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ABSTRACT
During the last decade, CD-quality digital audio has essentially replaced analog audio.  During this same period, new

digital audio applications have emerged for network, wireless, and multimedia computing systems which face such con-
straints as reduced channel bandwidth, limited storage capacity, and low cost.  These new applications have created a de-
mand for high-quality digital audio delivery at low bit rates.  In response to this need, considerable research has been de-
voted to the development of algorithms for perceptually transparent coding of high-fidelity (CD-quality) digital audio.  As a
result, many algorithms have been proposed, and several have now become international and/or commercial product stan-
dards.  This paper reviews algorithms for perceptually transparent coding of CD-quality digital audio, including both re-
search and standardization activities.  The paper is organized as follows.  First, psychoacoustic principles are described
with the MPEG psychoacoustic signal analysis model 1 discussed in some detail .  Then, we review methodologies which
achieve perceptually transparent coding of FM- and CD-quality audio signals, including algorithms which manipulate
transform components and subband signal decompositions.  The discussion concentrates on architectures and applications
of those techniques which utili ze psychoacoustic models to exploit efficiently masking characteristics of the human receiver.
Several algorithms which have become international and/or commercial standards are also presented, including the
ISO/MPEG family and the Dolby AC-3 algorithms. The paper concludes with a brief discussion of future research direc-
tions.

I . INTRODUCTION
Audio coding or audio compression algorithms are

used to obtain compact digital representations of high-
fidelity (wideband) audio signals for the purpose of ef-
ficient transmission or storage.  The central objective in
audio coding is to represent the signal with a minimum
number of bits while achieving transparent signal re-
production, i.e., while generating output audio which
cannot be distinguished from the original input, even by
a sensitive listener (“golden ears” ).  This paper gives a
review of algorithms for transparent coding of high-
fidelity audio.

The introduction of the compact disk (CD) in the
early eighties [1] brought to the fore all of the advan-
tages of digital audio representation, including unprece-
dented high-fidelity, dynamic range, and robustness.
These advantages, however, came at the expense of
high data rates.  Conventional CD and digital audio tape
(DAT) systems are typically sampled at 44.1 or 48 kilo-
hertz (kHz), using pulse code modulation (PCM) with a
sixteen bit sample resolution.  This results in uncom-
pressed data rates of 705.6/768 kilobits per second
(kbps) for a monaural channel, or 1.41/1.54 megabits
per second (Mbps) for a stereo pair at 44.1/48 kHz, re-
spectively.  Although high, these data rates were ac-

commodated successfully in first generation digital
audio applications such as CD and DAT.  Unfortu-
nately, second generation multimedia applications and
wireless systems in particular are often subject to band-
width or cost constraints which are incompatible with
high data rates.  Because of the success enjoyed by the
first generation, however, end users have come to ex-
pect “CD-quality”  audio reproduction from any digital
system.  New network and wireless multimedia digital
audio systems, therefore, must reduce data rates without
compromising reproduction quality.  These and other
considerations have motivated considerable research
during the last decade towards formulation of compres-
sion schemes which can satisfy simultaneously the con-
flicting demands of high compression ratios and trans-
parent reproduction quality for high-fidelity audio sig-
nals [2][3][4][5][6][7][8][9][10][11].  As a result, sev-
eral standards have been developed [12][13][14][15],
particularly in the last five years [16][17][18][19], and
several are now being deployed commercially [94]
[97][100][102] (Table 2).
A. GENERIC PERCEPTUAL AUDIO CODING AR-

CHITECTURE
This review considers several classes of analysis-

synthesis data compression algorithms, including those
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which manipulate:  transform components, time-domain
sequences from critically sampled banks of bandpass
filters, linear predictive coding (LPC) model parame-
ters, or some hybrid parametric set.  We note here that
although the enormous capacity of new storage media
such as Digital Versatile Disc (DVD) can accommodate
lossless audio coding [20][21], the research interest and
hence all of the algorithms we describe are lossy com-
pression schemes which seek to exploit the psychoa-
coustic principles described in section two.  Lossy
schemes offer the advantage of lower bit rates (e.g., less
than 1 bit per sample) relative to lossless schemes (e.g.,
10 bits per sample).  Naturally, there is a debate over
the quality limitations associated with lossy compres-
sion.  In fact, some experts believe that uncompressed
digital CD-quality audio (44.1 kHz/16b) is intrinsically
inferior to the analog original.  They contend that sam-
ple rates above 55 kHz and word lengths greater than 20
bits [21] are necessary to achieve transparency in the
absence of any compression.  It is beyond the scope of
this review to address this debate.

Before considering different classes of audio coding
algorithms, it is first useful to note the architectural
similarities which characterize most perceptual audio
coders.  The lossy compression systems described
throughout the remainder of this review achieve coding
gain by exploiting both perceptual irrelevancies and
statistical redundancies.  All of these algorithms are
based on the generic architecture shown in Fig. 1.  The
coders typically segment input signals into quasi-
stationary frames ranging from 2 to 50 milli seconds in
duration.  A time-frequency analysis section then de-
composes each analysis frame.  The time/frequency
analysis approximates the temporal and spectral analy-
sis properties of the human auditory system.  It trans-
forms input audio into a set of parameters which can be
quantized and encoded according to a perceptual distor-
tion metric. Depending on overall system objectives and
design philosophy, the time-frequency analysis section
might contain a

♦ Unitary transform
♦ Time-invariant bank of uniform bandpass filters
♦ Time-varying (signal-adaptive), critically sampled

bank of non-uniform bandpass filters
♦ Hybrid transform/filterbank signal analyzer
♦ Harmonic/sinusoidal analyzer
♦ Source-system analysis (LPC/Multipulse excita-

tion)
The choice of time-frequency analysis methodology al-
ways involves a fundamental tradeoff between time and
frequency resolution requirements.  Perceptual distor-
tion control is achieved by a psychoacoustic signal
analysis section which estimates signal masking power
based on psychoacoustic principles (see section two).
The psychoacoustic model delivers masking thresholds
which quantify the maximum amount of distortion that

can be injected at each point in the time-frequency
plane during quantization and encoding of the time-
frequency parameters without introducing audible arti-
facts in the reconstructed signal.  The psychoacoustic
model therefore allows the quantization and encoding
section to exploit perceptual irrelevancies in the time-
frequency parameter set.  The quantization and encod-
ing section can also exploit statistical redundancies
through classical techniques such as differential pulse
code modulation (DPCM) or adaptive DPCM
(ADPCM).  Quantization might be uniform or pdf-
optimized (Lloyd-Max), and it might be performed on
either scalar or vector quantities (VQ).  Once a quan-
tized compact parametric set has been formed, remain-
ing redundancies are typically removed through run-
length (RL) and entropy (e.g. Huffman, arithmetic,
LZW) coding techniques.  Since the psychoacoustic
distortion control model is signal adaptive, most algo-
rithms are inherently variable rate.  Fixed channel rate
requirements are usually satisfied through buffer feed-
back schemes, which often introduce encoding delays.
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Fig. 1. Generic Perceptual Audio Encoder

The study of perceptual entropy (PE) suggests that
transparent coding is possible in the neighborhood of 2
bits per sample [45] for most for high-fidelity audio
sources (~88 kpbs given 44.1 kHz sampling).  The lossy
perceptual coding algorithms discussed in the remainder
of this paper confirm this possibilit y.  In fact, several
coders approach transparency in the neighborhood of 1
bit per sample.  Regardless of design details, all per-
ceptual audio coders seek to achieve transparent quality
at low bit rates with tractable complexity and manage-
able delay.  The discussion of algorithms given in sec-
tions three through five brings to light many of the
tradeoffs involved with the various coder design phi-
losophies.
B. PAPER ORGANIZATION

The rest of the paper is organized as follows.  In
section II , psychoacoustic principles are described
which can be exploited for significant coding gain.
Johnston’s notion of perceptual entropy is presented as
a measure of the fundamental limit of transparent com-
pression for audio.  Sections III through V review state-
of-the-art algorithms which achieve transparent coding
of FM- and CD-quality audio signals, including several
techniques which are established in international stan-
dards.  Transform coding methodologies are described
in section III , and subband coding algorithms are ad-
dressed in section IV.  In addition to methods based on
uniform bandwidth filterbanks, section IV covers cod-
ing methods which utili ze discrete wavelet transforms
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and non-uniform filterbanks.  Finally, section V is con-
cerned with standardization activities in audio coding.
It describes recently adopted standards including the
ISO/IEC MPEG family, the Philli ps’ Digital Compact
Cassette (DCC), the Sony Minidisk, and the Dolby AC-
3 algorithms.  The paper concludes with a brief discus-
sion of future research directions.

For additional information, one can also refer to in-
formative reviews of recent progress in wideband and
hi-fidelity audio coding which have appeared in the lit -
erature.  Discussions of audio signal characteristics and
the application of psychoacoustic principles to audio
coding can be found in [22],[23], and [24].  Jayant, et
al. of Bell Labs also considered perceptual models and
their applications to speech, video, and audio signal
compression [25].  Noll describes current algorithms in
[26] and [27], including the ISO/MPEG audio compres-
sion standard.

II . PSYCHOACOUSTIC PRINCIPLES
High precision engineering models for high-fidelity

audio currently do not exist.  Therefore, audio coding
algorithms must rely upon generalized receiver models
to optimize coding eff iciency.  In the case of audio, the
receiver is ultimately the human ear and sound percep-
tion is affected by its masking properties.  The field of
psychoacoustics [28][29][30][31][32][33][34] has made
significant progress toward characterizing human audi-
tory perception and particularly the time-frequency
analysis capabiliti es of the inner ear.  Although apply-
ing perceptual rules to signal coding is not a new idea
[35], most current audio coders achieve compression by
exploiting the fact that “ irrelevant”  signal information is
not detectable by even a well trained or sensitive lis-
tener.  Irrelevant information is identified during signal
analysis by incorporating into the coder several psy-
choacoustic principles, including absolute hearing
thresholds, critical band frequency analysis, simultane-
ous masking, the spread of masking along the basilar
membrane, and temporal masking.  Combining these
psychoacoustic notions with basic properties of signal
quantization has also led to the development of percep-
tual entropy [36], a quantitative estimate of the funda-
mental limit of transparent audio signal compression.
This section reviews psychoacoustic fundamentals and
perceptual entropy, then gives as an application exam-
ple some details of the ISO/MPEG psychoacoustic
model one.
A. ABSOLUTE THRESHOLD OF HEARING

The absolute threshold of hearing is characterized by
the amount of energy needed in a pure tone such that it
can be detected by a listener in a noiseless environment.
The frequency dependence of this threshold was quanti-
fied as early as 1940, when Fletcher [28] reported test
results for a range of listeners which were generated in
an NIH study of typical American hearing acuity.  The
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Fig. 2.  The Absolute Threshold of Hearing
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which is representative of a young listener with acute
hearing.  When applied to signal compression, Tq(f)  can
be interpreted as a maximum allowable energy level for
coding distortions introduced in the frequency domain
(Fig. 2).  Algorithm designers have no a priori knowl-
edge regarding actual playback levels, therefore the
sound pressure level (SPL) curve is often referenced to
the coding system by equating the lowest point on the
curve (i.e., 4 kHz) to the energy in +/- 1 bit of signal
amplitude.  Such a practice is common in algorithms
which utilize the absolute threshold of hearing.
B. CRITICAL BANDS

Using the absolute threshold of hearing to shape the
coding distortion spectrum represents the first step to-
wards perceptual coding.  Next we consider how the ear
actually does spectral analysis.  It turns out that a fre-
quency-to-place transformation takes place in the inner
ear, along the basilar membrane.  Distinct regions in the
cochlea, each with a set of neural receptors, are “ tuned”
to different frequency bands.  Empirical work by sev-
eral observers led to the modern notion of critical bands
[28][29][30][31] which correspond to these cochlear re-
gions.  In the experimental sense, critical bandwidth can
be loosely defined as the bandwidth at which subjective
responses change abruptly. For example, the perceived
loudness of a narrowband noise source at constant
sound pressure level remains constant even as the
bandwidth is increased up to the critical bandwidth.
The loudness then begins to increase.  In a different ex-
periment (Fig 3a), the detection threshold for a narrow-
band noise source between two masking tones remains
constant as long as the frequency separation between
the tones remains within a critical bandwidth.  Beyond
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this bandwidth, the threshold rapidly decreases (Fig 3c).
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Fig. 3.  Critical Band Measurement Methods
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A similar notched-noise experiment can be constructed
with masker and maskee roles reversed (Fig. 3b,d).
Critical bandwidth tends to remain constant (about 100
Hz) up to 500 Hz, and increases to approximately 20%
of the center frequency above 500 Hz.  For an average

listener, critical bandwidth (Fig. 4b) is conveniently ap-
proximated [33] by

( )
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Although the function BWc is continuous, it is useful
when building practical systems to treat the ear as a dis-
crete set of bandpass filters which obeys Eq. (2).  Table
1 gives an idealized filterbank which corresponds to the
discrete points labeled on the curve in Figs. 4a, 4b.  A
distance of 1 critical band is commonly referred to as
“one bark”  in the literature.  The function [33]

( ) ( )z f f

f

=

+ 

















13 00076

35
7500

2

arctan .

. arctan
 (Bark)

(3)

is often used to convert from frequency in Hertz to the
bark scale (Fig 4a).  Corresponding to the center fre-
quencies of the Table 1 filterbank, the numbered points
in Fig. 4a ill ustrate that the non-uniform Hertz spacing
of the filterbank (Fig. 5) is actually uniform on a bark
scale.  Thus, one critical bandwidth comprises one bark.
Intra-band and inter-band masking properties associated
with the ear’ s critical band mechanisms are routinely
used by modern audio coders to shape the coding dis-
tortion spectrum.  These masking properties are de-
scribed next.

Band
No.

Center
Freq. (Hz)

Bandwidth (Hz)

1 50 -100
2 150 100-200
3 250 200-300
4 350 300-400
5 450 400-510
6 570 510-630
7 700 630-770
8 840 770-920
9 1000 920-1080
11 1370 1270-1480
12 1600 1480-1720
13 1850 1720-2000
14 2150 2000-2320
15 2500 2320-2700
16 2900 2700-3150
17 3400 3150-3700
18 4000 3700-4400
19 4800 4400-5300
20 5800 5300-6400
21 7000 6400-7700
22 8500 7700-9500
23 10,500 9500-12000
24 13,500 12000-15500
25 19,500 15500-

Table 1  Critical Band Filterbank [after Scharf]

C. SIMULTANEOUS MASKING AND THE SPREAD
OF MASKING
Masking refers to a process where one sound is ren-

dered inaudible because of the presence of another
sound.  Simultaneous masking refers to a frequency-
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domain phenomenon which has been observed within
critical bands (in-band).  For the purposes of shaping
coding distortions it is convenient to distinguish be-
tween two types of simultaneous masking, namely tone-
masking-noise [31], and noise-masking-tone [32].  In
the first case, a tone occurring at the center of a critical
band masks noise of any subcritical bandwidth or shape,
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Fig. 5. Idealized Critical Band Filterbank

provided the noise spectrum is below a predictable
threshold directly related to the strength of the masking
tone.  The second masking type follows the same pat-
tern with the roles of masker and maskee reversed.  A
simpli fied explanation of the mechanism underlying
both masking phenomena is as follows.  The presence
of a strong noise or tone masker creates an excitation of
suff icient strength on the basilar membrane at the criti -
cal band location to effectively block transmission of a
weaker signal.  Inter-band masking has also been ob-
served, i.e., a masker centered within one critical band
has some predictable effect on detection thresholds in
other critical bands.  This effect, also known as the
spread of masking, is often modeled in coding applica-
tions by an approximately triangular spreading function
which has slopes of +25 and -10 dB per bark.  A con-
venient analytical expression [35] is given by:

SF x x

x
dB ( ) . . ( . )

. ( . )

= + +
− + +

1581 75 0474

175 1 0474 2 dB (4)

where x has units of barks and SF xdb ( ) is expressed in

dB.  After critical band analysis is done and the spread
of masking has been accounted for, masking thresholds
in psychoacoustic coders are often established by the
[38] decibel (dB) relations:

TH E BN T= − −145.

TH E KT N= −
(5)
(6)

where THN and THT , respectively, are the noise and

tone masking thresholds due to tone-masking noise and
noise-masking-tone, EN and ET  are the critical band

noise and tone masker energy levels, and B  is the criti -
cal band number.  Depending upon the algorithm, the

parameter K  has typically been set between 3 and 5
dB.  Masking thresholds are commonly referred to in
the literature as (bark scale) functions of just noticeable
distortion (JND).  One psychoacoustic coding scenario
might involve first classifying masking signals as either
noise or tone, next computing appropriate thresholds,
then using this information to shape the noise spectrum
beneath JND.  Note that the absolute threshold (TABS) of
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hearing is also considered when shaping the noise spec-
tra, and that MAX(JND, TABS) is most often used as the
permissible distortion threshold.  Notions of critical
bandwidth and simultaneous masking in the audio cod-
ing context give rise to some convenient terminology
ill ustrated in Fig. 6, where we consider the case of a
single masking tone occurring at the center of a critical
band.  All l evels in the figure are given in terms of dB
SPL.  A hypothetical masking tone occurs at some
masking level.  This generates an excitation along the
basilar membrane which is modeled by a spreading
function and a corresponding masking threshold.  For
the band under consideration, the minimum masking
threshold denotes the spreading function in-band mini-
mum.  Assuming the masker is quantized using an m-bit
uniform scalar quantizer, noise might be introduced at
the level m.  Signal-to-mask ratio (SMR) and noise-to-
mask ratio (NMR) denote the log distances from the
minimum masking threshold to the masker and noise
levels, respectively.
D. TEMPORAL MASKING

Masking also occurs in the time-domain.  In the
context of audio signal analysis, abrupt signal transients
(e.g., the onset of a percussive musical instrument) cre-
ate pre- and post- masking regions in time during which
a listener will not perceive signals beneath the elevated
audibilit y thresholds produced by a masker.  The skirts
on both regions are schematically represented in Fig. 7.
In other words, absolute audibilit y thresholds for
masked sounds are artificially increased prior to, during,
and following the occurrence of a masking signal.
Whereas premasking tends to last only about 5 ms,
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postmasking will extend anywhere from 50 to 300 ms,
depending upon the strength and duration of the masker
[33][39].  Temporal masking has been used in several
audio coding algorithms.  Pre-masking in particular has
been exploited in conjunction with adaptive block size
transform coding to compensate for pre-echo distortions
(section III ).
E. PERCEPTUAL ENTROPY

Johnston at Bell Labs has combined notions of psy-
choacoustic masking with signal quantization principles
to define perceptual entropy (PE), a measure of per-
ceptually relevant information contained in any audio
record.  Expressed in bits per sample, PE represents a
theoretical limit on the compressibilit y of a particular
signal.  PE measurements reported in [36] and [6] sug-
gest that a wide variety of CD quality audio source ma-
terial can be transparently compressed at approximately
2.1 bits per sample.  The PE estimation process is ac-
complished as follows.  The signal is first windowed
and transformed to the frequency domain.  A masking
threshold is then obtained using perceptual rules.  Fi-
nally, a determination is made of the number of bits re-
quired to quantize the spectrum without injecting per-
ceptible noise.  The PE measurement is obtained by
constructing a PE histogram over many frames and then
choosing a worst-case value as the actual measurement.

The frequency-domain transformation is done with a
Hanning window followed by a 2048-point FFT.
Masking thresholds are obtained by performing critical
band analysis (with spreading), making a determination
of the noiselike or tonelike nature of the signal, apply-
ing thresholding rules for the signal quality, then ac-
counting for the absolute hearing threshold.  First, real
and imaginary transform components are converted to
power spectral components

P( ) Re ( ) Im ( )ω ω ω= +2 2 (7)

then a discrete bark spectrum is formed by summing the
energy in each critical band (Table 1)

B Pi
bl

bh

i

i

=
=
∑ ( )ω

ω
(8)

where the summation limits are the critical band
boundaries.  The range of the index, i , is sample rate

dependent, and in particular { }i ∈ 125,  for CD-quality

signals.  A basilar spreading function (Eq.4) is then
convolved with the discrete bark spectrum

C B SFi i i= ∗ (9)

to account for inter-band masking.  An estimation of the
tonelike or noiselike quality for Ci  is then obtained us-

ing the spectral flatness measure [40] (SFM)

SFM g

a

=
µ
µ

(10)

where µ g andµ a correspond to the geometric and

arithmetic means of the PSD components for each band.
The SFM has the property that it is bounded by 0 and 1.
Values close to 1 will occur if the spectrum is flat in a
particular band, indicating a decorrelated (noisy) band.
Values close to zero will occur if the spectrum in a par-
ticular band is nearly sinusoidal.  A “coeff icient of to-
nality,”  α , is next derived from the SFM on a dB scale

α =
−







min ,
SFMdb

60
1 (11)

and this is used to weight the thresholding rules given
by Eq. (5) and Eq. (6) [with K = 5.5] as follows for each
band to form an offset

O ii = + + −α α( . ) ( ) .145 1 5 5 (in dB) (12)

A set of JND estimates in the frequency power domain
are then formed by subtracting the offsets from the bark
spectral components

Ti

C
O

i
i

=
−

10
10 10

log ( ) (13)

These estimates are scaled by a correction factor to
simulate deconvolution of the spreading function, then
each Ti  is checked against the absolute threshold of

hearing and replaced by ( )max , ( )T T ii ABS .  As previously

noted, the absolute threshold is referenced to the energy
in a 4 kHz sinusoid of +/- 1 bit amplitude.  By applying
uniform quantization principles to the signal and associ-
ated set of JND estimates, it is possible to estimate a
lower bound on the number of bits required to achieve
transparent coding.  In fact, it can be shown that the
perceptual entropy in bits per sample is given by

PE n
T ki ibl

bh

i i

i

=

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
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
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∑∑ log int
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ω

ω

                  +








 +











log int

Im( )
2 2

6
1n

T ki i

ω

(bits/sample)

(14)

where i is the index of critical band, bl i and bhi  are the

upper and lower bounds of band i , ki  is the number of

transform components in band i , Ti is the masking

threshold in band i (Eq. (13)), and nint denotes round-
ing to the nearest integer.  Note that if 0 occurs in the
log we assign 0 for the result.

The masking thresholds used in the above PE com-
putation also form the basis for a transform coding algo-
rithm described in section III.
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F. PRE-ECHO DISTORTION
A problem known as “pre-echo”  can arise in trans-

form coders using perceptual coding rules.  Pre-echoes
occur when a signal with a sharp attack begins near the
end of a transform block immediately following a re-
gion of low energy.  This situation can arise when cod-
ing recordings of percussive instruments such as the
castanets, for example (Fig 8a).  The inverse transform
spreads quantization distortion evenly throughout the
reconstructed block according to the relatively lax
masking thresholds associated with the block average
spectral estimate (Fig 8b), resulting in unmasked distor-
tion in the low energy region preceding in time the  sig-
nal attack at the decoder.  Although it has the potential
to compensate for pre-echo, temporal premasking is
possible only if the transform block size is suff iciently
small (minimal coder delay).  A more robust solution to
the problem relies upon the use of adaptive transform
block sizes.  Long blocks are applied during steady-
state audio segments, and short blocks are applied when
pre-echo is likely.  Several algorithms make use of this
approach.
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Fig. 8.  Pre-Echo Example: (a) Uncoded Castanets. (b)

Transform Coded Castanets, 2048-Point Block Size

G. APPLICATION OF PSYCHOACOUSTIC PRINCI-
PLES:  ISO 11172-3 (MPEG-1)
PSYCHOACOUSTIC MODEL 1
It is useful to consider an example of how the psy-

choacoustic principles described thus far are applied in
actual coding algorithms.  The ISO/IEC 11172-3
(MPEG-1, layer 1) psychoacoustic model 1 [17] deter-
mines the maximum allowable quantization noise en-
ergy in each critical band such that quantization noise
remains inaudible.  In one of its modes, the model uses
a 512-point DFT for high resolution spectral analysis
(86.13 Hz), then estimates for each input frame individ-
ual simultaneous masking thresholds due to the pres-
ence of tone-like and noise-like maskers in the signal
spectrum.  A global masking threshold is then estimated
for a subset of the original 256 frequency bins by
(power) additive combination of the tonal and non-tonal
individual masking thresholds.  The remainder of this
section describes the step-by-step model operations.
Sample results are given for one frame of CD-quality
pop music sampled at 44.1 kHz/16-bits per sample.  The
five steps leading to computation of global masking
thresholds are as follows:

STEP 1: SPECTRAL ANALYSIS AND SPL
NORMALIZATION

First, incoming audio samples, ( )s n , are normalized

according to the FFT length, N , and the number of bits
per sample, b , using the relation

( ) ( )
( )x n
s n

N b
=

−2 1 (15)

Normalization references the power spectrum to a 0-dB
maximum.  The normalized input, ( )x n , is then seg-

mented into 12 ms frames (512 samples) using a 1/16th-
overlapped Hann window such that each frame contains
10.9 ms of new data.  A power spectral density (PSD)
estimate, ( )P k , is then obtained using a 512-point FFT,

i.e.,
( )

( ) ( )

P k PN

w n x n e k
Nj

kn

N

n

N

= +

⋅ ≤ ≤
−

=

−

∑

10

0
210

2

0

1
2

log
π

    
(16)

where the power normalization term, PN , is fixed at 90

dB and the Hann window, ( )w n , is defined as

( )w n
n

N
= − 















1

2
1

2
cos

π
(17)

Because playback levels are unknown during psychoa-
coustic signal analysis, the normalization procedure
(Eq. 15) and the parameter PN in Eq. (16) are used to
estimate SPL conservatively from the input signal.  For
example, a full -scale sinusoid which is precisely re-
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solved by the 512-point FFT in bin ko  will yield a

spectral li ne, ( )P k0 , having 84 dB SPL.  With 16-bit

sample resolution, SPL estimates for very low ampli -
tude input tones are lower bounded by -15 dB SPL.  An
example PSD estimate obtained in this manner for a
CD-quality pop music selection is given in Fig. 9a.  The
spectrum is shown both on a linear frequency scale
(upper plot) and on the bark scale (lower plot).  The
dashed line in both plots corresponds to the absolute
threshold of hearing approximation used by the model.

STEP 2: IDENTIFICATION OF TONAL AND NOISE
MASKERS

After PSD estimation and SPL normalization, tonal
and non-tonal masking components are identified.  Lo-
cal maxima in the sample PSD which exceed neighbor-
ing components within a certain bark distance by at
least 7 dB are classified as tonal.  Specifically, the
“ tonal”  set, ST , is defined as

( )
( ) ( )
( ) ( )S P k

P k P k

P k P k dB
T

k

=
> ±

> ± +













1

7

,

∆  
(18)

where

[ ]
[ ]

∆k

k

k

k

∈
< <
≤ <
≤ ≤









2 2 63

2 3 63 127

2 6 127 256

(0.17-5.5 kHz)

(5.5-11 kHz)

(11- 20 kHz)

,

,
(19)

Tonal maskers, ( )P kTM , are computed from the spectral

peaks listed in ST  as follows

( ) ( )P kTM
P k j

j

= +

=−
∑10 1010

01

1

1

log .   (dB) (20)

Tonal maskers extracted from the example pop music
selection are identified using ‘x’ symbols in Fig. 9a.  A

single noise masker for each critical band, ( )P kNM , is

then computed from (remaining) spectral li nes not
within the ±∆ k  neighborhood of a tonal masker using

the sum

( ) ( )

( ) ( ){ }

P k

P j P k k k

NM
P j

j

TM k

=

∀ ∉ ± ±

∑10 10

1

10
01log

, ,

.    (dB),    

∆

(21)

where k  is defined to be the geometric mean spectral
line of the critical band, i.e.,

k j
j l

u
l u

=










=

− +

∏
1 1/( )

(22)

and l and u  are the lower and upper spectral li ne
boundaries of the critical band, respectively.  Noise
maskers are denoted in Fig. 9 by ‘o’ symbols.  Dashed

vertical li nes are included in the bark scale plot to show
the associated critical band for each masker.

STEP 3: DECIMATION AND REORGANIZATION OF
MASKERS

In this step, the number of maskers is reduced using
two criteria.  First, any tonal or noise maskers below the
absolute threshold are discarded, i.e., only maskers
which satisfy

( ) ( )P k T kTM NM q, ≥ (23)

are retained, where ( )T kq  is the SPL of the threshold in

quiet at spectral li ne k .  In the pop music example, two
high-frequency noise maskers identified during step 2
(Fig. 9a) are dropped after application of Eq. 23 (Figs.
9c-e).  Next, a sliding 0.5 Bark-wide window is used to
replace any pair of maskers occurring within a distance
of 0.5 Bark by the stronger of the two.  In the pop music
example, two tonal maskers appear between 19.5 and
20.5 Barks (Fig. 9a).  It can be seen that the pair is re-
placed by the stronger of the two during threshold cal-
culations (Figs 9c-e).  After the sliding window proce-
dure, masker frequency bins are reorganized according
to the subsampling scheme

( ) ( )
( )

P i P k

P k
TM NM TM NM

TM NM

, ,

,

=
= 0

(24)
(25)

where

( )
( )( )

i

k k

k k k

k k k

=
≤ ≤

+ ≤ ≤
+ − − ≤ ≤









1 48

2 49 96

3 1 4 97 232

mod

mod
(26)

The net effect of Eq. 26 is 2:1 decimation of masker
bins in critical bands 18-22 and 4:1 decimation of
masker bins in critical bands 22-25 , with no loss of
masking components.  This procedure reduces the total
number of tone and noise masker frequency bins under
consideration from 256 to 106.  Tonal and noise mask-
ers shown in Figs. 9c-e have been relocated according
to this decimation scheme.

STEP 4  CALCULATION OF INDIVIDUAL MASKING
THRESHOLDS

Having obtained a decimated set of tonal and noise
maskers, individual tone and noise masking thresholds
are computed next.  Each individual threshold repre-
sents a masking contribution at frequency bin i  due to
the tone or noise masker located at bin j  (reorganized

during step 3).  Tonal masker thresholds, ( )T i jTM , , are

given by

( ) ( ) ( )
( )

T i j P j z j

SF i j

TM TM, .

, .

= −

+ −

0275

6025
  (dB SPL)

(27)
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where ( )P jTM  denotes the SPL of the tonal masker in

frequency bin j , ( )z j  denotes the Bark frequency of

bin j  (Eq. 3), and the spread of masking from masker

bin j  to maskee bin i , ( )SF i j, , is modeled by the ex-

pression
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Fig. 9.  Psychoacoustic Analysis for Pop Music Selec-
tion.  (a) Steps 1,2: Normalized PSD, Tonal/Non-Tonal
Masker ID. (b) Step 4: Prototype Spreading Functions.
(c) Steps 3,4: Individual Tonal Masker Thresholds. (d)
Steps 3,4: Individual Noise Masker Thresholds. (e) Step
5: Global Masking Thresholds
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(28)

i.e., as a piecewise linear function of masker level,
( )P j , and Bark maskee-masker separation,

( ) ( )∆ z z i z j= − .  ( )SF i j,  approximates the basilar

spreading (excitation pattern) described in section II-C.
Prototype individual masking thresholds, ( )T i jTM , , are

shown as a function of masker level in Fig. 9b for an
example tonal masker occurring at z=10 Barks.  As
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shown in the figure, the slope of ( )T i jTM ,  decreases

with increasing masker level.  This is a reflection of
psychophysical test results, which have demonstrated
[33] that the ear’ s frequency selectivity decreases as
stimulus levels increase.  It is also noted here that the
spread of masking in this particular model is con-
strained to a 10-Bark neighborhood for computational
eff iciency.  This simpli fying assumption is reasonable
given the very low masking levels which occur in the
tails of the basilar excitation patterns modeled by

( )SF i j, . Figure 9c shows the individual masking

thresholds (Eq. 27) associated with the tonal maskers in
Fig. 9a (‘x’) .  It can be seen here that the pair of mask-
ers identified near 19 Barks has been replaced by the
stronger of the two during the decimation phase.  The
plot includes the absolute hearing threshold for refer-
ence.  Individual noise masker thresholds, ( )T i jNM , ,

are given by

( ) ( ) ( )
( )

T i j P j z j

SF i j

NM NM, .

, .

= −

+ −

0175

2025
  (dB SPL)

(29)

where ( )P jNM  denotes the SPL of the noise masker in

frequency bin j , ( )z j  denotes the Bark frequency of

bin j  (Eq. 3), and ( )SF i j,  is obtained by replacing

( )P jTM  with ( )P jNM  everywhere in Eq. 28.  Figure 9d

shows individual masking thresholds associated with
the noise maskers identified in step 2 (Fig. 9a ‘o’) .  It
can be seen in Fig. 9d that the two high frequency noise
maskers which occur below the absolute threshold have
been eliminated.

STEP 5:  CALCULATION OF GLOBAL MASKING
THRESHOLDS

In this step, individual masking thresholds are com-
bined to estimate a global masking threshold for each
frequency bin in the subset given by Eq. 26.  The model
assumes that masking effects are additive.  The global
masking threshold, ( )T ig , is therefore obtained by

computing the sum

( ) ( ) ( )T ig
T i T i l

l

L
q TM= +






=
∑10 10 1010

01 01

1

log
. . ,

( )+





=
∑1001

1

. ,T i m

m

M
NM  (dB SPL)

(30)

where ( )T iq  is the absolute hearing threshold for fre-

quency bin i , ( )T i lTM ,  and ( )T i mNM ,  are the individ-

ual masking thresholds from step 4, and L  and M  are
the number of tonal and noise maskers, respectively,
identified during step 3.  In other words, the global
threshold for each frequency bin represents a signal-
dependent, power additive modification of the absolute

threshold due to the basilar spread of all tonal and noise
maskers in the signal power spectrum.  Figure 9e shows
global masking threshold obtained by adding the power
of the individual tonal (Fig. 9c) and noise (Fig. 9d)
maskers to the absolute threshold in quiet.

III .   TRANSFORM CODERS
Transform coding algorithms for high-fidelity audio

make use of unitary transforms for the time/frequency
analysis section in Fig. 1.  These algorithms typically
achieve high resolution spectral estimates at the expense
of adequate temporal resolution.  Many transform cod-
ing algorithms for wideband and high-fidelity audio
have been proposed in the last decade.  This section first
describes the individual algorithms proposed by Schro-
eder at Thompson Consumer Electronics (MSC) [3],
Brandenburg at Erlangen University (OCF) [5][43][44],
Johnston at AT&T Bell Labs (PXFM/hybrid coder)
[6][8], and Mahieux at Centre National d’Etudes des
Telecommunications (CNET) [47][48].  Much of this
work was motivated by standardization activities, and
ISO/IEC eventually clustered these proposals into a sin-
gle candidate algorithm, Adaptive Spectral Entropy
Coding of High Quality Music Signals (ASPEC) [9],
which competed successfully for inclusion in the
ISO/IEC MPEG-1 [17] and MPEG-2 [18] audio coding
standards.  Most of MPEG-1 and MPEG-2 layer III is
derived from ASPEC.  Following the ASPEC discus-
sion, the second part of this section describes novel
transform coding algorithms which are not associated
with ASPEC, including several very recent proposals.

The algorithms which were eventually clustered into
the ASPEC proposal to ISO/IEC for MPEG audio came
from researchers in both the U.S. and Europe.  In
Europe, some early applications of psychoacoustic prin-
ciples to high fidelity audio coding were investigated by
Krahe [41] during work on his dissertation [42].  Schro-
eder at Thompson [3] later extended these ideas into
Multiple Adaptive Spectral Audio Coding (MSC).
MSC utili zes a 1024-point DFT, then groups coeff i-
cients into 26 subbands which correspond to the critical
bands of the ear.  DFT magnitude and phase compo-
nents are quantized and encoded in a two-step coarse-
fine procedure which relies upon psychoacoustic bit al-
location.  Schroeder reported nearly transparent coding
of CD-quality audio at 132 kbps [3].
A. OPTIMUM CODING IN THE FREQUENCY DO-

MAIN (OCF-1,OCF-2,OCF-3)
Brandenburg in 1987 proposed a 132 kbps algorithm

known as Optimum Coding in the Frequency Domain
(OCF) [5] which is in some respects similar to the well
known Adaptive Transform Coder (ATC) for speech.
OCF (Fig. 10) works as follows.  The input signal is
first buffered in 512 sample blocks and transformed to
the frequency domain using the discrete cosine trans-
form (DCT).  Next, transform components are quan-
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tized and entropy coded.  A single quantizer is used for
all transform components.  Adaptive quantization and
entropy coding work together in an iterative procedure
to achieve a fixed bit rate.  The initial quantizer step
size is derived from the SFM (Eq. 10).  In the inner loop
of Fig. 10, the quantizer step size is iteratively increased
and a new entropy-coded bit stream is formed at each
update until the desired bit rate is achieved.  Increasing
the step size at each update produces fewer levels which
in turn reduces the bit rate.

Input Buffer

Windowing
DCT

Psychoacoustic Analysis

Entropy 

Coder
WeightingQuantizer

Outer Loop

Inner Loop

output 

s(n)

loop count

loop count 

Fig. 10. OCF Encoder (after [44])

Using a second iterative procedure, psychoacoustic
masking is introduced after the inner loop is done.
First, critical band analysis is applied.  Then, a masking
function is applied which combines a flat -6 dB mask-
ing threshold with an inter-band masking threshold,
leading to an estimate of JND for each critical band.  If
after inner loop quantization and entropy encoding the
measured distortion exceeds JND in at least one critical
band, quantization step sizes are adjusted in the out of
tolerance critical bands only.  The outer loop repeats
until JND criteria are satisfied or a maximum loop count
is reached.  Entropy coded transform components are
then transmitted to the receiver, along with side infor-
mation which includes the log encoded SFM, the num-
ber of quantizer updates during the inner loop, and the
number of step size reductions which occurred for each
critical band in the outer loop.  This side information is
suff icient to decode the transform components and per-
form reconstruction at the receiver.

Brandenburg in 1988 reported an enhanced OCF
(OCF-2) which achieved subjective quality improve-
ments at a reduced bit rate of only 110 kbps [43].  The
improvements were realized by replacing the DCT with
the Modified DCT (MDCT - section J) and adding a
pre-echo detection/compensation scheme.  OCF-2 con-
tains the first reported application of the MDCT to
audio coding.  Reconstruction quality is improved due
to the effective time resolution increase due to the 50%
time overlap associated with the MDCT.  OCF-2 quality
is also improved for diff icult signals such as triangle
and castanets due to a simple preecho detec-
tion/compensation scheme.  The encoder detects pre-
echos using analysis-by-synthesis.  Pre-echos are de-
tected when noise energy in a reconstructed segment

(16 samples = 0.36 ms @ 44.1 kHz) exceeds signal en-
ergy.  The encoder then determines the frequency below
which 90% of signal energy is contained and transmits
this cutoff to the decoder.  Given pre-echo detection at
the encoder (1 bit) and a cutoff fr equency, the decoder
discards frequency components above the cutoff , in ef-
fect lowpass filtering preechoes.  Due to these en-
hancements, OCF-2 was reported to achieve transpar-
ency over a wide variety of source material.  Only some
experts were able to detect pre-echo distortion in diffi-
cult signals such as the glockenspiel.  Later in 1988
Brandenburg reported further OCF enhancements
(OCF-3) in which he reported better quality at a lower
bit rate (64 kbps) with reduced complexity [44].  OCF-3
benefited from several improvements relative to OCF-2.
First, differential coding was applied to spectral compo-
nents to exploit correlation between adjacent samples.
Second, the psychoacoustic model was modified to ac-
count for temporal pre- and post-masking.  Third, errors
in the OCF-2 quantizer were identified and corrected.
Finally, step size coarseness for the inner quantization
loop was increased in OCF-3, resulting in reduced com-
plexity.
B. PERCEPTUAL TRANSFORM CODER (PXFM)

While Brandenburg developed OCF, similar work
was simultaneously underway at AT&T Bell Labs.
James Johnston [6] developed several DFT-based trans-
form coders for audio during the late eighties which be-
came an integral part of the ASPEC proposal.  John-
ston’s work in perceptual entropy forms the basis for a
4(3)-bit/sample transform coder reported in 1988 [6]
which achieves transparent coding of FM-quality mon-
aural audio signals (Fig. 11).  The idea behind the per-
ceptual transform coder (PXFM) is to estimate the
amount of quantization noise which can be inaudibly
injected into each transform domain subband using PE
estimates.  The coder is memoryless and works as fol-
lows.  The signal is first windowed into overlapping
(1/16) segments and transformed using a 2048-point
FFT.  Next, the PE procedure described in section one is
used to estimate JND thresholds for each critical band.
Then, an iterative quantization loop adapts a set of 128
subband quantizers to satisfy the JND thresholds until
the fixed bit rate is achieved.  Finally, quantization and
bit packing are performed.  Quantized transform com-
ponents are transmitted to the receiver along with ap-
propriate side information.  Quantization subbands con-
sist of 8-sample blocks of complex-valued transform
components.
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Threshold
Adjustment

Psychoacoustic
Analysis

Bit Packing

Ti

s(n)
    FFT

2048 point

To Channel

Side Info

Ti

Bit Allocation 

Loop

Ti, Pj

Fig. 11.  PXFM Encoder  (after [6])
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The quantizer adaptation loop first initializes the

[ ]j ∈ 1128,  subband quantizers (1024 unique FFT com-

ponents/8 components per subband) with k j levels and

step sizes of Ti  as follows:

k
P

Tj

j

i

=






 +2 1*nint (31)

where Ti  are the quantized critical band JND thresh-

olds, Pj  is the quantized magnitude of the largest real or

imaginary transform component in the jth subband, and

nint() is the nearest integer rounding function.  The ad-
aptation process involves repeated application of two
steps.  First, bit packing is attempted using the current
quantizer set.  Although many bit packing techniques
are possible, one simple scenario involves sorting quan-
tizers in k j order, then filli ng 64-bit words with encoded

transform components according to the sorted results.
After bit packing, Ti  are adjusted by a carefully con-

trolled scale factor, and the adaptation cycle repeats.
Quantizer adaptation halts as soon as the packed data
length satisfies the desired bit rate.  Both Pj  and the

modified Ti  are quantized on a dB scale using 8-bit uni-

form quantizers with a 170 dB dynamic range.  These
parameters are transmitted as side information and used
at the receiver to recover quantization levels (and thus
implicit bit allocations) for each subband, which are in
turn used to decode quantized transform components.
The DC FFT component is quantized with 16 bits and is
also transmitted as side information.

In 1989, Johnston extended the PXFM coder to han-
dle stereophonic signals (SEPXFM) and attained trans-
parent coding of a CD-quality stereophonic channel at
192 kb/s, or 2.2 bits/sample.  SEPXFM [45] realizes
performance improvements over PXFM by exploiting
inherent stereo cross-channel redundancy and by as-
suming that both channels are presented to a single lis-
tener rather than being used as separate signal sources.
SEPXFM structure is similar to that of PXFM, with
variable radix bit packing replaced by adaptive entropy
coding.  Side information is therefore reduced to in-
clude only adjusted JND thresholds (step-sizes) and
pointers to the entropy codebooks used in each trans-
form domain subband.  The coder works in the follow-
ing manner.  First, sum (L+R) and difference (L-R) sig-
nals are extracted from the left (L) and right (R) chan-
nels to exploit left/right redundancy.  Next, the sum and
difference signals are windowed and transformed using
the FFT.  Then, a single JND threshold for each critical
band is established via the PE method using the
summed power spectra from the L+R and L-R signals.
A single combined JND threshold  is applied to quanti-
zation noise shaping for both signals (L+R and L-R),
based upon the assumption that a listener is more than

one “critical distance” [46] from away from the stereo
speakers.  Like PXFM, a fixed bit rate is achieved by
applying an iterative threshold adjustment procedure
after the initial determination of JND levels.  The adap-
tation process, analogous to PXFM bit rate adjustment
and bit packing, consists of several steps.  First, trans-
form components from both L+R and L-R are split i nto
subband blocks, each averaging 8 real/imaginary sam-
ples.  Then, one of six entropy codebooks is selected for
each subband based on the average component magni-
tude within that subband.  Next, transform components
are quantized given the JND levels and encoded using
the selected codebook.  Subband codebook selections
are themselves entropy encoded and transmitted as side
information.  After encoding, JND thresholds are scaled
by an estimator and the quantizer adaptation process re-
peats.  Threshold adaptation stops when the combined
bitstream of quantized JND levels, Huffman encoded
L+R components, Huffman encoded L-R components,
and Huffman encoded average magnitudes achieves the
desired bit rate.  The Huffman codebooks are developed
using a large music and speech database.  They are op-
timized for diff icult signals at the expense of mean
compression rate.  It is also interesting to note that
headphone listeners reported no noticeable acoustic
mixing, despite the critical distance assumption and sin-
gle combined JND level estimate for both channels,
L+R and L-R.
C. AT&T HYBRID CODER

Following the success of their individual coders,
Johnston and Brandenburg [8] collaborated in 1990 to
produce a hybrid coder which, strictly speaking, is both
a subband and transform algorithm.  It is included in
this section because it was part of the ASPEC cluster.
The idea behind the hybrid coder is to improve time and
frequency resolution relative to OCF and PXFM by
constructing a filterbank which more closely resembled
the human ear.  This is accomplished at the encoder by
first splitti ng the input signal into four octave-width
subbands using a QMF filterbank.  The decimated out-
put sequence from each subband is then followed by
one or more transforms to achieve the desired
time/frequency resolution (Fig. 12a). Both DFT and
MDCT transforms were investigated.  Given the tili ng
of the time-frequency plane shown in Fig. 12b, fre-
quency resolution at low frequencies (23.4 Hz) is well
matched to the ear, while the time resolution at high
frequencies (2.7 ms) is suff icient for pre-echo control.
The quantization and coding schemes of the hybrid
coder combine elements from both PXFM and OCF.
Masking thresholds are estimated using the PXFM ap-
proach for eight time slices in each frequency subband.
A more sophisticated tonality estimate was defined to
replace the SFM (Eq. 10) used in PXFM, however, such
that tonality is estimated in the hybrid coder as a local
characteristic of each individual spectral li ne.  Predict-
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abilit y of magnitude and phase spectral components
across time is used to evaluate tonality instead of just
global spectral shape within a single frame.  High tem-
poral predictabilit y of magnitudes and phases is associ-
ated with the presence of a tonal signal and
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Fig. 12. Johnston/Brandenburg Hybrid Coder.  (a) Fil-

terbank Structure, (b) Time/Freq Tiling (after [8])

visa-versa.  The hybrid coder employs a quantization
and coding scheme borrowed from OCF.  As far as
quality, the hybrid coder without any explicit pre-echo
control mechanism was reported to achieve quality bet-
ter than or equal to OCF-3 at 64 kbps [8].  The only dis-
advantage noted by the authors was increased complex-
ity.  A similar hybrid structure was eventually adopted
in MPEG-1 and -2 Layer III.
D. CNET CODER

During the same period in which Schroeder,
Brandenburg, and Johnston pursued optimal transform
coding algorithms for audio, so to did researchers at
CNET.  In 1989, Mahieux, Petit, et al. proposed a DFT-
based audio coding system which introduced a novel
scheme to exploit DFT interblock redundancy.  They
reported nearly transparent quality for 15 kHz (FM-
grade) audio at 96 kbps [47], except for some highly
harmonic signals.  The encoder applies first-order
backward-adaptive predictors (across time) to DFT
magnitude and differential phase components, then
quantizes separately the prediction residuals.  Magni-
tude and differential phase residuals are quantized using
an adaptive non-uniform pdf-optimized quantizer de-
signed for a Laplacian distribution and an adaptive uni-
form quantizer, respectively.  The backward-adaptive
quantizers are reinitialized during transients.  Bits are
allocated during step-size adaptation to shape quantiza-
tion noise such that a psychoacoustic noise threshold is
satisfied for each block.  The psychoacoustic model
used is similar to Johnston’s model described in section

II .  The use of linear prediction is justified because it
exploits magnitude and differential phase time redun-
dancy, which tends to be large during periods when the
audio signal is quasi-stationary, especially for signal
harmonics.  Quasi-stationarity might occur, for exam-
ple, during a sustained note.

In 1990, Mahieux and Petit reported on the devel-
opment of an MDCT-based transform coder for which
they claimed transparent CD-quality at 64 kbps [48].
This algorithm introduced a novel “spectrum descrip-
tor”  scheme for representing the power spectral enve-
lope.  The algorithm first segments input audio into
frames of 1024 samples, corresponding to 12 msec of
new data per frame, given 50% MDCT time overlap.
Then, bit allocation is computed at the encoder using a
set of “spectrum descriptors.”   Spectrum descriptors
consist of quantized sample variances for MDCT coef-
ficients grouped into 35 non-uniform frequency sub-
bands.  Like their DFT coder, this algorithm exploits
either interblock or intrablock redundancy by differen-
tially encoding the spectrum desciptors with respect to
time or frequency and transmitting them to the receiver
as side information.  A decision whether to code with
respect to time or frequency is made on the basis of
which method requires fewer bits; the binary decision
requires only 1 bit.  Either way, spectral descriptor en-
coding is done using log DPCM with a first-order pre-
dictor and a 16-level uniform quantizer with a step-size
of 5 dB.  Huffman coding of the spectral descriptor
codewords results in less than 2-bits/descriptor.  A
global masking threshold is estimated by convolving the
spectral descriptors with a basilar spreading function on
a bark scale, somewhat like the approach taken by John-
ston’ s PXFM.  Bit allocations for quantization of nor-
malized transform coeff icients are obtained from the
masking threshold estimate.  As usual, bits are allocated
such that quantization noise is below the masking
threshold at every spectral li ne.  Transform coeff icients
are normalized by the appropriate spectral descriptor,
then quantized and coded, with one exception.  Masked
transform coeff icients, which have lower energy than
the global masking threshold, are treated differently.
The authors found that masked coeff icient bins tend to
be clustered, therefore they can be compactly repre-
sented using run length encoding (RLE).  RLE code-
words are Huffman coded for maximum coding gain.
The coder was reported to perform well for broadband
signals with many harmonics but had some problems in
the case of spectrally flat signals.

More recently, Mahieux and Petit enhanced their 64
kbps algorithm by incorporating a sophisticated pre-
echo detection and postfiltering scheme, as well as in-
corporating a novel quantization scheme for 2-
coeff icient (low-frequency) spectral descriptor bands
[104].  For improved quantization performance, two-
component spectral descriptors are eff iciently vector
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encoded in terms of polar coordinates.  Pre-echos are
detected at the encoder and flagged using 1 bit.  The
idea behind the pre-echo compensation is to temporarily
activate a postfilter at the decoder in the corrupted quiet
region prior to the signal attack, therefore a stopping in-
dex must also be transmitted.  The 2nd-order IIR post-
filter difference equation is given by

( ) ( ) ( ) ( )� � � �s n b s n a s n a s npf pf pf= + − + −0 1 21 2 (32)

where ( )�s n  is the non-postfiltered output signal which

is corrupted by pre-echo distortion, ( )�s npf  is the post-

filtered output signal, and ai  are related to the parame-

ters α i  by
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where α i  are the parameters of a 2nd-order autoregres-

sive (AR-2) spectral estimate of the output audio, ( )�s n ,

during the previous non-postfiltered frame.  The AR-2
estimate, ( )�s n , can be expressed in the time domain as

( ) ( ) ( ) ( )� � �s n w n s n s n= + − + −α α1 21 2 (34)

where ( )w n  represents gaussian white noise.  The pre-

diction error is then defined as

( ) ( ) ( )e n s n s n= −� � (35)

The parameters ( )p i j,  in Eq. 33a and 33b are elements

of the prediction error covariance matrix, P , and the

parameter σ b
2  is the pre-echo distortion variance, which

is derived from side information.  Pre-echo postfiltering
and improved quantization schemes resulted in a sub-
jective score of 3.65 for two-channel stereo coding at 64
kbps per channel on the 5-point CCIR 5-grade impair-
ment scale over a wide range of listening material.  The
CCIR J.41 reference audio codec (MPEG-1, Layer-II)
achieved a score of 3.84 at 384 kbps/channel over the
same set of tests.
E. ASPEC

The MSC, OCF, PXFM, AT&T hybrid, and CNET
audio transform coders were eventually clustered into a
single proposal by the ISO/IEC JTC1/SC2 WG11 com-
mittee.  As a result, Schroeder, Brandenburg, Johnston,
Herre, and Mahieux collaborated in 1991 to propose for
acceptance as the new MPEG audio compression stan-
dard a flexible coding algorithm, ASPEC, which incor-
porated the best features of each coder in the group [9].
ASPEC was claimed to produce better quality than any
of the individual coders at 64 kbps.  The structure of
ASPEC combines elements from all of its predecessors.
Like OCF and the CNET coder, ASPEC uses the
MDCT for time-frequency mapping.  The masking

model is similar to that used in PXFM and the AT&T
hybrid coder, including the sophisticated tonality esti-
mation scheme at lower bit rates.  The quantization and
coding procedures use the pair of nested loops proposed
for OCF, as well as the block differential coding scheme
developed at CNET.  Moreover, long runs of masked
coeff icients are run-length and Huffman encoded.
Quantized scalefactors and transform coeff icients are
Huffman coded also.  Pre-echos are controlled using a
dynamic window switching mechanism, like the
Thompson coder.  ASPEC offers several modes for dif-
ferent quality levels, ranging from 64 to 192 kbps per
channel.  A real-time ASPEC implementation for cod-
ing one channel at 64 kbps was realized on a pair of 33
MHz Motorola DSP56001 devices.  ASPEC ultimately
formed the basis for Layer III  of the MPEG-1 and
MPEG-2 standards.  We note here that similar contribu-
tions have been made in the area of transform coding
for audio outside the ASPEC cluster.  For example,
Iwadare, et al. reported on DCT-based [49] and MDCT-
based [11] perceptual adaptive transform coders which
control pre-echo distortion using adaptive window size.
F. DPAC

Other investigators have also developed promising
schemes for transform coding of audio.  Paraskevas and
Mourjopoulos [106] reported on a differential percep-
tual audio coder (DPAC) which makes use of a novel
scheme for exploiting long-term correlations.  DPAC
works as follows.  Input audio is transformed using the
MDCT.  A two-state classifier then labels each new
frame of transform coeff icients as either a “ reference”
frame or a “simple” frame.  The classifier labels as
“ reference” frames which contain significant audible
differences from the previous frame.  The classifier la-
bels non-reference frames as “simple.”   Reference
frames are quantized and encoded using scalar quanti-
zation and psychoacoustic bit allocation strategies
similar to Johnston’s PXFM.  Simple frames, however,
are subjected to coeff icient substitution.  Coeff icients
whose magnitude differences with respect to the previ-
ous reference frame are below an experimentally opti-
mized threshold are replaced at the decoder by the cor-
responding reference frame coeff icients.  The encoder,
then, replaces subthreshold coeff icients with zeros, thus
saving transmission bits.  Unlike the interframe predic-
tive coding schemes of Mahieux and Petit, the DPAC
coeff icient substitution system is advantageous in that it
guarantees the “simple” frame bit allocation will always
be less than or equal to the bit allocation which would
be required if the frame was coded as a “ reference”
frame.  Superthreshold “simple” frame coeff icients are
coded in the same way as reference frame coeff icients.
DPAC performance was evaluated for frame classifiers
which utili zed three different selection criterion.  Under
the Euclidean criterion, test frames satisfying the ine-
quality
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are classified as “simple”, where the vectors sr  and st ,

respectively, contain reference and test frame time-
domain samples, and the difference vector, sd , is de-

fined as
s s sd r t= − (37)

Under the PE (Eq. 14) criterion, a test frame is labeled
as “simple”  if it satisfies the inequality

PE

PE
S

R

≤ λ
(38)

where PES  corresponds to the PE of the “simple”

(coeff icient-substituted) version of the test frame, and
PER  corresponds to the PE of the unmodified test

frame.  Finally, under the SFM (Eq. 10) criterion, a test
frame is labeled as “simple”  if it satisfies the inequality
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where SFMT  corresponds to the test frame SFM, and

SFMR  corresponds to the SFM of the previous refer-

ence frame.  The decision threshold, λ , was experi-
mentally optimized for all three criteria.  Best perform-
ance was obtained while encoding source material using
the PE criterion.  As far as overall performance is con-
cerned, noise-to-mask ratio (NMR) measurements were
compared between DPAC and Johnston’s PXFM algo-
rithm at 64, 88, and 128 kbps.  Despite an average drop
of 30-35% in PE measured at the DPAC coeff icient
substitution stage output relative to the coeff icient sub-
stitution input, comparative NMR studies indicated that
DPAC outperforms PXFM only below 88 kbps and then
only for certain types of source material such as pop or
jazz music.  The desirable PE reduction led to an unde-
sirable drop in reconstruction quality.  The authors con-
cluded that DPAC may be preferable to algorithms such
as PXFM for low bit rate, non-transparent applications.
G. DFT NOISE SUBSTITUTION

Other coeff icient substitution schemes have also
been proposed.  Whereas DPAC exploits temporal cor-
relation, a substitution technique which exploits decor-
relation was recently devised for coding eff iciently
noise-like portions of the spectrum.  In a noise substitu-
tion procedure [50], Schulz parameterizes transform co-
eff icients corresponding to noise-like portions of the
spectrum in terms of average power, frequency range,
and temporal evolution, resulting in an increased coding
eff iciency of 15% on average.  A temporal envelope for
each parametric noise band is required because trans-
form block sizes for most codecs are much longer (e.g.,
30 ms) than the human auditory system’s temporal
resolution (e.g., 2 ms).  In this method, noise-like spec-

tral regions are identified in the following way.  First,
least-mean-square (LMS) adaptive linear predictors
(LP) are applied to the output channels of a multi -band
QMF analysis filterbank which has as input the original
audio, ( )s n .  A predicted signal, ( )�s n , is obtained by

passing the LP output sequences through the QMF
synthesis filterbank.  Prediction is done in subbands
rather than over the entire spectrum to prevent classifi-
cation errors which could result i f high-energy noise
subbands are allowed to dominate predictor adaptation,
resulting in misinterpretation of low-energy tonal sub-
bands as noisy.  Next, the DFT is used to obtain mag-

nitude ( ( )S k , ( )�S k ) and phase components

( ( )θ k , ( )�θ k ), of the input, ( )s n , and prediction, ( )�s n ,

respectively.  Then, tonality, ( )T k , is estimated as a

function of the magnitude and phase predictability, i.e,
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where α  and β  are experimentally determined con-

stants.  Noise substitution is applied to contiguous
blocks of transform coeff icient bins for which ( )T k  is

very small .  The 15% average bit savings realized using
this method in conjunction with transform coding is off-
set to a large extent by a significant complexity increase
due to the additions of the adaptive linear predictors and
a multi -band analysis-synthesis QMF filterbank.  As a
result, the author and focused his attention on the appli -
cation of noise substitution to QMF-based subband
coding algorithms.
H. DCT WITH VECTOR QUANTIZATION

For the most part, the algorithms described thus far
rely upon scalar quantization of transform coeff icients.
This is not unreasonable, since scalar quantization in
combination with entropy coding can achieve very good
performance.  As one might expect, however, vector
quantization (VQ) has also been applied to transform
coding of audio, although on a much more limited scale.
For example, Gersho and Chan investigated several VQ
schemes for coding DCT coeff icients subject to a con-
straint of minimum perceptual distortion.  They first re-
ported on a variable rate coder [7] which achieves high
quality in the range of 55 to 106 kbps for audio se-
quences bandlimited to 15 kHz (32 kHz sample rate).
After computing the DCT on 512 sample blocks, the al-
gorithm utili zes a novel Multi -Stage Tree-Structured
VQ (MSTVQ) scheme for quantization of normalized
vectors, with each vector containing 4 DCT compo-
nents.  Bit allocation and vector normalization are de-
rived at both the encoder and decoder from a sampled
power spectral envelope which consists of 29 groups of
transform coeff icients.  A simpli fied masking model as-
sumes that each sample of the power envelope repre-
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sents a single masker.  Masking is assumed to be addi-
tive, as in the ASPEC algorithms.  Thresholds are com-
puted as a fixed offset from the masking level.  The
authors observed a strong correlation between SFM and
the amount of offset required to achieve high quality.
Two-segment scalar quantizers that are piecewise linear
on a dB scale are used to encode the power spectral en-
velope.  Quadratic interpolation is used to restore full
resolution to the subsampled envelope.

Gersho and Chan later enhanced [51] their algorithm
by improving the power envelope and transform coeffi-
cient quantization schemes.  In the new approach to
quantization of transform coeff icients, constrained-
storage VQ [52] techniques (CS-VQ) are combined with
the MSTVQ (CS-MSTVQ) from the original coder, al-
lowing the new coder to handle peak Noise-to-Mask ra-
tio (NMR) requirements without impractical codebook
storage requirements.  In fact, CS-MSTVQ enabled
quantization of 127 4-coeff icient vectors using only 4
unique quantizers.  Power spectral envelope quantiza-
tion is enhanced by extending its resolution is extended
to 127 samples.  The samples are then encoded using a
two-stage process.  The first stage applies nonlinear in-
terpolative VQ (NLIVQ), a dimensionality reduction
process which represents the 127-element power spec-
tral envelope vector using only a 12-dimensional
“ feature power envelope.”   Unstructured VQ is applied
to the feature power envelope.  Then, a full -resolution
quantized envelope is obtained from the unstructured
VQ index into a corresponding interpolation codebook.
In the second stage, segments of the envelope residual
are encoded using a set of 8-, 9-, and 10-element TSVQ
quantizers.  Relative to their first VQ/DCT coder, the
authors reported savings of 10-20 kbps with no reduc-
tion in quality due to the CS-VQ and NLIVQ schemes.
I. MDCT WITH VECTOR QUANTIZATION

More recently, Iwakami et al. developed Transform-
Domain Weighted Interleave Vector Quantization
(TWIN-VQ), an MDCT-based coder which also in-
volves transform coeff icient VQ [105].  This algorithm
exploits LPC analysis, spectral inter-frame redundancy,
and interleaved VQ.  At the encoder (Fig. 13), each
frame of MDCT coeff icients is first divided by the cor-
responding elements of the LPC spectral envelope, re-
sulting in a spectrally flattened quotient (residual) se-
quence.  This procedure flattens the MDCT envelope
but does not affect the fine structure.  The next step,
therefore, divides the first step residual by a predicted
fine structure envelope.  This predicted fine structure
envelope is computed as a weighted sum of three previ-
ous quantized fine structure envelopes, i.e., using back-
ward prediction.  Interleave VQ is applied to the nor-
malized second step residual.  The interleave VQ vec-
tors are structured in the following way.  Each N-
sample normalized second step residual vector is split
into K subvectors, each containing N/K coeff icients.

Second step residuals from the N-sample vector are in-
terleaved in the K subvectors such that the i -th subvector
contains elements i+nK, where n=0,1,...,(N/K)-1.  Per-
ceptual weighting is also incorporated by weighting
each subvector by a non-linearly transformed version of
its corresponding LPC envelope component prior to the
codebook search.  VQ indices are transmitted to the re-
ceiver.  Side information consists of VQ normalization
coeff icients and the LPC envelope encoded in terms of
LSPs.  The authors claim higher subjective quality than
MPEG-1 Layer II  at 64 kbps for 48 kHz CD-quality
audio, as well as higher quality than MPEG-1 Layer II
for 32 kHz audio at 32 kbps.  Enhancements to the
weighted interleaving scheme and LPC envelope repre-
sentation are reported in [53] which enabled real-time
implementation of stereo decoders on Pentium and
PowerPC platforms.  Channel error robustness issues
are addressed in [54].
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Fig. 13. TWIN-VQ Encoder (after [105])

J. MODIFIED DISCRETE COSINE TRANSFORM
(MDCT)
Before concluding the transform coder discussion

and embarking upon consideration of subband algo-
rithms, it is useful to consider briefly the modified dis-
crete cosine transform (MDCT), a recently developed
modulated lapped transform which has found wide-
spread application throughout the audio coding litera-
ture.  Several of the algorithms discussed in sections III ,
IV, and V make use of this transform.  The MDCT of-
fers the advantage of overlapping time windows while
managing to preserve critical sampling.  The analysis
window must be carefully designed such that the time-
domain aliasing introduced by 50% overlap and 2:1
decimation will cancel in the inverse transformation
[55].  The MDCT analysis expression is
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where the analysis window must satisfy
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An example analysis window which produces the de-
sired time-domain aliasing cancellation is given by
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The development of FFT-based fast algorithms for the
MDCT (e.g.,[56]) has made it viable for real-time ap-
plications.  Coders such as ISO/MPEG, Dolby’s AC-3,
and Sony’s ATRAC for MiniDisc make use of the
MDCT.

IV. SUBBAND CODERS
Like the transform coders described in the previous

section, subband coders also exploit signal redundancy
and psychoacoustic irrelevancy in the frequency do-
main.  Instead of unitary transforms, however, these
coders rely upon frequency-domain representations of
the signal obtained from banks of bandpass filters.  The
audible frequency spectrum (20 Hz - 20 kHz) is divided
into frequency subbands using a bank of bandpass fil -
ters.  The output of each filter is then sampled and en-
coded.  At the receiver, the signals are demultiplexed,
decoded, demodulated, and then summed to reconstruct
the signal.  Audio subband coders realize coding gains
by eff iciently quantizing and encoding the decimated
output sequences from perfect reconstruction filter-
banks.  Eff icient quantization methods usually rely upon
psychoacoustically controlled dynamic bit allocation
rules which allocate bits to subbands in such a way that
the reconstructed output signal is free of audible quanti-
zation noise or other artifacts.  In a generic subband
audio coder, the input signal is first split i nto several
uniform or non-uniform subbands using some critically
sampled, perfect reconstruction filterbank.  Non-ideal
reconstruction properties in the presence of quantization
noise are compensated for by utili zing subband filters
which have very good sidelobe attenuation, an approach
which usually requires high-order filters.  Then, deci-
mated output sequences from the filterbank are nor-
malized and quantized over short, 2-to-10 milli second
(ms) blocks.  Psychoacoustic signal analysis is used to
allocate an appropriate number of bits for the quantiza-
tion of each subband.  The usual approach is to allocate
a just-suff icient number of bits to mask quantization
noise in each block while simultaneously satisfying
some bit rate constraint.  Since masking thresholds and
hence bit allocation requirements are time-varying,
buffering is often introduced to match the coder output
to a fixed rate.  The encoder sends to the decoder quan-
tized subband output samples, normalization scalefac-
tors for each block of samples, and bit allocation side
information.  Bit allocation may be transmitted as ex-
plicit side information, or it may be implicitly repre-
sented by some parameter such as the scalefactor mag-
nitudes.  The decoder uses side information and scale-
factors in conjunction with an inverse filterbank to re-
construct a coded version of the original input.

Numerous subband coding algorithms for hi fidelity
audio have appeared in the literature since the late

eighties.  This section focuses upon the individual sub-
band algorithms proposed by researchers from the In-
stitut fur Rundfunktechnik (IRT) [4][60], Phili ps Re-
search Laboratories [61], and CCETT.  Much of this
work was motivated by standardization activities for the
European Eureka-147 digital broadcast audio (DBA)
system.  The ISO/IEC eventually clustered the IRT,
Phili ps, and CCETT proposals into a single candidate
algorithm, Masking Pattern Adapted Universal Subband
Integrated Coding and Multiplexing (MUSICAM)
[10][62], which competed successfully for inclusion in
the ISO/IEC MPEG-1 and MPEG-2 audio coding stan-
dards.  Consequently, most of MPEG-1 [17] and
MPEG-2 [18] layers I and II are derived from
MUSICAM.  Other subband algorithms were also pro-
posed by Charbonnier and Petit [57], Voros [58], and
Teh et al. [59], are not discussed here.  The section con-
centrates upon MUSICAM and its antecedents, which
ultimately led to the creation of the MPEG audio stan-
dard.
A. MASCAM

The MUSICAM algorithm is derived from coders
developed at IRT, Phili ps, and CNET.  At IRT, Theile,
Stoll , and Link developed Masking Pattern Adapted
Subband Coding (MASCAM), a subband audio coder
[4] based upon a tree-structured quadrature mirror filter
(QMF) filterbank which was designed to mimic the
critical band structure of the auditory filterbank.  The
coder has 24 non-uniform subbands, with bandwidths of
125 Hz below 1 kHz, 250 Hz in the range 1-2 kHz, 500
Hz in the range 2-4 kHz, 1 kHz in the range 4-8 kHz,
and 2 kHz from 8 kHz to 16 kHz.  The prototype QMF
filter has 64 taps.  Subband output sequences are proc-
essed in 2-ms blocks.  A normalization scalefactor is
quantized and transmitted for each block from each
subband.  Subband bit allocations are derived from a
simpli fied psychoacoustic analysis.  The original coder
reported in [4] considered only in-band simultaneous
masking.  Later, as described in [60], inter-band simul-
taneous masking and temporal masking were added to
the bit rate calculation.  Temporal postmasking is ex-
ploited by updating scalefactors less frequently during
periods of signal decay.  The MASCAM coder was re-
ported to achieve high-quality results for 15 kHz band-
width input signals at bit rates between 80 and 100 kbps
per channel.  A similar subband coder was developed at
Phili ps during this same period.  As described by Vel-
huis et al. in [61], the Phili ps group investigated sub-
band schemes based on 20- and 26-band non-uniform
filterbanks.  Like the original MASCAM system, the
Phili ps coder relies upon a highly simpli fied masking
model which considers only the upward spread of si-
multaneous masking.  Thresholds are derived from a
prototypical basilar excitation function under worst-case
assumptions regarding the frequency separation of
masker and maskee.  Within each subband, signal en-
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ergy levels are treated as single maskers.  Given SNR
targets due to the masking model, uniform ADPCM is
applied to the normalized output of each subband.  The
Phili ps coder was claimed to deliver high quality coding
of CD-quality signals at 110 kbps for the 26-band ver-
sion and 180 kbps for the 20-band version.
B. MUSICAM

Based primarily upon coders developed at IRT and
Philli ps, the MUSICAM algorithm [10][62] was suc-
cessful in the ISO/IEC competition [63] for a new audio
coding standard.  It eventually formed the basis for
MPEG-1 and MPEG-2 audio layers I and II .  Relative to
its predecessors, MUSICAM (Fig. 14) makes several
practical tradeoffs between complexity, delay, and
quality.  By utili zing a uniform bandwidth, 32-band
polyphase filterbank instead of a tree structured QMF
filterbank, both complexity and delay are greatly re-
duced relative to the IRT and Philli ps coders.  Delay
and complexity are 10.66 ms and 5 MFLOPS, respec-
tively.  These improvements are realized at the expense
of using a sub-optimal filterbank, however, in the sense
that filter bandwidths (constant 750 Hz for 48 kHz sam-
ple rate) no longer correspond to the critical band rate.
Despite these excessive filter bandwidths at low fre-
quencies, high quality coding is still possible with
MUSICAM due to its enhanced psychoacoustic analy-
sis.  High resolution spectral estimates (46 Hz/line at 48
kHz sample rate) are obtained through the use of a
1024-point FFT in parallel with the polyphase filter-
bank.  This parallel structure allows for improved esti-
mation of masking thresholds and hence determination
of more accurate minimum signal-to-mask ratios
(SMRs) required within each subband.  The MUSICAM
psychoacoustic analysis procedure is essentially the
same as the MPEG-1 psychoacoustic model 1 described
in section II-G.  The remainder of MUSICAM works as
follows.  Subband output sequences are processed in 8
ms blocks (12 samples at 48 kHz), which is close to the
temporal resolution of the auditory system (4-6 ms).
Scalefactors are extracted from each block and encoded
using 6-bits over a 120 dB dynamic range.  Occasion-
ally, temporal redundancy is exploited by repetition
over 2 or 3 blocks (16 or 24 ms) of slowly-changing
scalefactors within a single subband.  Repetition is
avoided during transient periods such as sharp attacks.
Subband samples are quantized and coded in accor-
dance with SMR requirements for each subband as de-
termined by the psychoacoustic analysis.  Bit alloca-
tions for each subband are transmitted as side informa-
tion.  On the CCIR five-grade impairment scale,
MUSICAM scored 4.6 (std dev. 0.7) at 128 kbps, and
4.3 (std dev. 1.1) at 96 kbps per monaural channel,
compared to 4.7 (std dev. 0.6) on the same scale for the
uncoded original.  Quality was reported to suffer some-
what at 96 kbps for critical signals which contained
sharp attacks (e.g., triangle, castanets), and this was re-

flected in a relatively high standard deviation of 1.1.
MUSICAM was selected by ISO/IEC for MPEG audio
due to its desirable combination of high quality, reason-
able complexity, and manageable delay.  Also, bit error
robustness was found to be very good (errors nearly im-
perceptible) up to a bit error rate of 10-3.

s(n)

Polyphase
Analysis
Filterbank 32 ch. 

(750 Hz @ 48 kHz)

Side Info

1024-pt.
FFT

Psychoacoustic
Analysis

Quantization

Bit Allocation

Scl Fact.

Samples

8,16,24 ms

Fig. 14.  MUSICAM Encoder (after [62])

C. WAVELET DECOMPOSITIONS
The previous section described subband coding al-

gorithms which utili ze banks of f ixed resolution band-
pass QMF or polyphase finite impulse response (FIR)
filters.  This section describes a different class of sub-
band coders which rely instead upon a filterbank inter-
pretation of the discrete wavelet transform (DWT).
DWT based subband coders offer increased flexibilit y
over the subband coders described previously since
identical filterbank magnitude frequency responses can
be obtained for many different choices of a wavelet ba-
sis.  This flexibilit y presents an opportunity for basis
optimization.  In the context of audio coding, a desired
filterbank magnitude response can first be established.
This response might be matched to the auditory filter-
bank, for example.  Then, for each segment of audio,
one can adaptively choose a wavelet basis which mini-
mizes the number of bits required to encode the signal
subbands at some target distortion level.  Given a psy-
choacoustically derived distortion target, the encoding
remains perceptually transparent.

A detailed discussion of specific technical condi-
tions associated with the various wavelet famili es is be-
yond the scope of this paper, and this section therefore
avoids mathematical development and concentrates in-
stead upon high-level coder architectures.  In-depth
technical information regarding wavelets is available in
many references, for example [64].  Before describing
the wavelet based coders, however, it is useful to sum-
marize some basic wavelet characteristics.  Wavelets are
a family of basis functions for the space of square inte-
grable signals.  A finite energy signal can be repre-
sented as a weighted sum of the translates and dilates of
a single wavelet.  Continuous-time wavelet signal
analysis can be extended to discrete time and square
summable sequences.  Under certain assumptions, the
DWT acts as an orthonormal li near transform

T R RN N: → .  For a compact (finite) support wavelet of
length K , the associated transformation matrix, Q , is
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fully determined by a set of coeff icients { }ck  for

0 1≤ ≤ −k K .  As shown in Fig. 15, this transformation
matrix has an associated filterbank interpretation.  One
application of the transform matrix, Q , to an N x  1
signal vector, x , generates an N x  1 vector of wavelet-
domain transform coeff icients, y .  The N x  1 vector y

can be separated into two 
N

x
2

  1 vectors of approxima-

tion and detail coeff icients, y lp  and yhp , respectively.

The spectral content of the signal x  captured in y lp

and yhp  corresponds to the frequency subbands real-

ized in 2:1 decimated output sequences from a QMF
filterbank which obeys the “power complimentary con-
dition” , i.e.,

( ) ( )H Hlp lpθ θ π
2 2

1+ + = (45)

where ( )H lp θ  is the frequency response of the lowpass

filter.

( )H zlp

( )H zhp

↓ 2

↓ 2

=y Qx= =
y lp

x

y hp

Q

Q
y lp

y hp

x

Fig. 15. Filterbank Interpretation of the DWT

Therefore, successive applications of the DWT can
be interpreted as passing input data through a cascade of
banks of perfect reconstruction lowpass (LP) and high-
pass (HP) filters followed by 2:1 decimation.  In effect,
the forward/inverse transform matrices of a particular
wavelet are associated with a corresponding QMF
analysis/synthesis filterbank.  The usual wavelet de-
composition implements an octave-band filterbank
structure shown in Fig. 16.  In the figure, frequency
subbands associated with the coeff icients from each
stage are schematically represented for an audio signal
sampled at 44.1 kHz.
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Q QQQx
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Fig. 16.  Wavelet Decomposition

Wavelet packet representations, on the other hand,
decompose both the detail and approximation coeff i-
cients at each stage of the tree, as shown in Fig. 17.  In
the figure, frequency subbands associated with the coef-
ficients from each stage are schematically represented
for an audio signal sampled at 44.1 kHz.

A filterbank interpretation of wavelet transforms is
attractive in the context of audio coding algorithms for
at least two reasons.  First, wavelet or wavelet packet
decompositions can be tree structured as necessary
(unbalanced trees are possible) to decompose input

audio into a set of frequency subbands tailored to some
application.  It is possible, for example, to approximate
the critical band auditory filterbank utili zing a wavelet
packet approach.  Second, many K -coefficient finite
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Fig. 17.  Wavelet Packet Decomposition

support wavelets are associated with a single magnitude
frequency response QMF pair, therefore a specific sub-
band decomposition can be realized while retaining the
freedom to choose a wavelet basis which is in some
sense “optimal.”   For these and other reasons, several
DWT-based subband algorithms for high-fidelity audio
coding have been recently proposed.

The basic idea behind DWT-based subband coders
is to quantize and encode eff iciently the coeff icient se-
quences associated with each stage of the wavelet de-
composition tree.  Irrelevancy is exploited by trans-
forming frequency-domain masking thresholds to the
wavelet domain and shaping wavelet-domain quantiza-
tion noise such that it does not exceed the masking
threshold.  Wavelet-based subband algorithms also ex-
ploit statistical signal redundancies through differential,
run-length, and entropy coding schemes.  The next few
subsections concentrate upon DWT-based subband cod-
ers developed by Tewfik et al. [71][72][73] during the
last few years, including a very recently proposed hy-
brid sinusoidal/wavelet transform algorithm [74].  Other
studies of DWT-based audio coding schemes concerned
with low-complexity, low-delay, combined wavelet/
multipulse LPC coding, and combined scalar/vector
quantization of transform coeff icients were reported, re-
spectively, by Black and Zeytinoglu [65], Kudumakis
and Sandler [66][67][68], Boland and Deriche [69], and
Boland and Deriche [70].
D. ADAPTED WAVELET DECOMPOSITIONS

Sinha and Tewfik developed a variable-rate wavelet-
based coding scheme for which they reported nearly
transparent coding of CD-quality audio at 48-64 kbps
[71][72].  The encoder (Fig. 18) exploits redundancy
using a VQ scheme and irrelevancy using a wavelet
packet (WP) signal decomposition combined with per-
ceptual masking thresholds.  The algorithm works as
follows.  Input audio is segmented into Nx1 vectors
which are then windowed using a 1/16-th overlap
square root Hann window.  The dynamic dictionary
(DD), which is essentially an adaptive VQ subsystem,
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then eliminates signal redundancy.  A dictionary of Nx1
codewords is searched for the vector which is perceptu-
ally closest to the input vector.  The effective size of the
dictionary is made larger than its actual size by a novel
correlation lag search/time-warping procedure which
identifies two N/2-sample codewords for each N-sample
input vector.  At both the transmitter and receiver, the
dictionary is systematically updated with N-sample re-
constructed output audio vectors according to a per-
ceptual distance criterion and last-used-first-out rule.
For irrelevancy reduction, an optimized WP decompo-
sition is applied to the original signal as well as the DD
residual.  The decomposition tree is structured such that
its 29 frequency subbands roughly correspond to the
critical bands of the auditory filterbank.  Psychoacoustic
masking thresholds are derived using the same proce-
dure as [61] and transformed to the wavelet domain so
that WP coeff icients can be quantized and encoded
without introducing perceptible artifacts.  Masking
thresholds are assumed constant within each subband.
The encoder transmits the particular combination of DD
and WP information which minimizes the bit rate while
maintaining perceptual quality.  Three combinations are
possible.  In one scenario, the DD index and time-
warping factor are transmitted alone if the DD residual
energy is below the masking threshold at all frequen-
cies.  Alternatively, if the DD residual has audible noise
energy, then WP coeff icients of the DD residual are also
quantized, encoded, and transmitted.  In some cases,
however, WP coeff icients corresponding to the original
signal are more compactly represented than the combi-
nation of the DD plus WP residual information.  In this
case, the DD information is discarded and only quan-
tized and encoded WP coeff icients are transmitted.  In
the latter two cases, the encoder also transmits subband
scale factors, bit allocations, and energy normalization
side information.
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Fig. 18. Dynamic Dictionary/Optimal Wavelet Packet
Encoder (after [71])

This algorithm is unique in that it contains the first
reported application of adapted WP analysis to subband
coding of high-fidelity, CD-quality audio.  During each
analysis frame, the WP basis selection procedure applies
an optimality criterion of minimum bit rate for a given
distortion level.  The authors reached several useful

conclusions regarding the choice of an optimal compact
support ( K -coeff icient) wavelet basis.  First, they
found that basis optimization is warranted.  Optimiza-
tion produced average bit rate savings of 3, 6.5, 8.75,
and 15 percent for wavelets selected from the sets asso-
ciated with coeff icient sequences of lengths 10, 20, 40,
and 60, respectively.  In an extreme case, a savings of
1.7 bits/sample is realized for transparent coding of a
diff icult castanets sequence when using best-case rather
than worst-case wavelets (0.8 vs. 2.5 bits/sample for
K = 40 ).  Second, they determined that it is not neces-
sary to search exhaustively the space of all wavelets for
a particular value of K .  The search can be limited to

wavelets having the maximum possible number, or 
K
2

vanishing moments.  The frequency responses of the
filters associated with a p th− order vanishing moment

wavelet have p th− -order zeros at radian frequency

θ π= .  Only a 3.1% bitrate reduction was realized for
an exhaustive search versus a maximal vanishing mo-
ment constrained search.  Third, the authors found that
wavelets with longer coeff icient sequences (larger K )
tended to produce better results under the optimality
constraint.  Given identical distortion criteria for a cas-
tanets sequence, bit rates of 2.1 bits/sample for K = 4
wavelets were realized versus 0.8 bits/sample for
K = 40  wavelets.  Finally, deeper decomposition trees
tended to yield better results, but the improvements
saturated beyond a certain point.

As far as quality is concerned, subjective tests con-
ducted by the authors with nine test subjects led them to
conclude that the algorithm produced transparent qual-
ity for test material including drums, pop, violin with
orchestra, and clarinet.  Subjects detected differences
between coded and original material, however, in the
cases of castanets and piano sequences.  The diff iculty
with castanets arises because of inadequate pre-echo
control.  This version of the coder utili zes only an
adaptive window scheme which switches between 1024
and 2048-sample windows.  Shorter windows (N=1024
or 23 ms) are used for signals which are likely to pro-
duce pre-echos.  The piano sequence contained long
segments of nearly steady or slowly decaying sinusoids.
The wavelet coder does not handle steady sinusoids as
well as other signals.  With the exception of these trou-
blesome signals in a comparative test, an additional ex-
pert listener also found that the WP coder outperformed
MPEG-1, Layer II at 64 kbps.

Tewfik and Ali l ater enhanced the WP coder to im-
prove pre-echo control and increase coding eff iciency.
After elimination of the dynamic dictionary, they re-
ported better quality in the range of 55 to 63 kbps, as
well as a real-time implementation of a simpli fied 64 to
78 kbps coder on two TMS320C31 devices [73].  Be-
yond DD removal, the major improvements included
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exploitation of auditory temporal masking for pre-echo
control, more eff icient quantization and encoding of
scale-factors, and run-length coding of long zero se-
quences.  The improved coder also upgraded its psy-
choacoustic analysis section with a more sophisticated
model similar to Johnston’s PXFM coder [6].  The most
notable improvement occurred in the area of pre-echo
control.  This was accomplished in the following man-
ner.  First, input frames likely to produce pre-echos are
identified using a normalized energy measure criterion.
These frames are parsed into 5 ms time slots (256 sam-
ples).  Then, WP coeff icients from all scales within each
time slot are combined to estimate subframe energies.
Masking thresholds computed over the global 1024-
sample frame are assumed only to apply during high-
energy time slots.  Masking thresholds are reduced
across all subbands for low energy time slots utili zing
weighting factors proportional to the energy ratio be-
tween high- and low-energy time-slots.  The remaining
enhancements of improved scalefactor coding eff i-
ciency and run-length coding of zero sequences more
than compensated for removal of the dynamic diction-
ary.
E. HYBRID HARMONIC/WAVELET DECOMPOSI-

TION
Although the WP coder improvements reported in

[73] addressed pre-echo control problems, they did not
rectify the coder’ s inadequate performance for har-
monic signals such as the piano test sequence.  This is
in part because wavelets do not provide compact repre-
sentations for sinusoidal signals.  On the other hand,
wavelet decomposition techniques do provide signal
representations that can eff iciently track transients.
Recognizing these facts, Hamdy et al. developed a
novel hybrid coder [74] designed to exploit the eff icien-
cies of both harmonic and wavelet signal representa-
tions.  For each analysis frame, the encoder (Fig. 19)
chooses a compact signal representation from combined
sinusoidal and wavelet bases.  This algorithm is based
on the notion that short-time audio signals can be de-
composed into tonal, transient, and noise components.
It assumes that tonal components are most compactly
represented in terms of sinusoidal basis functions, while
transient and noise components are most eff iciently rep-
resented in terms of wavelet bases.  The encoder works
as follows.  First, Thompson’s analysis model [75] is
applied to extract sinusoidal frequencies, phases, and
amplitudes for each input frame.  Harmonic synthesis
using the McAulay and Quatieri reconstruction algo-
rithm [76] for phase and amplitude interpolation is next
applied to obtain a residual sequence.  Then, the resid-
ual is decomposed into WP subbands.  The overall WP
analysis tree approximates an auditory filterbank.
Edge-detection processing identifies and removes tran-
sients in low frequency subbands.  Once transients are
eliminated, the residual WP coeff icient sequences at

each scale become largely decorrelated.  In fact, the
authors determined that the sequences are well ap-
proximated by white gaussian noise (WGN) sources
having exponential decay envelopes.  As far as quanti-
zation and encoding of the various parameters is con-
cerned, sinusoidal frequencies are quantized with suffi-
cient precision to satisfy psychoacoustic just-noticeable-
differences in frequency (JNDF), which requires 8 bit
absolute coding for a new frequency track, then 5 bit
differential coding for the duration of the li fetime of the
track.  Sinusoidal amplitudes are quantized and encoded
in a similar absolute/differential manner using simulta-
neous masking thresholds for shaping of quantization
noise.  This may require up to 8 bits per component.
Sinusoidal phases are uniformly quantized on the inter-
val [ ]−π π,  and encoded using 6-bits.  As for quantiza-

tion and encoding of WP parameters, all coeff icients
below 11 kHz are encoded as in [108].  Above 11 kHz,
however, parametric representations are utili zed.  Tran-
sients are represented in terms of a binary edge mask
which is then run-length encoded.  Noise components
are represented in terms of gaussian means, variances,
and constants of exponential decay.  The hybrid coder
was reported to achieve nearly transparent coding over
of wide range of CD-quality source material at bit rates
in the vicinity of 44 kbps.

Fig. 19.  Hybrid Sinusoidal/Wavelet Encoder (after
[74])

F. SIGNAL-ADAPTIVE, NON-UNIFORM FILTER-
BANK (NUFB) DECOMPOSITIONS
This subsection introduces subband coding algo-

rithms which utili ze signal-adaptive banks of non-
uniform bandpass filters to estimate the distribution of
signal energy and masking power with respect to both
time and frequency.  The advantage of these systems
over previous schemes is in superior time or frequency
resolution matching between the analysis filterbank and
the auditory filterbank.  The disadvantage is that adap-
tive non-uniform filterbank design and implementation
strategies are non-trivial.  As we have seen, audio cod-
ing algorithms seek to achieve high coding gain by ex-
ploiting time-frequency signal decompositions which
imitate the auditory filterbank.  This task is diff icult be-
cause of the non-uniform nature of critical bandwidth.
For the purposes of time-frequency mapping, the algo-
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rithms described in the previous three subsections make
use of unitary transforms, uniform-resolution frequency
subbands, and discrete wavelet or wavelet packet de-
compositions, respectively.  Each type of algorithm
makes some tradeoff between time resolution and fre-
quency resolution.  Transform coders typically offer
very high frequency resolution at the expense of limited
time resolution.  The uniform subband algorithms, on
the other hand, tend to offer good time resolution at the
expense of frequency resolution.  No resolution tradeoff
is optimal for all audio signals.  This dilemma is ill us-
trated in Fig. 20 utili zing schematic representations of
masking thresholds with respect to time and frequency
for (a) a castanets and (b) a piccolo.  In the figures,
darker regions correspond to higher masking thresholds.
For maximum coding gain, the strongly harmonic pic-
colo signal clearly calls for fine frequency resolu-
tion/coarse time resolution, because the masking thresh-
olds remain relatively constant with respect time in
several narrow frequency bands.  Time resolution is not
a big issue for this signal.  Quite the opposite is true in
the case of the castanets signal, however.  Due to the
fast attacks which characterize this percussive sound,
masking thresholds are highly time-dependent in the 30
ms analysis window.  Frequency resolution is not as
important here because the thresholds tend to remain
constant across a wide band of upper frequencies.  All
of this implies that an ideal coder should make adaptive
decisions regarding optimal time-frequency signal de-
composition.
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Fig. 20. Masking Thresholds in the Time-Frequency

Plane: (a) Castanets, (b) Piccolo (after [80])

The most popular method for realizing nonuniform
frequency subbands is to cascade uniform filters in an
unbalanced tree structure.  For a given impulse response
length, however, cascade structures in general produce
poor channel isolation.  Recent advances in modulated
filterbank design methodologies (e.g., [77]) have made
tractable direct form near perfect reconstruction non-
uniform designs which are critically sampled.  This sub-
section describes coders which employ signal-adaptive
non-uniform modulated filterbanks to approximate the
time-frequency analysis properties of the auditory sys-
tem more effectively than the uniform resolution algo-
rithms described in prior sections.  The discussion in-
cludes proposals by Sinha, Princen, and Johnston
[80][81], as well as Purat and Noll [83][107].  In work

not discussed here, other investigators have developed
non-uniform filterbank coding techniques which ad-
dress redundancy reduction utili zing lattice [78] and
bidimensional VQ schemes [79].
G. AT&T SWITCHED NON-UNIFORM FILTERBANK

CASCADE
Princen and Johnston developed a CD-quality coder

based upon a signal-adaptive filterbank [80] for which
they reported quality better than the sophisticated
MPEG-1 Layer III algorithm at both 48 and 64 kbps.
The analysis filterbank for this coder consists of a two-
stage cascade.  The first stage is a 48-band non-uniform
modulated filterbank split i nto four uniform-bandwidth
sections.  There are eight uniform subbands from 0-750
Hz, four uniform subbands from 750-1500 Hz, 12 uni-
form subbands from 1.5-6 kHz, and 24 uniform sub-
bands from 6-24 kHz.  The second stage in the cascade
optionally decomposes non-uniform bank outputs with
on/off switchable banks of f iner resolution uniform
subbands.  During filterbank adaptation, a suitable
overall ti me-frequency resolution is attained by selec-
tively enabling or disabling the second stage filters for
each of the four uniform bandwidth sections.  Low
resolution mode for this architecture corresponds to
slightly better than auditory filterbank frequency reso-
lution.  On the other hand, high-resolution mode for this
architecture corresponds roughly to 512 uniform sub-
band decomposition.  Adaptation decisions are made
independently for each of the four cascaded sections
based on a criterion of minimum perceptual entropy
(PE).  The second stage filters in each section are en-
abled only if a reduction in PE (hence bit rate) is real-
ized.  Uniform PCM is applied to subband samples un-
der the constraint of perceptually masked quantization
noise.  Masking thresholds are transmitted as side in-
formation.  Further redundancy reduction is achieved by
Huffman coding of both quantized subband sequences
and masking thresholds.  In informal li stening tests,
quality was reported to be better than the MPEG-1,
Layer III coder at both 48 and 64 kbps.
H. AT&T SWITCHED MDCT/WAVELET FILTER-

BANK
Sinha and Johnston at Bell Labs later developed a

different signal-adaptive switched filterbank coding
scheme which achieved transparent coding of stereo
CD-quality source material at 64 kbps per stereo pair
[81].  Like the Princen and Johnston coder (above), this
algorithm seeks to match the time-frequency distribu-
tion of masking power in the input signal with an ap-
propriate analysis filterbank.  Also as in [80], the filter-
bank switching criterion is a function of minimum PE.
In contrast to the elaborate adaptive non-uniform filter-
bank cascade of Princen and Johnston’s coder, however,
this signal-adaptive algorithm switches between two
distinct filterbanks.  A 1024-point MDCT (Eq. 41) de-
composition is applied normally, during “stationary”
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periods.  The coder switches to a tree-structured WP de-
composition matched to the auditory filterbank during
sharp transients.  As noted previously [43][48], the
MDCT lends itself to compact representation of station-
ary signals, and a 1024-point block size yields suff i-
ciently high frequency resolution (Fig. 20b).  The
switch to a WP analysis during transients is warranted
in light of the higher time resolution required at high
frequencies for accurate estimation of the
time/frequency distribution of masking power associ-
ated with sharp attacks (Fig. 20a).  WP analysis also
leads to more compact signal representation during
transient periods.  This coder offers the advantage of
lower complexity than [80].  It also has an advantage
over window length switching schemes [12] in that the
desired improvement in time resolution during transient
periods is restricted to the high frequency regions of
interest.  As for implementation details, the coder makes
a switching decision every 25 ms.  Carefully designed
start and stop windows are inserted between analysis
frames during switching intervals to mitigate boundary
effects associated with the MDCT-to-WP transitions.
Masking thresholds are estimated as in [6] and [8].  In
subjective tests involving 12 expert and non-expert lis-
teners with diff icult castanets and triangle test signals,
the coder outperformed the AT&T PAC algorithm [82]
at 64 kbps per stereo pair by an average of 0.4-0.6 on a
five-point quality scale.
I. FV-MLT

Purat and Noll [107] also developed a CD-quality
audio coding scheme based on a signal-adaptive, non-
uniform, tree-structured wavelet packet decomposition.
This coder is unique in two ways.  First of all , it makes
use of a novel wavelet packet decomposition proposed
in [83].  Secondly, the algorithm adapts to the signal the
wavelet packet tree decomposition depth and breadth
(branching structure) based on a minimum bit rate crite-
rion, subject to the constraint of inaudible coeff icient
distortions.  This in contrast to [81], which selects be-
tween two fixed filterbanks based on input signal char-
acteristics.  It also differs from [71], which applies a
fixed wavelet packet decomposition tree structure but
adapts the analysis wavelet.  In informal subjective
tests, the algorithm achieved excellent quality at a bit
rate of 55 kbps.

V. AUDIO CODING STANDARDS
This section gives high-level descriptions of some

international and commercial product audio coding
standards, including the ISO/IEC MPEG-1/-2 series, the
Sony ATRAC, the Philli ps DCC, and the Dolby AC-3
algorithms.
A. ISO/IEC 11172-3 (MPEG-1) AND ISO/IEC

IS13818-3 (MPEG-2)
An International Standards Organization/Moving

Pictures Experts Group (ISO/MPEG) audio coding

standard for stereo CD-quality audio was adopted in
1992 after four years of extensive collaborative research
by audio coding experts worldwide.  ISO 11172-3 [84]
comprises a flexible hybrid coding technique which in-
corporates several methods including subband decom-
position, filterbank analysis, transform coding, entropy
coding, dynamic bit allocation, nonuniform quantiza-
tion, adaptive segmentation, and psychoacoustic analy-
sis.  MPEG coders accept 16-bit PCM input data at
sample rates of 32, 44.1, and 48 kHz.  MPEG-1 (1992)
offers separate modes for mono, stereo, dual independ-
ent mono, and joint stereo.  Available bit rates are 32-
192 kb/s for mono and 64-384 kb/s for stereo.  MPEG-2
(1994) [85][86][87] extends the capabiliti es offered by
MPEG-1 to support the so called 3/2 channel format
with left, right, center, and left and right surround chan-
nels.  The first MPEG-2 standard is backward compati-
ble with MPEG-1 in the sense that 3/2 channel informa-
tion transmitted by an MPEG-2 encoder can be cor-
rectly decoded for 2-channel presentation by an MPEG-
1 receiver.  The second MPEG-2 standard sacrifices
backwards MPEG-1 compatibilit y to eliminate quanti-
zation noise unmasking artifacts [88] which are poten-
tially introduced by the forced backward compatibilit y.
Several discussions of the MPEG-1 [89] and MPEG-1/2
[26][27] standards have appeared recently in the litera-
ture.  MPEG standardization work is continuing and
will eventually lead to very low rate high fidelity cod-
ing, perhaps reaching bit rates as low as 24 kb/s per
channel.
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Fig. 21.  ISO/MPEG Layer I/II Encoder

The MPEG-1 architecture contains three layers of
increasing complexity, delay, and output quality.  Each
higher layer incorporates functional blocks from the
lower layers.  Layers I and II (Fig. 21) work as follows.
The input signal is first decomposed into 32 critically
sub-sampled subbands using a polyphase filterbank.
These 511th-order filters are equally spaced such that a
48 kHz input signal is split i nto 750 Hz subbands, with
the subbands decimated 32:1.  In the absence of quanti-
zation noise, each filter would perfectly cancel aliasing
introduced by adjacent bands.  In practice, however, the
filters are designed for very high sidelobe attenuation
(96 dB) to insure that intra-band aliasing due to quanti-
zation noise remains negligible.  For the purposes of
psychoacoustic analysis and determination of JND
thresholds, a 512 (layer I) or 1024 (layer II) point FFT
is computed in parallel with the subband decomposition
for each decimated block of 12 input samples (8 ms at
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48 kHz).  Next, the subbands are block companded
(normalized by a scalefactor) such that the maximum
sample amplitude in each block is unity, then an itera-
tive bit allocation procedure applies the JND thresholds
to select an optimal quantizer from a predetermined set
for each subband.  Quantizers are selected such that
both the masking and bit rate requirements are simulta-
neously satisfied.  In each subband, scalefactors are
quantized using 6 bits and quantizer selections are en-
coded using 4 bits.  For layer I encoding, decimated
subband sequences are quantized and transmitted to the
receiver in conjunction with side information, including
quantized  scalefactors and quantizer selections.  With
operation similar to layer I, layer II offers enhanced
output quality and reduced bit rates at the expense of
greater complexity and increased delay.  Improvements
occur in three areas.  First, the psychoacoustic threshold
determination benefits from better frequency resolution
because of the increased FFT size.  Second, scalefactor
side information is reduced by considering properties of
three adjacent 12-sample blocks and optionally trans-
mitting one, two, or three scalefactors as well a 2-bit
side parameter to indicate how many are being trans-
mitted (increases delay).  Third, maximum subband
quantizer resolution is increased to 16 bits from the
layer I limit of 15.  The overall bit rate is reduced in
spite of this increase by decreasing the number of avail -
able quantizers with increasing subband index.  Average
Mean Opinion Scores (MOS) of 4.7 and 4.8 have been
reported [26] for monophonic layer I and layer II
codecs operating at 192 and 128 kb/s, respectively.  Av-
erages were computed over a range of test material.
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Fig. 22. ISO/MPEG Layer III Encoder

The layer III MPEG (Fig. 22) architecture achieves
performance improvements by adding several important
mechanisms on top of the layer I/II f oundation.  A hy-
brid filterbank is introduced to increase frequency
resolution and thereby better approximate critical band
behavior.  The hybrid filterbank includes adaptive seg-
mentation to improve pre-echo control.  Sophisticated
bit allocation and quantization strategies which rely
upon non-uniform quantization, analysis-by-synthesis,
and entropy coding are introduced to allow reduced bit
rates and improved quality.  First, a hybrid filterbank is
constructed by following each subband filter with an
adaptive MDCT.  This practice allows for higher fre-
quency resolution and pre-echo control.  Use of an 18-
point MDCT, for example, improves frequency resolu-
tion to 41.67 Hz per spectral li ne.  Adaptive MDCT
block sizes between 6 and 18 points to allow improved

pre-echo control.  Using shorter blocks during rapid at-
tacks in the input sequence (6 decimated points at 48
kHz = 4 ms) allows premasking to hide pre-echoes,
while using longer blocks during steady-state periods
reduces side information and hence bit rates.  Bit allo-
cation and quantization of the spectral li nes is realized
in a nested loop procedure which uses both non-uniform
quantization and Huffman coding.  The inner loop ad-
justs the non-uniform quantizer step sizes for each block
until the number of bits required to encode the trans-
form components falls within the bit budget.  The outer
loop evaluates the quality of the coded signal (analysis-
by-synthesis) in terms of quantization noise relative to
the JND thresholds.  Average MOS of 3.1 and 3.7 were
reported [26] for monophonic layer II and layer III
codecs operating at 64 kbps.
B. PRECISION ADAPTIVE SUBBAND CODING

(PASC)
Philli ps Digital Compact Cassette (DCC) is an ex-

ample of a consumer product which essentially imple-
ments the 384 kb/s stereo mode of MPEG-1, layer I.  A
discussion of the Precision Adaptive Subband Coding
algorithm and other elements of the DCC system are
given in [90].
C. ADAPTIVE TRANSFORM ACOUSTIC CODING

(ATRAC)
The ATRAC coding method developed by Sony for

use in its rewritable MiniDisc system makes combined
use of subband and transform coding techniques to
achieve CD-quality 256 kb/s coding of 44.1 kHz stereo
16-bit PCM input data [91].  The ATRAC encoder first
splits the input signal into three subbands which cover
the ranges of 0-5.5 kHz, 5.5-11 kHz, and 11-22 kHz
using a QMF analysis filterbank.  Like MPEG layer III ,
the ATRAC QMF filterbank is followed by adaptive
MDCT analysis.  Although long block sizes of 11.6 ms
are normally selected for all subbands, short block sizes
of 1.45 ms in the high-frequency band and 2.9 ms in the
low and mid-frequency bands are used to affect pre-
echo cancellation during input attack periods.  Finally,
MDCT components are quantized and encoded accord-
ing to a psychoacoustically derived bit allocation.
D. DOLBY AC-3

Dolby Laboratories originally developed the 320
kb/s AC-3 perceptual audio coder [92] for High-
Definition Television (HDTV).  Its first application,
however, has been in the cinema.  Digital information is
interleaved between sprocket holes on one side of the
35 mm film.  The coder carries 5.1 channels of audio
(left, center, right, left surround, right surround, and a
subwoofer), but it has also been designed for compati-
bilit y with conventional mono, stereo, and matrixed
multi -channel sound reproduction systems.  The PCM
input signal is first windowed using a proprietary func-
tion and then segmented into 50% overlapping 10.66 ms
blocks (512 samples).  The block size is reduced to 5.33
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ms during transient conditions to compensate for pre-
echos.  After segmentation, a modified Discrete Cosine
Transform (MDCT) filterbank with 93.75 Hz frequency
resolution is used to decompose the signal.  The MDCT
offers a good compromise between frequency resolution
and time resolution, since it is critically sampled with
50% time overlap.  Transform components are quan-
tized using a psychoacoustically derived dynamic bit
allocation scheme.  Spectral information obtained from
the MDCT is encoded using a novel mantissa/exponent
coding scheme as follows.  First, the spectral stabilit y is
evaluated.  All transform coeff icients are transmitted for
stable spectra, but time updates occur only every 32 ms.
Fewer components are encoded for transient signals, but
time updates occur frequently, e.g., every 5.3 ms.  A
spectral envelope is formed from exponents corre-
sponding to log spectral li ne magnitudes. These expo-
nents are differentially encoded.  Psychoacoustic quan-
tization masking thresholds are derived from the de-
coded spectral envelope for 64 non-uniform subbands
which increase in size proportional to the ear’ s critical
bands.  The thresholds are used to select appropriate
quantizers for transform coeff icient mantissas in a bit
allocation loop.  If too few bits are available, high-
frequency coupling (above 2 kHz) between channels
may be used to reduce the amount of transmitted infor-
mation.  Exponents, mantissas, coupling data, and ex-
ponent strategy data are combined and transmitted to
the receiver.  AC-3 has been selected for use in the
United States HDTV system [97].  It is also being de-
signed into other consumer electronics equipment such
as cable television and direct broadcast satellite.

VI.  CONCLUSION
A. SUMMARY OF APPLICATIONS FOR COMMER-

CIAL AND INTERNATIONAL STANDARDS
Current applications (Table 2) which benefit from

audio coding include digital broadcast audio (DBA)
[93][94], Direct Broadcast Satellit e (DBS) [95], Digital
Versatile Disk (DVD) [96], high-definition television
(HDTV) [97], cinematic theater [98], and audio-on-
demand over wide area networks such as the Internet
[99].  Audio coding has also enabled miniaturization of
digital audio storage media such as Compact MiniDisk
[100] and Digital Compact Cassette (DCC) [101][102].

B. SUMMARY OF RECENT RESEARCH
The level of sophistication and high performance

achieved by the standards listed in Table 2 reflects the
fact that audio coding algorithms have matured rapidly
in less than a decade.  The emphasis nowadays has
shifted to realizations of low-rate, low-complexity, and
low-delay algorithms [103].  Using primarily transform
[104][105][106], subband (filterbank/wavelet) [107]
[108][109][110][111], and other [112][113][114] cod-
ing methodologies coupled with perceptual bit alloca-

Algorithm Method Sample
Rates
(kHz)

Chan. Refere
nces

APT-X100 ADPCM 44.1 1
ATRAC Subband 44.1 2 [100]
AT&T PAC Trans. 44.1 1 - 5.1 [16]
Dolby AC-2 Trans. 44.1 2 [2]
Dolby AC-3 Trans. 44.1 1 - 5.1 [98]
MPEG-1 Hybrid 32,44.1,48 1,2 [17]
Layers I-III
MPEG-2 Hybrid 16,22,24 1 - 5.1 [18]
Layers I-III 32,44.1,48

Algorithm Bit
Rate(s)
(kbps)

Quality Applications

APT-X100 176,400 CD Cinema
ATRAC 256/ch CD MiniDisc
AT&T PAC 128/stereo FM,CD DBA:  128/160 kbps
Dolby AC-2 256/ch CD DBA
Dolby AC-3 32-384 CD Cinema, HDTV
MPEG-1 32-448 AM,FM, DBA: LII@256 kbps
Layers I-III CD DBS:  LII@224 kbps

DCC:  LI@384 kbps
MPEG-2 16- AM,FM Misc. network
Layers I-III CD

Table 2.  Audio Coding Standards and Applications

Methodology Bit Rate(s)
(kbps)

References

Signal adaptive
switched filterbank

below 32 Sinha,Johnston,Princen
[80][81]

Sinusoidal/wavelet
packet

44 Sinha, Tewfik [74]

Adapted wavelet
packet

48-63 Sinha, Tewfik [72]

Frequency varying
modulated lapped
transforms

55 Purat, Noll [83],[107]

Transform/subband
noise substitution

56 Schulz [50]

Transform/differential
frame encoding
(DPAC)

60-100 Paraskevas, Mour-
jopoulos [106]

Wavelet packet/ mul-
tipulse LPC

64 Boland,Deriche[69]

Transform domain
weighted interleave
VQ

below 64 Iwakami, et al.,
[53],[105]

Modulated phasor
transform/bidimen-
sional lattice

80 Mainard, Lever [111]

Nonuniform filter-
bank/ lattice VQ

96 Monta, Cheung [78]

Table 3.  Recent Audio Coding Research

tion strategies, new algorithms continue to advance the
state-of-the art in terms of bit rates and quality (Table
3).  Sinha and Johnston, for example, reported transpar-
ent CD-quality at 64/32 kbps for stereo/mono [110]
sources.  Other new algorithms include extended capac-
ity for multi -channel/ multi -language systems [98][115]
[116].



26

C. FUTURE DIRECTIONS
In addition to the pursuing the usual goals of trans-

parent compression at lower bit rates (below 64
kbps/channel) with reduced complexity, minimal delay,
and enhanced bit error robustness, future research in
audio coding will be concerned with the development of
algorithms which offer scalabilit y [117][118][119].
This trend is reflected in the set of candidate algorithms
[120] proposed for MPEG-4 standardization [121], as
shown in Table 4.

Company/
Institution

Methodology Bit Rates
(kbps)

Scalability
Modes

Alcatel /
Philips /
RAI

subband,
ADPCM, adaptive
Huffman

24, 40 64/6
64/24/6

AT&T transform 24, 40 64/6
AT&T waveform interp. 2, 6 -
Bosch /
CSELT /
MATRA

subband/LPC,
fine step scalabil-
ity

6 64/24/6

INESC subband/transfor
m, Huffman, har-
monic component
extraction

16, 24, 40 -

Matsushita CELP + post-
processing for
speed control +
enhancement for
error robustness

6 -

Motorola transform, Huff-
man,enhancement
for error robust-
ness

24, 40 64/24/6

NEC transform, en-
hancement for
scalability

24, 40 1,2

NEC CELP with multi-
mode coding

6 1,2

NTT transform, VQ,
enhancement for
error robustness

16,24,40 2

NTT CELP, pitch syn-
chronous innova-
tion, enhancement
for error robust-
ness

2, 6 3

NTT Do-
CoMo

CELP, pitch syn-
chronous innova-
tion, enhancement
for error robust-
ness

-

Philips CELP with effi-
cient search

16 -

Samsung subband, VQ - 1
Sony subband/trans.,

scalability with
LPC

- 1

Company/
Institution

Methodology Bit Rates
(kbps)

Scalability
Modes

Sony IPC subband/trans.,
LPC residual
coding, enhance-
ment for scalabil-
ity

- 3

Sony IPC LPC with har-
monic vector ex-
citation, en-
hancement for er-
ror robustness

2, 6 3

University
of Erlangen

transform, scal-
ability with low
bit rate codecs

24, 40 1,2

University
of Han-
nover /
Deutsche
Telekom

analysis/synthesis
coding for indi-
vidual spectral
lines + enhance-
ment for scalabil-
ity

6, 16 -

JVC transform, VQ 40 -

Table 4.  Candidate Codecs Proposed for MPEG-4
Standardization (after [122])
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