
 1

From Design to Intention: Signs of a Revolution

Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria

 Università di Modena e Reggio Emilia
Via Allegri 13 – Reggio Emilia– ITALY

franco.zambonelli@unimo.it

H. Van Dyke Parunak
Altarum

3520 Green Ct, Suite 300,
Ann Arbor, MI 48105 USA
van.parunak@altarum.org

Categor ies and Subject Descr iptors
D.2.2 [Software Engineering]: Design Tools and Techniques;
I.2.11 [Ar tificial Intelligence]: Multiagent Systems; C.2.4
[Computer-Communication Systems]: Distributed Systems.

General Terms
Algorithms, Design, Theory

1 WHAT’S NEW?
The complexity raised in software systems by several emerging
computing scenarios has moved beyond the capabilities of
traditional approaches to computer science and software
engineering. The scenario that will cause the next software crisis is
rapidly forming under the eyes of everybody: computing systems
are going to be everywhere, embedded in all our everyday
environments, and they will be always connected and active [1].

The above scenarios do not simply quantitatively affect – in terms
of number of components and effort required – the design and
development of software systems. Instead, we argue that there will
be a qualitative change in the characteristics of software systems,
as well in the methodologies adopted to model and develop them.
In particular, we argue that four main characteristics – in addition
to the quantitative increase in interconnected computing systems –
will distinguish future software systems from traditional ones:
i. situatedness: software components will execute in the

context of an environment (physical or computational one)
and wil l perceive such an environment in terms of
environment-dependencies in computation [1]. Also,
components can influence such environment and be
influenced by it.

ii. openness: software systems will be subject to decentralized
management and will dynamically change their structure:
new components can be dynamically created or destroyed
and, via mobil ity, will be able, to roam in and out the
permeable boundaries of different software systems. Thus,
the problem of openness is currently much broader than
being simply a problem of interoperability;

iii. locality in control: the components of software systems will
represent autonomous loci of control. In fact, most
components of software systems will be active, and will have
local control over their activities, although will be in need of
coordinating these activities with other active components.

iv. locality in interactions: despite living in a fully connected
world, software components interact with each other
accordingly to local (geographical or logical) patterns. In
other words, systems will have to be modeled around clusters
of locally interacting components, and inter-cluster
interactions will have to be modeled accordingly.

Any researcher who has worked in the area of agent-based
computing will immediately recognize the above characteristics as
the main distinguishing ones of agents and of multi-agent systems.
These characteristics are going to be pervasive. In fact, to different
extents and with different terminology, several research
communities are recognizing their importance and are adapting
their models and technologies to take them into account.

As an example, network of embedded and wireless sensors (i) are
situated in a physical environment that they are devoted to monitor;
(ii) live in an environment where new sensors can be added and
low-power ones can die; (iii) are by definition autonomous; (iv)
can sense and interact within a limited local range. Other pervasive
computing scenarios, such as wearables, intelligent homes, and
manufacturing control systems, share similar characteristics. As
another example, Internet applications (i) execute in the
computational Internet environment; (ii) can be joined by new
applications and services at any time; (iii) have decentralized
control; (iv) interact within logical (if not physical) locali ties.
Similar consideration can be made with regard to business support
systems, whether B2C or B2B, even if not Web-based. In fact, the
dynamics of today’s economy forces situatedness, decentralization,
and locality in business process and, consequently, in the software
system devoted to support them.

The integration of the above concepts and abstractions in software
modeling and design does not simply represent a proper evolution
of current models and methodologies. Instead, we claim that we are
going to pass though a real revolution, changing the very way we
conceive and model "software components" and "software
systems", as well as the way we will build such systems.

2 CHANGING OUR ATTITUDES
Until now, software systems have been modeled by adopting a
mechanical attitude, and engineered by adopting a design attitude.
Computer scientists are both burdened and fascinated by the urge
to define suitable formal theories of computation, while software
engineers tend to design software architectures as reliable multi-
component machines, capable of providing the required
functionality in an eff icient and predictable way. The new scenario
may require models and methodology to be adopted that differ
from the traditional ones and, even most important, will require a
fundamental change of attitude.

2.1 Changes in Computer Science
Modeling and handling systems with very many components can
be feasible if such components are not autonomous. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AAMAS’02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007…$5.00.

 2

when the activities of these components are autonomous, it is
conceptually and computationally infeasible to describe the
behavior of a system in terms of the behaviors of its components.
All that can be done in these cases is to describe and model the
system as a whole, in terms of macro-level observable
characteristics, just as a chemist describes the characteristics of a
gas in terms of properties like pressure and temperature. The above
problem is exacerbated by the fact that components interact with
each other. Accordingly, the overall global behavior of a system is
more than the sum of the behavior of its components, but also
includes results of their mutual interactions. These local
interactions can have global effects that are very difficult to
predict. As an additional problem, we must consider that software
systems will execute in an open and dynamic scenario, where new
components can be added and removed at any time, and where
some of these components can autonomously move from one part
of the system to another. Thus, it is difficult to predict and control
precisely not only the global dynamic behavior of the system, but
also how such behavior can be influenced by such openness. In
fact, the effects of the interactions between autonomous active
components strongly depend on the structure of the interaction
graph [4]. A similar problem arises because of situatedness.
Modern statistical mechanics and social science tell us that
environmental forces can produce strange and large scale dynamic
behaviors on situated physical, and social systems.

The above problems will force scientists to change their attitudes
dramatically in modeling complex software systems. Only small
portions of large software systems can be treated effectively with
formalisms and logic-grounded approaches. The next challenge is
to adopt a brand-new scientific background for the study of
software systems, enabling us to study, predict, and control the
properties of a system and its dynamic behavior despite the
inability to control its individual components. Some signals of this
trend can already be found in different areas of the research
community. Recent study and monitoring activities on the Internet
and on Web-access patterns have made it clear that unpredictable
and large-scale behaviors are already here. Some approaches to
model and describe software systems in terms of thermodynamic
systems have already been proposed [2]. Similar approaches have
been adopted in the area of massively parallel computing, where
measuring specific global systems properties dynamically requires
the introduction of synthetic indicators. In the area of multi-agent
systems, it is being recognized that the behavior of a large scale
software system is more similar to a human organization or to a
society than to a logical or mechanical system. In the future, we
expect theories from complex systems, statistical mechanics, as
well as from biology, social science, and organizational science, to
become the sine-qua-non background of the computer scientist.

2.2 How Will Software Engineer ing Change?
The change in the modeling and understanding of complex
software systems will also definitely impact the way such systems
are designed, maintained, and tested. Today, software systems are
designed to exhibit a specific, predictable, and deterministic
behavior at any level of the software system, from the level of
single units up to the level of the whole systems. However, in the
presence of interacting autonomous components in an open and
dynamic environment, obtaining a predictable behavior of a multi-
component system “by design” is not feasible. The next challenge
is to build them so as to guarantee that systems as a whole will
behave as desired despite the lack of exact knowledge about their
micro-behavior. For instance, by adopting a "physical" attitude

toward software design, a possible approach could be to build a
system that, despite uncertainty on the initial conditions, is able to
reach a given stable basin of attraction. By adopting a
"teleological" attitude, the idea could be to build an ecosystem able
to behave in an intentional way, and robust enough to direct its
global activities toward the achievement of the required goal. Of
course, the design of a system must also take into account the fact
that the system wil l be immersed in an open and dynamic
environment, and that the behavior of the system cannot be
designed in isolation. Rather, the environment and its dynamics, as
well as those software components that can enter and leave the
systems, must become primary components of the design
abstractions. First, the design could assume a defensive approach,
by treating them as sources of uncertainty that can somehow be
damaging to the global behavior of a system. Second, the design
could assume an offensive approach, by considering openness and
environmental dynamics as additional dimensions to be exploited
with the possibility of improving the behavior of the system [3].

Again, it is possible to identify a few works that are already
adopting such a novel perspective. Policies for the management of
distributed resources are already being designed in terms of
autonomous components able to guarantee the achievement of a
global goal via local actions and local interactions, despite the
dynamics of the environment. Ant colony optimization mimics
nature to solve very complex problems. Cellular automata can
evolve via genetic algorithms to produce useful behaviors.

In addition to the change in the way software is designed, the new
scenario wil l also dramatically impact the way software is tested,
maintained, and evaluated. When conceiving software systems in
mechanical terms, testing mainly amounts to analyzing system state
transitions. Such work is very hard for large systems, and it may
become impossible when autonomy and dynamics of the
environment produce a practically uncountable number of states.
Thus, a large software system wil l no longer be tested with the goal
of finding errors in it, but rather with regard to its ability to behave
as needed as a whole, independently of the exact behavior of its
components and of their initial conditions. Moreover, a software
system that is likely to be immersed in an existing dynamic
environment, where other systems are already executing and cannot
be stopped, cannot be simply tested and evaluated in terms of its
capability of achieving the required goal. Instead, the test must also
evaluate the effect of the environment on the software system, as
well as the effects of the software system on the environment.

3 CONCLUSIONS
Some researchers in the area of autonomous agents and multi-agent
systems already adopt abstractions capturing the likely
characteristics of future software systems. Still, their effective
modeling and engineering requires a revolutionary re-structuring of
our background, paving the way for a new set of conceptual tools
and frameworks for the engineering of future software systems [5].

REFERENCES
[1] G. Cabri, L. Leonardi, F. Zambonelli , “Engineering Mobile Agent

Applications via Context-Dependent Coordination” , IEEE Trans. on
Software Engineering, 2002, to appear.

[2] V. Parunak, S. Bruekner, J. Sauter, "ERIM’s Approach to Fine-
Grained Agents", NASA/JPL Workshop on Radical Agent Concepts,
Greenbelt (MD), Jan. 2002, www.erim.org/~vparunak/WRAC2001.pdf

[3] D.Tennenhouse, "Proactive Computing", CACM, May 2000.

[4] D. Watts. Small Worlds, Princeton Univ. Press, 1999.
[5] F. Zambonelli, V. Parunak, “From Design to Intentions” , extended

version, available at: www.dismi.unimo.it/Zambonelli

