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Abstract 
 

In a mobile ad hoc network, temporary link 
failures and route changes occur frequently. With 
the assumption that all packet losses are due to 
congestion, TCP performs poorly in such an 
environment. This paper proposes a new 
mechanism called TCP Adaptive RTO (TCP AR) 
that improves TCP performance in mobile ad hoc 
network s. TCP AR distinguishes routes failures 
from network congestion and adapts the RTO’s 
value to network conditions. For this purpose it 
relies on the estimation of the network’s 
throughput. Using the NS-2 simulator we 
compared TCP AR throughput to th ose of TCP 
New Reno and TCP Westwood using different 
scenarios which vary in nodes’ mobility and 
traffic load. The simulation results discussed in 
this paper show that TCP AR can achieve up to a 
152% improvement in network throughput. 

 
Key words: TCP, Ad hoc network, mobility, 

RTO, simulation, throughput. 

1. Introduction and related work 

The Transmission Control Protocol (TCP), which 
has evolved over time into a number of versions, from 
TCP Tahoe to the currently widely used TCP 
NewReno, provides end-to-end, reliable, congestion 
controlled connections over the Internet [1, 2]. 

Since TCP is the standard transport protocol for 
the Internet, it is expected to be deployed over 
MANETs to allow seamless integration with the 

Internet. However, earlier research suggested that 
TCP performs poorly over cellular (single-hop) 
wireless networks [3]. This is because the packet loss 
induced by the wireless link failure is erroneously 
interpreted as congestion-induced, which triggers an 
inappropriate response by the TCP mechanism. This 
is further exemplified in MANETs, since link failures 
occur more frequently due to node mobility, and give 
rise to packet loss. 

Many researches have since focused on 
mechanisms to enhance TCP performance in wireless 
environments. Example of such schemes includes 
TCP Westwood (TCPW). 

TCP Westwood has been initially designed in [4]. 
This protocol relies on a simple modification of the 
TCP source protocol behaviour for a faster recovery. 
This is performed by setting both a slow start 
threshold and a congestion window values that result 
from the effective connection while congestion is 
experienced. Hence, TCPW attempts to make a more 
“informed” decision, in contrast with TCP Reno, 
which automatically halves the congestion window 
after three duplicate ACKs. Like TCP Reno, TCPW 
cannot distinguish between buffer overflow losses and 
random losses.  

However, in presence of random losses, TCP 
Reno overreacts and reduces the window by half. 
Whereas, after a packet loss, TCPW resumes with 
the previous window as long as the bottleneck is not 
yet saturated (i.e., there is no buffer overflow) [5, 6]. 

The TCPW ABSE (Adaptive Bandwidth Share 
Estimation) protocol has been proposed in [7]. It 
palliates TCP efficiency degradation in packet loss 
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environment.  TCPW+, described and studied in [8], 
is intended to improve TCPW performance in the 
case of Internet transmissions. TCP Westwood+ is a 
slightly modified version of the bandwidth estimation 
algorithm proposed in [9] to cope with ACK 
compression effect. 

Nevertheless, we noted via a series of simulations 
that TCP New Reno, TCPW ABSE and TCP 
Westwood+ throughput drop significantly in presence 
of continuous nodes’ mobility.  

To address this issue , we propose a new protocol: 
TCP AR (Adaptive RTO) protocol to enhance TCP 
performance in mobile environments by adapting 
RTO’s (Retransmission Time-Out) value to network 
conditions, while preserving both the TCP New Reno 
principle  and TCPW ABSE throughput estimation. 

The remaining of this paper is organized as follows. 
In Section 2, we recall the TCPW ABSE principles. 
Section 3 gives an illustrative analysis of TCP’s 
throughput degradation causes. Section 4 is devoted 
to the description of the new TCP AR protocol. In 
Section 5, we discuss the simulation results when 
TCP AR is applied in an ad hoc network. Finally, 
Section 6 gives a conclusion and draws some 
perspectives to this work. 

2. TCPW ABSE Protocol 

In this section we intend to summarize the 
operation of the TCPW ABSE protocol, since the 
new TCP AR we are proposing rely in its major 
functioning on the TCPW ABSE protocol. 

TCPW ABSE is a sender-only modification of 
TCP NewReno. The TCP sender adaptively 
determines a Bandwidth Share Estimate (ABSE). 
The estimate is based on information in the ACKs, 
and the rate at which the ACKs are received. After a 
packet loss indication, which could be due to either 
congestion or link errors, the sender uses the 
estimated bandwidth to properly set the congestion 
window and the slow start threshold. Further details 
regarding bandwidth estimation are provided in 
following sections.  

For now, let us assume that a sender has 
determined the connection bandwidth estimate as 
mentioned above, and let us describe how the 

estimate is used to properly set cwin and ssthresh 
after a packet loss indication. 

In TCPW, congestion window dynamics during 
slow start and congestion avoidance are unchanged; 
that is, they increase exponentially and linearly, 
respectively, as in current TCP NewReno. 
A packet loss is indicated by: 

(a) the reception of 3 DUPACKs, 
or 
(b) a coarse timeout expiration. 

In case (a), TCPW sets cwin and ssthresh as 
follows: 
Pseudo code 1 : TCPW after 3 DUPACKs 
if (3 DUPACKs are received) then 
   ssthresh = (ABSE * RTTmin) / seg_size; 
   if (cwin > ssthresh)  then /* congestion avoid. */ 
      cwin = ssthresh; 
   endif 
endif 
 

In case a packet loss is indicated by timeout 
expiration, cwin and ssthresh are set as follows: 

 
Pseudo code 2 : TCPW after timeout 
if (coarse timeout expires) then 
   cwin = 1; 
   ssthresh = (ABSE * RTTmin) / seg_size; 
   if (ssthresh < 2) then 
      ssthresh = 2; 
   endif 
endif 
 

The rationale of the algorithm above is that after 
a timeout, cwin and the ssthresh are set equal to 1 
and ABSE, respectively. Thus, the basic Reno 
behavior is still captured, while a reasonably speedy 
recovery is ensured by setting ssthresh to the value 
of ABSE. 

2.1 Adaptive Bandwidth Share Estimation 

The ABSE algorithm adapts to the congestion 
level in performing its bandwidth sampling, and 
employs a filter that adapts to the round trip time and 
to the rate of change of network conditions. The 
bandwidth share estimation is computed using a time 
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varying coefficient, exponentially-weighted moving 
average (EWMA) filter, which has both adaptive gain 
and adaptive sampling. Let tk be the time instant at 
which the kth ACK is received at the sender. Let sk 
be the bandwidth share sample, and kŝ  the filtered 
estimate of the bandwidth share at time tk. Let αk be 
the time-varying coefficient at tk. The ABSE filter is 
then given by: 

kk

kk
k

kk1kkk

t2
t2
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α−+α= −  (1) 

and kτ  a filter parameter which de termines the filter 
gain, and varies over time adapting to path conditions. 
In the filter formula above, the bandwidth sample at 
time k is: 
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where dj is the number of bytes that have been 
reported delivered by the j th ACK, and Tk is an 
interval over which the bandwidth sample is 
calculated. 
2.1.1 ABSE adaptive sampling 

ABSE provides an adaptive sampling scheme, in 
which the time interval Tk associated with the k th 
received ACK is appropriately chosen, depending on 
the network congestion level. To determine the 
network congestion level, a simple throughput filter is 
proposed to estimate the recent throughput achieved. 
By comparing this estimate with the instantaneous 
sending rate obtained from cwin, the path congestion 
level is determined. When the kth ACK arrives, a 
sample of throughput during the previous RTT is 
calculated as: 
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where dj is the amount of data reported by ACK j. In 
[6], the value (ε = 0.6) has been employed for the 
constant-gain filter to calculate the recent throughput 
as: 

kkk ThhThT )1(ˆˆ
1 εε −+= −    (4) 

When RTThT k *ˆ  is larger than the current cwin 
value, indicating a path without congestion, Tk is set 
to Tmin. Otherwise, Tk is set to: 

cwin
RTThTcwin

RTTT k
k

)*ˆ(
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=      (5) 

2.1.2 Filter Gain Adaptation 
When τk is larger, αk will be larger and the filter 

tends to be more stable and less agile. After a certain 
point, αk basically stays unchanged as the value of τk 
increases. The parameter τk adapts to network 
conditions to dampen estimates when the network 
exhibits very unstable behavior, and react quickly to 
persistent changes. A stability detection filter can be 
used to dynamically change the value of τk. The 
network instability U is measured with a time-
constant EWMA filter [6, 7]: 

 

11 )1( −− −−+= kkkk ssUU ββ      (6) 

In (6), sk is the k th sample, and β is the gain of this 
filter, which is set to be 0.6 in [6]. When the network 
exhibits high instability, the consecutive observations 
diverge from each other, as a result, Uk increases. 
Under this condition, increasing the value of τk makes 
the ABSE filter (1) more stable.  

When a TCP connection is operating normally, 
the interval between the consecutive 
acknowledgements are likely to vary between the 
smallest the bottleneck capacity allows, and one RTT. 
Therefore, τk should be larger than one RTT, thus 
τmin= RTT. In [6] τk is set to be: 

max

*
U
U

RTTNRTT k
k +=τ     (7) 

The value of RTT can be obtained from the 
smoothed RTT estimated in TCP [6].  

3. Degradation of TCP’s throughput: 
illustrative analysis 

In this section we investigate the severe TCP 
throughput degradation phenomena caused by mobility 
induced behaviors in ad hoc environment. To 
understand the causes of this behavior we analyze 
traces we have got from simulations. These traces 
are collected from simulations of a network model 
consisting in 50 nodes moving continuously in  a 
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300x300m area according to the random way point 
model[10]. The nodes’ maximum speed is set to 
20m/s. Each node uses a wireless channel model with 
transmission range of 70m. Simulation time is set to 
1000 seconds. From t=10 sec to the end of the 
simulation, node 1 is sending FTP traffic to node 2. A 
condensed version of the simulation packed trace is 
shown in table 1. 

Table 1 TCP network throughput degradation 

Event Time Node 
TCP Sequence 

N° 
RTO 
value 

s 39,468 _1_ 1231  

s 41,566 _1_ 1231 2,098 

s 43,566 _1_ 1231 2 

s 47,566 _1_ 1231 4 

s 55,566 _1_ 1231 8 

s 71,566 _1_ 1231 16 

s 103,566 _1_ 1231 32 

s 167,566 _1_ 1231 64 

s 231,566 _1_ 1231 64 

s 295,566 _1_ 1231 64 

s 359,566 _1_ 1231 64 

s 423,566 _1_ 1231 64 

s 423,746  _1_ 1246 0,18 

This table lists only "s" events which denote that a 
packet was sent by node 1. in the last column, we 
report the RTO's values.  

From t=39.468 sec, node 1 is trying to send the 
packet number 1231. It retransmits it at t=41,566 s, 
then at t = 43,566 s, etc. and at each retransmission 
the RTO is doubled. After 11 consecutive timeouts 
node 1 succeeds to transmit the packet at t=423.566 
sec, RTO’s value achieves 64 sec which causes TCP 
transmission to be blocked at packet 1231 for 384.1 
sec. The total RTO inactivity time in this test reaches 
860 seconds, so packet transmission is suspended for 
up to 86% of overall simulation time. 

In fact, continuous nodes’ mobility induced link 
breakage between the sender and the receiver; which 
in turn causes packet losses. But TCP cannot 
distinguish between packet losses due to route failure 
and packet losses due to congestion, so TCP agent 

triggers the exponential backoff algorithm, which 
consists in doubling the RTO value whenever the 
timeout expires up to a limit of 64 sec that refers to 
the maximum allowed timeout. After triggering its 
timer for 64 sec, even if the link is recovered, TCP 
will stay over one minute frozen. Subsequently this 
large idle time degrades the TCP throughput.  

The same behavior is observed with TCPW ABSE 
and TCPW+. In fact neither TCPW ABSE nor 
TCPW+ did solve this throughput degradation in such 
a mobile environment since they are not designed for 
this purpose. 

Hence with the new proposal of the TCP AR 
protocol, we intend to give a starting point to address 
this issue. 

4. TCP AR Protocol  

From the simulations’ traces analysis presented 
previously, we concluded that consecutive timeouts is 
a key factor that affects TCP performance in a 
wireless environment. This is because the RTO 
mechanism was designed for wired ne tworks, where 
a TCP agent assumes that losses are due to 
congestion. If a timeout occurs, TCP concludes that 
the network is experiencing a severe congestion and it 
doubles the RTO (calculated from the RTT and its 
variance) to give a sufficient time to the network to 
recover.  

To palliate this insufficiency we propose the TCP 
Adaptive RTO (TCP AR), a new approach that 
combines TCPW ABSE throughput estimation 
method with a new RTO backoff mechanism. TCP 
AR adapts the RTO value to network conditions 
preventing the RTO's exponential backoff when 
losses are not due to congestion but to link failure. 

The key idea of this protocol is that if a packet loss 
is detected by a timeout while  the network is not 
experiencing a congestion state, it is not necessary to 
trigger the TCP RTO backoff mechanism. In order to 
distinguish between timeouts caused by congestion 
and those caused by ad hoc environments 
characteristics, TCP AR estimates network 
throughput. To do so, it deploys the throughput filter 
already proposed in TCP Westwood ABSE [cf. 
section 2, equations (3) and (4)]. 

And then when a timeout occurs, TCP AR uses 
this estimation to detect if the network is congested or 
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no (so to double or no the RTO value). The path 
congestion level is then determined by comparing this 
estimate to the instantaneous sending rate obtained 

from cwin: if RTTht k *ˆ  is larger than the current 
cwin value, this indicates a path without congestion.  

 
Pseudo code 3 : TCP AR 
if RTO expires then 

   if   kth
∧

*RTT > cwin  then  
        (no congestion) 
        keep RTO’s value fixed 
   else 
    RTO = RTO*2 
   Endif 
Endif 
 

Our solution inherits from ABSE only the 
estimation process, all other mechanisms (especially 
cwnd and ssthresh adjustments) are kept as in the 
standard New Reno version. Compared to TCPW 
ABSE, TCP AR uses only one estimator instead of 
three in ABSE, hence decreasing the complexity and 
reducing the computational overhead induced by the 
estimation process. 

5. Performance Evaluation 

In this section we compare TCP AR performance 
to that of New Reno, W ABSE and TCPW+ under 
various network conditions including cross traffic and 
mobility effects. In these experiments we compare: 

 1. TCP throughput versus nodes mobility speed 
2. TCP throughput versus background 

CBR(Constant Bit Rate) load 
All simulations presented in this paper were run 

using the LBL Network Simulator NS-2 [11] with the 
CMU wireless extensions. Channel propagation 
model is the Two Ray Ground reflection model, which 
is the standard propagation model used in TCP 
evaluation over MANETs[12]. The IEEE 802.11 
DCF protocol is used at the MAC layer, and the link 
bandwidth is set to 2 Mbps (the NS-2 default setting). 

5.1. Simulation model  
Since grid topologies are more representative of 

adhoc configurations [13], we consider in our 
experiments the grid shown in figure 1. 

      
       Figure 1 Simulation topology 

As reported in figure 1, the network model 
consists in 50 nodes placed uniformly randomly 
throughout a 300x300m space. All nodes use a 
wireless channel model with a transmission range of 
70m. The choice of these settings aims simultaneously 
at avoiding network partitioning and increasing the 
average number of hops. The nodes move according 
to the random way point model. Simulations are run 
for 1000 seconds. Note that these parameters have 
been widely used in previous TCP MANET 
investigations [12, 13 and 14]. All of our simulations 
results are based on the average value of 60 
scenarios (movement patterns).  

We implemented TCPW ABSE and TCP AR on 
NS2. To simulate TCPW+, we used the TCPW+ 
module yet implemented in NS-2[15]. Then, we 
measured the throughput of TCP New Reno, TCPW 
ABSE, TCPW+ and TCP AR for different scenarios.  

For the current work, we used the proactive 
routing OLSR protocol (Optimized Link State Routing 
Protocol) [16]. In a future work we will resume this 
study using the reactive routing protocol: DSR 
(Dynamic Source Routing)[17] and AODV (Ad hoc 
On-Demand Distance Vector)[18]. 

5.2. TCP throughput versus nodes mobility 
speed  

Table 3 Simulations’ scenarios 
 Scenario1 Scenario2 
Number of nodes 50 30 

Node density 1/1800 1/3000 
Pause Time (s) 0 0 

Max speed (m/s) 0, 2, 20, 40 0, 2, 20, 40 

300 m 

300 m 

 1 

 2 

FTP 

CBR 

CBR 

CBR 

CBR 
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These results compare the throughput of TCP 
New Reno, TCP Westwood ABSE, TCPW+ and 
TCP AR while  varying the maximum nodes’ speed. 
Maximum speed values are chosen to reflect mobility 
ranging from walking to vehicular speeds: 0 m/s, 
which simulate a static network, 2m/s (pedestrian), 
20m/s and 40m/s (vehicular). We used a pause time 
of 0 second, so that each node is in continuous motion 
during the simulation. We repeated these tests for 50 
and 30 nodes to vary nodes’ density in the network. 
Results are reported in figure2.  
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(b) Network with 30 mobile nodes (scenario 2) 

Figure 2 A comparison of TCP AR, TCPW ABSE, 
TCPW+ and TCP New Reno versus nodes’ speed 

TCP AR shows significant improvements of 
throughput over TCP NR, TCPW ABSE and 
TCPW+. For example when maximum nodes’ speed 
is set to 40m/s, TCP AR throughput gain reaches 
152% over New Reno, 205% over ABSE and 376% 
over Westwood+. We can see that the throughput 
gain increases as the maximum speed increases. It is 
because when nodes move rapidly link breakage will 
be repaired quickly so when TCP AR retransmits the 
lost packet there is more chance that the route is 

reestablished. TCP New Reno, TCPW ABSE and  
Westwood+ from their side will attempt to retransmit 
this packet much more lately.  

In a static network, i.e. nodes speed set to 0 m/s, 
TCP AR gives the same throughput as New Reno, 
ABSE and Westwood+. So our proposal doesn’t 
degrade TCP throughput when nodes don’t move.  

Finally, we remark that TCP Westwood ABSE 
gives a comparable throughput as New Reno, and 
sometimes it gives lower throughput. Unlike, in a 
wired and in a mixed wireless-wired environment, 
where TCPW ABSE improves TCP throughput [19, 
20], in a mobile ad hoc network,  TCPW ABSE 
performances degrade. In fact, TCPW ABSE 
induces a lot of computational overhead to estimate 
the bandwidth. This estimation will be used only when 
a packet loss is detected by the reception of three 
duplicate ACKs. But in this environment, and from 
traces analysis, we notice that packet losses are often 
detected by timeout. So, TCPW will not use the 
bandwidth estimation and behaves like New Reno. 
Tables 4 and 5 report a synthesis of TCP AR 
throughput gain over New Reno, ABSE and TCPW+. 

Table 4  Synthesis of TCP AR gain in scenario 1  

 50 nodes speed 
AR vs NR AR vs ABSE AR vs W+ 

0 m/s 0,05% 0,06% 0,25% 

2 m/s 11,86% 15,27% 44,15% 

20 m/s 54,67% 46,57% 293,01% 

40 m/s 152,75% 205,40% 376,85% 

 
Table 5  Synthesis of TCP AR gain in scenario 2  

30 nodes Speed 
AR vs NR AR  vs ABSE AR vs W+ 

0 0,32% -0,08% 0,11% 

2 14,71% 14,89% 19,77% 

20 161,41% 172,29% 292,99% 

40 122,21% 147,53% 191,68% 

3.3. TCP throughput versus CBR load  
Table 5 Simulations’ scenarios 

 Scenario3 Scenario4 
Node density 1/1800 1/1800 
Pause Time (s) 0 200 

CBR load (kbps) 0, 10, 40, 80, 200 0,10, 40, 80,200 
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These simulations compare the throughput of TCP 
New Reno, TCPW ABSE, TCPW+ and TCP AR 
while varying the volume of background traffic:  
- without CBR traffic, 
- 10 CBR connections offering a total load of 10 kbps 
- 10 CBR connections offering a total load of 40 kbps 
- 10 CBR connections offering a total load of 80 kbps 
- and finally, with 10 CBR connections offering a total 

load of 200 kbps 
The background load is generated by 10 CBR 

connections. The CBR packet sizes were fixed at 512 
bytes. We run the tests for two different pause time  : 
1. 0 second (scenario 3): all nodes are in continuous 
motion during the simulation; this reproduces an 
environment with high mobility; 
2. 200 seconds (scenario 4): to test if the TCP AR 
protocol can usually maintain a good performance in a 
network with low mobility and in presence of 
background traffic. 

Results are plotted on Figure 3. 
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(a)    Pause Time = 0 sec (scenario 3) 
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(b)    Pause Time = 200 sec (scenario 4 ) 

Figure 3  Comparison of TCP AR,  ABSE, Westwood+ and 
New Reno throughput versus CBR load 

Figure 3 (a) shows that both in a congested and a 
non congested network, TCP AR achieves a 
significant gain in the throughput compared to TCP 
NR, TCPW ABSE and TCPW+ when nodes are in 
continuous motion since consecutive timeouts are 
more likely to be due to routes failures than due to 
congestion. So while New Reno, TCPW ABSE, and 
TCPW+ are blocked due to their large RTO, TCP 
AR connection is re-established faster and data 
transmission is resumed. 

Results plotted in figure 3 (b) show that in the 
worst case (without CBR traffic) TCP AR offers 
comparable throughput to those of New Reno and 
Westwood.  Elsewhere, it outperforms them.  

We can see that the throughput gain gets higher 
when the pause time is set to 0 s (nodes in continuous 
motion) than when it is set to 200s. In fact, as nodes’ 
mobility increases, as the routes’ failure probability 
gets higher. Table 6 and 7 synthesize TCP AR 
throughput gain over TCP NR, TCPW ABSE and 
TCPW+ for various CBR load. 

Table 6 Synthesis of TCP AR gain in scenario 3  
Pause Time = 0 second CBR Load 

(kbps) AR vs NR AR vs ABSE AR vs W+ 

0 57,85% 65,07% 342,63% 

10 81,42% 64,24% 115,19% 

40 59,31% 72,16% 95,87% 

80 72,57% 72,85% 61,66% 
200 65,28% 47,88% 36,02% 

 
 

Table 7 Synthesis of TCP AR gain in scenario 4 
  

PauseTime = 200 seconds CBR Load 
(kbps) AR vs NR AR vs ABSE AR vs W+ 

0 2,57% 0,07% 44,22% 

10 10,54% 11,81% 28,84% 

40 13,13% 11,16% 27,02% 

80 9,02% 6,85% 28,75% 
200 42,00% 21,07% 34,42% 

6. Conclusions and further work  

TCP New Reno performs poorly in mobile ad hoc 
networks caused by frequent route changes. In this 
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paper we propose a new scheme called TCP AR. 
With this mechanism, a TCP sender can determine if 
a retransmission timeout is due to network congestion 
or temporary route loss by comparing the 
instantaneous sending rate to the throughput 
estimation. Hence, TCP AR doubles the RTO’s value 
only if the timeout is due to congestion, otherwise the 
RTO’s value is frozen. 

Simulations’ results show that TCP AR achieves a 
better performance when compared with TCP NR, 
TCPW ABSE and TCPW+ in terms of efficiency 
(expressed via the network throughput). It provides 
up to 152% throughput gain with respect to New 
Reno, and shows more outstanding improvements in 
performance as node’s mobility increases. TCP AR is 
a pure end to end approach and not dependent on 
lower layers. 

In a future work, we intend to carry out more 
simulations to investigate other performance metrics 
such fairness and friendliness of TCP AR toward 
TCP NR, to study the effects of reactive routing 
protocol on the performance of our solution and to 
implement the TCP AR protocol. 
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