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Abstract—Joint design of flow control, multipath routing, and
random access control is considered for wireless multihop net-
works. Based on a network utility maximization formulation,
Aloha persistence probabilities are optimized together with mul-
ticommodity end-to-end rates and per-link flow rates. Although
the joint optimization of Aloha and flow control was previously
tackled using a convex reformulation, adding the routing com-
ponent renders the problem inherently nonconvex. To cope with
this challenge, a successive convex approximation approach is
taken to obtain a locally optimal solution efficiently. A parallelized
distributed algorithm is developed, which scales well in the net-
work size and exhibits low computational complexity. An online
implementation is also proposed and tested. Numerical examples
verify the novel design and highlight the performance advantage
over state-of-the-art alternatives.

Index Terms—Multihop network, multipath routing, random
access, successive convex approximation, utility maximization.

I. INTRODUCTION

R ANDOM access is a simple medium access control
(MAC) solution that does not require centralized coor-

dination, yet is effective for coping with wireless interference,
especially when the traffic load is relatively light. Such features
are desirable for wireless ad hoc networks including wireless
sensor networks. Among the random access techniques, slotted
Aloha is of much practical interest due to its implementation
simplicity [4].
Recently, utility-optimal MAC design proved successful in

mitigating some of the limitations associated with conventional
random access protocols. The link persistence probabilities
were optimized in [23] via a network utility maximiza-
tion (NUM) formulation to improve fairness among interfering
links compared to the existing IEEE 802.11 MAC. However,
it was noted that the contention graph-based model for MAC
used in [23] is overly simplified to fully capture the effects of
probabilistic packet collisions and backoff mechanisms [15].
Thus, a precise probabilistic MAC model put forth in [29] was
advocated to design utility-optimal MAC protocols through
convex optimization in [15] and [22].
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There is ample evidence corroborating the importance of
cross-layer optimization in the wireless multihop setting [8],
[11], [18], [30]. Engineering traffic flows through multihop
routes is a crucial task in such networks. Optimal multipath
routing establishes multiple explicit paths between source-des-
tination pairs, and distributes appropriate amount of traffic on
each of the paths. In wireless multihop networks employing
random access, joint design of MAC and routing can improve
the overall performance significantly, since “bottleneck areas”
with frequent MAC collisions can be avoided by routing, while
the nodes that contribute more on forwarding other nodes’
traffic can be assigned with higher priorities in gaining access
to the medium.
Joint optimization of flow control and Aloha-type MAC for

multihop networks was investigated in [14], [16], [29], and [31].
The dual method is applied in [14], [29], and [31] to obtain dis-
tributed solutions, if end-to-end exchanges of control messages
can be afforded. A backpressure-type algorithm is considered in
[16], which dynamically sets the link access probability based
on queue differentials. However, these works assume that routes
are determined by separate mechanisms and do not consider
path selection and traffic splitting among multiple paths.
Joint routing and MAC scheduling was tackled in [7], [13],

and [24], where contention graph-basedMACmodels were used
for simplicity. To circumvent the inherent nonconvexity, a har-
monic mean of the multipath flow rates was considered in [28],
resulting in approximately equal, yet suboptimal, flow splitting.
It is noted that optimal multipath routing is a performance-crit-
ical traffic engineering issue, and efficient mechanisms such as
MPLS are available to support such a feature in modern routing
protocols [2], [10]. In essence, co-design of the wireless pro-
tocol stack including that of congestion control, routing, and
random access has been undertaken in various practical settings
[7], [24], [26], and is of particular interest in tactical settings
[25].
The goal of this work is to obtain utility-optimal joint flow

control, routing, and Aloha MAC parameters for wireless
multihop networks in a distributed fashion. Multicommodity
traffic and multipath routing are considered. An accurate prob-
abilistic model for the random access MAC is adopted as in
[15] and [29]. This model together with flow conservation con-
straints for routing leads to an inherently nonconvex problem,
unlike the cases where multipath routing is not considered.
To sidestep this hurdle, a successive convex approximation
approach is employed to obtain an (at least locally) optimal
solution efficiently. A convergent distributed algorithm is
developed using the dual decomposition method. To much
practical appeal, the optimal primal variables can be obtained
at each node with very low complexity, and in some special
cases of interest, in closed form. An online network control
strategy is also developed, which obviates the need to wait for
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Fig. 1. Example network topology with the optimized persistence probabilities
and flow rates.

an offline solution and allows tracking of (slowly) time-varying
network parameters.
The rest of the paper is organized as follows. Section II deals

with the system model and the NUM formulation. A successive
convex approximation approach for the resulting nonconvex
problem is discussed in Section III. Section IV develops a dis-
tributed algorithm as well as its online implementation. A con-
tention graph-based approach for MAC design is developed in
Section V. Numerical tests are provided in Section VI and con-
clusions in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A multihop wireless ad hoc network is considered with
topology determined by a set of nodes , and a set of directed
edges . Denote the transmitter node of link as , and
the receiver node as . Let
and represent the sets of
edges corresponding to incoming and outgoing links of node ,
respectively. The network is assumed to carry a set of traffic
“commodities,” where commodity generated by a source node
in set is sent to the destination nodes in set . In general,
node generates commodity traffic, absorbs it, or purely
relays it to its neighbors. Let denote the set of
commodities generated by node , and the
set of commodities not absorbed by node . Obviously,
for the nodes that are not the sinks of any commodity.
Due to the broadcast nature of the wireless interface, a link

whose receiver is in the proximity of an unintended co-channel
transmitter is interfered if the corresponding reception and trans-
mission occur simultaneously. Let be the set of nodes
whose transmission interfereswith (the reception of) link . Sim-
ilarly, let denote the set of links that are interfered by
the transmission of node . Note that if , then

, and vice versa. For example, consider a network of
six nodes, shown in Fig. 1, where all links are bidirectional. The
communication and the interference distances are assumed to be
identical. Then,
and .
Hardware limitations (e.g., thecouplingbetween transmit- and

receive-chains)dictate that eachnodecaneither transmit to, or re-
ceive fromatmosta singleadjacentnode.Moreover, it is assumed

that the channel between any pair of nodes is quasi-static—a rea-
sonable assumption in a lowmobility scenario—although this as-
sumption can be partially relieved when considering on-line im-
plementation; cf. Section IV-D. Similar to [7] and [15], it is also
assumed that fading impairments are fullymitigated by the phys-
ical layer. Thus, the interference relations are time-invariant, and
packet drops are entirely due to collisions at the MAC layer.
To mitigate packet collisions due to interference, slotted

Aloha is adopted for random access [4]. Let denote the
persistence probability of node ; that is, node transmits with
probability , provided that there is a packet in its queue.
Given that node transmits, the probability of forwarding
a packet through link is denoted by , where

. Thus, the access probability of link is
given by with . Define vectors

and .
Let represent the raw physical layer rate of link during

data transmission assuming no collision. Suppose also that the
nodes are fully backlogged, and multi-packet reception is not
allowed [12]. Since nodes transmit independently, the average
rate delivered by the MAC to higher layers can be expressed
as

(1)

A source node generates commodity traffic at an
average rate of for . Multipath routing based
on traffic splitting is considered so that the generated traffic can
exploit multiple routes to reach the destinations in [2], [10].
Node in one of the paths forwards traffic to the neighbors
through its outgoing links at average flow rate

.
Define vectors

and

formed by the input rates of all sources and the flow rates of all
links in the network, except those emanating from the sinks of
corresponding commodities. Note that the links emanating from
the sinks of a commodity cannot carry the traffic of that com-
modity as the sinks will absorb all the traffic by definition. In
the same token, let de-
note the set of incoming links of node , excluding those that
emanate from a destination node for commodity traffic. Sim-
ilarly, define as the
set of outgoing links of node , except those entering a destina-
tion of the th traffic commodity. For example, consider again
the network in Fig. 1, which carries two traffic commodities
(i.e., ). Nodes marked by diamonds and squares rep-
resent the destination nodes of commodities 1 and 2, respec-
tively. Nodes 1 through 4 generate both commodities, while
nodes 5 and 6 generate commodities 1 and 2, respectively. Then,

and .
For queue stability, the flow conservation law of the network,

expressed as

(2)
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must hold, where denotes the indicator function, taking value
1 if is true, and 0 otherwise. The r.h.s. of (2) corresponds to the
commodity traffic entering node , where the source variable

appears only when node is a source node. Note that by
using instead of in (2), the flows emanating from
the destination nodes of commodities are excluded (since they
must be zero by the definition of destination nodes).
A NUM formulation will be sought to find the optimal

random access MAC parameters and , the multihop routing
variables , and the source rate variables . Source node that
can deliver commodity traffic to any destination in at rate
, is awarded utility . The class of concave and

monotonically increasing utility functions adopted in this work
is

(3)

for where is a fairness-controlling
parameter. For example, setting amounts to pro-
portional fairness; , harmonic-mean fairness; and,

, max-min fairness, among all source nodes and
commodities [21]. The optimization problem that maximizes
the weighted total network utility is formulated as

(P1) (4)

s. to

(5)

(6)

(7)

where the constants are positive weights adjusting
the importance of different nodes and commodities; and
are vectors with all elements equal to zero and one, respec-
tively; and vectors and

denote the minimum and
maximum average rates of the links, respectively. To bypass
a technicality that will become clear later, it is assumed that

. However, as the entries of can take arbitrarily
small values, such an assumption is practically inconsequential.
Constraint (5) states that the flow rate over each link
cannot exceed the achievable rate delivered by the MAC layer.
Constraint (6) relates the link access probabilities to the node
access probabilities as previously discussed. Constraint (7)
ensures queue stability. To be precise, (7) is a necessary con-
dition for queue stability. A sufficient condition can be readily
obtained by adding a small positive constant on the r.h.s. of
(7). For the sake of simplicity, this subtlety is neglected in this
work.

Problem (P1) is not convex due to (5), and thus hard to solve
even in a centralized fashion. In the next section, an approach
to obtain an (at least locally) optimal solution is described.

III. SUCCESSIVE CONVEX APPROXIMATION

When multipath routes are not optimized jointly, convex re-
formulation of (P1) is possible through a change of variables

and after taking logarithms on
both sides of (5). However, in the present case of jointly optimal
MAC, multipath routing, and flow control, this change of vari-
ables also transforms the flow conservation constraints (7) into
nonconvex constraints, and the problem remains nonconvex.
To find a locally optimal solution to (P1), we adopt the said

change of variables, but mitigate the resulting nonconvexity in
(7) via successive convex approximation [20]. To this end, con-
sider first rearranging (7) to obtain a set of constraints on the
ratios of posynomials [1], as

(8)

where the denominator is positive since . The l.h.s. of
(8) is still a nonconvex function, which motivates the ensuing
iterative approach based on successive convex approximation.
Specifically, the single condensation method is employed to ap-
proximate the ratio of posynomials by a posynomial, as ex-
plained next; see also [1] and [9].
Given the iterates from (previous) iteration
, the denominator in the l.h.s. of (8) can be lower bounded by
a monomial as

(9)

where with are constants

obtained recursively from as

(10)

It has been shown (see, e.g., [9]) that the posynomial ob-
tained by replacing the denominator of the l.h.s. of (8) by the
lower-bound in (9) satisfies the conditions for convergence
of the successive convex approximation method [20]. For
example, it can be easily verified that equality is achieved in (9)
at . Then, using the change of variables

, and , the constraints in (8) are
replaced by tighter convex surrogates given by

(11)
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TABLE I
ALGORITHM TO OBTAIN A KKT SOLUTION TO (P1)

Upon defining , , and as the vectors obtained
by taking entrywise logarithm of , , and , respec-
tively, and letting and , the
problem to solve at the th iteration of the successive approxi-
mation algorithm is

(P2) (12)

s. to: (6), (11), and

(13)

where (13) is obtained by taking logarithm of both sides of (5)
after the change of variables.
Proposition 1: If in (3) is chosen such that

, then (P2) is convex.
Proof: With , it is straightforward to verify that

the second derivative of with respect to is non-
positive [15]. Thus, the objective in (12) is concave. The l.h.s.
of (11) and (13) are convex because the log-sum-exp function is
convex [5]. Since the remaining constraints are linear, the proof
is complete.
With the choice , Table I presents an itera-

tive procedure that yields a KKT solution to (P1). Convergence
of the successive approximation algorithm based on the single
condensation method, such as the one in Table I, has been es-
tablished in [9]; see also [20]. In Step 0), the feasible starting
point can be obtained, e.g., by choosing and setting

for , in (P1). Provided that

the entries of are small enough, feasible values for
and can be easily found. Step 1) can be performed using
a centralized solver, as (P2) is convex. However, a distributed
algorithm is often desired due to its scalability and robustness
attributes. This is the subject of the next section.

IV. DISTRIBUTED SOLUTION

Problem (P2) is not amenable to distributed implementation
in its present form owing to the coupling among the flow vari-
ables for different nodes in (11). To effect decoupling, a set of
auxiliary variables is introduced to maintain local copies of the
outgoing (log) flow rates at each node. Additional constraints
are then imposed to enforce that the copies indeed match the

originals. Then, the dual method can be employed to decom-
pose the overall problem into smaller subproblems that can be
solved individually at each node, coordinated by Lagrange mul-
tipliers.
Since the flow conservation constraints, and subsequently the

constraints (11), are not imposed for the destination nodes of
each traffic commodity , care must be taken. That is, the
copies need not be made for the flows of commodities that enter
the destination nodes of the commodities. For notational con-
venience, let

denote the set of
link-commodity pairs, where the link enters node , but is not
connected to a destination node of the commodity. Similarly,
define

and
for the outgoing links of node . For example, it can

be seen in Fig. 1 that , ,
and .
Then, introduce a set of auxiliary variables

that serves as a copy of the set of outgoing log

flow rate variables , where the flows en-
tering the destination nodes of the corresponding commodities
are excluded from . Define also

and .
An important practical issue in using the dual method is the

ability to obtain the primal optimal variables efficiently, most
preferably in closed form [3, p. 593]. In fact, it can be shown
that a single-commodity version of (P2) admits closed-form so-
lutions for the primal variables when ; and very effi-
cient solutions involving a bisection search when [19].
However, such merits do not translate to the present multi-com-
modity case, because variables corresponding to distinct traffic
commodities become coupled in the log-sum-exp term in (13).
Fortunately, replacing the MAC constraints (5) by the following
equivalent set of constraints, through the additional auxiliary
variables , yields efficient primal solutions (see also [31]):

(14)

(15)

(16)

Here, can be interpreted as the fraction of the MAC achiev-
able rate on link allocated to commodity traffic. Another
challenge with the dual method is that the primal optimal vari-
ables recovered from the dual optimal ones may be infeasible if
the primal variables are not uniquely determined [3, Ch.6]. To
enforce uniqueness, one can add regularization terms to the ob-
jective in (12). Letting and defining
and likewise, the useful regularization terms with the mag-
nitude controlled by a small constant , are (see also [30])

(17)
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Upon defining , and
incorporating the preceding discussions, it is possible to refor-
mulate (P2) as

P3)

s. to: (6), (16), and

(18)

(19)

(20)

where the fact that is equivalent to
, was used in (18) and (19). Arguing

as in Proposition 1, one can show that (P3) is convex when
. Thus, assuming that strong duality holds for

(P3), the dual method can be employed to solve (P3) optimally
in a distributed fashion [3, Ch. 6].
Introduce Lagrange multipliers

with and to relax constraints
(18) and (20), respectively. To solve (P3) in a distributed
manner, define variables local to each node . First,
define node ’s primal variables ,

, , ,

and . Collect also the Lagrange multi-

pliers related to node to form ,

, , and

, where . Then, the
partial Lagrangian can be written as

(21)

where

(22)

and

(23)

The dual function is then obtained as

s. to: (6), (16), and (19) (24)

Note that grows without bound if is sent to
provided for any ,
since is linear in , and (19) does not preclude
from going to . Thus, the dual optimization problem is given
by

s. to: (25)

To solve the dual problem, (24) must be solved first. To this
end, (24) can be decomposed into two subproblems. The first
subproblem dealing with the MAC layer parameters is

s. to: (6) and (16) (26)

The second subproblem involving the higher-layer parame-
ters is

s. to: (19) (27)

and . Next, each subproblems is
solved in a distributed fashion.

A. MAC Layer Subproblem

To find the optimal primal variables associated with the
random access MAC, one needs to solve (26), which is sepa-
rable to individual nodes. The per-node optimization at node
is

(P4)

s. to: (6) and (16) (28)

The optimal persistence probabilities for node and its out-
going links are determined by solving the KKT optimality con-
ditions for a given . Specifically, with

, the optimal access probabilities are obtained as
(cf. [15] and [31])

(29)

(30)

and the optimal as

(31)
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Thus, to solve (P4) at the transmitter of link ,
node needs to collect only local dual variables for

; all other dual variables are already local to node . In
Fig. 1 for example, node 4 needs to receive associated with
links from nodes 1, 2, 3, 5
and 6 through (at most two-hop) message passing. The MAC
layer multipliers admit an intuitive pricing interpretation based
on (29) and (30). Imagine a link with . If this link expe-
riences frequent contention, the “contention price” increases.
Then, the link access probability increases and the transmis-
sion probability for the interfering nodes de-
creases. This way the contention for link is relieved. Similarly,
the dual prices can also be interpreted as the price for the
MAC resource for commodity in link . The bandwidth frac-
tion is allocated to commodity in proportion to the price
in (31).

B. Higher-Layer Subproblem

Problem (27) represents an optimization task entailing net-
work and transport layer variables. This problem can again be
solved in a distributed fashion at the individual nodes. With

denoting the l.h.s. of (19), the problem per node
is

P5) (32)

s. to: (33)

If denote the Lagrange multipliers associ-
ated with constraints (33), the partial Lagrangian obtained by
relaxing (33) is

(34)

Assuming that Slater’s conditions hold for (P5), the optimal
primal and dual variables for (P5) must satisfy [3, Prop. 5.1.5]

(35)

(36)

(37)

(38)

where (36) is the complementary slackness condition for con-
straint (33), while (37) and (38) represent primal and dual fea-
sibility, respectively.
Remarkably, the primal optimal variables

satisfying (35)–(38) can be found very efficiently. The solu-
tion actually decouples into individual traffic commodities.
For a source node of traffic commodity ,
the corresponding primal optimal , ,

, and can be ob-

tained in closed form when . When , those

optimal primal variables are expressed in closed form given
the optimal dual variable , where can be found as
the unique root of a nonlinear equation, e.g., via a simple
bisection search. Finally, for nodes with , the
primal solutions and

are obtained in closed form regardless of the value of .
Proposition 2: Upon defining

, , and

, the globally optimal solu-
tion to (P5) for each is obtained as follows.
a) If and , the outgoing log link rates are
given by

(39)
and the incoming log link rates by

.
(40)

The source log rate is also given by

(41)

b) If and ,

(42)

(43)

(44)

where satisfies
, which can be solved through a bisection

search.
c) If ,

(45)
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(46)

Proof: See Appendix A.
Referring to (9), one can see from (40) and (41) that for

with , the optimal and
divide a lower bound to the total outgoing flow in proportion to

and , respectively, in obedience to the flow
conservation constraints. Thus, lower flow rates are assigned to
links that experience higher MAC competition, and hence have
larger values of . This indeed demonstrates the advantage
of multipath routing to carry the traffic over links with lower
contention and thus effect higher network utility. Similar ob-
servations can be made for the non-source nodes in (46). When

and , flow conservation is enforced by finding
an appropriate numerically.
It should be stressed that the solutions can be ob-

tained in a distributed fashion, using only the dual vari-
ables local to—at most in the single-hop neighborhood
of—node , namely, ,

and for all . For ex-

ample, in Fig. 1, node 4 needs to receive for
from node 3.

C. Dual Update

To find the optimal dual variables, a subgradient projection
method is employed to solve (25). From Danskin’s theorem [3,
p. 717], it follows that

(47)

(48)

where and are the subgra-

dients of at w.r.t. and , respec-
tively. To ensure the dual variables belong to the fea-
sible set of (25), projection is necessary. Upon defining

,
for , one

can see that is the Cartesian product of

and . Thus, the subgradient projec-
tion step at time can be performed in a distributed fashion as

(49)

(50)

where and is the projection opera-

tion onto , which is given by

otherwise.

(51)

Convergence of the iterates in (49) and (50) is asserted as
follows.
Proposition 3: There exists a sequence of step sizes

(e.g., ), for which the dual iterates
converge to the dual optimal point . If

conditions c1) ; c2) ; and
c3) hold for , the primal variables
recovered from the dual optimal variables through (29)–(31)
and Prop. 2, are the optimal solution to (P3).1

Proof: (Sketch): The subgradient method with an appro-
priate sequence of step sizes converges to [27]. Problem
(P3) is convex, and conditions c1)–c3) ensure that (P4) and (P5)
have unique solutions at . Thus, the primal variables ob-
tained by maximizing the Lagrangian at the optimal dual vari-
ables are the optimal solution to the original problem [5, p. 248].

It is observed that the dual updates (49)–(50) can be per-
formed in a distributed manner at each node. The overall dis-
tributed algorithm for solving (P3), which is equivalent to (P2),
is listed in Table II. However, deciding when to stop the itera-
tion by checking convergence may require central coordination.
In practice, such a requirement may be circumvented by em-
ploying a global timer, which terminates the algorithm after a
sufficient number of iterations.
With respect to the outer iterations in for successive convex

approximation (cf. Table I), the algorithm in Table II comprises
inner iterations. According to (10), updating also re-
quires only local information available at each node. Therefore,
the overall optimization algorithm in Table I obtains a KKT
point of the original problem (P1) in a distributed fashion.
Remark 1: The algorithms in the present work were de-

rived with network synchronization tacitly assumed. However,
synchronization is necessary only for the outer iterations (in

1Even without c1)–c3), optimality is guaranteed by regularizing the ob-

jective in (P3) with the function

which allows

unique recovery of the primal variables. However, recovery of the primal
variables may incur considerably higher complexity.
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TABLE II
DISTRIBUTED ALGORITHM TO SOLVE (P2) VIA (P3)

) for the network to update the convex subproblem (P3). It
can be shown that an asynchronous version of the algorithm
in Table II can yield the optimal solution to (P3) under mild
conditions [17].

D. On-Line Implementation

One may employ the proposed algorithm to obtain the op-
timal network parameters offline (either in a centralized or dis-
tributed fashion), and then deploy those parameters in the op-
erational stage of the network. An alternative would be to per-
form the optimization online while the network is operational.
Provided that queuing delay due to the transient behavior can
be tolerated, the online alternative is advantageous in that slow
variations in the network topology can be tracked.
Consider a slotted network whose time slots are aligned with

the (inner) iteration of the proposed optimization algorithm. At
each node , network layer queues for each of the com-
modities in , as well as MAC layer queues for each of the
outgoing links in are installed. At the beginning of
each slot , node collects the necessary dual variables from
its neighborhood, and computes the corresponding primal vari-
ables by solving (P4) and (P5).
Subsequently, for , the transport layer of node ad-

mits the commodity traffic from the higher layer into the com-
modity queue at the rate of . Also, node receives
the traffic from neighboring nodes through the incoming links.
Among the incoming traffic, node delivers to the higher layer
those commodities for which node is the intended destination.
The rest is queued in the appropriate commodity queues at the
network layer.
Then, packets in the network layer queue for commodity
are transferred to the MAC layer queue for link

at the rate of

if

if
(52)

where the minimum is taken when to ensure that
the transmission rate does not exceed the reception rate
dictated by the optimization algorithm.
To transmit the packets in the MAC layer queues, node

tosses a coin and decides to transmit with optimal, per-slot

persistence probability . Upon decision to transmit,
an outgoing link is chosen randomly with probability

. For the chosen link , the packets

are transmitted at rate . If the packets go through without
collision, those successfully transmitted packets are removed
from the MAC layer queue for link . In view of (5), upon
convergence of the optimization algorithm, the arrival rate
per MAC queue is upper-bounded by the MAC achievable
rate of the corresponding link. Thus, the MAC queues are
stabilized. Likewise, network layer queues are also stabilized
since the flow conservation constraints (19) are enforced, and
the constraints (20) are met upon convergence.

V. CONTENTION GRAPH-BASED APPROACH

To highlight the performance advantage of the proposed al-
gorithm based on the precise probabilistic contention model, a
benchmark is developed in this section. Specifically, the existing
approach using the contention graph-based MAC model is con-
sidered for the joint congestion control, routing, and MAC opti-
mization problem at hand. Themodel captures theMACmecha-
nism only approximately, resulting in performance degradation
in practice.
A contention graph captures the interference relation of a

given wireless network [7], [23]. Its vertices represent network
links, and the undirected edges connecting the vertices indicate
that the two links interfere with each other when both are active
simultaneously. Thus, the set of vertices not sharing any edges
can be active at the same time without causing interference. In
the same token, in a fully connected subgraph (a clique) of the
contention graph, only one vertex (link) is schedulable at a time.
A maximal clique (a clique not inclusive in any other clique) of
a contention graph is referred to as a contention region. In gen-
eral, a centralized scheduler is necessary to schedule optimally
for cross-layer objectives [6].
Schedulability constraints are usually approximated as clique

feasibility constraints described in the following, although the
latter do not necessarily imply the former. Since link with an
average rate utilizes an -fraction of the
air time, a necessary condition for a feasible schedule is given
by

(53)

where denotes the th set among the contention regions.
In order to derive a distributed online algorithm, the approach in
[13] is taken. Specifically, (53) is augmented to the optimization
objective through penalty terms as

(P6)

(54)

s. to:

(55)
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where is the
regularization term ensuring uniqueness of the solution,
the penalty function to enforce (53) for the th contention re-
gion, and the parameter for tuning the severity of the penalty.
It is assumed that are continuous, nondecreasing and non-
negative, leading to a convex formulation (P6). Thus, upon ap-
plying the dual decomposition method and relaxing the con-
straints (55) using the Lagrange multipliers , an iterative
algorithm can be derived.
Let be the iteration index. Given the Lagrange multipliers

at iteration , the source rates can be obtained as

(56)

In principle, the link rates at iteration can be obtained
using the gradient projection method involving subiterations in-
dexed by :

(57)

where denotes the step size. To avoid explicit exchange of
information among the contention regions, the ratio is inter-
preted as the access probability of link , and the update in (57)
is performed online as follows [13]. If has a packet to

send, it transmits with probability .
(When multiple outgoing links of a node have packets to send,
one of the links is randomly picked.) If collision occurs, the
rate is decreased by . Also, is decreased

by per subiteration .
Finally, the dual variables are updated as

(58)

VI. NUMERICAL TESTS

The performance of the proposed algorithm is assessed via
numerical tests. Wireless networks with bidirectional links are
considered, where two nodes can hear (and interfere) each other
if their distance is less than a threshold distance . The subgra-
dient algorithm with constant step size is em-
ployed. Parameter values , , ,

, and , are used.

A. Small Network Example

As the first example, the network topology in Fig. 1 is con-
sidered with . As discussed in Section II, ,

Fig. 2. Convergence of outer iterations.

with the diamond and the square representing the destination
nodes of commodities 1 and 2, respectively. All nodes generate
both commodities, except the destination nodes, which generate
single commodities. Fig. 2 depicts the convergence behavior of
the network utility as the outer iteration (indexed by ) pro-
gresses. It is observed that the objectives increasemonotonically
until convergence. The converged link flow rates and node per-
sistence probabilities are illustrated in Fig. 1, where the thick-
ness of the links is roughly proportional to the associated flow
rates, and the radius of the circles to the persistence probabili-
ties.
Fig. 3 shows the evolution of the inner iterations (indexed by
). Fig. 3(a) depicts the evolution of the primal objectives (total
network utilities) and the dual objectives. Different groups
of curves correspond to different outer iteration index . It
should be noted that the primal and the dual objectives shown
in Fig. 3(a) correspond to those of the convex subproblem (P3).
Since (P3) is convex, there is no duality gap. As depicted in
Fig. 3(b), the number of inner iterations required for conver-
gence is reduced rapidly as the outer iteration in progresses,
since the solution from the previous outer iteration is used as
the starting point. The duality gap being less than was
used as the convergence criterion. The evolution of the dual
variables is plotted for in Fig. 3(c).

B. Larger Network Example

For a larger network example, a network with 15 nodes ran-
domly placed in a unit square is considered with . To
see the performance advantage of the proposed design, two ex-
isting alternatives are tested. The first alternative is the joint con-
gestion control andMACoptimizationmethod proposed in [31],
which does not jointly optimize routing. The second approach
is the contention graph-based benchmark derived in Section V.
1) Comparison with the method in [31]: This algorithm as-

sumes that the routes are prespecified and performs optimization
of end-to-end throughput and access probabilities. Minimum
hop-count routes were used. The average optimized network
utilities obtained by averaging 10 random topologies for var-
ious fairness criteria are listed in Table III. It is observed that
our algorithm noticeably outperforms the scheme that does not
perform joint route optimization.
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Fig. 3. Convergence of inner iterations (a) Primal and dual objectives over dif-
ferent outer iterations (b) Number of inner iterations as the outer iteration pro-
gresses (c) Dual variables for .

TABLE III
OPTIMIZED NETWORK UTILITIES AVERAGED OVER TEN

RANDOM NETWORK TOPOLOGIES

An instance of the simulated topologies is shown in Fig. 4,
which entails 52 directional links. Four source nodes marked
by squares inject single-commodity traffic destined to the node
marked by the diamond. Table IV lists the maximized total net-
work utilities and the optimal source rates obtained from both
algorithms using the proportional fairness , and the
harmonic-mean fairness utilities. It is seen that the
proposed algorithm achieves higher throughput than that of [31]
under the same fairness criteria. The routes and the converged
link flow rates for the proportional fairness case are depicted in
Fig. 4(a), where again the thickness of the links is approximately
proportional to the associated flow rates. It can be seen that the
minimum hop count-based routing generates intense contention
near the destination, while our algorithm intelligently selects the
routing paths so as to avoid interference-prone areas of the net-
work.
2) Comparison with the contention graph-based method:

Simulations are performed to show the benefits of probabilistic
method adopted in this paper compared to the contention
graph-based method derived in Section V. The value of was
set to 0.01. The average network utilities obtained from 10
different random network topologies are shown in Table IV.
It can be seen that the crude approximation of the contention
graph model degrades the cross-layer performance.
For the particular network topology in Fig. 4, the utilities and

source rates are again presented in Table III for proportional and

Fig. 4. An instance of the experimented network topologies with the optimized
flow rates. (a) Comparison with the method in [31]. (b) Comparison with the
contention graph-based method.

harmonic-mean fairness objectives. The optimized routes and
their corresponding flow rates are also depicted in Fig. 4(b). It
can be seen that the contention graph-based scheme tends to use
more paths than the proposed scheme, which may increase the
number of collisions in the network.
3) Robustness to initial points: To gauge the sensitivity of the

proposed method to the starting point of the iterative algorithm,
the optimal proportional fairness objective values obtained from
1,000 different randomly selected feasible initial points for the
network topology in Fig. 4 are depicted in Fig. 5 (for ).
Although the proposed algorithm is designed to find the locally
optimal solutions, it is seen that the obtained solutions coincide
with the global optimum quite often (around 80% of the trials).

C. Online Network Control

Simulated tests are also performed to validate the online im-
plementation described in Section IV-D. The network topology
in Fig. 1 is used with fully backlogged transport layer queues.
Node 1 maintains two network layer queues for commodities
1 and 2, and two MAC layer queues for links (1,2) and (1,3).
For each outer iteration , inner iterations are used. Fig. 6
depicts the evolution of the network-layer and the MAC-layer
queue lengths at node 1. It can be seen that the queue lengths
eventually drop to zero, and the network is stabilized. Similar
trends are observed for the queues in the remaining nodes.

VII. CONCLUSION

Cross-layer optimization of flow control, multipath routing
and Aloha random access control was investigated for wireless
multi-commodity multihop networks using the NUM frame-
work. Unlike the case where routes are fixed a priori, the joint
routing optimization problem turns out to be inherently non-
convex. To mitigate this impasse, a successive convex approx-
imation approach was adopted, which yields a KKT optimal
point of the problem. By introducing auxiliary variables and ex-
ploiting the problem structure, a scalable distributed algorithm
was developed, which requires very low computational com-
plexity per node. An online implementation of the proposed al-
gorithm was also proposed. The numerical tests verified the ef-
ficacy of our design.
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TABLE IV
OPTIMIZED NETWORK UTILITIES AND SOURCE RATES

Fig. 5. Network utility obtained from random initial points when
.

Fig. 6. Evolution of queue lengths at node 1. (a) MAC layer queues. (b) Net-
work layer queues.

APPENDIX A
PROOF OF PROPOSITION 2

Start by writing as

(59)

The maximization in (35) is separable in , and
decomposable to maximizations over ,

and

for each . The subproblems pertaining to and
are further decomposable per as

(60)

(61)

respectively. Since (60) and (61) are quadratic and concave in
and , the corresponding optimal values are uniquely

determined for a given as (42). The optimal values
must maximize

(62)

which we denote as .
Consider first the case where . The derivative of

w.r.t. is

(63)

If , the derivative is positive since

. Thus, , which violates primal

feasibility (37). Hence, must hold, and from (36) we
have

(64)



MARDANI et al.: CROSS-LAYER DESIGN OF WIRELESS MULTIHOP RANDOM ACCESS NETWORKS 2573

Since and is unconstrained, (63) equals to zero
at the optimum, which gives

(65)

for . Now, the derivative of w.r.t. for
is given by

(66)

If , then the derivative is negative, and
. For the rest of , where , is

chosen so that (66) is equal to zero:

(67)

From (65) and (67), it follows that

(68)

Substituting (68) into (65) yields

(69)

When , (69) yields the optimal Lagrange multiplier
in closed form as

(70)

and (39) is obtained by replacing in (42) by (70). Equation
(41) is derived by eliminating in (64) through

(65) and solving for . Substituting this in (68) yields
(40).
When , (44) is obtained by solving for in (69),

where it is noted that . Again, substituting this
into (68) yields (43). To obtain , (42)–(44) are plugged into
(64), which yields the condition , where

(71)

Let denote the summation over , and
the remaining log term. It can be easily verified that func-

tion is strictly increasing for . Therefore, there

is a unique , which can be readily obtained via a root finding
method such as the bisection method.
Now, consider the case where . Then, the derivative of

the objective in (62) w.r.t , is given by

(72)

For those for which , assume first
. Then, any that satisfies primal feasibility is

acceptable. On the other hand, implies .
For the rest of for which ,
implies , which violates the primal feasibility. Thus,

holds provided that there exist some such
that . In the latter case, setting (72) to zero yields

(73)

Summing up both sides of (73) w.r.t. yields

(74)

Plugging (73) and (74) into (64), for
, are obtained as (46). Problem (P5) may have multiple

solutions if for all . In this case, one
strategy is to choose identical values for all , ,
to satisfy . This leads to (46).
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