From Design to Intention: Signs of a Revolution

Franco Zambonelli
Dipartimento di Scienze e Metodi dell'Ingegneria
Universita di Modena e Reggio Emilia
Via Allegri 13 — Reggio Emilia— ITALY
franco.zambonelli@unimo.it

Categoriesand Subjed Descriptors

D.2.2 [Software Engineering]: Design Tools and Tedniques;
[.2.11 [Artificial Intdligencg: Multiagent Systems, C.2.4
[Computer-Communication Systems]: Distributed Systems.

General Terms
Algorithms, Design, Theory

1 WHAT'SNEW?

The omplexity raised in software systems by several emerging
computing scenarios has moved beyond the capabilities of
traditional approaches to computer science ad software
engineging. The scenario that will cause the next software aisisis
rapidly forming under the eyes of everybody: computing systems
are going to be everywhere, embedded in al our everyday
environments, and they will be dways conreded and active [1].

The &ove scenarios do nd simply quantitatively affed — in terms
of number of comporents and effort required — the design and
development of software systems. Instead, we ague that there will
be aqualitative change in the daracteristics of software systems,
as well in the methoddogies adopted to model and develop them.
In particular, we ague that four main charaderistics — in addition
to the quantitative increase in interconneded computing systems —
will distinguish future software systems from traditional ones:

i. dtuatedness: software mporents will exeaute in the
context of an environment (physicd or computational one)
and will perceve such an environment in terms of
environment-dependencies in computation [1]. Also,
comporents can influence such environment and be
influenced by it.

ii. openness. software systems will be subjed to decentraized
management and will dynamicdly change their structure:
new comporents can be dynamicdly creded or destroyed
and, via mobhility, will be &le, to roam in and ou the
permeable boundxries of different software systems. Thus,
the problem of openness is currently much broader than
being simply a problem of interoperability;

iii. locality in control: the cmponents of software systems will
represent autonamous loci of control. In fad, most
comporents of software systems will be adive, and will have
locd control over their adivities, although will bein need of
coordinating these adivities with cther adive mmporents.

Permission to make digital or hard copies of al or part of this work for
personal or clasgoom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bea this notice and the full citation on the first page. To copy
otherwise, or repullish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee

AAMAS 02, July 15-19, 2002 Bologna, Italy.

Copyright 2002ACM 1-58113480-0/02/0007...$5.00.

H. Van Dyke Parunak
Altarum

3520 Green Ct, Suite 300,

Ann Arbor, Ml 48105 USA

van.parunak@altarum.org

iv. locality in interactions: despite living in a fully conreaed
world, software @mporents interad with ead ather
acordingly to local (geographicd or logicd) patterns. In
other words, systems will have to be modeled aroundclusters
of locdly interading components, and inter-cluster
interadions will have to be modeled acordingly.

Any reseacher who hes worked in the area of agent-based
computing will immediately recognize the dove charaderistics as
the main dstinguishing ones of agents and d multi-agent systems.
These charaderistics are going to be pervasive. In fact, to different
extents and with dfferent terminology, severa reseach
communities are remgnizing their importance ad are alapting
their models and techndogies to take them into acourt.

As an example, network of embedded and wireless sensors (i) are
Situated in aphysicd environment that they are devoted to monitor;
(i) live in an environment where new sensors can be alded and
low-power ones can de; (iii) are by definition autonomous; (iv)
can sense and interad within alimited locd range. Other pervasive
computing scenarios, such as weaables, intelligent homes, and
manufaduring control systems, share similar charaderistics. As
another example, Internet applications (i) exeaute in the
computational Internet environment; (ii) can be joined by new
applicdions and services at any time; (iii) have decentralized
control; (iv) interad within logicd (if not physical) localities.
Similar consideration cen be made with regard to business sippat
systems, whether B2C or B2B, even if not Web-based. In fad, the
dynamics of today’s econamy forces stuatedness decentrali zation,
and locdity in business process and, conseguently, in the software
system devoted to suppat them.

The integration d the @ove @mncepts and abstradions in software
modeling and design daes not simply represent a proper evolution
of current models and methodologies. Instead, we claim that we are
going to passthough ared revolution, changing the very way we
conceve ad mode “"software comporents’ and “software
systems", aswell as the way we will build such systems.

2 CHANGING OUR ATTITUDES

Until now, software systems have been modeled by adopting a
mechanicd attitude, and engineered by adopting a design attitude.
Computer scientists are both burdened and fascinated by the urge
to define suitable formal theories of computation, while software
engineas tend to design software achitedures as reliable multi-
comporent macdhines, cgoable of providing the required
functionality in an efficient and predictable way. The new scenario
may require models and methodology to be alopted that differ
from the traditional ones and, even most important, will require a
fundamental change of attitude.

2.1 Changesin Computer Science

Modeling and handling systems with very many components can
be feasible if such comporents are not autonomous. However,

when the adivities of these comporents are aitonomous, it is
conceptually and computationally infeasible to describe the
behavior of a system in terms of the behaviors of its comporents.
All that can be dore in these caes is to describe and moddl the
system as a whole, in terms of maao-level observable
charaderistics, just as a chemist describes the tharaderistics of a
gasin terms of properties like pressure and temperature. The @ove
problem is exacebated by the fad that comporents interadt with
ead ather. Accordingly, the overall global behavior of a systemis
more than the sum of the behavior of its components, but also
includes results of their mutua interadions. These locd
interadions can have globa effeds that are very difficult to
predict. As an additional problem, we must consider that software
systems will exeaute in an open and dynamic scenario, where new
comporents can be added and removed at any time, and where
some of these omponents can autonomously move from one part
of the system to anather. Thus, it is difficult to predict and control
precisely not only the global dynamic behavior of the system, but
also how such behavior can be influenced by such openness In
fad, the dfeds of the interadions between autonamous adive
comporents grongly depend on the structure of the interadion
graph [4]. A similar problem arises becaise of situatedness.
Modern statistical mechanics and social science tell us that
environmental forces can produce strange and large scde dynamic
behaviors on situated physicd, and socia systems.

The aove problems will force scientists to change their attitudes
dramaticdly in modeling complex software systems. Only small
portions of large software systems can be treaed effedively with
formalisms and logic-grounced approaches. The next challenge is
to adopt a brand-new scientific badkground for the study of
software systems, enabling us to study, predict, and control the
properties of a system and its dynamic behavior despite the
inability to control itsindividual comporents. Some signals of this
trend can aready be found in dfferent aress of the reseach
community. Recent study and monitoring activities on the Internet
and onWeb-access patterns have made it clea that unpredictable
and large-scde behaviors are dready here. Some gproaces to
model and describe software systems in terms of thermodynamic
systems have drealy been proposed [2]. Similar approadies have
been adopted in the area of massvely parallel computing, where
measuring spedfic global systems properties dynamicadly requires
the introduction d synthetic indicaors. In the aea of multi-agent
systems, it is being recognized that the behavior of a large scde
software system is more similar to a human organizéaion or to a
society than to a logical or mechanicd system. In the future, we
exped theories from complex systems, statistica mecdhanics, as
well as from biology, social science, and arganizaional science, to
bemme the sine-qua-non kadground d the computer scientist.

2.2 How Will Software Engineering Change?

The dange in the modeling and understanding of complex
software systems will also definitely impad the way such systems
are designed, maintained, and tested. Today, software systems are
designed to exhibit a spedfic, predictable, and deterministic
behavior at any level of the software system, from the level of
single units up to the level of the whole systems. However, in the
presence of interading autonamous comporents in an open and
dynamic environment, obtaining a predictable behavior of a multi-
comporent system “by design” is not feasible. The next chalenge
is to buld them so as to guarantee that systems as a whole will
behave & desired despite the lack of exad knowledge abou their
micro-behavior. For instance by adopting a "physicd” attitude

toward software design, a possible gproach could be to buld a
system that, despite uncertainty on the initial condtions, is able to
reahy a given stable basin o attradion. By adopting a
"teleologicd" attitude, theidea could beto buld an ecsystem able
to behave in an intentional way, and robust enough to dred its
global adivities toward the atievement of the required god. Of
course, the design o a system must also take into acourt the fad
that the system will be immersed in an open and dynamic
environment, and that the behavior of the system cannot be
designed in isolation. Rather, the environment and its dynamics, as
well as those software wmporents that can enter and leave the
systems, must bemme primary comporents of the design
abstradions. Firgt, the design could assume adefensive approad,
by treding them as ources of uncertainty that can somehow be
damaging to the globa behavior of a system. Seand, the design
could asume an offensive approach, by considering opennessand
environmental dynamics as additional dimensions to be exploited
with the possibility of improving the behavior of the system [3].
Again, it is posshle to identify a few works that are dready
adopting such a novel perspedive. Policies for the management of
distributed resources are drealy being designed in terms of
autonomous comporents able to guarantee the achievement of a
global goal via locd actions and locd interadions, despite the
dynamics of the ewironment. Ant colony optimizaion mimics
nature to solve very complex problems. Cellular automata can
evolve via genetic algorithms to produce useful behaviors.

In addition to the change in the way software is designed, the new
scenario will also dramaticdly impad the way software is tested,
maintained, and evaluated. When conceving software systems in
mechanicd terms, testing mainly amourts to analyzing system state
transitions. Such work is very hard for large systems, and it may
bewme impossble when autonomy and dynamics of the
environment produce apradicaly uncountable number of states.
Thus, alarge software system will no longer be tested with the goal
of finding errorsin it, but rather with regard to its ability to behave
as nealed as a whole, independently of the exad behavior of its
comporents and d their initial conditions. Moreover, a software
system that is likely to be immersed in an existing dynamic
environment, where other systems are dready exeauting and canna
be stopped, canna be simply tested and evaluated in terms of its
cgpability of achieving the required goal. Instead, the test must also
evaluate the effed of the environment on the software system, as
well asthe dfeds of the software system onthe ewvironment.

3 CONCLUSIONS

Some reseachers in the aeaof autonamous agents and multi-agent
systems drealy adopt abstradions capturing the likely
charaderistics of future software systems. Still, their effedive
modeling and engine&ing requires a revolutionary re-structuring of
our badkground paving the way for a new set of conceptual tools
and frameworks for the engineeing of future software systems[5].

REFERENCES

[1] G. Cabri, L. Leonardi, F. Zambonelli, “Engineging Mobile Agent
Applications via Context-Dependent Coordination”, |EEE Trans. on
Software Engineering, 2002, to appea.

[2] V. Parunak, S. Bruekner, J. Sauter, "ERIM’s Approach to Fine-
Grained Agents', NASA/JPL Workshop on Radical Agent Concepts,
Greenbelt (MD), Jan. 20@2, www.erim.org/~vparunak/WRAC2001pdf

[3] D.Tennenhouse, "Proadive Computing”, CACM, May 200Q

[4] D.Watts. Small Worlds, Princeton Univ. Press 1999
[5] F. Zambondlli, V. Parunak, “From Design to Intentions’, extended
version, available at: www.dismi.unimo.it/Zambonelli

