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Abstract

This paper proposes an algorithm to identify TCP spurious retransmission timeouts by post
processing of packet traces monitored in operational networks. The operational principles
of the algorithm and the assumptions behind its design are explained in detail as well as the
situations in which the algorithm is prone to inaccuracies. By extensive measurements in a
lab testbed using realistic round trip time characteristics as observed in operational wireless
networks and FTP-like as well as Web-like traffic generators, it is shown that the algorithm
is accurate in detection of spurious retransmission timeouts. Subsequently, the algorithm
is applied to real traffic traces captured at several interfaces of an operational UMTS and
GPRS network to analyze the frequency of spurious retransmission timeouts as well as the
spurious timeout probability dependent on the load situation in the network and the flow
size. This investigation, to our best knowledge the first on large scale TCP traffic traces
monitored in an operational UMTS network, shows that spurious timeouts are infrequent
events in the considered UMTS as well as the GPRS network. Among other findings, it is
additionally shown that the ratio between spurious timeouts and other congestion recovery
events experienced by TCP flows is low, indicating a negligible impact of spurious timeouts
on TCP performance.
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1 Introduction

The characteristics of wireless networks as seen from the perspective of higher
layer protocols are significantly different from their wireline counterparts. The or-
thogonality between the layers of the protocol stack, an invariant in the protocol
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design of wireline networks for many years, has been shown invalid for the case of
wireless networks due to crosslayer interactions between complex physical layer
characteristics and the MAC layer, MAC layer and link layer ARQ mechanisms,
and link layer mechanisms with transport protocols providing reliable end-to-end
data delivery to applications. At the time when the Transmission Control Protocol
(TCP), the Internet transport protocol for reliable service, was designed wireless
packet switched networks were in their infancies and significantly less deployed
than it is the case today. Consequently, TCP error control and the window based
congestion control mechanism were designed with a wireline network in mind, ag-
nostic to crosslayer interactions as observed in wireless networks. A well known
example for crosslayer interaction between TCP and lower layers is the problem
of Spurious (i.e. unnecessary) retransmission timeouts due to high variation of the
round trip time (RTT). In the case of UMTS and GPRS networks high RTT varia-
tions are common due to:

- mobility: the mobile terminal may experience intra- or inter routing area han-
dovers implying signaling in the wireless network, storage of packets in SGSNs
and/or RNCs, and a change in radio conditions usually causing a spike in the
RTT of a TCP flow. We note that mobility mechanisms are different and more
efficient in case of UMTS as compared to GPRS networks;

- sudden increase of high priority traffic: in case of GPRS networks, GSM tele-
phony traffic has higher priority when competing for timeslots on the channel
with GPRS data traffic. If the load in GSM traffic suddenly increases GPRS data
traffic experiences congestion causing significant queuing delays in GPRS core
network devices and thus RTT variation;

- overdimensioned buffers in core network equipment: as shown in (1) overdi-
mensioned buffer sizes per mobile terminal in SGSNs can cause high maximum
RTTs and high RTT variability in combination with time varying traffic demands
and low link speeds;

- changes in radio conditions: the variability in radio channel quality causes bit er-
rors on the channel and retransmissions at the link layer. Link layer retransmis-
sions introduce a delay jitter when transmitting TCP packets over the wireless
link. Additionally, the channel is blocked causing buffering of packets and thus
time varying queuing delays.

The TCP retransmission timeout (RTO) fires if an acknowledgment for a segment
is not received within the estimated RTT plus approximatively four times the mean
deviation of the estimated RTT (2). The aim of the retransmission timeout is to
make TCP recover from multiple packet losses per RTT in times of heavy conges-
tion. A retransmission timeout caused by packet losses will be denoted as normal
RTO (NRTO) for the remainder of this paper. The NRTO triggers a go-back-N
in combination with Slowstart, reducing the congestion window to one segment
and then increasing it exponentially as a function of the RTT as acknowledgments
of retransmitted packets are seen. The combination of Go-back-N and Slowstart
makes TCP reasonably efficient in terms of avoiding extensive retransmission of



segments that have already arrived at the data receiver. However, unnecessary re-
transmission of segments which have already arrived successfully at the receiver
cannot be avoided.

In wireline networks the heuristic for computation of the retransmission timeout
has been shown to work well in making TCP recover from several packet losses
per RTT and avoid unnecessarily firing the RTO in case of RTT variations due to
time varying queuing delays in router buffers. In wireless networks, however, RTT
variations are much more pronounced due to the reasons mentioned above. Con-
sequently, the RTO may fire even in absence of packet loss only due to a sudden
increase in the RTT. Such an RTO will be denoted as Spurious RTO (SRTO) for the
remainder of this paper. Standard TCP derivatives are not able to distinguish be-
tween SRTOs and NRTOs and perform Slowstart in combination with Go-back-N
in both cases. In case of SRTO this implies unnecessary retransmission of segments
which already arrived successfully at the receiver beforehand and an unnecessary
reduction of the congestion window. Unnecessary retransmissions and deflation of

the congestion window obviously degrades network performance and TCP through-
put in case the occurrence of SRTOs was frequent in wireless networks.

As will be shown in Section 2 analytical models of TCP SRTOs as well as sugges-
tions to enhance TCP to be better able in dealing with SRTOs have been proposed
by the research community. However, an algorithm discriminating NRTOs and SR-
TOs based on the analysis of packet traces as well as an extensive evaluation of the
actual frequency of SRTOs in operational wireless networks carrying real user data
is missing. This motivates the SRTO detection algorithm proposed in the current
paper and its application to packet-level traces captured in Austria’s largest UMTS
and GPRS network. In fact, one of the main findings of this paper is that for the
considered network SRTOs are too infrequent to significantly impact TCP perfor-
mance making the need for TCP enhancements in case of TCP over UMTS and
GPRS networks questionable.

The paper is structured as follows: Section 2 discusses related work and makes
the motivation for this paper explicit. The testbed and the traffic monitoring infras-
tructure in the operational network is described in Section 3. Section 4 explains
the details of the SRTO detection mechanism and points at situations where the
algorithm is prone to inaccuracies. Section 5 evaluates the accuracy of the mecha-
nism using Testbed measurements. In Section 6 the algorithm is applied to GPRS
and UMTS packet traces to infer the SRTO frequency. Section 7 compares stan-
dard TCP flavors (NewReno, SACK and Time Stamp) with TCP having the F-RTO

algorithm enabled. Finally, Section 8 concludes this paper.



2 Reated Works

Significant research efforts have recently been spent on modeling TCP’s reaction to
RTT variations. (3; 4; 5) propose analytical models of TCP SRTOs and validate the
models by simulation. Additionally, several proposals exist to upgrade TCP such
that it is better able to avoid SRTOs. The Eifel Algorithm (6; 7) uses the TCP times-
tamps option and additional state variables at the TCP data sender and receiver to
make TCP distinguish between SRTOs and NRTOs. The Duplicate SACK proposal
(8; 9) aims at detecting SRTOs by an enhancement to the TCP SACK option. This
proposal avoids unnecessary reductions of the congestion window but not unnec-
essary retransmissions in case of SRTOs. The F-RTO modification of TCP error
control to detect SRTOs has been proposed in (10). F-RTO monitors the incoming
acknowledgments to determine whether the timeout was spurious or not. Contrary
to Duplicate SACK and Eifel, F-RTO is a TCP data sender only mechanism, facili-
tating incremental deployment. (11) proposes a proxy mechanism to detect SRTOs
and to modify TCP acknowledgments in order to avoid SRTOs at the data sender.
A validation of TCP performance over GPRS by investigating traces collected by
passive monitoring at the Gi interface is shown in (1). This analysis, however, does
not tackle the SRTO topic but concentrates on other TCP performance indicators.
Similarly, (12) inspects traces from the wired Sprint backbone network but does not
address the SRTO issue. They propose a rule to identify all unnecessary retransmis-
sions, including for example unneeded duplicate retransmissions during Slowstart
after a NRTO. On the contrary to (12), the present paper is focused on discriminat-
ing SRTOs from NRTOs and to measure the frequency of SRTOs and out of order
packets due to SRTO by trace analysis. Additionally, the present paper is focused
on wireless and not wired networks as it is the case in (12), where the occurrence
of SRTOs is unlikely due to a low probability of outliers in RTT variations.

3 Monitoring and Testbed Infrastructure

Two measurement infrastructures are used throughout this paper, the traffic mon-
itoring infrastructure in the operational GPRS/UMTS network to retrieve packet
traces and a laboratory testbed with a delay emulator and realistic traffic generators
to evaluate the accuracy of the SRTO detection algorithm.

The development of a large-scale passive monitoring system - including a parser
for the whole protocol stack of the 3G Core Network - and its deployment in the
operational network were accomplished within the METAWIN project (13). The
monitored network is the large Mobilkom Austria network having more than 3
Million customers. For reasons of the provider’s privacy we omit more detailed in-
formation on the architecture of the Mobilkom core network. Packets are captured
with Endace DAG cards (14) and recorded with GPS synchronized timestamps. For
privacy requirements traces are anonymized by hashing any field related to user



identity at the lower layers of the 3G stack (IMSI, MSISDN, etc.). The traces in-
clude TCP/IP headers enabling the investigation of all kind of TCP related statistics
using a variety of scripts which have been implemented. The monitoring infrastruc-
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Fig. 1. METAWIN monitoring infrastructure.

ture is depicted in Figure 1. While we passively monitor all core network interfaces

(Gi, Gn, Gb, Iu) the results presented in this work are based exclusively on traces

captured at the GGSN side of Gn interfaces. All Gn links were monitored, covering

100% of GPRS and UMTS traffic from home subscribers, whereas the traffic of
roaming subscribers is not considered in the following analysis.

For proprietary reasons we can not disclose several absolute quantitative values

(e.g., traffic volumes, number of users, number of Gn links, etc.) nor any other in-
formation that might indirectly lead to them. For these quantities we will provide

only relative values, i.e. fractions, rather than absolute ones. In the context of this

paper, traces were taken on the Gn interface during December 2004.
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Fig. 2. Testbed scenario.

The laboratory testbed is depicted in Figure 2. It is composed of two PCs on the left



hand side (server hosts) for traffic generation and two PCs on the right hand side
(client hosts) for reception of traffic. Hosts run the Linux OS and are connected
to two Ethernet switches with full duplex 100BaseTX links. The two switches are
connected to a delay emulator PC with 1000BaseSX links. The delay emulator PC
(15) is equipped with SysKonnect NICs and operated under realtime Linux for ex-
act reproduction of propagation delays and delay variations. The purpose of the
delay emulator is to reproduce delay variations allowing to trigger SRTO events in
the testbed. This is required to evaluate the accuracy of the SRTO detection algo-
rithm on the testbed; to this aim the delay emulator is fed with semi RTT samples
captured in the GPRS operational network. Semi RTT is defined as the time elapsed
when TCP DATA packet arriving from the Internet is captured at the Gn interface
and the time the associated ACK coming from the MS is seen at the monitoring in-
terface (see Figure 1). Investigating the RTT of GPRS and UMTS traces we observe
that the RTT variations between the Gn interface and nodes in the wired Internet
are negligible compared to the semi RTTs between the mobile node and the Gn
interface. Thus using semi RTTs instead of full RTTs suffices to reproduce realistic
RTT variations in our testbed.

Using an optical splitter a monitoring host is connected to the link between the left
hand side switch and the delay emulator. The monitoring host is equipped with a
Gigabit Ethernet DAG card and a harddisk to store traffic traces.

The traffic is generated by a FTP-like traffic generator and a web traffic generator.
For FTP-like traffic (infinite length flows), we use ttcp (16) to generate TCP flows
from the servers to the clients; for web traffic we use the webs imtool (17) that gen-
erates traffic according to the Scalable URL Reference GEnerator (SURGE) model
(18). This tool is divided into a multithreaded server application which listens for
connection requests and a client application which sends the requests for pages
and objects. For managing parallel TCP connections at the client side a thread is
spawned for every connection; the client and server software contains logic for ef-
ficiently generating load representing several web users per host. SURGE random
variables implemented in websim are the user think time (Pareto distributed), file
size (combined Lognormal and Pareto distribution), inter object time (Weibull dis-
tributed), and the number of objects per page (Pareto distributed).

4 SRTO Detection Algorithm

The aim of the algorithm is the identification of SRTOs from traces captured by
passive monitoring and to evaluate the frequency of such events in todays’ opera-
tional networks. The algorithm discriminates between a NRTO retransmission (due
to packet losses) and a SRTO retransmission by exploiting the information con-
tained in the ACK flow received by the monitoring interface before and after the

retransmitted packet.



To our best knowledge, the SRTO detection algorithm for passive monitoring pro-
posed in this paper is the first of its kind. Thus our design philosophy is to propose
a rather simple algorithm and perform measurements to understand whether the
simple approach is sufficiently accurate, instead of thinking about sophisticated so-
lutions already at the beginning. As an important prerequisite to stay simple and
generic, the algorithm is based on investigating only basic operational principles of
TCP in standard situations. We do not exploit TCP options or specific properties of
TCP derivatives in order to be able to cope with all TCP implementations. Thus the
algorithm can not be perfect in identifying SRTOs, may fail to discriminate SRTOs
from NRTOs in complex situations combining delay variations with packet losses,
and may not be able to resolve some ambiguous situations. We will show in Section
5, however, that in spite of the design principle of keeping the algorithm relatively
simple and inspecting solely essential TCP behavior in standard situations we can
achieve a sufficiently high accuracy in detection of SRTOs.

4.1 Algorithm Description

In order to achieve a better understanding of the algorithm’s operation and the rea-
sons behind its design we illustrate some NRTO and SRTO examples by investigat-
ing short snapshots of real GPRS traces. For ease of explanation we assume a lack
of packet misordering in the network in this section. Additionally, we assume that
packets are only lost between the measurement station and the TCP data receivers.
We refer to Section 4.2 for comments on the effects of both assumptions.

Fig. 4. Timeout example showing ambiguity.



Fig. 5. SRTO example.

Figure 3 shows an example of NRTO extracted from the GPRS traces. The TCP
flow has a window of 3 segments; segment 73508 and segment 74888 are lost after

they have been captured by the monitoring interface (dashed line). If we focus on
the ACKSs crossing the monitoring interface before the retransmission of segment
73508 it is easy to identify this retransmission as a retransmission due to NRTO
because a duplicate ACK for the lost packet is received indicating a hole in the data
receiver’s sequence number space. The second NRTO example (Figure 4) artifi-
cially modifies the trace snapshot shown in Figure 3 by dramatically increasing the
RTT of the duplicated ACK 73508 such that it arrives at the monitoring interface
after the retransmission of segment 73508. By observing the ACKs received before
the retransmission of the lost packet it is impossible to discriminate between NRTO
and SRTO. Comparing Figure 4 with Figure 5 depicting the SRTO example, it can
be noticed that there is no difference in the sequence of segments and ACKs seen
by the monitoring interface between the first transmission of segment 73508 and
its retransmission. The two situations can be discriminated only by observing the
ACKSs seen after the retransmission at the monitoring interface: in case of packet
loss we expect to see a duplicate ACK for the lost segment, whereas in the SRTO
case we expect to see one or more ACKs acknowledging sequence numbers higher
than the retransmitted segment.

Exploiting this information we developed an algorithm that attempts to identify the
cause of the timeout event; the algorithm has been implemented as an optional fea-
ture of the tcptrace tool ! .

The algorithm operates as follows (a detailed description of the algorithm in pseudo
code is reported in the Appendix): if a segment with sequence number X is seen
twice by the monitoring interface, the algorithm recognizes that the segment has
been retransmitted and enters one of the following retransmission states: i) fast
retransmission state (FRTX state), ii) normal timeout retransmission state (NRTO
state) or iii) spurious timeout retransmission state (SRTO state). The selected state
depends on the number of duplicate ACKs seen before the retransmission of the
segment with sequence number X. If the number of duplicate ACKSs is greater or
equal to three, the algorithm enters the FRTX state assuming that the retransmission
is due to a fast retransmit. If one or two duplicate ACKSs are seen, the algorithm rec-

L' The modified tcptrace version can be downloaded from
http://userver.ftw.at/~vacirca/



ognizes a hole in the receiver sequence space (i.e. packet losses) but the number of
duplicate ACKs is too small to trigger a fast retransmit event. Thus the algorithm
enters the NRTO state. In case zero duplicate ACKs between the first transmis-
sion of packet X and its retransmission have been captured the algorithm enters
the SRTO state. In this case, the algorithm can not distinguish between SRTO and
NRTO and it waits for the next ACKs to discriminate between the two situations
(see Figures 4 and 5). Strictly speaking, if duplicate ACKs X are seen at the moni-
toring interface after the reception of the retransmission of X, the algorithm can be
sure that there is a hole in the receiver sequence space because one or more packets
with a sequence number greater than X have been received by the receiver. As-
suming no packet misordering in the network this happens only if segment X has
been lost. In this case the algorithm moves from the SRTO state to the NRTO state,
otherwise it remains in the SRTO state. The algorithm gets out of a retransmis-
sion state when the ACK with the highest outstanding sequence number (recovery
ACK) is seen indicating that the TCP flow has recovered from all packet losses.

This prevents the algorithm from falsely detecting retransmissions following a fast
retransmit event or a NRTO retransmission as retransmissions due to SRTO, and
vice versa.

The only exception to the previous description occurs when the retransmitted seg-
ment X has the highest sequence number seen so far indicating that the packet is
the only outstanding packet at that moment. In this case the algorithm does not en-
ter any retransmission state but solely marks the retransmission as ambiguous; this
case will be discussed in detail in the next section.

4.2 Issuesin SRTO Detection

In this section we discuss how the algorithm behaves in some particular situations
which are the main reasons for errors in SRTO detection.

As mentioned in Section 4, it has been assumed that packet losses happen solely
between the monitoring station at the Gn interface and the data receiver. The algo-
rithm has been defined such that retransmission states are only entered if a packet
and its retransmission are seen by the monitoring interface. Thus, if the packet is
dropped between the data sender and the monitoring station the algorithm does not
enter the SRTO state which is correct because SRTO implies that no packets are
lost.

Some situations are necessarily ambiguous to SRTO identification due to the lack
of information to infer the nature of the timeout. Normally, ambiguous situations
happen when the number of outstanding packets is very low (i.e. small window)
and/or the packet loss probability is very high. In these situations, it could hap-
pen that 1) there are no segments transmitted between the first transmission of the
monitored segment and its retransmission; 2) every segment transmitted between
the first transmission and the retransmission is lost; 3) all ACKs are lost. All these
situations have been observed in real traces captured. It is worth to notice that these



ambiguous cases are more probable the higher the packet loss probability.

Fig. 6. Ambiguous retransmission example n.1.

Figure 6 depicts a possible time sequence graph of situation number 1. The window
of the traced flow equals 1 segment. In this case from the passive monitoring inter-
face point of view, there is no difference between SRTO and NRTO (upper part and
the modified lower part of the figure, respectivelyy .

A time sequence graph example of situation number 2 is depicted in Figure 7. In
this case, the loss of all segments in TCP’s effective window makes it impossible
to determine the nature of the retransmission event. The upper part of the figure
depicts the situation in which the packet with sequence number 73508 is retrans-
mitted by the sender after the RTO has fired. In this situation all the packets in the
window are lost after the monitoring point (dashed line). The lower part of the fig-
ure depicts the situation in which the packet is retransmitted but the original packet
has not been lost. In this case the round trip time increases and the ACK is delayed
longer than the timeout expiration time. This situation leads to a false SRTO detec-
tion in case of the situation shown in the upper part of the figure and to a correct
SRTO identification in case of the lower part figure. Based on a statistical analysis
of UMTS and GPRS traces we find that the likelihood for the situation in the upper

2 A possible solution to distinguish between the two situations could be to observe the
following ACKSs that pass the monitoring interface; for example in the situation depicted
in the figure, SRTO could be detected when we see a duplicate ACK (e.g. 38642 in this
example) that indicates that the retransmitted packet has been received twice by the TCP
receiver. However, the same behavior would be detected in the NRTO case if the packet
successive to the retransmitted segment is lost as well. Thus the use of a more sophisticated
mechanism would increase the causes for errors and the complexity of the implementation.
For those reasons we prefer to mark that retransmissions as ambiguous and do not consider
them as a SRTO in our evaluation.

10



Fig. 7. Ambiguous retransmission example n.2.

part figure is negligible with respect to the situation in the lower part figure. Thus
situation number 2 is marked as SRTO by the algorithm.

Fig. 8. Ambiguous retransmission example n.3.

Figure 8 depicts the situation where all ACKs between the first and the second
transmission are lost (situation number 3). The upper figure represents the NRTO
event whereas the lower figure represents the SRTO event. This situation is par-
ticularly ambiguous and contradictory because it is difficult to define what SRTO
means: in some sense the timeout is spurious because all segments have been re-
ceived by the data receiver, on the other hand TCP’s timeout needs to expire to
avoid starvation of TCP’s packet flow. In this case the algorithm does not allow to

11



distinguish between SRTO and NRTO and it marks them as spurious retransmis-
sions.

Another error source for the SRTO detection is caused by the possibility that a
SRTO occurs when the algorithm is in one of the previously described detection
states. In this case the algorithm can not distinguish the retransmission due to time-
out expiration from normal retransmissions that occur during the recovery phase
of a TCP timeout or fast retransmit. Moreover, by passive monitoring, it would be
hard to distinguish between SRTOs and NRTOs when a timeout occurs during an-
other congestion recovery period, because different TCP implementations behave
in different way and it is not possible to forecast which should be the “correct”
behavior in these situations. SRTOs occurring during another congestion recovery
phase are not detected by the algorithm and lead to an underestimation of the num-
ber of SRTOs.

As pointed out at the beginning of this section, the algorithm supposes that TCP
flows are not affected by packet reordering inside the network. From the TCP point

of view, out-of-order packets (19) are a problem because they can trigger unneces-
sary fast retransmits, but they are not a problem for SRTO detection. As far as the
SRTO detection by monitoring is concerned, if the first transmission of a packet
that triggers a SRTO is delivered to the TCP receiver after its following packets
(e.g. if packet 74888 would arrive before packet 73058 in Figure 5), the algorithm
may consider the SRTO as an NRTO causing an underestimation of the SRTO fre-
guency. However, supposing that the two events are uncorrelated, the probability
of this joint event (RTO and misordering) is negligible with respect to the error in
SRTO detection reported in Section 5.

The network duplication problem (20) does not impact the algorithm because in this
case the packets are identified as hardware duplicates by the standard tcptrace
software. Note, that we do not claim the completeness of this chapter in showing
ambiguous situations, but that the most important cases are considered.

5 Algorithm Evaluation

To validate the accuracy of the algorithm a testbed scenario as depicted in Figure
2 has been set up. The aim of the testbed is to compare the results obtained by
the SRTO detection algorithm running in the passive monitoring device with re-
liable information on the frequency of SRTOs obtained at the TCP data senders
and receivers. To obtain the latter information, we modified the Linux kernel of the
sender and receiver hosts to log events that occur during TCP operation. In partic-
ular, when a timeout expires the kernel of the TCP sender entity prints a line with
the sequence number of the retransmitted segment, and, when an out-of-order seg-
ment is received, the hole in the receiver sequence number space is printed. From

12



this output we know every segment that has been retransmitted due to the RTO
expiration (this is not true in case of passive monitoring) and we know when an
out-of-order packet (i.e. loss) is seen by the receiver. Due to these kernel logs we
are able to compare the output of the SRTO detection algorithm with reliable infor-
mation at the data sender and receiver. In particular, by kernel log files we are able
to detect all SRTOs without being affected by the ambiguity described in the first
example of Section 4.2.
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Figures 9 and 10 depict the SRTO estimation error probability and an estimation
of the packet out-of-order probability in case of FTP connections and Web con-
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nections, respectively. Two widely deployed versions of TCP are investigated, TCP
SACK and NewReno. The accuracy of the algorithm is confirmed by an estimation
error probability smaller than 10% over a range of out-of-order probabilities which
can be assumed as realistic in case of a reasonably well engineered network. As ex-
pected the estimation errors increase as the loss probability increases; as explained
in Section 4.2, that is due to algorithm not detecting SRTOs when it is already in a
retransmission state.
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Fig. 11. Estimation error, false detection probability and ambiguous detection probability
in the FTP scenario.

A more accurate insight into the error estimation is given by Figure 11 for the FTP
case; in this figure, the probability of falsely identifying an RTO as an SRTO (solid
lines) and the probability for ambiguous situations described in Section 4.2 (dot-
ted lines) are shown in addition to the mean estimation error. We observe that the
false detection probability (i.e. the probability that the algorithm detects a spurious
retransmission that is not present in the kernel log messages) is independent of the
number of FTP connections (i.e. the load) and it remains constant. On the contrary,
the number of ambiguous TCP retransmissions increases as the load increases. This
can be explained by the increased likelihood for the ambiguous situation depicted
in Figure 6 in case of high loss probabilities implying small congestion windows.
Note again that there is no way to avoid this by any SRTO detection mechanisms
using passive monitoring based on exploiting properties of TCP error control.

14



6 Results on Spurious Timeouts in the operational GPRS and UMTS net-
wor k

Having verified the accuracy of the algorithm we aim at an understanding of the fre-
guency of SRTOs in an operational GPRS/UMTS network and how SRTO events
are correlated to TCP connection characteristics. As an initial step we use tcptrace
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Fig. 12. Experimental Cumulative Distribution Function of semi RTT.

(21) standard features to derive network and traffic characteristics. The first char-
acteristic derived is the Semi RTT Cumulative Distribution Function (CDF). The

Cumulative Distribution Functions of the captured semi RTTs from the December

6th and 22nd traces are shown in Figure 12 for UMTS and GPRS network. We

observe that the CDFs of RTTs derived from different days are similar.

The second issue we address is the percentage of TCP connections that utilize TCP
options. Table 1 shows the percentage of TCP connections that utilize the SACK

Table 1
TCP flavor statistics.
SACK TS SACK+TS | DSACK
UMTS - December 6th 93% 3.2% 1.5% 0.8%
UMTS - December 22th | 92.1% | 7.3% 4.9% 0.8%
GPRS - December 6th 91% | 50.1% 49.8% 1.8%
GPRS - December 22th | 93.9% | 53.4% 52.7% 2%

option, the Time Stamp (TS) option, TS and SACK options together and the Du-
plicate SACK (DSACK) option in the analyzed GPRS and UMTS traces; the sets
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of TCP connections that have the SACK, the TS and the DSACK enabled are not
disjoint. It is to notice that most of the TCP connections (between 91 and 94%)
enable the SACK option, the TS option is widespread (about 50%) in the GPRS
terminals and quite rare in the UMTS terminals (between 1.5% and 5%), whereas
the DSACK option is not so common (about 2% in GPRS and 1% in UMTS) 3 . Itis
worth to notice that in a technical report based on traces in May 2004 on the same
GPRS network (22), the percentage of SACK and TS connections was about 80%
and between 14% and 19% respectively. We also notice that the values for GPRS
are sensibly different from those reported in (1, Table I) based on older measure-
ments (at least 1 year) from different networks.

As far as other TCP flavors are concerned, it is not straight forward to derive the
deployment of options that are not negotiated explicitly during the setup phase of
TCP connections (e.g. F-RTO) by passive monitoring.

6.1 Spurious RTOsin the GPRS Network

Tables* 2 and 3 report the percentage of TCP connections with a number of pack-
ets less than 10, between 10 and 100, between 100 and 1000, and greater than 1000
for two different days in December 2004. These four different TCP connection
categories are further divided according to the number of SRTOs experienced on
a per connection basis; in particular they are divided in the connections that ex-
perienced zero SRTOs, one SRTO and more than one SRTO. From the tables, it
is clear that most of the TCP connections consist of only a few packets: approxi-
mately 55-57.5% of the connections have less than 10 TCP packets, 99% less than
100 packets and less than 1% of connections have more than 100 packets. Of all
the connections, only 2% experience a single SRTO and 0.15% experience more
than one SRTO. As shown in the tables, which exhibit very similar results for both
days, SRTOs are more frequent for connections with a larger number of transmit-
ted packets. For example 0.016% of the connections with more than 1000 packets
experience more than one SRTO while no connection with more than 1000 packets
experiences zero SRTOs.

As for Tables 2 and 3 subsequent figures have shown very similar results for De-
cember 6th and December 22nd. Thus we only report December 22nd for the re-
mainder of this section.

Figure 13 shows a per connection scatterplot of the mean RTT (upper plot), the
standard deviation of the RTT (middle plot) and the number of packets (lower plot)
with respect to the number of SRTOs experienced by the connection. The solid line

3 1t is worth noticing that the DSACK is not negotatiated in the connection setup. This
makes difficult to measure its occurrence accurately, because it can only be observed when
it is effectively used.

4 Some little discrepancies in the table results are due numerical approximations.

16



Table 2
GPRS - December 6th. Dependency of percentage of TCP connections on number of pack-
ets and SRTOs.

Packets per >
Connection x Overall 0SRTO | 1SRTO | 1SRTO
z <10 57.65% || 57.44% | 0.21% 0%

10<2 <100 | 41.62% | 39.93% | 1.63% | 0.072%
100 < 2 < 1000 | 0.703% || 0.551 % | 0.094 % | 0.058 %
x > 1000 0.024 % 0% 0.009 % | 0.015 %

Overall 100 % || 97.917 % | 1.943% | 0.144 %

Table 3
GPRS - December 22nd. Dependency of percentage of TCP connections on number of
packets and SRTOs.

Packets per >
Connection z Overall 0SRTO | 1SRTO | 1SRTO
x < 10 55.579 % || 55.338 % | 0.241 % 0%

10 <2 <100 | 43.671% || 41.928 % | 1.649 % | 0.094 %
100 <z <1000 | 0.721% || 0.569 % | 0.107 % | 0.046 %
x > 1000 0.028 % 0% 0.013 % | 0.016 %

Overall 100 % 97.834% | 2.01% | 0.156 %

represents the average of the mean RTT, RTT standard deviation and packets per
connection, respectively. Moreover 95% confidence intervals of the average values
are depicted showing the statistical relevance of the results.

As far as the number of packets per connection is concerned, the increasing trend
of the solid line in the lower part of the figure shows a clear positive correlation be-
tween the number of SRTOs per connection and the number of packets transferred
during the lifetime of the connection.

The upper and the middle plots show an evident correlation between the connec-
tions that do not experience any SRTO and the connections that have a low mean
RTT and a low RTT standard deviation. Moreover, considering only the connec-
tions that experience one or more SRTOs, the correlation between the mean and
the standard deviation of the RTT and the SRTO seems to be a negligible effect
as revealed by the almost constant trend of the solid line of the upper and middle
plots for one or more SRTOs. We argue that the TCP algorithm to estimate the RTO
time takes the mean RTT deviation into account and that SRTOs happen rather due
to infrequent outliers in RTT caused for instance by handovers. Due to their infre-
quency these outliers in RTT do not dramatically influence the standard deviation

of the RTT.
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Fig. 13. GPRS - December 22nd. Scatterplot of mean RTT, RTT standard deviation and
packets per TCP connection with respect to the number of SRTOs per connection.

Figure 14 shows a per connection scatterplot of the number of Normal Timeout
events (upper plot), number of Fast Retransmit events (middle plot) and Ambigu-
ous retransmission events (lower plot) with respect to the number of SRTOs expe-
rienced by the connection. As in the previous plot, the average values (solid lines)
and the 95% confidence intervals are reported. It can be seen from the figure that
the 2% of the connections that experience SRTO always experience other conges-
tion recovery events. There exists a clear positive correlation between connections
experiencing a higher number of SRTOs and connections experiencing more fast
retransmit and NRTO events. In case of the ambiguous retransmissions in the lower
part figure the positive correlation is only weakly pronounced. With increased num-
ber of SRTO events, the dispersion of the number of congestion recovery events
around the average value increases because of few available samples. Thus we note
that results with 10 SRTOs are only presented for illustration and should not be
considered as statistically relevant.

The last issue we point out from the GPRS traces, is the effect of the network load
on the SRTO events. In all four subplots of Figure 15 the x axis represents the
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Fig. 14. GPRS - December 22nd. Scatterplot of Fast Retransmit, Normal Timeout and Am-
biguous Timeout events per TCP connection with respect to the number of SRTOs per
connection.

week from the 21th of December to the 27th of December ® and on the y axis, the

measured values for each parameters in time bins of one hour are presented. The

upper part of the figure shows the normalized traffic volume; the values have been
normalized to an arbitrary value in order to avoid disclosing the absolute volume

of traffic. The second plot from the top of the figure shows the overall number of
SRTO events divided by the number of packets per bin. The third part figure shows
the overall number of SRTO events divided by the number of congestion recovery

events performed by TCP, i.e. the number of SRTOs plus NRTOs plus fast retrans-

mits and ambiguous retransmissions. The bottom plot shows the out-of-order prob-

ability. It is important to notice that the out-of-order probability is in the range of

values where the SRTO detection algorithm has been shown to work sufficiently
accurate in Section 5.

Despite of the time of the day effect in the network load, the same effect is not

present in the SRTO probability (2nd part figure) that maintains almost constant
and is uncorrelated to the load of the network. This leads to the conclusion that the

® Note that around December 26th no trace data is available explaining the empty parts.
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Fig. 15. GPRS SRTO events divided by number of packets and number of congestion re-
covery events and out-of-order probability during the week between December 21st and
December 27th.

delay variations that trigger SRTOs are caused by phenomena (e.g. fluctuations of

the radio channel, increase in GSM traffic, handover) that are independent of the
core network load. Moreover, it is important to observe that on average only two
packets out of thousand experience a SRTO, showing their infrequency. Addition-
ally, SRTO events are only a small fraction of the number of congestion recovery
events performed by TCP (SRTOs, NRTOs, fast retransmits and ambiguous retrans-
missions). The ratio between SRTOs and congestion recovery events per time bin is
approximatively one out of twenty. This implies that the performance degradation
of TCP due to SRTOs is small because the number of fast retransmit and NRTO
events is dominant as compared to the number of SRTO events. Investigating TCP
connections that experience congestion recovery events (i.e. SRTOs, Normal Time-
outs, Fast Retransmits and ambiguous retransmissions) in Table 4, the latter finding
is confirmed. 20% of the TCP connections experience congestion recovery events
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while only 2% experience SRTOs (see Tables 2 and 3). This indicates that 1 con-
nection out of 10 experiences one or more SRTOs.

Table 4
GPRS - December 22nd. Percentage of TCP connections dependent on number of packets
and congestion recovery events.

Packets per >
Connection x Overall 0 RTX 1RTX 1RTX
z < 10 55.5559% || 49.765% | 4.13% 1.66 %

10 <2z <100 | 43.671% || 28.918% | 855% | 6.203 %
100 <z <1000 | 0.721% || 0.214% | 0.131% | 0.376 %
x > 1000 0.0529 % 0% 0.006 % | 0.047 %

Overall 100 % 78.897 % | 12.816 % | 8.287 %

6.2 Spurious RTOsin the UMTS Network

This section is equivalent to the Section 6.1: all tables and plots shown for GPRS
data in Section 6.1 are reported for the UMTS network. We refer to Section 6.1 for
an explanation of the meaning of plots and tables.

Table 5
UMTS - December 6th. Percentage of TCP connections dependent on number of packets
and SRTOs

Packets per >

Connection z Overall 0SRTO | 1SRTO | 1SRTO

x < 10 59.502 % || 59.37 % | 0.132 % 0%
10 <z <100 38.78 % | 37.505% | 1.215% | 0.06 %
100 <z <1000 | 1.641% || 1.296% | 0.244% | 0.102 %
x > 1000 0.077 % 0% 0.029 % | 0.047 %

Overall 100 % 98.171% | 1.62% | 0.209 %

From Tables 5 and 6, it is possible to observe that the distribution of the number
of packets per connection is similar to the GPRS case. Between 59.5% and 60.7%
of connections have less than 10 packets each and 98-99% less than 100 packets.
Few connections (0.077% and 0.097%, respectively) have more than 1000 packets.
Connections experiencing one SRTO event are less than in the GPRS case (0.73
and 1.6% in case of UMTS compared to 2% for GPRS) and connections with more
than one SRTO event are rare (0.15 and 0.2% for UMTS). We observe that the
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Table 6
UMTS - December 22nd. Percentage of TCP connections dependent on number of packets
and SRTOs.

Packets per >
Connection z Overall 0SRTO | 1SRTO | 1SRTO
x < 10 60.733 % || 60.703 % | 0.029 % 0%

10 <2z <100 | 36.888 % || 36.374 % | 0.477 % | 0.037 %
100 <z < 1000 | 2.281 % 204% | 0.185% | 0.057 %
x > 1000 0.099 % 0% 0.038 % | 0.061 %

Overall 100 % 99.117 % | 0.729 % | 0.154 %

percentage of connections experiencing SRTOs on the 22nd of December is halved
as compared to December 6th. This change is due to a network upgrade as pointed
out in (23). Thus we use the data of December 22nd for the remainder of this
section.

As depicted in the lower part of Figure 16, the positive correlation between the
SRTO events and the number of packets per connection is confirmed in the UMTS
scenario, where the arguments discussed in Section 6.1 hold. Similarly, the lack of
correlation between number of SRTOs and mean as well as standard deviation of
the RTT is the same for UMTS as observed already for GPRS. As expected, mean
RTT and standard deviation are lower for UMTS as compared to GPRS.

Figure 17 depicts the scatterplot of non-SRTO congestion recovery events classi-
fied by the algorithm with respect to the number of SRTO events per TCP connec-
tion. Similar to GPRS we find that for UMTS a positive correlation exists between
SRTOs and NRTOs, fast retransmits and ambiguous retransmissions. 1% of the
connections experiencing SRTOs have additional non-SRTO congestion recovery
events.

To show the dependency of congestion recovery events on the load of the UMTS
network, Figure 18 depicts the SRTO event frequency, the ratio between SRTO
events and congestion recovery events (including NRTOs, fast retransmits and am-
biguous retransmissions) and the out-of-order probability for a whole week trace.
The out-of-order probability (bottom plot) is low, between 0.002 and 0.005 with
some spikes during the night with values up to 0.015. The proportion between
SRTOs and congestion recovery events is basically between 0.05 and 0.1 con-
firming the behaviour found in case of GPRS. Other congestion recovery actions
than SRTOs influence the performance of TCP. Comparing the SRTO probability

6 1t is important to pinpoint that statistics collected during the night, when the traffic load
is low, can be biased by few TCP connections that are not relevant from a statistical point
of view.
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Fig. 16. UMTS - December 22nd. Scatterplot of mean RTT, RTT standard deviation and
packets per TCP connection with respect to the number of SRTOs per connection.

(SRTO/number of packets) in the second part figure to the GPRS case we find that
on average the SRTO probability is smaller for UMTS, but during the peak hours
this probability can be greater than in the GPRS network. Concerning the behaviour
of SRTOs with respect to the network load, comparing the first and the second plot,
we note that the SRTO event frequency increases when the network load increases.
This effect is particularly visible comparing the 22nd of December and the 23rd of
December: on December 22nd the SRTO probability increases more dramatically
during the peak hour than on December 23rd (about 15% smaller traffic volume in
the peak hour). SRTO events correlate with the load on December 22nd but main-
tain almost constant during December 23rd. This suggests that the SRTO probabil-
ity depends on the traffic load only if the traffic load exceeds a certain threshold:
when the current load situation is below that threshold, the SRTO probability is
almost constant, SRTO events are unlikely and they are correlated more to mobility
events like handover than to network load conditions. When the load of the network
exceeds this threshold (e.g. in the peak hour) the overall SRTO probability increases
because of network congestion; an insight into this phenomenon has been shown in
(23). However, we note that the overall SRTO probability is very low even in high
load situations and that SRTOs are only a small fraction of all congestion recovery
events.
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Fig. 17. UMTS - December 22nd. Scatterplot of Fast Retransmit, Normal Timeout and
Ambiguous Timeout events per TCP connection with respect to the number of SRTOs per
connection.

Finally, Table 7 reports the percentage of connections experiencing congestion re-
covery events for December 22nd. Compared to the GPRS case, connections ex-
periencing congestion recovery events are more infrequent. Retransmission events
happen in 6.4% of all connections while SRTO events are experienced by 0.88% of
the TCP connections; 93.4% of the connections do not retransmit packets, whereas
3.7% experience one congestion recovery event and 2.8% experience more than
one congestion recovery events. This indicates that during the 22nd of December,
the ratio between connections experiencing congestion recovery events and con-
nections experiencing SRTOs is approximately 15:2 as compared to 10:1 for the
GPRS network.

7 TCP performance evaluation

In this section we investigate the effectiveness of different TCP flavors with respect
to TCP SRTOs exploiting the testbed described in Section 3. The TCP options
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Fig. 18. UMTS SRTO events divided by number of packets and number of congestion
recovery events and out-of-order probability during the week between December 21st and
December 27th.

Table 7

UMTS - December 22nd. Percentage of TCP connections dependent on number of packets
and congestion recovery events.

Packets per >
Connection x Overall 0RTX 1RTX | 1RTX
x <10 60.66 % || 59.122 % | 1.067 % | 0.471 %
10 <2 <100 | 36.888 % || 32.891 % | 2.306 % | 1.691 %
100 <2z < 1000 | 2.281% || 1.391% | 0.354 % | 0.537 %
x > 1000 0.172 % 0% 0.024 % | 0.147 %
Overall 100 % || 93.403 % | 3.751 % | 2.847 %
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compared in the analysis are the Linux versions of NewReno, SACK, Time Stamp
and F-RTO; as shown in Section 6, SACK and TS options are frequently applied in
the GPRS and the UMTS network scenario.
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Fig. 19. Average number of packet retransmissions per SRTO varying the number of FTP
connections for different TCP flavors.

Figure 19 depicts the average number of retransmissions that occur after a SRTO
expiration for different versions of TCP. It is possible to observe that when the
network load is low F-RTO reacts well to the SRTO events and it avoids useless
retransmissions. When the traffic load increases, the TCP congestion window be-
comes smaller reducing the number of unnecessary retransmissions during Slow-
start after the timeout and thus the number of retransmitted packets for different
versions of TCP converges to the same value.

Figures 20 and 21 depict the TCP goodput in the FTP scenario and the goodput
per object in the Web scenario, respectively. The Web object goodput is defined as
the size of a TCP flow transferring an object in bytes divided by the lifetime of the

TCP flow in seconds. The first figure shows that there are no big differences be-
tween the performance of different TCP flavors. However, we note that the SACK

option combined with the F-RTO recovery procedure achieves the maximum good-
put for every value of the load and that F-RTO alone obtains the worst performance.
In case of Web traffic (Figure 21) the results show that the TCP SACK with F-RTO
is only efficient if the number of users (i.e. the load) is high. If the number of users
is low, the best performance is obtained by the TS option.

We find that F-RTO minimizes the number of retransmitted packets during the re-
covery phase after a SRTO retransmission leading to a capacity saving in low load
situations. However, in no scenario we can observe performance improvements in
terms of goodput of F-RTO compared to other TCP flavors; this is consistent con-

sidering the low SRTO probability for GPRS-like RTT variations described in the
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context of Figure 15.

8 Conclusions

This paper defines an algorithm for the identification of spurious TCP timeouts
(SRTO) from packet traces; to our best knowledge this algorithm is the first of its
kind. The algorithm is deliberately kept simple in its design and based on generic
properties of TCP error control. Thus it is applicable to all kinds of TCP derivates.
By testbed experiments reproducing a realistic scenario with RTTs measured in
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an operational GPRS network, we find that the algorithm is sufficiently accurate
in SRTOs identification for the relevant range of load situations. The algorithm is
then applied to evaluate the probability of SRTOs in a large operational UMTS and
GPRS network. According to our best knowledge this is the first extensive investi-
gation of TCP over an operational UMTS network transferring significant amounts
of user data. Based on this trace analysis we find that the following common proper-
ties for the UMTS and the GPRS network hold: i) Spurious Timeouts are infrequent
events for TCP flows. Less than 2% of the TCP flows experience one or more SR-
TOs; ii) there exists no correlation of SRTOs with the mean RTT of a flow and
the standard deviation of the RTT; iii) there exists a positive correlation between
the number of SRTOs a TCP flow experiences and the flow’s size; iv) on average,
SRTO events are only a small fraction of the number of congestion recovery events
performed by TCP (SRTOs, NRTOs, fast retransmits and ambiguous retransmis-
sions). This implies that the performance degradation of TCP due to SRTOs is low
because fast retransmits and NRTOs are dominant as compared to SRTO events.
Investigating other metrics, more or less pronounced differences can be found in the
UMTS and the GPRS case: i) on average, the probability that a packet experiences
an SRTO is around one out of thousand for UMTS and two out of thousand for
GPRS; ii) in the GPRS case there exists no dependency on the frequency of SRTOs
on the load of the network. This leads to the conclusion that in the GPRS network
conditions, SRTOs are caused by phenomena (e.g. fluctuations of the radio chan-
nel, increase in GSM traffic, handover) that are independent of the network load.
In the UMTS network we observe a dependency of the probability that a packet
experiences an SRTO on the load if the load exceeds a certain threshold.

Given the infrequency of SRTOs in the monitored operational GPRS and UMTS
network and the dominance of TCP flows experiencing other congestion recov-
ery events than SRTOs we conclude that the effect of SRTOs on the performance
of TCP is small. This makes the need to upgrade standard TCP versions to deal
better with SRTOs questionable. We note, however, that although the investigated
UMTS/GPRS network can be considered as a typical well-engineered network,
results cannot necessarily be generalized to all other networks. Additionally, the
present paper does not distinguish TCP flows from mobile terminals having mo-
bility events from TCP flows experiencing no mobility events. Thus for mobile
terminals experiencing an outstanding high numbers of mobility events upgrading
TCP to deal better with SRTOs may be reasonable. In our future work we plan to
crosscorrelate traces from Gn Interfaces with signaling information observed at Gb
and IuPS links. This allows an in-depth investigation how mobility events affect the
probability that flows experience SRTOs.
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9 Appendix

In this section we show a simplified version of the algorithm with a pseudo code
description. The following variables are used in the pseudo code:

e state represents the state of the algorithm during its operation. Four states are
permitted: NORM AL when no retransmission is monitored, SRT'O when a
retransmitted packet is considered a spurious timeout retransmission, N RTO
when a retransmitted packet is assumed to be a NRTO retransmission and F'RT' X
when a retransmission is considered as caused by a fast retransmit event.

e srto_counter, nrto_counter, frtx_counter and amb_counter are the counters
for the spurious timeout retransmissions, NRTOs, fast retransmits and ambigu-
ous retransmissions events of the monitored connection respectively.

for every packet do
if packet is a DATA packet seen twice by the monitoring interface and state ==
NORMAL then
if no dupACK for the packet seen then
if no packet is seen between the initial transmission and the retransmis-
sion then
amb_counter + +
else
enter in the SRTO state
end if
elseif 1 or 2 dupACKs for the packet seen then
enter in the NRTO state
elseif more than 2 dupACKs for the packet seen then
enter in the FRT X state
end if
elseif packet is an ACK then
if state == SRTO then
if itis a recovery ACK7 then
srto_counter 4+ +
enter the NORM AL state
elseif it is a dupACK then

7 According to the standard TCP terminology, the recovery ACK indicates the ACK that
acknowledges for a new packet after a recovery event.
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move to N RT'O state
end if
dseif state == FRT X then
if itis a recovery ACK then
frtrx_counter + +
enter in the NORM AL state
end if
dseif state == NRTO then
if itis a recovery ACK then
nrto_counter + +
enter in the NORM AL state
end if
end if
end if
end for
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