
Addressing Concept-Evolution in Concept-Drifting Data Streams

Mohammad M. Masud †1, Qing Chen †2, Latifur Khan †3, Charu Aggarwal �4

Jing Gao ‡5, Jiawei Han ‡6 and Bhavani Thuraisingham †7

† Department of Computer Science, University of Texas at Dallas
{1 mehedy, 2 qingch, 3 lkhan, 7 bhavani.thuraisingham}@utdallas.edu

� IBM T. J. Watson Research Center ‡ Department of Computer Science
Yorktown Heights, New York University of Illinois at Urbana-Champaign
4 charu@us.ibm.com {5 jinggao3, 6 hanj}@cs.uiuc.edu

Abstract—The problem of data stream classification is chal-
lenging because of many practical aspects associated with effi-
cient processing and temporal behavior of the stream. Two such
well studied aspects are infinite length and concept-drift. Since
a data stream may be considered a continuous process, which is
theoretically infinite in length, it is impractical to store and use
all the historical data for training. Data streams also frequently
experience concept-drift as a result of changes in the underlying
concepts. However, another important characteristic of data
streams, namely, concept-evolution is rarely addressed in the
literature. Concept-evolution occurs as a result of new classes
evolving in the stream. This paper addresses concept-evolution
in addition to the existing challenges of infinite-length and
concept-drift. In this paper, the concept-evolution phenomenon
is studied, and the insights are used to construct superior
novel class detection techniques. First, we propose an adaptive
threshold for outlier detection, which is a vital part of novel
class detection. Second, we propose a probabilistic approach for
novel class detection using discrete Gini Coefficient, and prove
its effectiveness both theoretically and empirically. Finally,
we address the issue of simultaneous multiple novel class
occurrence, and provide an elegant solution to detect more
than one novel classes at the same time. We also consider
feature-evolution in text data streams, which occurs because
new features (i.e., words) evolve in the stream. Comparison with
state-of-the-art data stream classification techniques establishes
the effectiveness of the proposed approach.

Keywords-data stream; concept-evolution; novel class; outlier

I. INTRODUCTION

The problem of data stream classification has been widely
studied in the literature over the last decade. The dynamic
and evolving nature of data streams pose special challenges
to the development of effective and efficient algorithms. Two
of the most challenging characteristics of data streams are its
infinite length and concept-drift. Since a data stream is a high
volume phenomenon, which can be considered infinite in
length, it is impractical to store and use all the historical data
for training. Several incremental learners have been proposed
to address this problem [4], [10]. In addition, concept-drift
occurs in the stream when the underlying concepts of the
stream change over time. A variety of techniques have also

been proposed in the literature for addressing concept-drift
[5], [9] in data stream classification.

However, another significant characteristic of data stream
is that of concept-evolution. This occurs when new classes
evolve in the data. For example, consider the problem of
intrusion detection in a network traffic stream. If we consider
each type of attack as a class label, then concept-evolution
occurs when a completely new kind of attack occurs in the
traffic. Another example is the case of a text data stream,
such as that occurring in Twitter. In this case, new topics
(classes) may frequently emerge in the underlying stream
of text messages. The problem of concept-evolution is ad-
dressed in only a very limited way by the currently available
data stream classification techniques. We investigate this
problem in this paper, and propose improved solutions. Our
current work also addresses the feature-evolution problem
in data streams, such as text streams, where new features
(words) emerge and old features fade away.

Our previous work [6] addresses the novel class detec-
tion problem in the presence of concept-drift and infinite
length. In this technique, an ensemble of models is used to
classify the unlabeled data, and detect novel classes. The
novel class detection process consists of three steps. First,
a decision boundary is built during training. Second, test
points falling outside the decision boundary are declared
as filtered outliers, or F -outliers. Finally, the F -outliers
are analyzed to see if there is enough cohesion among
themselves (i.e., among the F -outliers) and separation from
the training instances. If such cohesion and separation are
found, then the F -outliers are identified as novel class
instances. However, this approach observed high false alarm
rates on some datasets. Besides, it did not distinguish among
more than one novel classes. In this paper, we propose
an improved technique to reduce both false alarm rate
and increase detection rate. Our framework also allows for
methods to distinguish among two or more novel classes.

We claim three major contributions in novel class detec-
tion for data streams. First, we propose a flexible decision
boundary for outlier detection by allowing a slack space

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDM.2010.160

929

outside the decision boundary. This space is controlled by
a threshold, and the threshold is adapted continuously to
reduce the risk of false alarms and missed novel classes.
Second, we apply a probabilistic approach to detect novel
class instances using the discrete Gini Coefficient. With this
approach, we are able to distinguish different causes for the
appearance of the outliers, namely, noise, concept-drift, or
concept-evolution. Finally, we apply a graph-based approach
to detect the appearance of more than one novel classes
simultaneously, and separate the instances of one novel
class from the others. To the best of our knowledge, this is
the first work that proposes these advanced techniques for
novel class detection and classification in data streams. We
apply our technique on a number of benchmark data streams
including Twitter messages, and outperform the state-of-the-
art classification and novel class detection techniques.

The rest of the paper is organized as follows. Section
II discusses the related works in data stream classification
and novel class detection. Section III describes the proposed
technique. Section IV then reports the datasets and experi-
mental results, and Section V concludes with directions to
future works.

II. RELATED WORK

Most of the existing data stream classification techniques
are designed to handle the efficiency and concept-drift
aspects of the classification process [1], [3]–[5], [9]–[11].
Each of these techniques follow some sort of incremental
learning approach to tackle the infinite-length and concept-
drift problems. There are two variations for this incremental
approach. The first approach is a single-model incremental
approach, where a single model is dynamically maintained
with the new data. For example, [4] incrementally updates
a decision tree with incoming data, and the method in [1]
incrementally updates micro-clusters in the model with the
new data. The other approach is a hybrid batch-incremental
approach, in which each model is built using a batch
learning technique. However, older models are replaced by
newer models when the older models become obsolete (
[2], [5], [9], [10]). Some of these hybrid approaches use
a single model to classify the unlabeled data (e.g. [10]),
whereas others use an ensemble of models (e.g. [5], [9]). The
advantage of the hybrid approaches over the single model
incremental approach is that the hybrid approaches require
much simpler operations to update a model.

The other category of data stream classification tech-
nique deals with concept-evolution, in addition to addressing
infinite-length and concept-drift. Spinosa et al. [7] apply
a cluster-based technique to detect novel classes in data
streams. However, this approach assumes only one “normal”
class, and considers all other classes as “novel”. Therefore,
it is not directly applicable to multi-class data stream clas-
sification, since it corresponds to a “one-class” classifier.
Furthermore, this technique assumes that the topological

shape of the normal class instances in the feature space is
convex. This may not be true in real data. Our previous
work [6] proposes a classification and novel class detection
technique that is a multi-class classifier and does not require
classes to have convex shape. In this paper, we extend
this work by proposing flexible and dynamically adaptive
decision boundary for outlier detection, as well as methods
for distinguishing more than one novel classes. Experiments
with real datasets prove the effectiveness of our approach.

III. NOVEL CLASS DETECTION: PROPOSED APPROACH

In this paper, we propose three different improvements
over the existing novel class detection technique, i.e.: i)
Outlier detection using adaptive threshold, ii) Novel class
detection using Gini Coefficient, and iii) Simultaneous mul-
tiple novel class detection. These are discussed in the
following subsections. First, we briefly discuss the existing
novel class detection technique.

Our stream classifier is an ensemble of L classification
models, M = {M1, ...,ML}. A class c is defined as a novel
class if none of the classifiers Mi has been trained with c.
Otherwise, if one of the classifiers Mi has been trained with
c, then it is an existing class. The data stream is divided into
equal sized chunks. We train a k-NN based classifier with
each labeled chunk. Here, K clusters are built using a semi-
supervised K-means clustering, and the cluster summaries
(mentioned as pseudopoints) of each cluster are saved.
The summary contains the centroid, radius, and frequencies
of data points belonging to each class. The radius of a
pseudopoint is equal to the distance between the centroid
and the farthest data point in the cluster. The raw data
points are discarded after creating the summary. These pseu-
dopoints constitute the classification model. This classifier
replaces one of the existing classifiers (usually the highest
error classifier) in the ensemble. Besides, each pseudopoint
corresponds to a hypersphere having center at the centroid
and radius equal to the radius of the psuedopoint. The union
of the hyperspheres constitute the decision boundary for the
classifier. If a test instance x is inside the decision boundary
of any model in the ensemble, then it is classified as an
existing class instance using majority voting. Otherwise, if
x is outside the decision boundary of all the models, it is
considered an F -outlier, and it is temporarily stored in a
buffer Buf . When there are enough outliers in Buf , we
invoke a novel class detection procedure to check whether
the outliers actually belong to a novel class. If a novel class
is found, the F -outliers are tagged as novel class instance.

The main assumption in novel class detection is that any
class of data follows the property that “a data point should be
closer to the data points of its own class (cohesion) and far-
ther apart from the data points of other classes (separation)”
[6]. The novel class detection procedure measures the cohe-
sion among the F -outliers in Buf , and separation of the
F -outliers from the existing class instances by computing

930

a unified measure of cohesion and separation, which we call
q-Neighborhood Silhouette Coefficient or q-NSC, for short,
as follows: q-NSC(x) = D̄cmin,q(x)−D̄cout,q(x)

max(D̄cmin,q(x),D̄cout,q(x))
where

D̄cout,q(x) is the mean distance from F -outlier x to its q
nearest F -outlier instances, and D̄cmin,q(x) is the mean
distance from x to its q-nearest existing class instances.
The expression q-NSC yields a value between -1 and +1.
A positive value indicates that x is closer to the F -outlier
instances (more cohesion) and farther away from existing
class instances (more separation), and vice versa. The q-
NSC(x) value of an F -outlier x is computed separately for
each classifier Mi ∈ M . A new class is declared if there are
at least q′ (> q) F -outliers having positive q-NSC for all
classifiers Mi ∈ M .

A. Outlier detection using adaptive threshold

A test instance is identified as an F -outlier if it is outside
the radius of all the pseudopoints in the ensemble of models.
Therefore, if a test instance is outside the hypersphere of a
pseudopoint, but very close to its surface, it will still be an
outlier. However, this case might be frequent due to concept-
drift or noise, i.e., existing class instances may be outside
and near to the surface of the hypersphere. As a result, the
false alarm rate (i.e., detecting existing classes as novel)
would be high. In order to solve this problem, we follow
an adaptive approach for detecting the outliers. We allow a
slack space beyond the surface of each hypersphere. If any
test instance falls within this slack space, it is considered
as existing class instance. This slack space is defined by a
threshold, OUTTH. We apply an adaptive technique to adjust
the threshold. First, we explain how the threshold is used.

Using OUTTH: Let x be a test instance, and h be the near-
est pseudopoint of x in model Mi, with radius r. Let d be the
distance from x to the centroid of h. We define weight(x) as
follows: weight(x) = er−d. If r >= d, then x is inside (or
on) the hypersphere and weight(x) >= 1. Otherwise, x is
outside the hypersphere and weight(x) < 1. Note that if x is
outside the hypersphere, then weight(x) is within the range
[0,1). The main reason for using this exponential function
is that the function produces values within the range [0,1),
which provides a convenient normalized value. The value of
OUTTH is also within [0,1). Now, if weight(x) >= OUTTH,
then we consider x as existing class instance, otherwise, x
is considered as an outlier. If x is identified as an outlier
for all models Mi ∈ M , then x is considered as an F -
outlier. Adjusting OUTTH: Initially, OUTTH is initialized
with OUTTH INIT value. We set OUTTH INIT to 0.7 in
our experiments. To adjust OUTTH, we examine the latest
labeled instance x. If x had been a false-novel instance (i.e.
existing class but misclassified as novel class), then it must
have been an outlier. Therefore, weight(x) < OUTTH. If the
difference OUTTH - weight(x) is less than a small constant
ε, then we consider x as a marginal false-novel instance. If x
is a marginal false-novel instance, then we increase the slack

Figure 1. Illustration of a slack space outside the decision boundary

space so that future instances like this do not fall outside
the decision boundary. Therefore, OUTTH is decreased by
a small value (ε), which effectively increases the slack space.
Conversely, if x is a marginal false-existing instance , then
x is a novel class instance but was falsely identified as an
existing class instance by a narrow margin. Therefore, we
need to decrease the slack space (increase OUTTH). This is
done by increasing OUTTH by ε. The marginal constraint is
imposed to avoid drastic changes in OUTTH value. Figure 1
illustrates the concept of OUTTH, marginal false-novel and
marginal false-existing instances.

B. Novel class detection using Gini Coefficient

The F -outliers detected during the outlier detection
phase may occur because of one or more of the three
different reasons: noise, concept-drift, or concept-evolution.
In order to distinguish the F -outliers that occur because of
concept-evolution only, we compute a metric called discrete
Gini Coefficient of the F -outlier instances. We show that
if the Gini Coefficient is higher than a particular threshold,
then we can be confident of the concept-evolution scenario.
After detecting the F -outlier instances using the OUTTH
value discussed in the previous section, we compute the
q-NSC(x) value for each F -outlier instance x. If the q-
NSC(x) value is negative, we remove x from considera-
tion, i.e., x is regarded as an existing class instance. For
the remaining F -outliers, q-NSC(.) is within the range
[0,1]. Now, we compute a compound measure for each
such F -outlier, called Novelty score or Nscore, as follows:
Nscore(x) = 1−weight(x)

1−minweightq-NSC(x), where weight(x)
is defined in Section III-A, and minweight is the mini-
mum weight among all F -outliers having positive q-NSC.
Nscore contains two parts: The first part measures how far
the outlier is away from its nearest existing class pseudopoint
(higher value - greater distance) The second part measures
the cohesion of the F -outlier with other F -outliers, and the
separation of the F -outlier from the existing class instances.
Note that the value of Nscore(x) is within [0,1]. A higher
value indicates a greater likelihood of being a novel class
instance. The distribution of Nscore(x) can be characterized
by the actual class of F -outlier instances. In other words,
by examining the distribution of Nscore(x), we can decide
about the novelty of the F -outlier instances, as follows.

We discretize the Nscore(x) values into n equal intervals
(or bins), and construct a cumulative distribution function

931

(CDF) of Nscore. Let yi be the value of the CDF for the
ith interval. We compute the discrete Gini Coefficient G(s),
for a random sample of yi, as follows: G(s) = 1

n (n + 1 −
2(

∑n

i=1
(n+1−i)yi∑n

i=1
yi

)). Let us consider three different cases and

examine the behavior of G(s) in each case.
Case 1: All Nscore(x) are very low, and fall in the first

interval. Therefore, yi = 1 for all i. So G(s) becomes (after

simplification): G(s) = 1
n (n + 1 − 2(

∑n

i=1
(n+1−i)1∑n

i=1
1

)) = 0.

Note that this case occurs when all F -outliers actually
belong to the existing classes.
Case 2: All Nscore(x) are very high, and fall in the last
interval. Therefore, yn = 1 and yi=0 for all i < n. So G(s)
becomes (after simplification): G(s) = 1

n (n + 1 − 2(1
1)) =

n−1
n . Note that this case occurs when all F -outliers actually

belong to the novel class.
Case 3: Nscore(x) is evenly distributed across all the inter-
vals. In this case yi = i/n for all i. So G(s) becomes (after

simplification): G(s) = 1
n (n+1−2(

∑n

i=1
(n+1−i)i∑n

i=1
i

)) = n−1
3n .

Note that this case occurs if the distribution is mixed, i.e.,
noise, concept-drift and possibly some novel class instances.

By examining the three cases, we can come up with
a threshold for Gini Coefficient to identify a novel class.
If G(s) > n−1

3n , we declare a novel class and tag the
F -outliers as novel class instances. If G(s) = 0, we
classify the F -outliers as existing class instances. If G(s) ∈
(0, n−1

3n), we filter out the F -outliers falling in the first
interval, and consider rest of the F -outliers as novel class.
Note that if n → ∞, n−1

3n → 1
3 . But for any value of n < ∞,

n−1
3n < 1/3. For example, if n=10, then n−1

3n = 0.3. We use
n=10 in our experiments.

C. Simultaneous multiple novel class detection

It is possible that more than one novel class may arrive
at the same time (in the same chunk). This is a common
scenario in text streams, such as Twitter messages. Note
that determining whether there are more than one novel
classes is a challenging problem, since we must execute it in
an unsupervised fashion. In order to detect multiple novel
classes, we construct a graph, and identify the connected
components in the graph. The number of connected com-
ponents determines the number of novel classes. The basic
assumption in determining the multiple novel classes follows
from the cohesion and separation property. For example,
if there are two novel classes, then the separation among
the different novel class instances should be higher than the
cohesion among the same-class instances.

At first we use N list, the collection of novel class
instances detected using the novel class detection technique,
to create Kv pseudopoints using K-Means clustering and
summarizing the clusters. Here Kv = K|N List|/S (S
being the chunk size). Then we build a graph G = (V,E).
Each psudopoint is considered a vertex of G. For each

pseudopoint h, we find its nearest neighbor h.nn based on
centroid distances, and compute the silhouette coefficient of
h using the following formula: h.sc = dist(h,h.nn)−h.μ

max(dist(h,h.nn),h.μ) ,
where dist(h, h.nn) is the centroid distance between h to
h.nn, and h.μ is the mean distance from the centroid of
h to all instances belonging to h. If h.sc is high (close to
1), it indicates h is a tight cluster and it is far from its
nearest cluster. On the other hand, if h.sc is low, then h is
not so tight, and close to its nearest cluster. We add an edge
(h,h.nn) to G if h.sc is less than a threshold thsc, which
indicates h and h.nn are not so separable. We use thsc=0.8
in all experiments. Once we have the graph G, we find the
connected components, and mark each pseudopoint with the
corresponding component number.

For each connected component gi ∈ G, we first compute
its global centroid C(gi), i.e., the center of gravity of all
pseudopoints in gi, and μd(gi), i.e., the mean distance of
all the pseudopoints in gi from C(gi). For each pair of
components (g1, g2) ∈ G, we merge them if μd(g1)+μd(g2)
is greater than twice the distance between C(g1) and C(g2).
In other words, two components are merged if the mean
intra-component distance is higher than the inter-component
distance, i.e., the components are less dense and less sep-
arable from each other. Finally, we assign class labels to
each novel class instance, which is equal to the component
number to which the instance belongs.

IV. EXPERIMENTS

A. Dataset

We have done extensive experiments on the Twitter, Forest
Cover, KDD, and synthetic data sets. Due to space limitation,
we report only for Twitter and Forest Cover datasets. The
descriptions of these datasets may be found in [8].

B. Experimental setup

Baseline techniques: MineClass: This is the existing
approach proposed in [6]. MCM: This is the proposed
approach, which stands for Multi Class Miner in Data
Streams. OW: This is the combination of two approaches,
namely, OLINDDA [7], and weighted classifier ensemble
(WCE) [9]. OLINDDA works as a novel class detector, and
WCE performs the classification. Similar baseline has been
used in [6], with two variations - parallel and single. Here
we use only the parallel model since it was the better of the
two. In all experiments, the ensemble size and chunk-size
are kept the same for both these techniques. Besides, the
same base learner (i.e., k-NN) is used for all three methods.

Parameters settings: Feature set size = 30 for Twitter
dataset. For other datasets, all the numeric features are used.
K (number of pseudopoints per chunk) = 50, S (chunk
size) = 1000, L (ensemble size) = 6, q (minimum number
of F -outliers required to declare a novel class) = 50. For
OLINDDA, we use the default parameter values [7].

932

C. Evaluation

1) Overall novel class detection: Evaluation approach:
We use the following performance metrics for evaluation:
Mnew = % of novel class instances Misclassified as existing
class, Fnew = % of existing class instances Falsely identified
as novel class, ERR = Total misclassification error (%)(in-
cluding Mnew and Fnew). We build the initial models in
each method with the first InitNumber chunks. From the
InitNumber+1st chunk onward, we first evaluate the per-
formances of each method on that chunk, then use that chunk
to update the existing models. We use InitNumber=3 for
all experiments. The performance metrics for each chunk are
saved and aggregated for producing the summary result.

Figures 2(a), and 2(b) show the ERR rates for each
approach throughout the stream in the Twitter, and Forest
datasets respectively. For example, in figure 2(a) at X axis =
200, the Y values show the average ERR of each approach
from the beginning of the stream to chunk 200 in Twitter
dataset. At this point, the ERR of MineClass, MCM, and
OW are 17.2%, 1.3%, and 3.3%, respectively. Figures 2(d),
and 2(e) show the total number of novel instances missed
for each of the baseline approaches for Twitter and Forest
dataset, respectively. For example, in figure 2(e), at the same
value of the X axis (=200), the Y values show the total
novel instances missed (i.e., misclassified as existing class)
for each approach from the beginning of the stream to chunk
200 in the Twitter dataset. At this point, the number of novel
instances missed by MineClass, MCM, and OW are 929,
0, and 3533, respectively. The ROC curves for the Twitter,
and Forest datasets are generated by plotting false novel
class detection rate (false positive rate if we consider novel
class as positive class and existing classes as negative class)
against the true novel class detection rate (true positive rate).
Figure 2(c) shows the ROC curves for the Twitter dataset.

Table I
SUMMARY OF THE RESULTS

Dataset Method ERR Mnew Fnew AUC

Twitter MineClass 17.0 24.3 15.1 0.88
MCM 1.8 0.7 0.6 0.94
OW 3.1 100 1.4 0.56

Forest MineClass 3.6 8.4 1.3 0.97
MCM 3.1 4.0 0.68 0.99
OW 5.9 20.6 1.1 0.74

Table I summarizes the results of overall classification
and novel class detection error i.e., error in classification
and detecting novel class only (not distinguishing multiple
novel classes). For example, the column headed by Mnew

reports the Mnew rates of each approach in different datasets
for the entire stream. In Twitter dataset, the Mnew rates are
24.3%, 0.7%, and 100% for MineClass, MCM, and OW,
respectively. The column AUC reports the area under the
ROC curves for each dataset. To summarize the results,
MCM outperforms MineClass and OW in ERR, Fnew and
Fnew rates. This is because of the enhanced mechanism

of MCM in detecting novel classes. Recall that MCM
applies an adaptive threshold for outlier detection, and also
employs a probabilistic approach in recognizing the novel
class instances. The net effect is that the overall Fnew and
Mnew rates drop significantly and the ERR rate also drops.

Table II
SUMMARY OF MULTI-NOVEL CLASS DETECTION RESULTS

Dataset Occurrence 1 2 3 4 Total

Twitter

Type 1 as Type 1 360 394 508 447 1709
Type 1 as Type 2 0 0 0 0 0
Type 2 as Type 2 518 568 453 500 2039
Type 2 as Type 1 35 0 55 19 109
Precision 1.0 1.0 1.0 1.0 1.0
Recall 0.91 1.0 0.9 0.96 0.94
F-measure 0.95 1.0 0.94 0.98 0.97

Forest

Type 1 as Type 1 371 583 — — 954
Type 1 as Type 2 183 444 — — 627
Type 2 as Type 2 300 550 — — 850
Type 2 as Type 1 113 411 — — 524
Precision 0.67 0.57 — — 0.60
Recall 0.77 0.59 – — 0.64
F-measure 0.71 0.58 – – 0.62

2) Multi novel class detection: Table II reports the
multiple novel class detection results. There are 4 and 2
occurrences of two novel classes in Twitter, and Forest
datasets, respectively. In other words, two novel classes
appear simultaneously in 4 different data chunks in Twitter
dataset, and two novel classes appear simultaneously in 2
different data chunks in Forest dataset. For each occurrence
of multiple novel classes, we report the confusion matrix
in a single column. The entries in the rows headed by
‘Type 1 as Type 1’ report the number of type 1 novel class
instances correctly detected as type 1, the rows headed by
‘Type 1 as Type 2’ report the number of type 1 novel class
instances incorrectly detected as type 2, and so on. For
example, in the Twitter dataset, and in the first occurrence
of two novel classes (under column ‘1’), all of the 360
instances of type 1 novel class are identified correctly
as type 1; none of the type 1 novel class instances are
incorrectly identified as type 2; 518 of the type 2 novel
class instances are correctly identified as type 2; and 35 of
the type 2 novel class instances are incorrectly identified
as type 1. Note that the numbering of type 1 and 2 are
relative. We also summarize our findings by reporting the
precision, recall, and F-measure for each occurrence for
each dataset, based on the mis-classification of type 1 novel
class instance into the other kind. For example, the table
cell corresponding to the column headed by ‘1’ and the
row headed by ‘Twitter F-measure’ reports the F-measure
of multiple novel class detection on the first occurrence of
two novel classes in Twitter dataset, which is 0.95. The F-
measure is computed by considering type 1 instances as
positive, and the other as negative class. Considering the
fact that we apply an an unsupervised approach, the results
are very promising, especially in the Twitter dataset, where
the F-measure is 0.97. For the Forest dataset, the F-measure

933

 0

 5

 10

 15

 20

 50 100 150 200 250 300

E
R

R

Stream (in thousand data pts)

MineClass
MCM

OW

(a)

 0

 4

 8

 12

 16

 20

 50 100 150 200 250 300 350 400 450

E
R

R

Stream (in thousand data pts)

MineClass
MCM

OW

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
no

ve
l c

la
ss

 d
et

ec
tio

n
ra

te

False novel class detection rate

MineClass
MCM

OW

(c)

 0

 1000

 2000

 3000

 4000

 5000

 50 100 150 200 250 300

N
ov

el
 in

st
an

ce
s

Stream (in thousand data pts)

Missed by MineClass
Missed by MCM

Missed by OW

(d)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400

N
ov

el
 in

st
an

ce
s

Stream (in thousand data pts)

Missed by MineClass
Missed by MCM

Missed by OW

(e)

Figure 2. ERR rates in (a) Twitter, and (b) Forest dataset; (c) ROC curves in Twitter dataset; Novel classes missed in (d) Twitter , and (e) Forest dataset

is lower because the novel classes in Twitter dataset are
relatively well separated than that of the Forest dataset.

V. CONCLUSIONS

We propose several improvements over the existing clas-
sification and novel class detection technique. First, we pro-
pose an improved technique for outlier detection by defining
a dynamic slack space outside the decision boundary of each
classification model. Second, we propose a better alternative
for identifying novel class instances using discrete Gini
Coefficient. Finally, we propose a graph-based approach
for distinguishing among multiple novel classes. We apply
our technique on several real data streams that experience
concept-drift and concept-evolution, and achieve significant
performance improvements over the existing techniques. In
the future, we would like to extend our technique to text and
multi-label stream classification problems.

ACKNOWLEDGEMENT

Research was sponsored in part by AFOSR MURI award
FA9550-0810265, NASA grant NNX08AC35A, and the
Army Research Laboratory (ARL) under Cooperative Agree-
ment No.W911NF-0920053 (NS-CTA). The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the ARL or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework
for on-demand classification of evolving data streams. IEEE
Trans. on Knowl.& Data Engg.(TKDE), 18(5):577–589, 2006.

[2] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavald.
New ensemble methods for evolving data streams. In
SIGKDD, pages 139–148, 2009.

[3] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari.
Adapted one-versus-all decision trees for data stream classi-
fication. IEEE TKDE, 21(5):624–637, 2009.

[4] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In SIGKDD, pages 97–106, 2001.

[5] J. Kolter and M. Maloof. Using additive expert ensembles to
cope with concept drift. In ICML, pages 449–456, 2005.

[6] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thurais-
ingham. Integrating novel class detection with classification
for concept-drifting data streams. In ECML PKDD, volume 2,
pages 79–94, 2009.

[7] E. J. Spinosa, A. P. de Leon F. de Carvalho, and J. Gama.
Cluster-based novel concept detection in data streams applied
to intrusion detection in computer networks. In ACM SAC,
pages 976–980, 2008.

[8] University of Texas at Dallas Data Mining Tools Repository.
http://dml.utdallas.edu/Mehedy.

[9] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-
drifting data streams using ensemble classifiers. In SIGKDD,
pages 226–235, 2003.

[10] Y. Yang, X. Wu, and X. Zhu. Combining proactive and
reactive predictions for data streams. In SIGKDD, pages 710–
715, 2005.

[11] P. Zhang, X. Zhu, and L. Guo. Mining data streams with
labeled and unlabeled training examples. In ICDM, pages
627–636, 2009.

934

