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minimum spanning tree is a key sub-problem in the randomized algorithms that have been developedfor �nding a minimum spanning tree. In this context, our EREW algorithm is an important steptowards deriving a logarithmic time, linear work EREW PRAM algorithm for �nding a minimumspanning tree.2 Previous workAmong the earliest studies on the problem of verifying minimum spanning trees was one by Tarjan([Tar79]) who presented a sequential algorithm whose running time was superlinear by a factor of�(m;n), the inverse Ackerman function. Koml�os's algorithm ([K�om85]) was the �rst to use a linearnumber of comparisons, but no implementation was known for some time. Then Dixon, Rauch andTarjan ([DRT92]) developed a linear time algorithm based on Koml�os's idea and a table look-upmethod. A simpler algorithm was developed by King ([Kin95]), which is essentially a simpli�cationand implementation of the Koml�os algorithm.For parallel algorithms, Alon and Schieber ([AS87]) gave one on the CREW PRAM modelwhose work bound is superlinear by a factor of �(m;n). Parallelizing the algorithm in [DRT92],Dixon and Tarjan ([DT94]) obtained an algorithm on the CREW PRAM with optimal bounds(i.e., logarithmic time and linear work). We further improve it by parallelizing King's algorithm([Kin95]). Our result is an optimal algorithm for this problem on the EREW PRAM, which is theweakest PRAM model. All of the above algorithms are deterministic.It should be mentioned that an algorithm for �nding a minimum spanning tree is also an algo-rithm for veri�cation. Among the known parallel algorithms are Chong and Lam's deterministicEREW algorithm which requires O(logn log log n) time on O(m+n) processors ([CL93]), Karger'srandomized EREW algorithm which runs in O(logn) expected time on �((m= logn) + n1+�) pro-cessors ([Kar95]) and Cole, Klein and Tarjan's randomized CRCW algorithm which requires loga-rithmic time and linear work ([CKT96]).3 The AlgorithmGiven a graph G with n vertices and m edges with a distinct weight assigned to each edge and aspanning tree T on G, we are required to verify that T is the minimum spanning tree (MST) of G.We assume distinct edge-weights without loss of generality to simplify our presentation.The algorithm is based on the fact that a spanning tree is the minimum spanning tree if andonly if the weight of each nontree edge <u; v> in G is at least the weight of the heaviest edge onthe path between u and v in the tree. In other words, we must verify that each nontree edge isheavier than all edges on the path in the tree it covers.3.1 The Modi�ed Boruvka TreeLet T be a spanning tree of a connected graph G with n nodes. The Bor�uvka tree B (as de�ned in[Kin95]) of T is the tree of components that are formed when the Bor�uvka algorithm ([Bor26]) for�nding a minimum spanning tree is applied to T . The Bor�uvka algorithm contracts the minimumedge incident on each component in every phase until there is only one component remaining.More formally, the construction of the Bor�uvka tree starts with a tree T = (V;E), and creates aleaf f(v) of B for every vertex v 2 V . Each vertex v is considered to be a separate component. In2



each phase of the Bor�uvka algorithm, each component chooses the minimum weight edge incident onit. The chosen edges are contracted, hence merging groups of components into single components.Each new component t is added as a new node f(t) to B. f(t) is connected to the sub-componentnodes from which it is formed by edges of weights equal to the weights of the edges which havebeen contracted in T .In our algorithm, we shall construct a modi�ed Bor�uvka tree, which is constructed exactly asbefore except that in each phase, no more than a constant number of components may be mergedinto one. In each phase of the computation, only a subset of the chosen edges is contracted so thatany node in the Bor�uvka tree has no more than a constant number of children.For any tree T , let T (x; y) denote the path from x to y in T and let w(e) be the weight of edgee. We shall prove the following property of a modi�ed Bor�uvka tree. This was proved earlier forthe Bor�uvka tree in [Kin95].Lemma 1 Let T be a spanning tree and let B be a modi�ed Bor�uvka tree constructed as describedabove. Then for any pair of nodes x and y in T, the weight of the heaviest edge in T(x,y) equalsthe weight of the heaviest edge in B(f(x),f(y)).Proof: First we show that for every edge e 2 B(f(x); f(y)), there exists an edge e0 2 T (x; y) suchthat w(e0) � w(e).Let e =<a; b>, and let a be the endpoint of e which is farther away from the root of B. Then,a = f(t), where t is a component that contains either x or y, but not both. w(e) is the weight ofthe edge selected by t to be contracted. Let e0 be the edge in T (x; y) with exactly one endpointin t. Since t must choose the minimum weight edge among e and e0 and it chooses e, we havew(e0) � w(e).Let e be the heaviest edge in T (x; y). It remains to show that there is an edge of the sameweight in B(f(x); f(y)).If e is selected for contraction by a component which contains x or y, then an edge in B(f(x); f(y))is labeled w(e). We assume the contrary. Then, e is selected for contraction by a component t whichdoes not contain x or y. Since t contains one endpoint of e, it contains one or more intermediatenodes in T (x; y). Therefore at least two edges in T (x; y) are incident on t, yet the heavier edge eis selected, giving a contradiction.Let T be the given spanning tree in a graph G. From Lemma 1, it follows that to verify thatT is the MST of G, it is su�cient to verify that for any nontree edge <u; v>, the heaviest edge inB(f(u); f(v)) is no heavier than w(u; v).3.2 Algorithm DescriptionWe are now ready to present our parallel algorithm. We are given an edge-weighted graph G withspanning tree T . Nontree edges are the edges in G that are not in T .3.2.1 Formation of the modi�ed Boruvka treeWe �rst binarize the tree T . A dummy child node is added to nodes with only one child. Nodeswith k(� 3) children are split into two sets of sizes lk2m and jk2k that become children of the node.The new edges are given a cost of �1, so that they are not heavier than any nontree edge. This3



procedure is recursively repeated until we have a binary tree. Note that the number of dummynodes is linear in the size of the original tree.Next, we use tree contraction as described in [KR90, KD88]. Tree contraction shrinks a treeinto a single vertex by repeatedly applying the shunt operation (which is called rake in [KD88]; weprefer the term shunt since this operation is derived from the shunt operation on DAGs presentedin [MRK88]). Given a leaf u whose parent is p(u), the shunt operation applied to u removes uand p(u) from the tree and connects the sibling of u to p(p(u)), the parent of p(u). The treecontraction algorithm is applicable only to binary trees. The leaves are �rst numbered from leftto right, excluding the leftmost and rightmost leaves of the tree. For log n iterations, where n isthe number of vertices, the shunt operation is applied to the odd numbered leaves remaining inthe tree. The shunt is applied in parallel to the odd-numbered leaves which are left children oftheir parents �rst and then applied in parallel to the odd-numbered right children. This ensuresthat there are no read-write con
icts. Each complete iteration reduces the number of vertices byhalf. Hence O(logn) iterations su�ce to contract the tree into a single vertex. At the end of eachiteration, only the even numbered leaves remain, so renumbering them simply involves dividing thenumber for each leaf by 2.We shall apply this tree contraction to form a modi�ed Bor�uvka tree. The shunt operation isperformed as follows :� Merge leaf v with its parent p(v). Note that this is a valid Bor�uvka merge since a leaf hasonly one edge incident on it, which must be the minimum edge.� Contract the minimum edge above or below p(v). By the previous step, v has been removed.Hence, p(v) has two edges, one to v's sibling and one to its parent. We contract the lighterof these two edges, hence maintaining the requirements for a Bor�uvka tree.It should be pointed out that performing a shunt as above may result in access con
icts in acase where both v and p(p(v)) try to merge with p(v) in the second substep. However, since thenumber of processors in con
ict is constant, the con
icts may be resolved on the EREW PRAMwithout increasing time or work requirements.The modi�ed Bor�uvka tree B is formed in O(logn) iterations as in the general tree contractionalgorithm. Every iteration gives rise to two levels of B, one for each parallel application of theshunt operations. Hence, B has depth O(logn). The number of children of a node of B is no morethan �ve, since one parallel application of shunt operations can merge at most �ve nodes into thesame component.Henceforth, we shall refer to the modi�ed Bor�uvka tree as the Bor�uvka tree.3.2.2 Pre-processing of the Boruvka tree and nontree edgesEvery nontree edge <u; v> in G is transformed into a nontree edge <f(u); f(v)> in the Bor�uvkatree B, which we call the corresponding query edge of < u; v >. We must now verify that w(u; v)is at least as large as the weight of any edge in B(f(u); f(v)). For this we construct an Euler tour([J�92, TV85]) on B and use it to determine the level, parent and size of every node. The size ofa node is the number of nodes in its subtree including itself. Note that all query edges in B areincident only on leaves of B.Next, for each nontree edge, we �nd the least common ancestor (lca) of its endpoints in B.This can be done in logarithmic time and linear work on an EREW PRAM using the preprocessing4



algorithm described in [J�92], together with a scheme described in [Ram96]. Then, we split eachnontree edge <x; y> into two edges, namely <x; lca(x; y)> and <y; lca(x; y)>with the same weightas <x; y>. These new edges can be stored at x and y respectively to avoid write con
icts. It issu�cient to verify that these new edges are heavier than the tree paths they cover. Here onwards,the nontree edges in B can only be between a leaf and its ancestor.3.2.3 Microtrees : Cutting and Veri�cationFor any node v in the tree B, if size(v) � plogn < size(p(v)), we designate the subtree rootedat v as a microtree. Here, we can avoid a concurrent read of parent sizes by having parent nodesbroadcasting their size to their children. Any such operation can be performed in constant timebecause the number of children of a node is no more than a constant.If a nontree edge <u; x> originating at a leaf u has the other endpoint x above the root r of themicrotree in which u is contained, it is split into two edges <u; r> and <r; x> of the same weight.Edge <u; r> is stored at u while <r; x> is saved at r. Write con
icts at r can be avoided by apost-order numbering of the nontree edges originating from the microtree of r. Now we have twosets of edges, one consisting of edges within the microtrees and the other consisting of edges in thetree formed by removing all the microtrees. We shall call the latter tree a macrotree.We can now verify in parallel that the edges within the microtrees do not violate the minimalitycondition, using the sequential algorithm in [Kin95] for each microtree. Processors can be allocatedby computing pre�x sums on an auxiliary array containing the number of nontree edges lying whollywithin each microtree and making a proportional allocation of microtrees to processors. Once thisstep is over, the microtrees can be removed, leaving us with a tree of size O(n=plogn).We shall perform another step of forming microtrees, edge-splitting, parallel veri�cation andmicrotree removal on the remaining tree. This step is performed exactly as before. Now, we willhave reduced the remaining macrotree to size O(n=logn).3.2.4 The Macrotree : Veri�cationThe �nal stage of the veri�cation is verifying the minimality condition for the macrotree M . Thealgorithm follows :Pfor all nodes v doCURRENT(v) := w(v; p(v))RofpFor i=1 to DEPTH(M) doPfor all nodes v doSend CURRENT(v) to childrenSet CURRENT(v) := New value received from parentIf v is a leaf thenSave CURRENT in Path To Anc[v,i]RofpRofPfor all nontree edges <u,v>, where u is a leaf doPlace edge in bucket[u,level(v)]Rofp 5



Pfor all leaves v doPerform a pre�x max on Path To Anc[v] arrayPfor all buckets at v doFind minimum weight edge at bucket[v,i]RofpVerify minimum weight at bucket[v,i] � Path To Anc[v,i]RofpThe �rst part of the algorithm simply propagates edge weights to the leaves. Now, we collectall the nontree edges from a leaf and bucket sort them by level of the ancestor to which the nontreeedge connects. All edges in a bucket start and end at the same nodes. So, only the minimum weightedge in each bucket is saved. The pre�x max on the array Path To Anc computes the heaviest treeedge weight on the path from the leaf to any ancestor. Now we can compare the minimum valuesin the buckets to the corresponding value in the array. If none of the nontree edges are lighter thantheir corresponding entries in Path To Anc we have veri�ed that the given spanning tree is indeeda minimum spanning tree.3.3 AnalysisIn this section, we discuss the correctness of the algorithm and analyze the running time and workrequired for each step of the algorithm.3.3.1 CorrectnessThe algorithm is based on the well known fact that for any cycle C in a graph, the heaviest edgein C does not appear in the minimum spanning tree. We verify that for each nontree edge <u; v>,the weight of the edge is heavier than any edge in T (u; v). It is su�cient to do the same on themodi�ed Bor�uvka tree by Lemma 1. Additionally, nontree edges from T can only be between leavesof B. We say the edge <u; v> covers the tree-path T (u; v).An edge <u; v> is split into two edges, <u; x> and <v; x>, each of which covers the tree pathfrom one endpoint of the edge to the lowest common ancestor x of u and v. Each such edge is splitinto upto three parts in two levels of microtrees and the macrotree. In each microtree and in themacrotree, we have shown how to verify that each nontree edge is at least as heavy as every edgeon the tree-path it covers.3.3.2 Work and Time boundsIn the following we analyze the work and time bounds for the di�erent steps in the algorithm.1. (Section 3.2.1.) Binarization of the tree is performed by allocating processors to nodes ac-cording to the number of children at that node. A node with k children will require no morethan log k steps for the children to be recursively split into a binary subtree. The number ofnodes added in this subtree will be k=2. Hence, this operation can be performed in O(logn)time and linear work. 6



The tree contraction procedure is a logarithmic time, linear work procedure on an EREWPRAM ([KD88]). Note that each shunt operation on a leaf requires only a constant amountof work.2. (Section 3.2.2.) In the pre-processing step, we �rst construct an Euler tour and computepre�x sums for parameters such as the level, size and parent of a node. This is a logarithmictime, linear work EREW computation ([TV85]).The least common ancestors (lca's) may be computed in the same work-time bounds with themethod for computing lca's for nontree edges given in [Ram96]. (Brie
y, this method is basedon the algorithm for �nding lca's based on the Euler tour (see, e.g., [J�92]) that preprocessesin O(logn) time and O(n) work on the EREW PRAM and answers queries in constant timein parallel on the CREW PRAM. [Ram96] observes that the lca's of any collection of nontreeedges can be found in O(logn) time and linear work on an EREW PRAM by this method,provided all endpoints of edges are distinct. To enforce this, [Ram96] transforms the treeby appending a chain to each vertex, with one copy of the vertex for each nontree edgeincident on it, computes lca's of nontree edges in this new tree, and determines the lca's ofthe nontree edges in the original tree from this. Thus both the preprocessing and query stepsare performed in O(logn) time and O(m) work on an EREW PRAM.)Each nontree edge is now split into two edges. This is a constant time operation with linearwork on the number of edges.3. (Section 3.2.3.) The cutting of microtrees and splitting edges can be performed in O(1) timewith O(n+m) processors. We shall do it in O(logn) time with O((m+n)= logn) processors.There is an implicit processor allocation step here to list the nodes and query edges, compactthe list into an auxiliary array, and perform a pre�x sums computation on this array todetermine the allocation of tasks to processors. These steps are all within O(logn) time andO(m+ n) work.The sequential minimum spanning tree algorithm is a linear time algorithm. Hence we canperform the veri�cation of the microtrees in parallel in O(m + n) work. Since each treehas O(plog n) vertices, it has O(logn) nontree edges within it and hence size O(logn), andwe can perform this step in O(logn) time with O((m + n)= logn) processors. This includesa computation for allocating processors so that each processor is assigned a collection ofmicrotrees of total size �(logn). This processor allocation step involves compaction andpre�x sums computation on the list of microtree nodes and edges within microtrees.4. (Section 3.2.4.) The �rst step in this algorithm performs O(logn) iterations over all thenodes. Since the size of the macrotree has been reduced to O(n= logn), this is a linear workstep.Pre�x sums is as usual an operation within our bounds.The bucket sort of nontree edges on the macrotree leaves can be performed in O(logm) timeusing O(m= logm) processors, simply by assigning O(logm) edges to each processor, whichputs each edge in its bucket. Since we have O(m= logm) processors, we can sort the bucketsfor minimum in O(logm) time as well. The �nal comparison is a constant time linear workoperation. 7



By the above analysis it follows that the overall algorithm runs in O(logn) time and O(m+ n)work. These bounds are strongly optimal (as de�ned in [J�92]) even on a CREW PRAM. Theproblem of computing the OR of n bits can be mapped onto a graph with V = fv1; v2 � � �vng, aspanning tree with edges with <vi; vi+1> for 1 � i < n, the weight of the i-th edge being n + i ifthe i-th bit of the OR problem is a 1 and n � i otherwise and a nontree edge <v1; vn> of weightn. Hence, the time required by any minimum spanning tree veri�cation algorithm on a CREWPRAM with any number of processors is 
(logn) ([CDR86]).4 ConclusionWe have presented an EREW PRAM algorithm for the problem of verifying a minimum spanningtree that runs in logarithmic time and linear work. This resolves an open questions in [DT94].The algorithm is also strongly optimal. Additionally, our algorithm has a very simple high-levelstructure and makes use of elementary parallel constructs.A closely related problem is to �nd a minimum spanning tree in a graph. Cole, Klein andTarjan have given a randomized logarithmic time, linear work CRCW PRAM algorithm for thisproblem ([CKT96]). This algorithm makes use of a minimum spanning tree veri�cation algorithmas a procedure. An important open problem is to develop a logarithmic time, linear work algorithmto �nd a MST on the EREW or QRQW PRAM ([GMR94]) models, since these models are a bettermatch to existing parallel machines. Our EREW veri�cation algorithm can be used directly on anyPRAM model and hence may prove useful in deriving such algorithms. As a �rst step to solvingthis open problem two of the authors of this paper have developed a linear work EREW PRAMalgorithm to �nd a minimum spanning tree that runs in slightly super-logarithmic time [PR97]; thisgives the �rst linear work, polylogarithmic time algorithm on the EREW PRAM for this problem.References[AS87] N. Alon and B. Schieber. Optimal preprocessing for answering online product queries.Technical report, Tel Aviv University, 1987.[Bor26] O. Bor�uvka. O jist�em probl�emu minim�aln�im. Pr�aca Moravsk�e P�r�irodov�edeck�e Spole�cnosti,3:37{58, 1926. In Czech.[CDR86] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallelrandom access machines without simultaneous writes. SIAM Journal on Computing,15(1):87{97, February 1986.[CKT96] R. Cole, P.N. Klein, and R.E. Tarjan. Finding minimum spanning trees in logarithmictime and linear work using random sampling. In Proceedings of the 1996 ACM Symposiumon Parallel Algorithms and Architectures, pages 243{249, 1996.[CL93] K. W. Chong and T. W. Lam. Connected components in O(logn log logn) time on theEREW PRAM. In Proceedings of the Fourth Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 11{20, 1993.[DRT92] B. Dixon, M. Rauch, and R. Tarjan. Veri�cation and sensitivity analysis of minimumspanning trees in linear time. SIAM Journal on Computing, 21(6):1184{1192, 1992.8
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