
Storage and Retrieval of XML Documents

using Object-Relational Databases

Takeyuki Shimura, Masatoshi Yoshikawa and Shunsuke Uemura

Graduate School of Information Science Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0101, Japan
{takeyu-s, yosikawa, uemura}@is.aist-nara.ac.jp

Abstract. This paper describes general storage and retrieval method-
s for XML documents using object-relational databases. The storage
method decomposes tree structure of XML documents into nodes, and s-
tores them in relational tables according to the node types. By using this
method, being independent of DTDs or element types, any XML docu-
ments can be stored in databases. Also it is possible to utilize index struc-
tures(e.g. B

+ trees, R trees, etc.) which are provided in database man-
agement systems. As for retrieval, we show the transformation of XQL
queries into SQL queries. It is possible to realize the storage method by
doing minimal extension to object-relational databases and the retrieval
method by adding a preprocessor of a query language. We also performed
experiments using XML documents on the plays of Shakespeare, to show
the effectiveness of our methods.

1 Introduction

XML (eXtensible Markup Language) [WWWC98a], designed as a subset of
SGML[ISO86] and recommended by W3C (World Wide Web Consortium), is
a document description metalanguage to represent data and documents on the
World Wide Web. The potential of XML is unlimited, and many new applications
using XML are currently planned (e.g. [Bos97]). Therefore, efficient storage and
retrieval of XML documents in databases is an important research issue. With
the increase of sophisticated XML documents, databases managing XML docu-
ments are required to support queries on structure, content, and attributes1.

In this paper, we propose general storage and retrieval methods for XM-
L documents using object-relational databases. As databases managing XML
documents, we adopted commonly-used object-relational databases which have
functionality of adding abstract data types. Figure 1 shows the logical architec-
ture of our system. The differences between our methods and related work are as
follows. Firstly, database schemas for storing XML documents are independent
of DTDs or element types. Secondly, in retrieving XML documents, the system
rewrites declarative queries for XML into SQL queries which are executed in
object-relational databases. Also, it is possible to store XML documents by do-
ing minimal extension to object-relational databases and the retrieval method
by adding a preprocessor of a query language.
1 The term ‘attribute’ is used differently in the context of databases and in XML. We

call the former ‘database attribute’ and the latter ‘attribute’.

 XQL

 User, Application

Preprocessor

 SQL

 Element Attribute

 Text Path

DBMS

 XML Documents

Dividing
 Tree Structures

 Store, Update

XML, DOM, etc.

Output Format

Fig. 1. The logical architecture of our system.

1.1 Related Work

Storage of structured documents There are two major approach to the stor-
age and retrieval of XML documents in databases. XML documents are regarded
as structured data in one approach, and as simple character string in another
approach.

When structured documents are regarded as structured data, the tree struc-
ture representing an XML document is mapped to database schemas. In this
approach, database schemas are designed in accordance with the DTD of struc-
tured documents. Once such database schema is designed, XML documents s-
tored in databases are guaranteed to conform to the DTD. However, because
commonly-used database models (such as relational model and object-oriented
model) is not powerful enough to naturally represent the concept of “choice”
in element type declarations in the DTD, database schema can not represent
the DTD. In [CACS94], a mapping of DTDs to extended database schemas was
proposed. However, this approach has a drawback in that (even a small) change
of logical structure of XML documents influence on database schemas.

In our approach, since database schemas are independent of DTDs or element
types, changes in logical structure do not influence on database schemas. Also,
our storage method does not require extended facilities on database models nor
database schemas. Also, conformance of XML documents to DTDs, if any, are
not guaranteed by DBMSs but by XML processors. Validation check by an XML
processor is executed when documents are inserted or modified.

When structured documents are regarded simply as character strings, an
XML document is stored in a database attribute. Operations on tree structure
are replaced by string operators, and abstract data types which have functions
to execute string operators are added to databases. Under this approach, queries
on structured documents are described in extended SQL[BCD+95]. Integration
engine internally distributes queries to SQL on relational data and to commands
on full-text system, and integrates the both query result before they are returned
to users or applications. The system provides an interface through which users
can view documents as if they were stored in database systems.

Though we also regard structured documents as simple character string, sub-
stance of XML documents is stored in databases. We regarded generality as an
important design factor. In our approach, we realize storage and retrieval of
XML documents using only database management systems.

Index Scheme for structured documents Index schemes for structured doc-
uments are described in [SDDTZ97]. The paper presents position-based indexing
and path-based indexing to access document collections by content, structure,
or attributes. In position-based indexing, queries are processed by manipulating
ranges of offsets of words, elements or attributes. In path-based indexing, the
paths in tree structures are used. Our storage method of XML documents adopts
both of the two indexing schemes and enjoys the advantages of them.

The rest of the paper is organized as follows. Section 2 describes a storage
method for XML documents. Section 3 describes a retrieval method for XML
documents stored in databases. Section 4 reports the experimental results and
demonstrates the effectiveness of our method. We conclude the paper in Sec-
tion 5.

2 Storage Method of XML Documents

XML processors guarantee that XML documents stored in databases follow tag-
ging rules prescribed in XML or conform to a DTD. Hence, XML documents
stored in databases are valid or well-formed.

2.1 A Tree Structure Representing an XML Document

An XML document can be represented as a tree, and node types in the tree are
of the following three kinds: Element, Attribute and Text. These node types are
equivalent to the node types in XSL[WWWC98b] data model. Though there are
other node types such as comment, processing instruction, etc, we do not treat
them in this paper.
– Nodes of type Element have an element type name as a label. Element

nodes have zero or more children. The type of each child node is of one of
the three (Element, Attribute and Text).

– Nodes of type Attribute have an attribute name and an attribute value as
a label. Attribute nodes have no child node. If there are plural attributes,
the order of the attributes is not distinguished. This is because there is no
order in XML attributes.

– Nodes of type Text have character data specified in the XML Recommen-
dation as a label. Text nodes have no child node.
Figure 3 shows the tree structure representing the XML document in Fig-

ure 2.

2.2 Design Strategies for Storing XML Documents

We have the following policies for the storage of XML documents:
– Database schemas should not depend on DTDs or element types, and databas-

es shall store any XML documents.
– Index structures which are provided in database management systems shall

be used.

� �
<books>

<book style="textbook">

<title>Designing XML applications</title>

<editor>

<family>Bob</family> <given>Kraft</given>

</editor>

<author>

<family>Nick</family> <given>Marcus</given>

<family>Bob</family> <given>Pant</given>

</author>

<summary>

This book is the guide to design<keyword>XML</keyword>applications.

</summary>

</book>

</books>

� �
Fig. 2. An example of an XML instance.

 book

 author

 Nick

Element Attribute

 family

 Marcus

 title

 style
 textbook

 Designing XML
 applications

Text

 books

 summary

 family

 given

 Bob

 Pant

 keyword

 This book
 is the guide
 to design
 XML

 given

 editor

 Kraft

 given

 family

 Bob

 applications.

Fig. 3. An example of tree representation.

– Storage method shall be realized by doing minimal extension to object-
relational databases.

– Functionalities of XML query languages shall be supported.

As for the storage of XML documents, the key issue is the mapping from the
tree structure of an XML document to tuples in relational tables. We decompose
the tree structure into relations so that we can easily access and reuse by the
unit of logical structure and we can use index structures(e.g. B+ trees, R trees,
etc.) provided in database systems.

Regarding query languages for XML, much discussion have been made on
the requirements for languages (e.g. [Wor98]). So far, only a few XML query

� �
<SimpleAbsolutePathUnit> ::= <PathOp> <SimplePathUnit> |

<PathOp> <SimplePathUnit> ’@’ <AttName>
<PathOp> ::= ’/’
<SimplePathUnit> ::= <ElementType> |

<ElementType> <PathOp> <SimplePathUnit>

� �
Fig. 4. The syntax of ‘SimpleAbsolutePathUnit’ stored in databases.

languages including XQL[RLS98] and XML-QL[DFF+98] have been proposed.
XQL is a natural extension to the XSL pattern syntax, and it provides a con-
cise, understandable notation for pointing to specific elements and for searching
for nodes with particular characteristics. On the other hand, XML-QL, based
on research results on semistructured data, has operations peculiar to data ma-
nipulation such as joins and supports transformations of XML data. XML-QL
integrates information extraction in the WHERE clause and transformation or
restructuring in the CONSTRUCT clause. XQL considers that transformation
operation is separated from the query language. As for transformation, for ex-
ample, [SLR98] uses XQL within XSL. In their approach, an XQL query is
performed first, then the results of its XQL query are fed into XSL to perform
transformations.

An XQL basic query is represented by a line command which connects path
operators (’/’ or ’//’) with element types. ’/’ is the child operator which s-
elects from immediate child nodes. ’//’ is the descendant operator which se-
lects from arbitrary descendant nodes. Furthermore, the symbol ’@’ precedes
attribute names. By using these notations, all paths of tree representation can
be expressed by element types, attributes, ’/’ and ’@’. Strictly speaking, paths
can be expressed by SimpleAbsolutePathUnit defined in Figure 4. In this paper,
we call SimpleAbsolutePathUnit simple path.

Basically, we decompose XML documents into simple paths, and store them
in databases. However, using only simple paths, retrieval allowing for the hier-
archy or order within a document can not be handled. Therefore, we retain for
each node, simple path and a pair of positions of the node within the document.
Such pair is usually called a region(i.e. a pair of a start position and an end posi-
tion). Because of this mechanism, functionalities of XML query language can be
supported properly. Also, the inclusion relationship and the order relationship
between nodes can be maintained.

As an example, Figure 5 shows simple paths, regions, and occurrence order
information on node type Element, which are derived from the tree structure in
Figure 3. In Figure 5, the element types in node type Element and the attribute
names in node type Attribute are absorbed into the simple paths. Moreover,
nodes of type Element are assigned to order information, which represent occur-
rence order within sibling nodes having the same parent node. Occurrence order
information is composed of occurrence plus order information, and occurrence
minus order information. Occurrence plus (or minus) order information is the
index number of the node within the parent node. The indexes are zero-based,
so 0 represents the first element node. The occurrence order information is used

 /books/book
 (0.2, 18.2)
 0, -1

 /books/book/author
 (5.3, 9.2)
 0, -1

 /books/book
 /author/given
 (6.2, 7.1)
 0, -2

 Nick
 /books/book
 /author/family
 (6, 6)

Element Attribute

 /books/book
 /author/family
 (5.4, 6.1)
 0, -2

 Marcus
 /books/book
 /author/given
 (7, 7)

 /books/book/title
 (0.3, 3.1)
 0, -1

 textbook
 /books/book
 /@style
 (0.2, 0.2)

Designing XML
 applications
/books/book/title
 (1, 3)

Text

 /books
 (0.1, 18.3)
 0, -1

/books/book/summary
 (9.3, 18.1)
 0, -1

 /books/book
 /author/family
 (7.2, 8.1)
 1, -1

 /books/book
 /author/given
 (8.2, 9.1)
 1, -1

 Bob
 /books/book
 /aurhor/family
 (8, 8)

 Pant
 /books/book
 /author/given
 (9, 9)

 /books/book/sum
 mary/keyword
 (16.1, 17.1)
 0, -1

 applications.
 /books/book
 /summary
 (18, 18)

 This book is...
 /books/book
 /summary
 (10, 16)

 XML
 /books/book
 /summary/keyword
 (17, 17)

 /books/book/editor
 (3.2, 5.2)
 0, -1

 /books/book
 /editor/family
 (3.3, 4.1)
 0, -1

 Bob
 /books/book
 /editor/family
 (4, 4)

 /books/book
 /editor/given
 (4.2, 5.1)
 0, -1

 Kraft
 /books/book
 /editor/given
 (5, 5)

Fig. 5. The simple path and the region of each node derived from the tree structure
in Figure 3.

to support the index functions in XQL.
Because there are many ways to assign the region of each node, we will not

assume specific assignment. In this paper, we assign the region of each node
as follows. Each word occurrence is assigned an integer number corresponding
to its position within the document. Each tag is assigned a real number. Its
integer part indicates the position number of the preceding word and decimal
part indicates the position of the tag being concerned in the current sequence
of tags. The reason because tags are not assigned a position is so that they do
not interfere with proximity searches on words[SDDTZ97]. In general, regions of
two nodes may have the inclusion relationship but they do not have the overlap
relationship.

Decomposition of XML documents into simple paths, type classification and
computing region of each node are executed when XML documents are parsed
using XML processor. Next we will show how data in Figure 5 are stored in
relational tables.

2.3 Addition of Abstract Data Type

Abstract data type to be defined is the only type which manages region(positions)
of each node type within a document. An instance of REGION type keeps po-
sitions, which are a pair of numerical values (r, s) representing a start position
and an end position, where 0 < r ≤ s. REGION type can use following two
predicates.

– BOOLEAN contain(REGION pos)
This predicate takes an instance pos (ra, sa) of REGION type as its argu-

ment, returns TRUE if and only if (r, s) contains (ra, sa).

– BOOLEAN precede(REGION pos)
This predicate takes an instance pos (r

a
, s

a
) of REGION type as its argu-

ment, returns TRUE if and only if (r, s) precedes (ra, sa).

These predicates are used to decide the inclusion relationship or the order
relationship of regions within same document.

2.4 Relational Database Schemas for Storing XML Documents

Relations for storing XML documents are four kinds : Element, Attribute, Text,
and Path. The relations Element, Attribute and Text store data about each node
type described in Section 2.1. The relation Path stores data about simple paths.
Each relation has the following database attributes.

– The relation Element stores data about Element nodes. Database attributes
are docID, pathID, index, reindex and pos to store document identifiers, path
identifiers, plus occurrence order, minus occurrence order and regions respec-
tively.

– The relation Attribute stores data about Attribute nodes. Database attribute
are docID, pathID, attvalue and pos to store document identifiers, path iden-
tifiers, attribute values and regions respectively.

– The relation Text stores data about Text nodes. Database attribute are
docID, pathID, value, and pos to store document identifiers, path identifiers,
collections of character data and regions respectively.

– The relation Path stores data about simple paths. Database attribute are
pathexp and pathID to store simple paths and path identifiers respectively.

2.5 Storage of XML Documents to Relational Tables

Data about each node described in Section 2.1 is stored, being based on database
schema described in Section 2.4. For example, Figure 6 shows that the tree struc-
ture in Figure 3 is stored in relational tables. In many XML documents stored
in database, if plural XML documents follow the same DTD, there are many
same simple paths. Therefore, by storing the correspondence between pathID
and simple path in the relation Path, the number of tuples can be reduced. Each
occurrence of database attribute pathexp in relation Path is subject to simple
path specified in Figure 4.

Element

docID pathID index reindex pos

1 1 0 -1 0.1, 18.3
1 2 0 -1 0.2, 18.2
1 4 0 -1 0.3, 3.1
1 5 0 -1 3.2, 5.2
1 6 0 -1 3.3, 4.1
1 7 0 -1 4.2, 5.1
1 8 0 -1 5.3, 9.2
1 9 0 -2 5.4, 6.1
1 10 0 -2 6.2, 7.1
1 9 1 -1 7.2, 8.1
1 10 1 -1 8.2, 9.1
1 11 0 -1 9.3, 18.1
1 12 0 -1 16.1, 17.1

Attribute

docID pathID attvalue pos

1 3 textbook 0.2, 0.2

Text

docID pathID value pos

1 4 Designing XML applications 1, 3
1 6 Bob 4, 4
1 7 Kraft 5, 5
1 9 Nick 6, 6
1 10 Marcus 7, 7
1 9 Bob 8, 8
1 10 Pant 9, 9
1 11 This book is ... 10, 16
1 12 XML 17, 17
1 11 applications. 18, 18

Path

pathexp pathID

/books 1
/books/book 2
/books/book/@style 3
/books/book/title 4
/books/book/editor 5
/books/book/editor/family 6
/books/book/editor/given 7
/books/book/author 8
/books/book/author/family 9
/books/book/author/given 10
/books/book/summary 11
/books/book/summary/keyword 12

Fig. 6. A storage exmple of XML documents.

If tree structures are stored in the relational tables in Figure 6, the source
XML documents can be rebuilt because of preserving document identifier and
region of each node type.

By dividing tree structures into nodes and storing them according to the
node types, we enjoy the following advantages.

– Database schemas to store XML documents do not depend on DTDs or
element types. Any XML documents can be managed, being based on the
four relational tables.

– Index structures provided in database management systems can be used. B+

trees on database attributes other than database attributes pos and R(or R∗)
trees on database attributes pos can be constructed. By constructing index
structures, queries for XML documents can be efficiently processed.

– It is possible to realize our storage method by doing minimal extension
to object-relational databases. The abstract data type which is added to
database systems is only REGION type described in Section 2.3. Predicates

of REGION type can decide the inclusion relationship or the order relation-
ship. If this abstract data type is not added, by using simple comparison
predicates such as < or ≥, we can carry out equivalent operation to predi-
cates of REGION type. Therefore, the described storage method can apply
to not only object-relational databases but also relational databases.

3 Retrieval Method of XML Documents

In our architecture, XML documents are decomposed into paths of their tree
representation, and stored in the four relations in Figure 6. Their relational ta-
bles, in which XML documents are stored, are hidden from users or applications.
Users or application consider XML documents as trees, and they specify queries
in XML query languages. In this paper, we employ XQL as such an XML query
language. In this section, we describe a framework to rewrite XQL queries in-
to SQL queries. However, the query rewriting in detail is omitted due to the
limitation of space.

XML documents are decomposed into fragments and they are stored in rela-
tional tables. Therefore, identification of sub-documents (i.e. a set of document
identifier and region) is expected to be efficient using such tables. However,
rebuilding entire documents or large sub-documents from fragments in tables
will be inefficient. Hence, when such (sub-)documents are required, we take an
approach to scan XML document files.

3.1 Query Rewriting

Using a notation which connects path operators(’/’ or ’//’) with element types,
etc., XQL can extract sub-documents enclosed with elements. ’/’ is the child op-
erator which selects from immediate child nodes. ’//’ is the descendant operator
which selects from arbitrary descendant nodes. The ’//’ can be thought of as a
substitute for one or mode levels of hierarchy. Also, in the query, filer clause ’[]’
which is analogous to the SQL WHERE clause, indexing which is easy to find a
specific node within a set of nodes, etc. can be specified.

Since data about XML documents such as simple paths are stored as string
in databases, functions of pattern matching in SQL-92[DD93] can be used. For
example, as basic queries, if XQL queries do not include filer nor indexing, the
outline of generating SQL queries is as follows:

(1) Simple paths stored in databases start with path operator ’/’, and they
connect element type with ’/’. If XQL queries include path operator ’//’,
every occurrence of ’//’ in simple paths is replaced with ’%/’ by using LIKE
predicate in the WHERE clause. Then, using the replaced simple paths,
pathIDs are selected out from the relation Path.

(2) Pairs of docID and pos in the relation Element are retrieved based on each
pathID obtained in (1).

As an example, Query 1 shows that an XQL query which connects element
type with path operator can be rewritten into SQL.

Next, Query 2 shows that an XQL query which has a filter is rewritten into
SQL. If condition about text is specified in filter, as for rewriting, a query in SQL
can be produced by adding relation Text in the FROM clause and condition of

text in the WHERE clause. In the WHERE clause, pos is REGION type and
one of predicates described in Section 2.3 is used.

Furthermore, XQL queries having indexing can also be transformed into SQL
queries by using database attribute index or reindex. We give such an example
in Query 3.

Query 1: /books//author Query 2: //book[summary/keyword = ’XML’]

SELECT e1.docID, e1.pos SELECT e3.docID, e3.pos

FROM Element e1, Path p1 FROM Element e1, Path p1, Text t2,

WHERE e1.pathID = p1.pathID Path p2, Element e3, Path p3

AND p1.pathexp LIKE WHERE p1.pathexp LIKE ’\%/book

’/books\%/author’ AND p2.pathexp LIKE

ORDER BY e1.docID, e1.pos ’\%/book/summary/keyword

AND p3.pathexp LIKE

Query 3: //book/author/family[0] ’\%/book/author/family

SELECT e1.docID, e1.pos AND e1.pathID = p1.pathID

FROM Element e1, Path p1 AND t2.value = ’XML’

WHERE e1.pathID = p1.pathID AND t2.pathID = p2.pathID

AND p1.pathexp LIKE AND e3.pathID = p3.pathID

’%/book/author/family AND e1.pos.contain(t2.pos)

AND e1.index = 0 AND e1.docID = t2.docID

ORDER BY e1.docID, e1.pos AND e1.pos.contain(e3.pos)

AND e1.docID = e3.docID

ORDER BY e3.docID, e3.pos

4 Implementation

We have performed experiments to store XML documents in a database and
retrieve them based on the methods described in Sections 2 and 3. This section
describes the implementation and shows the experimental results.

We have used PostgreSQL[POS] which is freely available as an object-relational
database. PostgreSQL supports B+ tree and R tree index structures, as well as
user-defined types and functions. As an XML processor, we have used XML Pars-
er for Java[IBM98] which is freely available. XML Parser for Java is a validating
XML processor, and it supports SAX(The Simple API for XML)[Meg98]. The
module to obtain regions of nodes and path expressions is implemented using
SAX, which is an interface for event-based XML parsing. Also, the module to
rewrite XQL into SQL is coded in C language.

4.1 The Result of Experiments

We ran some experiments using actual XML documents to see executing. The
XML documents used for the experiments is the collection of the plays of Shake-
speare, documents2 tagged by Jon Bosak. These data is summarized in Table 1
and 2. The number of tuples in the Relations “Element”, “Attribute”, “Text”
and “Path” is 179,618, 0, 147,525 and 57 respectively. Data size required in s-
toring test data are larger than that of source data(Table 2). However, since the
price of disk is sharply decreasing, and

2
<URL:http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip>

Table 1. Details of test data

Item Number or Data Size

Total XML documents Size 7.65 Mbytes
Number of Documents 37
Average Document Size 206.71 Kbytes

Table 2. Data Size required in storing test data

Item Data Size

Relation Element 4.10 Mbytes
Relation Attribute 0 bytes
Relation Text 7.32 Mbytes
Relation Path 1.5 Kbytes
Total 11.42 Mbytes

Table 3. Processing time for sample XQL queries and number of their query results

Sample XML query Time 1 Time 2 Time 3 Number
(sec) (sec) (sec) of results

/PLAY 0.15 0.01 0.26 37
/PLAY/ACT 0.18 0.01 0.29 185
/PLAY/ACT[index() = 2] 0.16 0.01 0.35 37
/PLAY/ACT[-3] 0.18 0.01 0.31 37
/PLAY/ACT/TITLE 0.19 0.01 0.33 185
//SCENE/TITLE 0.34 6.52 0.44 750
/PLAY/ACT//TITLE 0.35 3.15 0.34 951
//ACT//TITLE 0.37 6.38 0.04 951
/PLAY/ACT/SCENE/SPEECH[SPEAKER=’CURIO’] 1.30 7.04 0.87 4
//ACT[//SPEECH/SPEAKER=’CURIO’] 1.04 8.96 0.53 4

since documents are much smaller in size than multimedia data such as video
and audio, we believe that increase of data size in storing XML documents is
not a big problem. The machine we used is Ultra Sparc II 360MHz with 640MB
memory. Database-server and client are on this machine, and transmission of
data uses socket of UNIX domain.

Table 3 shows the time required for processing some XQL queries using
our system and two other systems. Time 1, 2 and 3 indicates the processing
time of our system, the XQL module implemented by DataChannel[DM99], and
Sgrep[JP98] which can realize similar retrieval functions to XQL, respectively.
Time 1 is the total time of connecting database-server from a client, rewriting
XQL into SQL, sending the rewritten query, fetching the query results and cut-
ting connection. Measurement of processing time is the average of ten trials. In
measuring Time 2, all 37 XML documents are parsed, and then 150MB data is
retained on main-memory of the server. As for Time 3, XQL queries are executed
after constructing index structure peculiar to Sgrep.

5 Conclusions
We have proposed general storage and retrieval methods for XML documents
using object-relational databases. Described storage method can apply to not

only object-relational databases but also relational databases, and store XM-
L documents having any document structure. As for retrieval, we have shown
methods to rewrite XQL into SQL.

Further extensions to the storage and retrieval of XML documents under
considerations include storage methods considering data types, corresponding
to XQL extensions, integration XML data with other data stored in databases.

References

[BCD+95] G. E. Blake, M. P. Consens, I. J. Davis, P. Kilpeläinen, E. Kuikka, P. -
Å. Larson, T. Snider, and F. W. Tompa. Text / relational database
management systems: Overview and proposed sql extensions. Technical
Report CS-95-25, UW Centre for the New OED and Text Research,
Department of Computer Science, University of Waterloo, June 1995.

[Bos97] Jon Bosak. XML, Java, and the future of the Web, March 1997.
http://sunsite.unc.edu/pub/sun-info/standards/xml/why/
xmlapps.html.

[CACS94] Vassilis Christophides, Serge Abiteboul, Sophie Cluet, and Michel Scholl.
From structured documents to novel query facilities. In Proc. ACM
SIGMOD International Conference on Management of Data, pp. 313–
324, May 1994.

[DD93] C. J. Date and Hugh Darwen. A Guide to The SQL Standard, 3rd ed.
Addison-Wesley, Reading, MA, 1993.

[DM99] DataChannel and Microsoft. DataChannel-Microsoft Java XML Parser
(Beta 2) 1. 0. http://www.datachannel.com/xml resources/developers/,
February 1999.

[DFF+98] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and
Dan Suciu. XML-QL : A Query Language for XML, Aug 1998.
http://www.w3.org/TR/NOTE-xml-ql/.

[IBM98] IBM Corporation. XML Parser for Java.
http://www.alphaworks.ibm.com/, Feb 1998.

[ISO86] ISO 8879: 1986. Information Processing – Text and Office System – S-
tandard Generalized Markup Language (SGML), Oct. 15 1986.

[JP98] Jani Jaakkola and Pekka Kilpelainen. sgrep (structured grep) version
1.92a. http://www.cs.helsinki.fi/ jjaakkol/sgrep.html, December 1998.

[Meg98] Megginson Technologies Ltd. SAX 1.0: The Simple API for XML.
http://www.megginson.com/SAX/, May 1998.

[POS] Postgresql home page. http://www.postgresql.org/.
[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language

(XQL), Sep 1998. http://www.w3.org/TandS/QL/QL98/pp/xql.html.
[SDDTZ97] Ron Sacks-Davis, Tuong Dao, James A. Thom, and Justin Zobel. Index-

ing documents for queries on structure, content and attributes. In In-
ternational Symposium on Digital Media Information Base (DMIB’97),
Nov. 1997.

[SLR98] David Schach, Joe Lapp, and Jonathan Robie. Querying and Transform-
ing XML. In Position papers for W3C Query Language Workshop. 1998.
http://www.w3.org/TandS/QL/QL98/pp/query-transform.html.

[Wor98] World Wide Web Consortium. QL’98 - The Query Languages Workshop.
http://www.w3.org/TandS/QL/QL98/, December 1998.

[WWWC98a] World Wide Web Consortium. Extensible Markup Language (XML)
1.0. http://www.w3.org/TR/1998/REC-xml-19980210, February 1998.
W3C Recommendation 10-February-1998.

[WWWC98b] World Wide Web Consortium. Extensible Style Language(XSL) Work-
ing Draft, 12 1998. http://www.w3.org/TR/1998/WD-xsl-19981216.

This article was processed using the LaTEX macro package with LLNCS style

