car-

tesian closed indeed crucial, as otherwise NA1
� . . . � NAk

could have a final marking that results from recombining

final markings of different parties but which is not a final

marking of N. Therefore, the contract definition ensures that

the composition of a contract’s parts is the contract itself

again.

In accordance with terminology of SOC [1, 2], we consider

the contribution of a party to an interorganizational process as

a service. Correspondingly, the agreed version (specification)

of the service is called public view while an actual local

implementation is called private view of the service.

DEFINITION 3.5 (PUBLIC VIEW). Let [N, r] be a contract with

N ¼ (P, T, F, I, O, m0, V) and r : T! A, and let A [A be

a party.

The public view of A’s share in the contract is the open net

NA ¼ (PA, TA, FA, IA, OA, m0A
, VA) where

(i) PA ¼ fp [P j 9t[†p < p† : r(t) ¼ Ag,

(ii) TA ¼ ft [T j r(t) ¼ Ag,

(iii) FA ¼ F> ((PA � TA) < (TA � PA)),

(iv) IA ¼ fp [PA j 9t[
†p: r(t) =Ag,

(v) OA ¼ fp [PA j 9t [p† : r(t) =Ag,

(vi) m0A
¼ m0jPA

(i.e. the restriction of m0 to the places in

PA) and

(vii) VA ¼ fmfjPA
jmf [Vg.

Informally spoken, a party’s public view in a contract is the

restriction of the open net modeling the contract to the con-

stituents of this party. The open net modeling this public

view is visualized by the dotted frame in Fig. 2. Technically,

it is characterized by the set of transitions assigned to the

respective party, the set of places in its pre- and postsets and

the restriction of the flow relation, the initial and final mark-

ings to these places and transitions.

As described earlier, Fig. 2a shows the public views Ncust,

Nreg, and Nprint of the parties customer, registration office

and print office, respectively.

A private view can now be seen as the implemented version

N0 of a public view N. Technically, N0 is an (arbitrary) open net

that has the same interface as N.

MULTIPARTY CONTRACTS 95

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Figure 2b depicts a possible private view N0reg of the

registration office. N 0reg has the same interface as Nreg in

Fig. 2a. N 0reg has one final marking, [p26]. Private views of

the other parties are not provided here.

The next section is devoted to the question, whether a

private view is a correct implementation of a public view,

for example, can Nreg be replaced by N 0reg without making

additional agreements?

4. ACCORDANCE BETWEEN PUBLIC

AND PRIVATE VIEW

In this section, we define the notion of accordance. This cri-

terion is used to compare the public view (agreed specification

of the service) and the private view (actual implementation of

the service) on a party’s share of a contract. The goal of the

accordance notion is to preserve weak termination (see Defi-

nition 3.2) of the overall process N. Formally, accordance is

a refinement relation where weak termination of N and accord-

ance of each private view N0Ai
with the corresponding public

view NAi
should imply weak termination of N0A1

� � � � � N0Ak

which obviously models the overall process as actually

implemented.

Consider, for example, the weakly terminating contract

shown in Fig. 2a which is split into the three public views

Ncust, Nreg and Nprint. If each of these public views is substi-

tuted by a private view such that the private view accords

with the public view, then the composition N 0cust � N 0reg �

N 0print of these private views should weakly terminate, too.

To define a suitable notion of accordance, we introduce the

concept of strategies.

DEFINITION 4.1 (STRATEGY). An open net M is a strategy for

an open net N if M � N is weakly terminating. Strat(N)

denotes the set of all strategies for N.

If an open net M is a strategy for an open net N, then M and

N together are ‘well-behaving’ with respect to weak termin-

ation. That is, the strategy notion allows to distinguish, for a

given open net N, all those open nets M that are feasible as

a partner in the composition with N from those open nets

that introduce an error in the composition. Note that Strat(N)

may correspond to a large (in fact infinite) set of open nets.

Furthermore, the notion of a strategy is symmetric; that is, if

M is a strategy for N, then N is also a strategy for M and

vice versa.

The open nets Nreg in Fig. 2a and N 0reg in Fig. 2b are two

example strategies for Ncust � Nprint.

In general, given a weakly terminating contract [N, r] with

parties A ¼ fA1, . . . , Akg, each party’s public view NAi
is a

strategy for the remaining part of the composition NA1

� � � � � NAi21
� NAiþ1

� � � � � NAk
. This property of the strat-

egy concept justifies the following definition of accordance.

DEFINITION 4.2 (ACCORDANCE). An open net N0 accords with

an open net N if N0 has the same interface as N (i.e. I0 ¼ I and

O0 ¼ O) and N0 has at least the strategies that N has, i.e.

Strat(N0) $ Strat(N).

Accordance defines a refinement relation between open

nets: if an open net N 0 accords with an open net N, then N0

has at least the strategies of N. Therefore, accordance is

well-suited for the scenario of implementing public views in

a contract.

Note that Definition 4.2 defines accordance for arbitrary

open nets N and N 0. If N is a public view and N 0 is the corre-

sponding private view, then interface equality is trivially

fulfilled.

In our example, Nreg is the public view of the registration

office and N 0reg is the corresponding private view. For this

simple example, it is easy to see that N 0reg accords with Nreg.

Hence, N 0reg can be used instead of Nreg in the contract while

guaranteeing weak termination of the overall process.

It is important to note that accordance is a much weaker

notion than most notions described in the literature (e.g. pro-

jection inheritance [14, 15]). Accordance exploits the fact

that communication is asynchronous and, therefore, a

weaker notion suffices.

To illustrate our accordance relation, consider Fig. 3 that

shows two fragments of two open nets N1 and N2. Assume

that the only connections between the fragments and the rest

of the open net are through places R and S; that is, the ovals

correspond to placeholders for sets of places, connecting the

fragment to the rest of the net. Assume that N1 and N2 are iden-

tical except for the fragments shown. In this case, Strat(N1) ¼

Strat(N2); that is, any environment that can cooperate with N1

can cooperate with N2 and vice versa. In other words, N1

accords with N2 and vice versa. This is, however, nontrivial,

because N2 can receive a message via b before sending a

message via a. This is not the case in N1. Figure 4 shows

another example illustrating the notion of accordance. In an

FIGURE 3. N2 accords with N1 and vice versa.

96 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

open net, the left-hand-side fragment can be substituted by the

right-hand-side fragment without jeopardizing correctness;

that is, N3 accords with N4 and vice versa. Generally, a

sequence of receiving events followed by a sequence of

sending events can be executed simultaneously while preser-

ving accordance in both directions, i.e. Strat(N3) ¼

Strat(N4). This shows that sending and receiving events can

be ordered arbitrarily as long as the receiving events

proceed the sending events. Both Figs. 3 and 4 show that the

asynchronous nature of communication allows partners to

implement the private view in a way that deviates from the

public view without creating problems such as deadlocks or

inability to terminate. This makes accordance an original

and interesting equivalence notion in the context of SOC.

The following theorem shows that each party can substitute

its public view by a private view independently. If each of the

private views accords with the corresponding public view,

then weak termination of the implemented contract is

guaranteed.

THEOREM 4.3 (IMPLEMENTATION OF A CONTRACT). Let [N, r] be

a contract between parties fA1, . . . , Akg where N is weakly ter-

minating. If, for all i [f1, . . . , kg, N0Ai
(the private view of Ai)

accords with NAi
(the public view of Ai), then N0 ¼ N0A1

� � � � �

N0Ak
(the actual implementation) is weakly terminating.

Proof. Let fA1, . . . , Akg be the set of involved parties and

N(j) ¼ N0A1
� � � � � N0Aj

� NAjþ1
� � � � � NAk

for j [f0, . . . ,kg.

Note that N(0) ¼ NA1
� � � � � NAk

¼ N and N(k) ¼ N0A1

� � � � � N0Ak
¼ N0.

We show by induction that N(j) is weakly terminating for

any j [f0, . . . , kg.

Clearly, this holds for j ¼ 0: N(0) ¼ N is weakly terminat-

ing. Assume that N(j) is weakly terminating and 0 � j , k.

Let N0 ¼ N0A1
� � � � � N0Aj

� NAjþ2
� � � � � NAk

; that is, N(j)

without NAjþ1
. N0 is a strategy for NAjþ1

, because N(j) ¼ N0
� NAjþ1

is weakly terminating; that is, N0 [Strat(NAjþ1
).

Because N0Ajþ1
(the private view) accords with NAjþ1

(the

public view), Strat(NAjþ1
) # Strat(N0Ajþ1

). Hence, N0 [
Strat(NAjþ1

) # Strat(N0Ajþ1
), indicating that N0 is a strategy for

N0Ajþ1
. Therefore,N0 � N0Ajþ1

¼ N(j þ 1) is weakly terminating.

By induction this implies that N(j) is weakly terminating

for any j including j ¼ k. Hence, N0 ¼ N(k) is weakly

terminating. A

The value of the theorem is that it gives each party a cri-

terion (accordance of N0Ai
with NAi

) that can be locally verified

for asserting a global property (weak termination of the overall

process as actually implemented).

For example, any combination of arbitrary private views

N 00cust, N 00reg and N 00print according with the corresponding public

view (i.e. N 00cust accords with Ncust, N 00reg accords with Nreg,

and N 00print accords with Nprint) yields a weakly terminating

realization of the contract shown in Fig. 2a.

5. CHECKING ACCORDANCE

In this section, we demonstrate that the property of accordance

can be verified automatically, presently subject to restrictions.

Checking accordance relies on the concept of an operating

guideline (OG) [10, 16]. The purpose of an operating guideline

OGN of a service N is to characterize the set of all services M

such that the composition of M and N behaves ‘correctly’.

Thereby, ‘correctly’ means weak termination in [16] or

deadlock-freedom in [10]. The results in [16] are restricted to

services with acyclic and finite behavior while there are only

marginal restrictions for the approach in [10]. As we are inter-

ested in weak termination in this paper, we use the approach in

[16] thus inheriting the restriction to acyclic finite-state ser-

vices. Such a service may have, e.g. while loops in its oper-

ational description as long as every iteration produces states

that are different from other iterations, for example, states

with different counter values. In ongoing research, we work

on an extension of the approach in [10] to weak termination,

so the current restriction to acyclic finite-state services may

only be temporary. First results support this assumption.

With the help of OGs we are able to represent the set of all

strategies M for an open net N in a compact way. Technically,

an OG is a special annotated automaton. Such an annotated

automaton AF consists of an underlying finite and determinis-

tic automaton A and a function F that assigns to each state q of

A a negation-free Boolean formula F(q) over transition labels.

For instance, !a _ (?b ^ ?c) is a valid Boolean formula that is

satisfied if !a is set to true and/or both ?b and ?c are set to true.

An annotated automaton AF is used to represent the set of

open nets that match with AF. We continue by first defining

FIGURE 4. N4 accords with N3 and vice versa.

MULTIPARTY CONTRACTS 97

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

the notions of annotated automata and matching in general and

then introducing OGs.

DEFINITION 5.1 (ANNOTATED AUTOMATON). AF ¼ [Q, C, d, q0,

F] is an annotated automaton iff Q is a nonempty finite set of

states, C is a set of labels, d # Q � C � Q is a transition

relation such that every state q [Q is reachable from q0 via

transitive applications of d, q0 [Q is the initial state and F

is an annotation function, where, for all q [Q, F(q) is a

Boolean formula over literals in C.

Annotated automata very similar to ours have been first

published in [17]. The original goal of such an annotated auto-

maton AF is to represent a set of automata: an automaton B is

represented by AF iff (1) A (weakly) simulates B and (2) if a

state r of B is simulated by a state q of A, then the arcs

leaving r—interpreted as an assignment assigning true to the

corresponding literals of the formula F(q)—satisfy F(q).

Intuitively, this means that the underlying automaton A of

AF has (at most) richer behavior than B (expressed by the

simulation relation [18]), but B has behavior at least as rich

as required by the Boolean formulae of F (expressed by the

satisfaction requirement). For more details, we refer to [19],

for example.

In this paper, we use annotated automata as a representation

of a set of open nets. Therefore, we take a service described in

terms of an open net M with the interface I < O and an anno-

tated automaton AF with Boolean formulae over the interface

places of M and a special literal final (i.e. C ¼ I < O < ffinalg)

and define when M matches with AF.

Intuitively, M matches with AF if the behavior of M is simu-

lated by A and each marking of M touched by the simulation

satisfies the corresponding formula.

In order to simplify the presentation, we assume the open nets

under consideration are normal. An open net is normal if each

transition is connected to at most one interface place. This

assumption does, however, not restrict generality as every

open net can be transformed into an equivalent normal one [10].

DEFINITION 5.2 (MATCHING). Let M be a normal open net and

let X be the set of all reachable markings of the Petri net M*

obtained by removing all interface places of M. Let AF ¼

[Q, C, d, q0, F] be an annotated automaton with C ¼ IM <
OM < ffinalg. Then M matches with AF iff there is a

mapping r : X! Q such that the following conditions hold:

(i) r(m0M
) ¼ q0;

(ii) If t is an internal transition of M (i.e. t is not connected

to any interface place), m, m0 [X, and m!
t

m0, then

r(m) ¼ r(m0);

(iii) If t is a receiving transition of M with c [IM, c [†t,

m, m0 [X, and (m þ [c]) !
t

m0, then there is a state

q0 [Q with (r(m), c, q0) [d and r(m0) ¼ q0;

(iv) If t is a sending transition of M with c [OM, c [t†, m,

m0 [X, and m!
t

(m0 þ [c]), then there is a state q0 [Q

with (r(m), c, q0) [d and r(m0) ¼ q0;

(v) For all m [X, at least one of the following properties

holds:

(a) An internal transition t is enabled at m; or

(b) F(r(m)) evaluates to true for the following assign-

ment b:

(1) b(c) ¼ true if c [OM and there is a transition

t with c [t† that is enabled at m;

(2) b(c) ¼ true if c [IM and there is a transition t

with c [† t that is enabled at m þ [c];

(3) b(c) ¼ true if c ¼ final and m [VM;

(4) b(c) ¼ false, otherwise.

In the above definition, r represents the informally

described (weak) simulation relation. Items (i)–(iv) in Defi-

nition 5.2 define the simulation relation between the markings

of M and the states of the annotated automaton AF. The

assignment used for evaluating an annotation represents tran-

sitions t of M that leave the considered marking m of M*. That

way, we assure that M has behavior at most as rich as the

underlying automaton A of AF but at least as rich as required

by the formulae of F. The evaluation of the annotation is

defined by item (v).

An operating guideline OGN of an open net N now is a

special annotated automaton, such that an open net M

matches with OGN if and only if M is a strategy for N.

DEFINITION 5.3 (OPERATING GUIDELINE). An annotated auto-

maton is an operating guideline OGN of an open net N iff

Strat(N) is exactly the set of all open nets matching with OGN.

Together with the matching procedure, an operating guide-

line OGN of an open net N characterizes the set Strat(N) of

strategies for N. Although Strat(N) itself is semantically

defined, OGN is an equivalent operational description of

Strat(N).

In [16], we were able to show that an operating guideline

OGN of an open net N is always finite and presented an algor-

ithm to compute OGN. The algorithm is implemented in our

tool Fiona [20].1

The operating guideline OGNreg
of the open net Nreg of

Fig. 2a is an annotated automaton that consists of 11 states

and 19 transitions and is depicted in Fig. 5. The annotation

of the initial state of OGNreg
is fingerprint _ noFingerprint _

reqID _ reqPass reflecting the possible choices of a strategy

for Nreg.

The open net Ncust � Nprint in Fig. 2a is an example for a

strategy for Nreg. It is easy to see that Ncust � Nprint matches

with OGNreg
. In the matching, the initial marking [p1, p15] of

Ncust � Nprint, for instance, is simulated by the state q0 (cp.

Definition 5.2):

(i) r([p1, p15]) ¼ q0;

(ii) trivially fulfilled;

1Available at http://service-technology.org/fiona.

98 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

(iii) trivially fulfilled;

(iv) [p1, p15] enables the transitions

(a) a with c ¼ reqPass [ONcust
� Nprint, reqPass [

a† and [p1, p15] !
a

[p2, p15, reqPass] and (q0,

reqPass, q4) [dOGNreg
, and q4 simulates the

marking [p2, p15]

(b) b with c ¼ reqID [ONcust � Nprint, reqID [b† and

[p1, p15]!
b

[p3, p15, reqID] and (q0, reqID, q3) [
dOGNreg

, and q3 simulates the marking [p3, p15];

(v) the formula F(q0) ¼ fingerprint _ noFingerprint _

reqID _ reqPass is satisfied by the assignment b

that assigns true to the literals reqPass (because of

transition a) and reqID (because of transition b) and

false to all other literals.

As an OG of an open net N represents the set of strategies

for N, it is natural to use OGN and OGN0 for comparing

Strat(N) with Strat(N0). Informally, N0 accords with N if and

only if OGN can be embedded into OGN0 such that the annota-

tions in OGN imply the annotations of OGN0.

THEOREM 5.4 (ACCORDANCE CHECK WITH OGS) Let N and N0

be two open nets with acyclic and finite behavior and let

OGN ¼ [Q, C, d, q0, F] and OGN0 ¼ [Q0, C, d0, q00, F0] be

the corresponding OGs.

Then, Strat(N0) $ Strat(N) iff there is a mapping j: Q! Q0

such that

(i) j(q0) ¼ q00;

(ii) if j(q) ¼ q0 and (q, c, q1) [d, then there is a q01 such

that (q0, c, q01) [d0 and j(q1) ¼ q01; and

(iii) for all q [Q, the formula F(q)) F0(j(q)) is a

tautology.

The main value of this theorem is that it allows for a finite,

operational approach to check an inclusion relation of two

potentially infinite sets.

For the proof of this theorem, we rely on a fact about OGs as

constructed in [16]. As we cannot repeat the whole approach

of [16], we only include the following proposition and then

sketch the proof of Theorem 5.4.

PROPOSITION 5.5 ([16]). For every operating guideline

OGN ¼ [Q, C, d, q0, F] (of some service N) and all q [Q,

the formula F(q)

(i) uses only literals c where there is some q0 [Q with

(q, c, q0) [d and

(ii) is satisfied for the assignment assigning true to all

literals in F(q).

Proof of Theorem 5.4 (Sketch). Implication. Let OGN0 ¼

[Q0, C, d0, q00, F0] and OGN ¼ [Q, C, d, q0, F], and let

Strat(N0) $ Strat(N).

We can construct an open net M whose behavior corre-

sponds exactly to the transition system [Q, C, d, q0]. This

can be achieved by using Q < C as set of places (with C

being the interface of M), and having, for each (q1, c, q2) [
d a transition tq1, c, q2

that moves a token from q1 to q2, and

removes (produces, respectively) a token from (on) c if c is

an output (input) place of N. Let mq denote a marking of M

where there is a token on place q and no token elsewhere.

Let mq0
be the initial marking of M. By induction, it can be

shown that, for all q [Q, mq is reached by Definition 5.2,

with r(mq) ¼ q.

As there is a transition for each (q, c, q0) [d, we can derive

from Proposition 5.5 that all annotations evaluate to true when

M is evaluated according to Definition 5.2. Consequently, M

FIGURE 5. The operating guideline OGNreg
of the public view of the registration office of Fig. 2a. For better readability, we add a leading ‘!’ (‘?’)

to a literal x in the graphics of an OGN if x is an output (input) place of a strategy M for N.

MULTIPARTY CONTRACTS 99

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

matches with OGN and hence M is a strategy for N and thus, by

assumption, a strategy for N0.

Being a strategy for N0, there is a mapping r0 from the mark-

ings of M to Q0. Define j: Q! Q0 such that j(q) ¼ q0 iff

r0(mq) ¼ q0. By the structural similarity of Definition 5.2 and

Theorem 5.4, it is easy to see that j satisfies the first two

items required in Theorem 5.4. For verifying the third item,

let q [Q and let b be an arbitrary assignment to literals occur-

ring in F(q) where F(q) is true. Remove from M all those tran-

sitions tq1, c, q2
where b(c) is false. By Definition 5.2, the

resulting open net is still a strategy for N and thus a strategy

for N0, too. Using Definition 5.2 again, we can see that

F0(j(q)) is true as well. Thus, F(q)) F0(j(q)) is a tautology.

Replication. Consider a mapping j as required and let M be

a strategy for N. We show that M is a strategy for N0, too. By

Definition 5.2, there is a mapping r from the markings of M to

Q. Let r0(m) ¼ j(r(m)). For all markings reached by Definition

5.2, F(r(m)) evaluates to true for the assignment described in

Definition 5.2, and by the third item of Theorem 5.4, so does

F0(r0(m)). Consequently, M is a strategy for N0, too. A

The operating guideline OGN0reg
of the private view N 0reg of

the registration office (cf. Fig. 2b) is depicted in Fig. 6. It con-

sists of 8 states and 15 transitions and introduces new strat-

egies that make use of the reorganization of the registration

office into two independent departments: it is now possible

for a strategy for N 0reg to send a reqID message followed by

noFingerprint which causes a deadlock in the public view

Nreg and hence there is no strategy for Nreg.

Using Theorem 5.4, we can easily verify that each strategy

for Nreg is a strategy for N 0reg, too; that is, Strat(N 0reg) $
Strat(Nreg):

Obviously, the automaton underlying the private view’s

operating guideline OGN0reg
of Fig. 6 simulates the automaton

underlying the public view’s operating guideline OGNreg
of

Fig. 5. For example, r1 simulates the states q1 and q2; that

is, j(q1) ¼ j(q2) ¼ r1.

Additionally, an annotation of a state of OGN0reg
implies the

corresponding state’s annotation in OGNreg
. For instance,

F(q1) ¼ (reqPass)) (reqID _ reqPass) ¼ F0(r1). There-

fore, we conclude that Strat(N 0reg) $ Strat(Nreg).

As a counterexample we assume that N 0reg was the

public view which all parties agreed upon. Then, using Nreg

as an implementation is wrong: according to the public

view N 0reg, the customer is allowed to send a reqID message

followed by noFingerprint which is no strategy for the

private view Nreg (cp. state q3 of OGNreg
in Fig. 5).

For an implementation of the criteria in Theorem 5.4,

finding the mapping j is the crucial task. As both OGN

and OGN0 are deterministic (i.e. in each state q there is

at most one c-successor), this task actually amounts to a

depth-first search through OGN0 which is mimicked in

OGN. The time and space required for finding j is thus

linear in the number of states and edges of OGN0. This

size, in turn, is equal to the number of states and edges

of a particular strategy for N [19]. The accordance check

based on Theorem 5.4 has been implemented in our tool

Fiona, too.

6. CASE STUDY

The example contract depicted in Fig. 2a was derived from a

real-life business process created by a customer of a German

consulting company within their modeling tool. In cooperation

with the consulting company, we analyzed the process for

correctness.

In a first step, we exported the business process into a

BPEL4Chor choreography [7] using the export function of

the modeling tool. This BPEL4Chor choreography consists

of multiple (abstract) WS-BPEL processes [11] and wiring

information (the topology of the choreography). Thereby,

each WS-BPEL process represents the public view of a

party and the wiring information describes the processes’

interplay.

In a second step, the processes were partially reorganized

and all necessary implementation details were manually

filled in. For example, activities were reordered, added or

removed, and all opaque activities of the abstract WS-BPEL

process were successively substituted by executable

WS-BPEL activities. The resulting executable processes rep-

resent the corresponding private views of the parties. The

wiring remained unchanged.

To check accordance between the private and the public

views, we translated all (i.e. abstract and executable)

WS-BPEL processes into open nets using our compiler
FIGURE 6. The operating guideline OGN 0reg

of the private view of

the registration office of Fig. 2b.

100 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

BPEL2oWFN2 [20]. This compiler implements a feature-

complete open nets semantics [21] for WS-BPEL and BPEL4-

Chor. With feature-complete we mean, the open net semantics

supports all concepts of WS-BPEL including the control flow,

data flow, message flow, exception handling and compensation

handling. As mentioned in Section 2, we only translate a single

instance of each WS-BPEL process of the choreography and

therefore do not need to correlate messages to process

instances.

Although the semantics are expressed in terms of high-level

open nets, the model generated by BPEL2oWFN abstracts

from data to avoid generating an infinite state space. The

implemented data abstractions [22] result in low-level open

nets. Messages and the content of variables are modeled by

undistinguishable tokens. Data-dependent branches (e.g.

WS-BPEL’s ‘if’ activity) are modeled by nondeterministic

choices. In case a variable has a finite data domain (e.g. data

of type Boolean), the resulting high-level open net

can, however, be unfolded into a low-level open net without

loss of information. The applied abstraction method guaran-

tees that if two low-level open nets are related under accord-

ance, then this holds for their corresponding high-level open

nets, too.

On the open net level, we were finally able to compute the

OGs and checked accordance between the public and the

private views using Fiona. The translation and analysis pro-

cedure that has been described above is illustrated in Fig. 7.

It is worthwhile mentioning that the open net presented in

Fig. 2a is a rather simplified version of the originally generated

model. In particular, the negative control flow of the involved

processes (i.e. fault, compensation and termination handling)

is not depicted. Thus, the OGs of the original public and

private views have considerably more edges and notes than

the OGs of Figs 5 and 6. Consequently, tool support is manda-

tory. However, with the tool chain of BPEL2oWFN and Fiona,

the check whether a change of the WS-BPEL process of a

party is accordance-preserving can be automatized and, for

example, integrated into WS-BPEL modeling tools.

The lessons we learned from this case study can be summar-

ized as follows:

The implementation of a party’s public view is an error-

prone and nontrivial task even for experts. Thus, tool

support to check accordance between a public view and its

private view is mandatory.

In order to check accordance of two open nets, their OGs

have to be computed in advance. Afterwards the two criteria

of Theorem 5.4 have to be checked for the computed OGs.

Thereby, the calculation of the OGs is far more challenging

because the time and space complexity to compute an OG is

high. However, experimental results have shown that the cal-

culation of an OG is feasible in most practical applications

(see [10], for instance). For the case study, Fiona was able

to compute the OGs of the nontrivial example processes and

to verify accordance.

Finally, if two processes do not accord, it is hard to find the

reason. Consequently, to apply our technique in practice,

Fiona should provide the user with more diagnostic

information.

7. RELATED WORK

7.1. Work based on Petri nets

The work presented in this paper mainly builds on results pre-

sented in [3, 4] where classical WFNs [12] are used as a formal

model for a contract, and projection inheritance [14, 15] is

used for relating public and private views. There, partitioning

a contract into its parts may result in a public view that has no

workflow structure. For instance, the public view can be an

unconnected net. Thus, the approach of [3, 4] may require a

‘massaging’ step of the net. Using the more liberal notion of

an open net, ‘massaging’ an unconnected net is not necessary

in our approach. Another difference is caused by the different

interaction models (synchronous versus asynchronous). In

[3, 4], transition fusion (i.e. synchronous communication) is

used to compose WFNs. This difference is reflected by the

notions of projection inheritance and accordance. Two

WFNs are related under projection inheritance iff they have

the same observable behavior. As a result, two nets that

differ in the order of sending two messages a and b are not

related under projection inheritance, whereas the nets accord

with each other. In [23], our notion of accordance has been

FIGURE 7. Application of the translation tool BPEL2oWFN and the

analysis tool Fiona to check accordance between a modeled contract

and an implemented BPEL4Chor choreography.

2Available at http://service-technology.org/bpe12owfn.

MULTIPARTY CONTRACTS 101

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

proven to be more liberal than projection inheritance; that is,

projection inheritance implies accordance.

Martens [24] presents a refinement notion for workflow

modules. Workflow modules—like open nets—are a Petri

net formalism to model (web) services. However, workflow

modules are subject to several syntactic restrictions (similar

to WFNs) and therefore less general than open nets. To

decide refinement of acyclic workflow modules, Martens

introduces a data structure called communication graph and

a simulation relation on these graphs. A communication

graph in some sense represents the communication behavior

of a service and can be compared with a reduced version

of our underlying automaton A of an operating guideline

OG = AF without any annotations. Due to the limitations of

workflow modules and the loss of information by the

reductions compared with our OGs, his structural simulation

relation on communication graphs is only sufficient for refine-

ment (accordance, in our terms) of services, whereas we were

able to prove a criterion that is necessary and sufficient.

Vogler presents in [25] a livelock and deadlock preserving

equivalence between Petri nets with interfaces. However,

there is no direct implication in either direction between the

equivalence of Vogler and accordance.

Bonchi et al. [26] model the behavior of services using a

special kind of Petri nets, Consume-Produce-Read Nets. For

their model they present saturated bisimulation as accordance

relation. However, saturated bisimulation is too restrictive to

allow reordering of sending messages. For example, two

nets that differ in the order of sending two messages a and b

are not saturated bisimular.

7.2. Work based on process calculi

Most process algebraic approaches define their refinement

notions for synchronous communication. However, the trans-

lation of asynchronously communicating processes into syn-

chronously communicating processes is well understood in

the theory of process calculi. Therefore, the results presented

in these papers can be applied for processes that communicate

asynchronously.

Several authors propose refinement notions, called confor-

mance, for processes specified in process calculi. These

notions are similar to our accordance notion as they all guaran-

tee independent refinement of each process while preserving a

certain termination criterion. Some examples are given below.

An approach on service contracts similar to ours is pre-

sented by Bravetti and Zavattaro [27]. There, services are

modeled as processes in the Calculus of Communicating

Systems (CCS). The proposed conformance relation in [27]

formalizes the correct contract composition property. This

property is stricter than weak termination because besides

the absence of deadlocks and livelocks, it also excludes infi-

nite runs. To decide conformance, the authors prove ‘should

testing’ [28] to be a sufficient criterion for their conformance

notion. As the main difference, our algorithm to decide

accordance, which is based on OGs, is complete in the sense

that it is sufficient and necessary and it is implemented in

our analysis tool Fiona. However, in contrast to our current

decision procedure ‘should testing’ is not restricted to

acyclic service models. In [29], Bravetti and Zavattaro

enhance their correctness criterion by ensuring whenever a

message can be sent, the other service is ready to receive

this message. Systems that behave this way are called strongly

compliant.

Castagna et al. [30] introduce a conformance notion that

formalizes the absence of deadlocks and livelocks in

finite-state systems. In contrast to accordance and other con-

formance notions, their conformance notion only demands

the termination of the environment but not the termination

of the process itself. In [31], this conformance notion has

been proven equivalent to ‘must testing’ [32]. Note that

‘must testing’ is a weaker equivalence notion than ‘should

testing’ as it cannot distinguish between a loop (i.e. a poten-

tially infinite run) and a livelock.

Our accordance notion is also related to testing (see [33], for

instance). A test for a process N is a process S such that S can

always terminate in the composition with N (as required by the

conformance notion of [30]). So it is easy to see that every

strategy is a specific test that guarantees the termination of

the test and the process. Our accordance criterion requires

proper termination of both components. A detailed compari-

son of testing and accordance is, however, outside the scope

of this paper.

Fournet et al. [34] consider CCS processes of asynchronous

message passing software components. They present stuck-

free conformance of such processes. Stuck-freedom formal-

izes the absence of deadlocks in the system. Our proposed

notion of weak termination excludes deadlocks and also live-

locks. To check conformance, the model checker Zing [35] is

used. Stuck-free conformance requires among others that an

implemented process N0 simulates its original process N.

Our approach, in contrast, requires a simulation relation

between OGs of N and N0; that is, we do not compare N and

N0, but their strategies. Figure 8 depicts two processes N and

N0 where N0 accords with N, but N0 does not conform to N.

The reason is, after having received b, the net N0 can receive

c and N does not. Thus, N0 does not simulate N. Therefore,

it seems that our notion of accordance is coarser than stuck-

free conformance.

Busi et al. [36] present a notion of conformance between a

choreography language based on WS-CDL and an orchestra-

tion language based on abstract WS-BPEL. This conformance

notion is branching bisimulation. Conformance can be

used to check if the implementation (i.e. the orchestrated

system) behaves accordingly the conversation rules of the

choreography. Like saturated bisimulation in [26], branching

bisimulation is also too restrictive to allow reordering of

messages.

102 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

7.3. Work based on service substitutability

The concept of contracts is also related to the problem when a

service can be substituted by another service. Most of this

work, however, is restricted to synchronous communication

[37–40] whereas we consider asynchronous message

passing. Benatallah et al. [39] present four notions for substi-

tutability of synchronously communicating automata models

of services. In this paper, we cover two of them: equivalence

and subsumption. Equivalence in our notion means that both

services have the same set of strategies and subsumption

means the inclusion of the set of strategies (accordance).

The ComFoRT framework [41] analyzes whether a software

component S implemented in the programming language C

can be substituted by another software component S0. S can

be substituted by S0 if the following two criteria hold:

(i) every behavior possible in S must also be a behavior of

S0 and (ii) the new version of the software system must

satisfy previously established correctness properties. Behavior

inclusion is verified by trace comparison of the software com-

ponents, which also does not allow the reordering of messages.

7.4. Work on open nets

Lohmann et al. [42] translate choreographies specified in the

choreography language BPEL4Chor [7] into open nets. The

model is then checked for deadlocks using the model

checker Low Level Analyzer (LoLA) [43]. Because this

approach can only be used if there is a party that can access

the whole choreography, it is in general not applicable in prac-

tice, but can be used to check whether the public view of the

overall contract is weakly terminating. The design of the

public view can be further assisted: Lohmann [44] describes

an algorithm to diagnose communication-related problems

of service models. This diagnosis information can be used to

support the automatic correction of deadlocking choreogra-

phies which is presented in [45].

In [23], we presented a number of transformation rules to

incrementally build a private view of a party to a given

public view. We proved that these rules preserve accordance

between the public and the private views and hence the result-

ing private view is correct by design. Accordance-preserving

transformation notions can also be applied directly on the

BPEL code. In [46], some of these code transformation rules

are presented.

7.5. Workflow perspectives, data and semantics

In our formal model, open nets, we focus on the so-called

control-flow perspective and abstract from other perspectives

such as data and resources. For example, messages are rep-

resented by undistinguishable (black) tokens and, as indicated

before, we assume that correlation is handled in some way.

Data and other perspectives can be modeled with high-level

Petri nets [47], for instance. In case the data domain is finite,

the high-level Petri nets can be unfolded into an equivalent

low-level Petri net with undistinguishable black tokens.

However, unfolding might result in huge nets making the

analysis hard or even impossible. Infinite data domains may

be abstracted to a finite domain using techniques such as

abstract interpretation [48]. If this is not possible, generating

the OG for such a net is in general undecidable.

Andonoff et al. [49] propose Petri nets with objects [50], a

special class of high-level Petri nets, as a process model. In

this model, data can be adequately represented. A transition

may have pre- and post-conditions. It is enabled if its pre-

condition holds. By firing this transition, an action (i.e. a

method call) can be executed. Petri nets with objects can be

used to make comprehensive models covering multiple per-

spectives. For example, messages can be modeled by objects

adequately reflecting their content. Moreover, in [49] algor-

ithms are presented to transform Petri nets with objects [50]

to OWL-S specifications [51], a quite popular semantic web

service description language. Such an OWL-S specification

can be published at a service broker and thus be used for

service brokering. However, as with any high-level Petri

net, the increased expressive power results in weaker analysis

results.

Our approach is also restricted to the behavior of services

and does not cover other important aspects such as semantical

information and QoS. The reason for doing so is that our pro-

posed approach builds on the concept of an OG and we have

not integrated such concepts yet.

The commitment ontology proposed by Desai et al. [52] is

an another approach for modeling interorganizational pro-

cesses. Thereby a commitment specifies an interaction

between two parties. The commitment ontology can be seen

as a modeling language. It allows to specify pre- and post-

conditions, data and semantical information. Processes

specified in this ontology can, in principle, be translated, in

automata or high-level Petri nets, for instance. To apply our

techniques to such models, we need a finite data domain and

FIGURE 8. Accordance does not imply conformance of [34]: N0

accords with N, but N0 does not conform to N.

MULTIPARTY CONTRACTS 103

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

thus have to deal with the same problems as already mentioned

above.

As indicated above we acknowledge the importance of

other perspectives (e.g. data) and see the value of using

richer modeling notations. However, the focus of this paper

is on the basic interaction structures between different

parties. Our findings and results remain valid when incorpor-

ating additional perspectives or when using other process

modeling notations (e.g. Business Process Modeling Notation

(BPMN), WS-BPEL, etc.).

8. CONCLUSION

In interorganizational cooperations, the involved parties

specify a public version of the overall process which serves

as a contract. Later on, each party implements its part of the

contract (i.e. the public view). Such a local modification is

nontrivial as it may cause global errors such as deadlocks.

In this paper, we proposed a formal notion of a contract

based on open nets. Our correctness criterion, weak termin-

ation, guarantees the ability to always be able to terminate

properly (e.g. the overall process cannot get into a deadlock

or livelock). To decide if the public view N of a party can

be substituted by a modified version, i.e. the private view N0,

we presented the notion of accordance. N0 accords with N if

N and N0 have the same interface and any environment that

can cooperate with N can also cooperate with N0. The value

of our accordance notion is that it can be checked locally

and guarantees that the overall process preserves the weak ter-

mination property.

To check accordance automatically, we employed our

concept of OGs. The OG of an open net N characterizes all

open nets M (called strategies) such that the composition of

M and N weakly terminates. We proved for open nets N and

N0 with acyclic and finite behaviors that N0 accords with N if

the OG of N0 characterizes at least the strategies that are

characterized by the OG of N.

Our compiler BPEL2oWFN enables us to derive an open

net model of a contract from the contract’s BPEL4Chor speci-

fication. On the open net level, our analysis tool Fiona com-

putes the OGs of the private and the public views and

checks accordance.

It is worthwhile mentioning that the presented general con-

cepts of contracts and accordance are not limited to open nets

but can also be translated into other frameworks using

message passing as a communication paradigm. Furthermore,

our approach can also be applied to services specified in a

service description languages other than WS-BPEL as long

as this language can be translated into Petri nets or at least

into automata. For example, there exists tool support to trans-

late languages like WS-CDL and BPMN into a formal model

and therefore into automata.

If the service is described as a programming language

like Java or C, things become more complicated. However,

there are also approaches like the one of [41] that can

translate such a service description into an automaton

(or another formal model) using techniques that have proven

themselves in the area of model checking [53] and static

program analysis [54].

In ongoing work, we want to generalize our accordance

check to open nets with cyclic behavior. For this purpose,

our correctness check must also guarantee the absence of live-

locks which is more challenging than checking deadlocks. In

addition, we want to improve the diagnosis in case accordance

does not hold between two open nets. Finally, we also want to

investigate the relation between our notion of accordance and

equivalences known from process algebra, in particular testing

equivalence.

ACKNOWLEDGEMENTS

The authors are grateful to Arjan J. Mooij and Marc Voor-

hoeve for their help in pointing out differences between the

presented notion of accordance and the existing conformance

notions described in process calculi. The authors also thank

Robert Danitz and Leonard Kern for their contribution to the

implementation of Fiona.

FUNDING

N. Lohmann is funded by the DFG project ‘Operating Guide-

lines for Services’ (WO 1466/8-1). C. Stahl is funded by the

DFG project ‘Substitutability of Services’ (RE 834/16-1).

REFERENCES

[1] Papazoglou, M.P. (2001) Agent-oriented technology in support

of e-business. Commun. ACM, 44, 71–77.

[2] Papazoglou, M.P. (2007) Web Services: Principles and

Technology. Prentice Hall, Essex.

[3] Aalst, W.M.P.v.d. (2003) Inheritance of interorganizational

workows: how to agree to disagree without loosing control?

Inf. Technol. Manage. J., 4, 345–389.

[4] Aalst, W.M.P.v.d. and Weske, M. (2001) The P2P Approach to

Interorganizational Workflows. Proc. CAiSE’01, Interlaken,

Switzerland, August 12–14, Lecture Notes in Computer

Science, Vol. 2068, pp. 140–156. Springer, Heidelberg.

[5] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.

and Barreto, C. (2005) Web Services Choreography Description

Language Version 1.0. W3C Candidate Recommendation, 9

November. W3C, Cambridge, MA, USA.

[6] Zaha, J.M., Barros, A.P., Dumas, M. and ter Hofstede, A.H.M.

(2006) Let’s Dance: A Language for Service Behavior

Modeling. Proc. OTM Confederated Int. Conf., Part I,

Montpellier, France, October 29 –November 3, Lecture Notes

in Computer Science, Vol. 4275, pp. 145–162. Springer,

Heidelberg.

104 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

[7] Decker, G., Kopp, O., Leymann, F. and Weske, M. (2007)

BPEL4Chor: Extending BPEL for Modeling Choreographies.

Proc. ICWS 2007, Salt Lake City, UT, USA, July 9–13,

pp. 296–303. IEEE Computer Society Press.

[8] Massuthe, P., Reisig, W. and Schmidt, K. (2005) An operating

guideline approach to the SOA. Ann. Math. Comput. Teleinf., 1,

35–43.

[9] Reisig, W. (1985) Petri Nets, In EATCS Monographs on

Theoretical Computer Science. Springer, Berlin, Heidelberg,

New York.

[10] Lohmann, N., Massuthe, P. and Wolf, K. (2007) Operating

Guidelines for Finite-state Services. Proc. of ICATPN 2007,

Siedlce, Poland, June 25–29, Lecture Notes in Computer

Science, Vol. 4546, pp. 321–341. Springer, Heidelberg.

[11] Alves, A. et al. (2007) Web Services Business Process

Execution Language Version 2.0. OASIS Standard, 11 April.

OASIS, Billerica, MA, USA.

[12] Aalst, W.M.P.v.d. (1998) The application of Petri nets to

workflow management. J. Circuits Syst. Comput., 8, 21–66.

[13] Kindler, E. (1997) A Compositional Partial Order Semantics

for Petri Net Components. Proc. ICATPN 1997, Toulouse,

France, June 23–27, Lecture Notes in Computer Science, Vol.

1248, pp. 235–252. Springer, Heidelberg.

[14] Aalst, W.M.P.v.d. and Basten, T. (2002) Inheritance of

workflows: an approach to tackling problems related to

change. Theor. Comput. Sci., 270, 125–203.

[15] Basten, T. and Aalst, W.M.P.v.d. (2001) Inheritance of

behavior. J. Log. Algebr. Program., 47, 47–145.

[16] Massuthe, P. and Schmidt, K. (2005) Operating Guidelines—

An Automata-theoretic Foundation for the Service-oriented

Architecture. Proc. QSIC 2005, Melbourne, Australia,

September 19–20, pp. 452–457. IEEE Computer Society

Press.

[17] Wombacher, A., Fankhauser, P., Mahleko, B. and Neuhold, E.J.

(2004) Matchmaking for business processes based on

choreographies. Int. J. Web Serv. Res., 1, 14–32.

[18] Glabbeek, R.J.v. (2001) The Linear Time—Branching Time

Spectrum I; The Semantics of Concrete, Sequential Processes.

In Bergstra, J., Ponse, A. and Smolka, S. (eds), Handbook of

Process Algebra, Chapter 1, pp. 3–99. Elsevier, Amsterdam,

The Netherlands.

[19] Massuthe, P. and Wolf, K. (2007) An algorithm for matching

non-deterministic services with operating guidelines. Int. J.

Bus. Process Integr. Manage., 2, 81–90.

[20] Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D. (2006)

Analyzing Interacting BPEL Processes. Proc. BPM 2006,

Vienna, Austria, September 5–7, Lecture Notes in Computer

Science, Vol. 4102, pp. 17–32. Springer, Heidelberg.

[21] Lohmann, N. (2008) A Feature-complete Petri Net Semantics

for WS-BPEL 2.0. Proc. WS-FM 2007, Brisbane, Australia,

September 28–29, Lecture Notes in Computer Science,

Vol. 4937, pp. 77–91. Springer, Heidelberg.

[22] Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D. (2008)

Analyzing interacting WS-BPEL processes using flexible model

generation. Data Knowl. Eng., 64, 38–54.

[23] Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C.

and Wolf, K. (2007) From Public Views to Private Views—

Correctness-by-design for Services. Proc. WS-FM 2007,

Brisbane, Australia, September 28–29, Lecture Notes in

Computer Science, Vol. 4937, pp. 139–153. Springer,

Heidelberg.

[24] Martens, A. (2005) Analyzing Web Service based Business

Processes. In Cerioli, M. (ed.), Proc. FASE 2005, Edinburgh,

UK, April 4–8, Lecture Notes in Computer Science,

Vol. 3442, pp. 19–33. Springer, Heidelberg.

[25] Vogler, W. (1992) Modular Construction and Partial Order

Semantics of Petri Nets, Lecture Notes in Computer Science,

Vol. 625. Springer, Berlin.

[26] Bonchi, F., Brogi, A., Corfini, S. and Gadducci, F. (2007) A

Behavioural Congruence for Web Services. Proc. FSEN 2007,

Tehran, Iran, April 17–19, Lecture Notes in Computer

Science, Vol. 4767, pp. 240–256. Springer, Heidelberg.

[27] Bravetti, M. and Zavattaro, G. (2007) Contract based

Multi-party Service Composition. Proc. FSEN 2007, Tehran,

Iran, April 17–19, Lecture Notes in Computer Science,

Vol. 4767, pp. 207–222. Springer, Heidelberg.

[28] Rensink, A. and Vogler, W. (2007) Fair testing. Inf. Comput.,

205, 125–198.

[29] Bravetti, M. and Zavattaro, G. (2007) A Theory for Strong

Service Compliance. Proc. COORDINATION 2007, Paphos,

Cyprus, June 6–8, Lecture Notes in Computer Science, Vol.

4467, pp. 96–112. Springer, Heidelberg.

[30] Castagna, G., Gesbert, N. and Padovani, L. (2008) A Theory of

Contracts for Web Services. Proc POPL 2008, San Francisco,

CA, USA, January 7–12, pp. 261–272. ACM Press.

[31] Laneve, C. and Padovani, L. (2007) The must Preorder

Revisited. In Caires, L. and Vasconcelos, V.T. (eds), Proc.

CONCUR 2007, Lisbon, Portugal, September 3–8, Lecture

Notes in Computer Science, Vol. 4703, pp. 212–225.

Springer, Heidelberg.

[32] Nicola, R.D. and Hennessy, M. (1984) Testing equivalences for

processes. Theor. Comput. Sci., 34, 83–133.

[33] Bruda, S.D. (2004) Preorder Relations. In Broy, M., Jonsson, B.,

Katoen, J.P., Leucker, M. and Pretschner, A. (eds), Model-based

Testing of Reactive Systems, Dagstuhl, Germany, January,

Lecture Notes in Computer Science, Vol. 3472, pp. 117–149.

Springer, Heidelberg.

[34] Fournet, C., Hoare, C.A.R., Rajamani, S.K. and Rehof, J. (2004)

Stuck-free Conformance. Proc. CAV 2004, Boston, MA, USA,

July 13–17, Lecture Notes in Computer Science, Vol. 3114,

pp. 242–254. Springer, Heidelberg.

[35] Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J. and Xie, Y.

(2004) Zing: A Model Checker for Concurrent Software. Proc.

CAV 2004, Boston, MA, USA, July 137–17, Lecture Notes in

Computer Science, Vol. 3114, pp. 484–487. Springer,

Heidelberg.

[36] Busi, N., Gorrieri, R., Guidi, C., Lucchi, R. and Zavattaro, G.

(2005) Choreography and Orchestration: A Synergic

Approach for System Design. Proc. ICSOC 2005, Amsterdam,

The Netherlands, December 12–15, Lecture Notes in

MULTIPARTY CONTRACTS 105

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Computer Science, Vol. 3826, pp. 228–240. Springer,

Heidelberg.

[37] Bordeaux, L., Salaüun, G., Berardi, D. and Mecella, M. (2004)

When are Two Web Services Compatible? Proc. TES 2004,

Toronto, Canada, August 29–30, Lecture Notes in Computer

Science, Vol. 3324, pp. 15–28. Springer, Heidelberg.

[38] Beyer, D., Chakrabarti, A. and Henzinger, T. (2005)

Web Service Interfaces. Proc. WWW 2005, Chiba, Japan,

May 10–14, pp. 148–159. ACM Press.

[39] Benatallah, B., Casati, F. and Toumani, F. (2006) Representing,

analysing and managing Web service protocols. Data Knowl.

Eng., 58, 327–357.

[40] Kang, M., Froscher, J., Sheth, A., Kochut, K. and Miller, J.

(1999) A Multilevel Secure Workflow Management System.

Proc. CAiSE 1999, Heidelberg, Germany, June 14–18,

Lecture Notes in Computer Science, Vol. 1626, pp. 271–285.

Springer, Heidelberg.

[41] Sharygina, N., Chaki, S., Clarke, E. and Sinha, N. (2005)

Dynamic Component Substitutability Analysis. Proc. FM

2005, Newcastle, UK, July 18–22, Lecture Notes in Computer

Science, Vol. 3582, pp. 512–528. Springer, Heidelberg.

[42] Lohmann, N., Kopp, O., Leymann, F. and Reisig, W. (2007)

Analyzing BPEL4Chor: Verification and Participant

Synthesis. Proc. WS-FM 2007, Brisbane, Australia, September

28–29 Lecture Notes in Computer Science, pp. 46–60.

Springer, Heidelberg.

[43] Schmidt, K. (2000) LoLA: A Low Level Analyser. Proc.

ICATPN 2000, Aarhus, Denmark, June 26–30, Lecture Notes

in Computer Science, Vol. 1825, pp. 465–474. Springer,

Heidelberg.

[44] Lohmann, N. (2008) Why does my Service have no Partners?

Proc. WS-FM 2008, Milan, Italy, September 4–5 Lecture

Notes in Computer Science. Springer, Heidelberg. To appear.

[45] Lohmann, N. (2008) Correcting Deadlocking Service

Choreographies using a Simulation-based Graph Edit

Distance. Proc. BPM 2008, Milan, Italy, September 1–4,

Lecture Notes in Computer Science, Vol. 5240, pp. 132–147.

Springer, Heidelberg.

[46] König, D., Lohmann, N., Moser, S., Stahl, C. and Wolf, K.

(2008) Extending the Compatibility Notion for Abstract

WS-BPEL Processes. Proc. WWW 2008, Beijing, China, April

21–25, pp. 785–794. ACM Press.

[47] Jensen, K. (1997) Coloured Petri Nets (2nd edn). In EATCS

Monographs on Theoretical Computer Science. Vol. 1–3.

Springer, Berlin, Heidelberg, New York.

[48] Cousot, P. and Cousot, R. (1977) Abstract Interpretation: A

unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints. Proc. POPL

1977, Los Angeles, CA, USA, January, pp. 238–252. ACM

Press, New York, NY.

[49] Andonoff, E., Bouzguenda, L. and Hanachi, C. (2005)

Specifying Web Workflow Services for finding Partners in the

Context of Loose Inter-organizational workflow. In van der

Aalst, W.M.P., Benatallah, B., Casati, F. and Curbera, F.

(eds), Proc. BPM 2005, Nancy, France, September 5–8,

Lecture Notes in Computer Science, Vol. 3649, pp. 120–136.

Springer, Heidelberg.

[50] Sibertin-Blanc, C. (2001) CoOperative Objects: Principles,

Use and Implementation. Concurrent Object-Oriented

Programming and Petri Nets, Advances in Petri Nets, Lecture

Notes in Computer Science, Vol. 2001, pp. 216–246.

Springer, Heidelberg, Germany.

[51] The OWL Services Coalition (2003). OWL-S: semantic markup

for web services. http://www.daml.org/ services.

[52] Desai, N., Chopra, A.K. and Singh, M.P. (2007) Representing

and Reasoning about Commitments in Business Processes.

Proc. AAAI 2007, Vancouver, British Columbia, Canada, July

22–26, pp. 1328–1333. AAAI Press.

[53] Clarke, E.M., Grumberg, O. and Peled, D.A. (2000) Model

Checking. MIT Press, Cambridge, MA.

[54] Nielson, F., Nielson, H.R. and Hankin, C. (2005) Principles of

Program Analysis (2nd edn). Springer, Berlin.

106 W.M.P.V.D. AALST et al.

THE COMPUTER JOURNAL, Vol. 53 No. 1, 2010

 at Pennsylvania State U
niversity on Septem

ber 15, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	Multiparty Contracts: Agreeing and Implementing Interorganizational Processes
	INTRODUCTION
	EXAMPLE
	FORMALIZING CONTRACTS
	ACCORDANCE BETWEEN PUBLIC AND™PRIVATE VIEW
	CHECKING ACCORDANCE
	CASE STUDY
	RELATED WORK
	Work based on Petri nets
	Work based on process calculi
	Work based on service substitutability
	Work on open nets
	Workflow perspectives, data and semantics

	CONCLUSION
	ACKNOWLEDGEMENTS
	FUNDING
	REFERENCES

