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Abstract. Domain decomposition of two-dimensional domains on which boundary-value elliptic
problems are formulated, is accomplished by probabilistic (Monte Carlo) as well as by quasi-Monte
Carlo methods, generating only few interfacial values and interpolating on them. Continuous approx-
imations for the trace of solution are thus obtained, to be used as boundary data for the sub-problems.
The numerical treatment can then proceed by standard deterministic algorithms, separately in each
of the so-obtained subdomains. Monte Carlo and quasi-Monte Carlo simulations may naturally
exploit multiprocessor architectures, leading to parallel computing, as well as the ensuing domain
decomposition does. The advantage such as scalability obtained increasing the number of processors
is shown, both theoretically and experimentally, in a number of test examples, and the possibility of
using clusters of computers (grid computing) emphasized.
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1. Introduction. The probabilistic representation of solutions to elliptic boundary-
value problems, e.g. the Dirichlet problem for the Laplace equation,

∆u = 0 in Ω, u|∂Ω = g,(1.1)

with boundary data, g, and boundary ∂Ω of Ω ⊂ Rd in suitable classes, is known
since long time [10, 17], as well as is the possibility of using it to obtain numerical
approximations of solutions. Such representation is given by

u(x) = Ex [g(W (τ∂Ω))] ,(1.2)

where W (·) represents a path of the standard Brownian motion (also called Wiener
process) starting at point x ∈ Ω, and τ∂Ω is the first passage (hitting) time of the
path W (·) started at x to ∂Ω. This approach, that can be called a Monte Carlo
approach, however, is considered very inefficient, at least in low dimension, unless a
very complicated geometry of the boundary, ∂Ω, of the domain Ω, rules out any other
deterministic algorithm, see [22], e.g.

In this paper we propose a domain decomposition method for general elliptic
problems, accomplished generating only few interfacial values inside the domain, Ω,
in two dimensions, and interpolating on the points where the values above have been
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computed, taken as nodes. These nodes are considered as placed on suitable inter-
faces, internal to the domain, thus continuous approximations of the trace of solutions
to be used as subdomains boundary data can be obtained. In this way, full decoupling
into as many subdomains as we wish can be realized. The idea of using a probabilistic
representation of solutions to elliptic problems only to accomplish a preliminary do-
main decomposition, was first put forth in [36]; the same was later suggested also in
[38]. Recently, a probabilistic numerical treatment of elliptic and parabolic problems
has been presented in [29]. The results obtained there, however, did not show any
improvement with respect to fully deterministic methods, but this was due to the very
small time- steps used, lacking a suitable boundary treatment. We shall refer to these
methods as to “probabilistic domain decomposition”(PDD) methods, or “domain de-
composition by Monte Carlo” methods. We stress that the approach followed here
fully exploits parallel architectures in that: (a) it implements a domain decomposition
algorithm; (b) every realization (or path) of the stochastic processes starting at every
point can be simulated independently (if we generate N sample paths at m points,
we can use up to mN independent processors). Clearly, such a degree of paralleliza-
tion is compatible with the use of possibly different and even geographically distant
computers (grid computing) and/or clusters of them, and a balance among them is
also feasible.

In order to improve the performance of the “classical” Monte Carlo method [16]
(based on the so-called pseudorandom numbers, which mimic the ideal random num-
bers), we explored the possibility of using, rather, sequences of quasi-random numbers
[5, 25, 27, 28]. The corresponding strategy is called quasi-Monte Carlo, and using such
sequences in our approach, the algorithm will be called “quasi-probabilistic domain
decomposition” (quasi-PDD) method. Such sequences are actually deterministic, and
its elements are uniformly distributed, though subject to some degree of correlation.
They have been successfully applied to the numerical evaluation of high dimensional
integrals, cf. [26], in particular to problems of financial mathematics [6]. Applications
have been made to the generation of quasi-random paths of stochastic processes in
[23, 24], to the Boltzmann equation [19], and to a simple system of diffusion equations
in Rd, subject to purely initial values on all space [20].

In Section 2, some preliminaries are first given, and in Section 3 the numerical
method is presented along with the various sources of error. In Section 4, the per-
formance of the numerical algorithm is discussed. Numerical examples are shown
in Section 5, where the overall numerical error as well as speed-up results are given
to substantiate the efficiency of the PDD and quasi-PDD methods. Conclusions are
drawn in the final section.

2. Generalities on domain decomposition and on Monte Carlo meth-

ods. The basic idea of solving elliptic boundary-value problems (say the Dirichlet
problem, for instance) by domain decomposition, is to assign the numerical solution
on each subdomain into which the domain Ω is partitioned to a separate processor,
see [7, 33], e.g. Unfortunately, since the boundary-value problems above are global
in nature, the trace of the solution on the interfaces internal to Ω, to be used as
boundary values for the sub-problems, cannot be obtained before solving the entire
problem. In the framework of the deterministic domain decomposition methods, it
is possible to compute approximations of such values prior to passing to the imple-
mentation on several separate processors, imposing suitable continuity conditions on
the interfaces. This procedure however requires solving, usually iteratively, certain
related linear algebraic sub-problems. The latter represents the algebraic formula-
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tion of the so-called discrete Steklov–Poincaré operator, which is usually unbounded.
This leads to a capacitance matrix (that is the finite dimensional counterpart of the
Steklov–Poincaré operator [32], and has also the form of a Schur complement matrix),
typically ill-conditioned [33]. Preconditioning it is therefore mandatory, and finding
preconditioners that are at the same time optimal and efficient is a nontrivial though
fundamental problem. Optimality refers to the possibility of constructing, for a given
problem, preconditioners yielding a spectral condition number (the ratio between the
maximum and the minimum eigenvalue) bounded independently of the mesh size, h,
as well as the subdomains (average) diameter, H. In fact, the Schur complement
matrix, Σh, has a condition number κ(Σh) = O(h−1H−1). Note that the number of
subdomains, M , scales as M ∼ H−1, cf. [33].

In practice, in the domain decomposition methods with ovelapping (Schwarz
type), the condition number above would actually be independent of h and H, pro-
vided that the overlapping is wide enough [8]; the bounds found in [8] were shown
to be optimal in [3]. In the domain decomposition methods without overlap, also
referred to as “iterative substructuring” methods, things are worse, and conditioning
leads to bounds for condition numbers like C (1 + log(H/h))

a
, where C is a constant

and a may be 1 or 2 [9]. This logarithmic estimate is considered to be not improvable,
however it is of a little harm, because it grows slowly when h and/or H are reduced
in size. Sometimes h is reduced at the same rate as H is reduced, in order to keep the
same ratio H/h, and thus the condition estimate. This operation, however, pushes
to unnecessarily smaller mesh-sizes, h, preventing one to take advantage from solving
smaller-size problems on separate processors. In any case, it seems that, at least with
parallel computers with a few hundred processors, and facing problems with 2 · 106
to 107 variables, the overall cost of the method is always dominated by the cost of
solving the local problems, for instance the cost of factorizing into triangular factors
(Choleski factorization).

Adopting a probabilistic representation of solutions, one can generate numerical
approximations of the sought solution inside Ω, at every single point, without solving
the full problem. Of course, being such a value an average on a number of Brownian
motion paths (for the Laplace equation) starting at that point, some “globality” is
felt somehow, in that the numerous Brownian paths explore the entire domain, Ω.
Here the idea is to generate only very few values of the sought solution, on some
interfaces, then interpolating on each interface to obtain continuous approximations
of the “boundary values” needed to split the problem into sub-problems, and finally
solving numerically on each subdomain on separate processors. This procedure will
not require any communication among the processors involved, no iteration across the
interfaces, and of course no initial guess for it.

It should be observed that, for the boundary-value problems for elliptic equations,
both on the entire domain, Ω, and on each subdomain, the maximum principle holds,
and this remains true for the related discretized problems formulated for their nu-
merical treatment. As a consequence, the error made inside each domain is estimated
by the error on the boundary data plus the residual error due to the local solver.
When the latter is made negligible due to a sufficiently accurate scheme, the maxi-
mum principle essentially provides an estimate for the solution inside each subdomain
in terms of the boundary error. This fact holds true for both, the deterministic and
the probabilistic domain decomposition scenario, but it turns out to be especially fa-
vorable for the latter approach, since due to the poor performance of the Monte Carlo
simulations one expects to start with rather poor approximations of the interfacial
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boundary data.

This method retains the features of the deterministic domain decomposition meth-
ods, that is of being a “divide and conquer” technique, where however no iterations
on the boundary values inside Ω are needed, while it entails an enhanced parallelism.
In fact, now there is the possibility to split the problem into several fully decoupled
sub-problems, each assigned to a separate processor. Moreover, irregular or complex
geometries and possible singularities as well as anomalous regions can be handled, see
[7, 33]. Sometimes, a reduction of the computational complexity can be achieved by
the use of a domain decomposition strategy even on sequential architectures. In fact,
smaller-size problems can be managed more efficiently even sequentially. Finally, note
that our approach is of the nonoverlapping type, scalable, and possesses an additional
degree of parallelism, since Monte Carlo sequences can be generated in parallel.

Consider, more generally than in Section 1 (see equations (1.1), (1.2)), the elliptic
boundary-value problem

Lu− c(x)u = f(x), in Ω, u|∂Ω = g,(2.1)

where Ω ⊂ Rd, and L denotes a linear elliptic operator, say L := aij(x, t)∂i∂j +
bi(x, t)∂i (using the summation convention), with continuous bounded coefficients, as
c(x) ≥ 0 continuous boundary data, g, source term, f , in L2(Ω), and ∂Ω Lipschitz
continuous. The probabilistic representation of the solutions is now given by

u(x) = EL
x

[

g(β(τ∂Ω))e
−
∫

τ∂Ω

0
c(β(s)) ds −

∫ τ∂Ω

0

f(β(t)) e
−
∫

t

0
c(β(s)) ds

dt

]

,(2.2)

see [10, 17], e.g., where τ∂Ω is as above, β(·) is the stochastic process associated to
the operator L, and the expected values are taken with respect to the corresponding
measure. When L ≡ ∆, β(·) reduces to the standard d-dimensional Brownian motion,
and the measure to the Gaussian measure. The process β(·) is the solution of a
stochastic differential equation (SDE) of the Ito type, related to the elliptic partial
differential equation in (2.1), namely

dβ = b(x, t) dt+ σ(x, t) dW (t).(2.3)

HereW (t) represents the d-dimensional standard Brownian motion (also calledWiener
process); see [1, 17], e.g., for generalities, and [12, 18, 30] for the related numerical
treatment. As is known, the solution to (2.3) is a stochastic process, β(t, ω), where
ω, which is usually not indicated explicitly in probability theory, denotes the “chance
variable”, ranging on a suitable abstract probability space. The drift, b, and the dif-
fusion, σ, in (2.3), are related to the coefficients of the elliptic operator in (2.1) by
b = (bi)

T , and σσT = a, with σ = (σij), a = (aij).

Confining ourselves to 2-dimensional problems, in the examples in Section 5 we
shall write (x, y) instead of the vector “x” above.

3. The numerical method. Consider the simpler case f ≡ c ≡ 0 in (2.2), so
that

u(x) = EL
x [g(β(τ∂Ω))] ,(3.1)

where β(·) is obtained solving the SDE in (2.3).
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3.1. Evaluating the solution at a single internal point by probabilistic

methods. In evaluating interfacial values by a Monte Carlo or quasi-Monte Carlo
method, one should consider, in practice, three sources of numerical error. In fact,
the expected value in (3.1) must be replaced necessarily by a finite sum, and moreover
the stochastic paths are actually simulated resorting to suitable numerical schemes.
Finally, the exit time is also affected by numerical errors, and has to be replaced by
an appropriate estimate of it. To be more precise, the global error made in simulating
interfacial values can be evaluated as

εN = u(x)− 1

N

N
∑

j=1

g(xj(tj)) ≡ EL
x [g(β(τ∂Ω))]−

1

N

N
∑

j=1

g(xj(tj))

= ε
(1)
N + ε

(2)
N + ε

(3)
N ,(3.2)

where

ε
(1)
N = EL

x [g(β(τ∂Ω))]−
1

N

N
∑

j=1

g(βj(τ
j
∂Ω)),(3.3)

ε
(2)
N =

1

N

N
∑

j=1

g(βj(τ
j
∂Ω))−

1

N

N
∑

j=1

g(xj(τ
j
∂Ω)),(3.4)

ε
(3)
N =

1

N

N
∑

j=1

g(xj(τ
j
∂Ω))−

1

N

N
∑

j=1

g(xj(tj)).(3.5)

Here xj(t) is a numerical approximation of βj(t) := β(t, ωj), which is the jth realiza-

tion of the stochastic process β(t, ω), solution to (2.3); τ j
∂Ω is the first exit time of the

path βj(t), and tj is the first exit time of the approximating path xj(t).

The first error, ε
(1)
N , is the pure Monte Carlo (or quasi-Monte Carlo) statistical

error, and

ε
(1)
N = O

(

1√
N

)

(3.6)

for the Monte Carlo method. In fact, it is well known that the arithmetic mean

appearing in ε
(1)
N (actually with the almost inessential modification of having 1/(N−1)

instead of 1/N , being N À 1) provides the best unbiased estimator for the expected
value in (3.1), see [5], e.g. In practice, one should simulate on a computer several
random variables, based on generating random numbers. The latter are necessarily
not ideally random, for which reason they are called more precisely pseudorandom
numbers. Doing that, anyway, the error made in replacing the expected value in (3.1)
with the average over a finite size sample is statistical in nature, and of the order of

1/
√
N . More precisely, ε

(1)
N turns out to be, for N large, approximately a random

Gaussian variable with standard deviation proportional to N−1/2, i.e.

ε
(1)
N ≈ σN−1/2ν,(3.7)

where σ denotes the square root of the variance of the integrand, g, and ν is a standard
normal (i.e. N(0, 1)) random variable, see [5], e.g. It follows that

lim
N→∞

Prob

(

a <

√
N

σ
< b

)

= Prob(a < ν < b) = (2π)−1/2
∫ b

a

e−x2/2 dx.(3.8)
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All this clearly shows that Monte Carlo has in principle a very poor numerical per-
formance (because, due to the dependence on the sample size, N , through its square
root) the convergence above when N → ∞ is very slow, and also that the error is
merely statistical, so it can only be bounded by some quantity with a certain degree
of confidence.

A method alternative to the standard Monte Carlo approach is provided by the
quasi-Monte Carlo method. Examples of quasi-random sequences (also called low-
discrepancy sequences) are those named after Faure, Halton, and Sobol’, see, e.g.,
[28]. Following this approach, the error is

ε
(1)
N = O

(

1

N
logd

∗−1N

)

.(3.9)

When N → ∞, the advantage over Monte Carlo is clear, but one should notice that
even solving elliptic equations in 2D, the effective dimension, d∗, is much higher than
two. In fact, d∗ = Md, where d is the dimension of the space, Rd, in which the domain
Ω is embedded, and M is the number of steps in the numerical integration of the SDEs
(2.3). In practice, one needs to break somehow the correlation in the sequences of
quasi-random numbers, and this can be done, for instance, by a “reordering” or by
other scrambling strategies. The idea is to contrast the correlations by using only
two sequences of uncorrelated quasi-random numbers (which are however correlated
within each sequence), picking up at each time-step pairs of numbers out of them,
and relabeling them according to their distances from the starting point. This idea
was applied to the one-dimensional heat equation in [24], and then to some higher-
dimensional problems in [20]. Consequently, we can take d∗ = 2 in equation (3.9).
When reordering was not implemented, the performance achieved using quasi-random
sequences in the numerical solution of SDEs turned out to be poor, as shown in [13]
and pointed out in [20].

The second error is due to the fact that the ideal stochastic path, βj(·), in practice
has to be approximated by some numerical scheme yielding the paths xj(·), having
discretized the time. Hence, the estimate

|ε(2)N | ≤
1

N

N
∑

j=1

∣

∣

∣
g(βj(τ

j
∂Ω))− g(xj(τ

j
∂Ω))

∣

∣

∣
≤ Lg

N

N
∑

j=1

∥

∥

∥
βj(τ

j
∂Ω)− xj(τ

j
∂Ω)
∥

∥

∥
(3.10)

holds, where Lg is the Lipschitz constant of g(·). The truncation error on the right-
hand side of (3.10), made in solving numerically the SDE (2.3), obviously depends on
the specific scheme that is chosen, see [18], e.g. Among these are the Euler scheme, a
number of Taylor schemes, and also schemes where the time-step is chosen randomly,
for instance the exponential timestepping method, see [14, 15]. In the latter case, the
size of the time-step, ∆t, is picked up from a given probability distribution, being ∆t
a random variable itself. When such a distribution is the exponential distribution,
with the probability density exp(−λ∆t), the mean value of ∆t equals λ−1. The Euler
scheme has a truncation error of order O(∆tα), where α = 1/2 or α = 1 depending
on the scheme being of the “strong” or “weak” type, respectively, see [18]. Taylor
schemes with α equal to 3/2 or 3, respectively, can be considered as well.

Finally,

|ε(3)N | ≤
Lg

N

N
∑

j=1

∥

∥

∥
xj(τ

j
∂Ω)− xj(tj)

∥

∥

∥
≤ Lg

N

N
∑

j=1

Mj

∣

∣

∣
τ j∂Ω − tj

∣

∣

∣
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≤ LgM

N

N
∑

j=1

∣

∣

∣
τ j∂Ω − tj

∣

∣

∣
,(3.11)

where Mj is the Lipschitz constant of xj(·), and M := max1≤j≤N Mj . The latter
quantity takes into account the error made evaluating numerically the exact first
exit time, τ j∂Ω, of the jth path, xj(·), from the boundary ∂Ω. Indeed, numerical
experiments show that the error made estimating the first exit time may be dominant
over the other sources of numerical errors, and is therefore of paramount importance
to provide an accurate value of such a quantity. In fact, the probability that an
approximate path, such as xj(·), exits the boundary between two consecutive time
steps is nonzero, and it is quite possible that the true exit point is missed. This
circumstance has been pointed out first in [37] and later in [2, 4], and taken into
account in simple cases of numerical integration of one-dimensional SDEs in [14, 21].

Below, we have adopted the strategy put forth in [14, 15], based on exponential
timestepping. The advantage of such a method rests on the fact that, at the price of
adopting an approximate distribution of the underlying stochastic process, analytical
results can be obtained for the hitting probability (i.e. the probability distribution of
hitting the boundary for the first time). To solve two-dimensional problems on the
square, Ω = (0, 1) × (0, 1), as done in this paper, the hitting probability has been
taken as the maximum among the four hitting probability values that a path first
exits the four possible boundary sides.

3.2. Interpolation on the internal nodes. After obtaining approximations of
few internal values by Monte Carlo (or quasi-Monte Carlo) simulations, we use them to
interpolate. We chose Chebyshev interpolation because of its global (quasi) optimality
properties [34, 35]. The error made interpolating a given smooth function, say f(x),
by the nth degree Chebyshev polynomial of the first kind, Inf(x) ≡ Tn(x), between
any two nodes, when the nodal values are exactly known, is given by ‖f − Inf‖∞ ≤
Cn−k‖f (k)‖∞, for every fixed k. However, we should account for the additional errors
affecting the nodal values f(xi) themselves, which are obtained, in fact, by the Monte
Carlo or quasi-Monte Carlo simulation. Such problem (stability of the interpolation)
leads to the estimate ‖Inf − Inf̃‖ ≤ Λn · maxi=1,2,...,n |f(xi) − f̃(xi)|, where f̃(xi)
are the values of f(xi) affected by errors, and the Lebesgue constant, Λn, grows
only logarithmically with the number of nodes, and thus will be completely negligible
here. Indeed, the number of nodes will be kept low, since 2 or 3 internal nodes on
each interval will suffice within the numerical approximations made in our algorithm.
Hence, Chebyshev polynomials of degree 3 or 4 will be used.

3.3. Local solvers. Once that approximate values of solution on all interfaces
have been found, any deterministic algorithm can be used to complete the numerical
solution on each subdomain. For instance, finite differences (FDs) of various kind can
be implemented, and then a number of methods to solve the ensuing linear algebraic
systems. When the dimension of such system is low (which occurs when the number
of subdomains is high), direct methods can be used. In general, and especially when
the dimension is high, iterative methods may perform better. Below, we chose to use
Gauss-Seidel iterations, with an exit criterion that had to be experimented according
to the specific model example and the number of subdomains.

4. Performance of the numerical method. Let now turn the attention to
assessing, at least qualitatively, the performance of our method in two dimensions.
The aim here is to estimate the speed-up, which is a measure of the gain of the
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present method as a function of the number of processors involved. We assume that
the domain Ω is the square (0, 1) × (0, 1), subdivided into a number of subdomains.
These are nonoverlapping rectangles, with sides parallel to the axes x and y, singled
out by some subdivision points, say nx and ny, of the sides 0 ≤ x ≤ 1 and 0 ≤
y ≤ 1, respectively. Therefore, the domain Ω is partitioned into (nx + 1) · (ny + 1)
subdomains. Suppose that as many processors, p, as we wish, are available, and
assume p = (nx + 1)(ny + 1). We compute by Monte Carlo or quasi-Monte Carlo
simulations only few interfacial values, on the lines x = i/(nx + 1), i = 1, . . . , nx and
y = j/(ny+1), j = 1, . . . , ny, taking, say, k points on each of such lines (usually k = 2
or 3), hence, in total, k(nx + ny) points.

The speed-up is the ratio between the time T1 spent for solving sequentially the
problem on the entire domain, and the time Tp required for solving it in parallel with p
processors. The numerical solution of each subproblem requires at most a fraction 1/p
of the time T1. We say “at most”, because the integration domain being smaller, some
amount of time can be saved even proceeding sequentially. Therefore, if TMC denotes
the time required for computing by Monte Carlo or quasi-Monte Carlo simulations a
single interfacial value, neglecting the time spent for interpolation on the interfaces,
we have, approximately,

Tp =
k(nx + ny)TMC

p
+

T1
p

,(4.1)

and thus the speed-up of our method is

Sp :=
T1
Tp

=
p

1 + k(nx + ny)
TMC

T1

.(4.2)

Note that if TMC could be made negligible, the speed-up would attain its ideal the-
oretical value, Sp = p. In practice, TMC cannot be arbitrarily small, since it will be
proportional to the number of realizations used in simulations, whose value directly
affects the achieved accuracy.

To gain a better insight, take nx = ny =: n. Using as many processors as
subdomains, we have p = (n+1)2, while the total number of interfacial points is 2kn.
Note that the latter scales linearly with the parameter n, while p scales quadratically
with it. Thus

Sp =
(n+ 1)2

1 + 2knTMC

T1

,(4.3)

and hence, in the limit for n→∞ (or equivalently for p→∞), we obtain

Sp ∼
T1

2kTMC

√
p, p→∞.(4.4)

This formula shows the kind of scalability that can be achieved by means of the
“probabilistic domain decomposition”. We stress that the speed-up relation in (4.4)
is fully general in that it is independent of the choice of the specific local solver, as
well as whether Monte Carlo or quasi-Monte Carlo is adopted. In case of domains
Ω ∈ Rd, formulae (4.3) and (4.4) are generalized into

Sp =
(n+ 1)d

1 + dknTMC

T1

∼ T1
dkTMC

p1−1/d, p→∞,(4.5)

being p ∼ nd, as p→∞. Consider, at this point, the dependence of TMC and T1 on
the various parameters characterizing the numerical treatment.
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4.1. Estimating TMC . The time TMC required for computing a single value
of the solution by Monte Carlo or quasi-Monte Carlo can be estimated as follows.
The computation of a single stochastic path, originating at some given point internal
to the domain requires, on the average, a number of operations proportional to the
number of steps, say Ns. The latter quantity is about the ratio between the mean
first exit time and the time-step size, ∆t, involved in the numerical integration of the
underlying SDEs. When using an exponential timestepping, we take for ∆t its mean
value, λ−1.

To estimate how the mean first exit time depends on dimension, recall that for
the special case of Brownian motion going out from the hypersphere Br of radius r,
starting from the point x, this quantity is Ex {τBr

} ≤ r2/d, see [17]. If an O(1) drift
is added, such a value becomes of order r. When Br is replaced by a hypercube whose
diagonal length is 1, these values become of order 1/

√
d and of order 1, respectively.

Therefore, taking N realizations, all starting from a given point, the cost is propor-
tional to NNs ≈ Nf(d)(∆t)−1, where f(d) represents the dependence of the mean
first exit time on dimension.

The statistical error is expected to dominate, thus we choose a time-step size
such that the truncation error be of the same order of it, i.e. 1/Nβ = (∆t)α. Here
β = 1/2 for pseudorandom sequences, or [a little worse than] β = 1 using quasi-
random sequences, and α is the order of the scheme adopted to solve the SDEs. This
links the two parameters, N and ∆t, so that (∆t)−1 ≈ Nβ/α. Hence, the cost for
computing N realizations will be ≈ N 1+β/αf(d). In d dimensions, d SDEs should be
solved, and thus such a cost should be multiplied by d. Therefore,

TMC ≈ N1+β/α d f(d).(4.6)

4.2. Estimating T1. In order to estimate T1, we choose an FD solver whose
truncation error equals the statistical error in our approach, that is h2 ∼ 1/Nβ , where
h := ∆x = ∆y is the mesh size. T1 will be proportional to the total number of the
grid points, h−d, and to the number of iterations, niter, needed to solve iteratively the
underlying linear algebraic system. To be concrete, it is found that, correspondingly
to the 2D Laplacian, such a number is given by

niter ∼ c q h−ξ(4.7)

[31], taking an iteration error equal to 10−q as an exit criterion. Here ξ = 2 for
the Jacobi and the Gauss-Seidel method, and 1 for the SOR method with optimal
parameter. The constant c is a fraction of 1, and q typically of order 10 in our
experiments. Therefore,

T1 ∼ h−d niter = c q Nβ(d+ξ)/2.(4.8)

The speed-up in (4.5) then becomes

SPDD
p ∼ c q

k d2f(d)
Nγ p1−1/d, p→∞,(4.9)

where we set

γ := β

(

d+ ξ

2
− 1

α

)

− 1.(4.10)

In order to compare with the case when the entire problem (on the entire domain)
is solved by parallel finite differences (PFD), which represents a deterministic domain
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decomposition strategy, we now have Tp = T1/p+ Tcom. Here Tcom is the communi-
cation time among the processors, which affects the algorithm at each iteration step.
Therefore, the speed-up relation takes on the form

SPFD
p :=

T1
Tp

=
p

1 + Tcom
T1

p
∼ T1

Tcom
as p→∞.(4.11)

Note that this shows the nonscalability (“saturation”) of such method, since SPFD
p ∼

T1/Tcom remains bounded as p → ∞. The quantity Tcom, which is assumed to be
essentially independent of p, can be modeled as

Tcom = 2Nβ(d−1)/2 niterB(d),(4.12)

where B(d) takes into account the bandwidth, and the factor 2 is due to both send-
ing and receiving communications. In the exponent of N , d − 1 replaces d because
the points involved in intercommunications across the interfaces lie on a (d − 1)-
dimensional manifold. Hence, (4.11) yields

SPFD
p ∼ 1

2B(d)
Nβ/2, as p→∞.(4.13)

The speed-up of the PDD method in (4.9) wins over the speed-up of the PFD algo-
rithm (4.13), that is SPDD

p > SPFD
p , whenever, approximately,

p >

(

k d2f(d)

2 c q B(d)

)d/(d−1)

N δ,(4.14)

where

δ :=
d

d− 1

[

β

2

(

1− d− ξ +
2

α

)

+ 1

]

.(4.15)

The factor on the right-hand side of (4.14) which multiplies N δ is assumed to de-
pend weakly on dimension, and is typically of order 1. In view of the fact that N
should be allowed to be arbitrarily large to achieve a sufficiently high accuracy in both
algorithms, PDD and PFD, the interesting case is given by δ ≤ 0. This condition
is verified if and only if the dimension is larger than or equal to a certain critical
dimension, dcrit, given by

dcrit :=

{

d̃, for d̃ integer
[

d̃
]

+ 1, for d̃ not integer,
d̃ := 1− ξ + 2

(

1

α
+

1

β

)

.(4.16)

When d ≥ dcrit, the PDD method wins over the PFD even with very few processors
(or, equivalently, subdomains). The smallest critical dimension is clearly achieved
when the order α of the scheme used to solve the SDEs is the highest, and quasi-
random sequences (β = 1) and slower iterative solvers (ξ = 2, Gauss-Seidel method)
are used. For instance, when β = 1, ξ = 2, and α = 2, the value dcrit = 2 is obtained.
For a general set of parameters, the critical dimension will be greater than 2. For
instance, setting β = 1, ξ = 2, and α = 1, we get dcrit = 3.

Even when δ > 0, however, the condition (4.14) may also be satisfied with a
reasonably low number of processors. As an example, choosing N = 104 realizations
(correspondingly to an error of order of 10−4 using quasi-random sequences), such
inequality requires about p > 20, whenever δ ≤ 1/3: Take, e.g., d = 2, ξ = 2, and
α = 3/2.
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5. Numerical examples. In this section, we show the performance of the par-
allel code we designed to exploit a probabilistically induced domain decomposition
method, by means of a few numerical examples. By simplicity, the code has been
implemented using OpenMP, a standard parallelization library designed for shared
memory architectures. The parallel machine used to conduct the numerical tests is a
16 processor IBM Power 3, working at 375 MHz clock, with a theoretical peak per-
formance of 24 GFLOPS. Even though our algorithm allows for using an arbitrary
number, p, of processors, the implementation of the code by OpenMP is restricted
to run on a single node, which usually support, so far, a relatively low number of
processors. Applications based on MPI, which is characterized by the possibility of
internodal communication, however, could be considered.

In the numerical examples below, our method is compared with a parallel version
of a standard finite difference solver (parallel finite differences, PFD), which is the
same used in the local solver within the probabilistic domain decomposition method,
and is also parallelized using OpenMP. It should be observed that such a comparison
is in fact made between our PDD algorithm and a kind of “deterministic domain
decomposition method”. Such a method actually consists in distributing the overall
computational load among the available processors.

It is important to stress that, in the PDD method, the nodal values on the inter-
faces are generated by classical Monte Carlo simulations, which can take advantage
from massively parallel computation. After that, interpolation on the interfaces allows
for full decoupling into subdomains, and hence the numerical solution of the given
problem can be obtained also computing in parallel. In the quasi-PDD method (where
we used Halton sequences of quasi-random numbers) however, there is no clear way
to compute in parallel the nodal values above. In fact, due to the existing correlations
among the elements within each sequence of quasi-random numbers, it is mandatory
to adopt a suitable scrambling strategy, such as reordering, which contrasts with
the possibility of computing independently the various realizations. The possibility
of computing in parallel with quasi-random sequences deserves further investigation.
The second source of parallelization, however, still holds true.

In the examples below, we compare the efficiency of PDD with that of PFD, and
observed the overall error reduction attained when passing from PDD to quasi-PDD.
Example A. Consider first the Dirichlet problem for the Laplace equation in 2D

uxx + uyy = 0 in Ω := (0, 1)× (0, 1),

u(x, y)|∂Ω = g(x, y),(5.1)

where g(x, y) :=
(

x2 − y2
)

∂Ω
. This choice of g corresponds to the fact that the

analytical solution we wish to recover is the function u(x, y) = x2 − y2, harmonic
in Ω = [0, 1] × [0, 1]. In fig.s 5.1a and 5.1b, the pointwise numerical error is shown
on the whole domain, Ω, made correspondingly to PDD and quasi-PDD method,
respectively, using p = 4 subdomains. The L∞ error can be read from the colorbar
aside.

In both pictures in Fig. 5.1, it appears clearly that the maximum error on the
entire domain Ω is achieved on the interfaces, and more precisely on the interpolation
nodes. This occurs according to the observation made in Section 2 concerning the
maximum principle. Indeed, the error due to the Monte Carlo evaluation of the nodal
values dominates over both the interpolation error and on the finite difference errors
due to the local solver. This is true for both PDD and quasi-PDD methods. Moreover,
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Fig. 5.1. Example A. Pointwise numerical error in: (a) the PDD algorithm, and (b) the
quasi-PDD algorithm. Parameters are N = 104, ∆x = ∆y = 2× 10−3, λ = 102.

Table 5.1

CPU time in seconds for example A

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 121.237 106.079 24.315 81.764
9 56.539 35.833 17.625 18.208
16 42.752 20.992 14.676 6.316

it is also clear that the quasi-PDD algorithm outperforms the PDD algorithm. The
parameters used here are: N = 104 realizations, ∆x = ∆y = 2 × 10−3 grid size,
λ = 102 timestepping parameter (and thus an average time-step 〈∆t〉 = 10−2 to
integrate SDEs in (2.3)). In this example, concerning the Laplace equation, the
hitting probability, which is the probability that a given trajectory hits the boundary
between two consecutive time-steps, can be evaluated exactly, see [15]. Consequently,
a relative large mean time-step could be used.

Numerical experiments showed that two nodes suffice on each of the two interfaces.
The local solver is based on Gauss-Seidel iteration, where the exit tolerance has been
found experimentally (q = 14).

In Table 5.1, the second column, labeled by PFD shows the overall computational
time (in seconds) spent by the parallel finite difference algorithm for solving the
problem in Example A, using p = 4, 9, and 16 processors. This corresponds to 4,
9, and 16 subdomains. In the third column the same is done, when the probabilistic
domain decomposition is used. On the last two columns, the time needed in the latter
algorithm is split into two parts, that concerning the Monte Carlo simulation, and
that needed by the local solvers. This comparison between the two methods is made
for about the same maximum error, 10−3. It appears clearly that in both algorithms
the CPU time decreases as p increases, and this behavior is more dramatic in the
PDD algorithm. Also the CPU time decreases for each given number of processors
passing from PFD to PDD. One can observe that the ratio between the CPU time
spent in total by PDD (PDDTotal) and that spent by PFD favorably decreases as p
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increases, see Section 4.
Example B. Consider the 2D elliptic equation with variable coefficients

uxx + (6x2 + 1)uyy = 0 in Ω := (0, 1)× (0, 1),(5.2)

subject to the boundary data

u(x, y)|∂Ω = g(x, y),(5.3)

where g(x, y) :=
(

x4 + x2 − y2
)

∂Ω
. Similarly to Example A, we wrote the boundary

data in this way because the analytical solution of this problem is u(x, y) = x4+x2−y2

in Ω.
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Fig. 5.2. Example B. Pointwise numerical error in: (a) the PDD algorithm, and (b) the
quasi-PDD algorithm. Parameters are N = 104, ∆x = ∆y = 2× 10−3, λ = 103.

In fig.s 5.2a, and 5.2b, the same plots as in Example A are shown, and the same
comments hold. The only difference is that here three nodal points were needed in
the interpolation on each interface, which choice was determined upon experimenta-
tion. Parameters are also the same used in Example A, with the only exception of
the timestepping parameter λ, which has been chosen equal to 103. Others than in
Example A, here the hitting probability has to be evaluated approximately in powers
of λ−1 [15]. A higher value of λ was needed here in order to ensure a good accuracy
in approximating such a hitting probability.

Table 5.2 shows the same comparison as in Table 5.1, and the comments are
similar. The PFD method here requires more CPU time because the present problem
is more elaborate, due to the variable coefficients entering the equation. Thus more
iterations are needed in the linear algebraic part of the code. On the other hand, the
Monte Carlo part in the PDD algorithm is faster than in Example A, because the
variable diffusion implies reaching the boundary in fewer steps.
Example C. Consider the elliptic equation with constant diffusion and (variable)
drift terms

∆u+
1

x+ 1
ux +

2

y + 1
uy = 0 in Ω := (0, 1)× (0, 1),(5.4)
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Table 5.2

CPU time in seconds for example B

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 599.066 317.778 11.042 306.736
9 271.991 75.018 9.144 65.874
16 174.784 30.101 7.710 22.391

Table 5.3

CPU time in seconds for example C

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 350.989 166.728 151.640 15.088
9 160.351 48.374 34.577 13.797
16 105.862 22.585 12.104 10.481

with the boundary data

u(x, y)|∂Ω =

[

(x+ 1)2 +
2

3
(y + 1)2

]

∂Ω

,(5.5)

the solution being given by u(x, y) = (x+ 1)2 + 2(y + 1)2/3.
Figure 5.3 is analog to the previous ones, and the parameters used are the same

as in Example A. In particular only two nodes on each interface have been used, but
λ = 103 as in Example B. The general comments made above also apply.
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Fig. 5.3. Example C. Pointwise numerical error in: (a) the PDD algorithm, and (b) the
quasi-PDD algorithm. Parameters are the same as in Example B.

In Table 5.3, similar to the previous tables, one can see that now the Monte Carlo
part of the PDD algorithm takes longer than in the previous examples. This fact can
be attribuited to the asymmetry introduced by the drift in both directions, which
ultimately requires more time steps to exit the boundary.
Example D. Consider finally the Dirichlet problem for the 2D elliptic equation

uxx + uyy − 5u = 0 in Ω := (0, 1)× (0, 1),(5.6)
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Table 5.4

CPU time in seconds for example D with two nodes per interface

Processors PFD PDDTotal PDDMonte Carlo PDDFD

4 556.427 242.453 25.327 217.126
9 252.911 67.190 17.890 49.300
16 163.941 33.496 16.306 17.190

Table 5.5

CPU time in seconds for example D with 3 nodes per interface

Processors PDDTotal PDDMonte Carlo PDDFD

4 242.406 25.391 217.015
9 72.634 23.377 49.257
16 36.877 19.702 17.175

u(x, y)|∂Ω = g(x, y),(5.7)

where g(x, y) :=
(

e2x+y
)

∂Ω
. The analytical solution of such a problem is u(x, y) =

e2x+y, in Ω = [0, 1] × [0, 1]. In Fig. 5a and 5b, similarly to the previous cases, the
pointwise numerical error is shown, made correspondingly to the PDD and the quasi-
PDD methods. Here only two nodes on each interface have been used. Figure 5c shows
the result for three nodes on each interface (that is six nodal points in total). Note
that increasing the number of nodal points yields an overall reduction of the numerical
error on the whole domain. When pseudorandon numbers are used, the statistical
error dominates, making it irrelevant the improvement achieved interpolating on three
(instead of two) nodes on each interface. On the other hand, the time required
obviously increases, see Table 5.4 and 5.5. Using quasi-random numbers, instead,
which are characterized by smaller errors in computing the nodal values, an overall
error reduction due to a better interpolation can be observed switching from two to
three nodes.

In Table 5.4 and 5.5, the same features observed in the previous examples can
be seen. In Table 5.5, the CPU times related to PFD have been omitted since they
coincide with those reported in Table 5.4. In fact, the comparison between PFD and
PDD has been made keeping fixed the overall numerical error, which does not change
passing from two to three nodes per interface, as pointed out above. Note also that the
CPU times spent here in PDDMonteCarlo are about the same as those in Example
A (see Table 5.1). In fact, in both examples, A and D, the numerical solution of
the same system of SDEs is involved, and only a short additional time is required
in Example D. This is due to the quadrature corresponding to the presence of the
potential term in (5.6), see (2.2). Finally, it appears that the CPU time appreciably
increases switching from two to three nodes per interface, for a higher number of
processors, since this corresponds to increasing the total number of nodal points.

6. Concluding remarks. Probabilistic representations of solutions to elliptic
boundary-value problems, and the ensuing possibility of using them for numerical
approximations, have been known since long time. In spite of this, there is apparently
in the literature only a modest body of works addressing the latter possibility, see
[11, 20, 24], e.g. One reason can be certainly found in the poor performance of the
Monte Carlo method. In this paper, we have first improved the overall performance
of such a probabilistic numerical approach to solve linear elliptic boundary value
problems. This has been done even for variable coefficient equations, including both
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Fig. 5.4. Example D. Pointwise numerical error in: (a) the PDD algorithm, (b) the quasi-
PDD algorithm with two nodal points on each interface, evaluated by quasi-Monte Carlo, and (c)
the quasi-PDD algorithm with three nodal points on each interface. Parameters are N = 104,
∆x = ∆y = 2× 10−3, λ = 103.

cases of variable drift and diffusion. A suitable boundary treatment, realized by means
of the exponential timestepping method, was recognized as an essential ingredient
and implemented. Moreover, quasi-random sequences have been successfully used,
resulting in a faster convergence rate in the Monte Carlo simulations. Finally, we
have adopted a “divide and conquer” strategy, represented by a domain decomposition
method, where only few values are computed by Monte Carlo or quasi-Monte Carlo,
thus reducing the overall inherent computational cost. Such values were used as nodes
for interpolating the sought solution, then providing continuous approximations for
the interfacial values, to be exploited subsequently to split the problem into several
subproblems. We were then able to exploit as many processors, p, as subdomains.
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Speed-up and scalability with p is shown, both theoretically and in a few practical
examples.

In closing, notice that, even a relatively coarse solution obtained by the PDD
algorithm (through a Monte Carlo or quasi-Monte Carlo strategy with a moderate
value of N) could be used as the initial guess for the FD solver on the whole domain.
Indeed, the exit criterion in the linear algebraic solver depends both, on the spectral
radius of the iteration matrix (and thus on its spectral condition number), and on
the initial guess of solution. While the former can be reduced preconditioning, which
is essential in certain iterative methods, such as the iterative substructuring (deter-
ministic domain decomposition) methods, the PDD algorithm might provide a good
initial guess.

Acknowledgements. We are indebted to P. Dai Prà, L. Pavarino, A. Quar-
teroni, M. Vianello, and O. Widlund for several useful and enlightening discussions.
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