
TCP Adaptive RTO to improve TCP performance in mobile
ad hoc networks

Abstract

In a mobile ad hoc network, temporary link
failures and route changes occur frequently. With
the assumption that all packet losses are due to
congestion, TCP performs poorly in such an
environment. This paper proposes a new
mechanism called TCP Adaptive RTO (TCP AR)
that improves TCP performance in mobile ad hoc
network s. TCP AR distinguishes routes failures
from network congestion and adapts the RTO’s
value to network conditions. For this purpose it
relies on the estimation of the network’s
throughput. Using the NS-2 simulator we
compared TCP AR throughput to th ose of TCP
New Reno and TCP Westwood using different
scenarios which vary in nodes’ mobility and
traffic load. The simulation results discussed in
this paper show that TCP AR can achieve up to a
152% improvement in network throughput.

Key words: TCP, Ad hoc network, mobility,

RTO, simulation, throughput.

1. Introduction and related work

The Transmission Control Protocol (TCP), which
has evolved over time into a number of versions, from
TCP Tahoe to the currently widely used TCP
NewReno, provides end-to-end, reliable, congestion
controlled connections over the Internet [1, 2].

Since TCP is the standard transport protocol for
the Internet, it is expected to be deployed over
MANETs to allow seamless integration with the

Internet. However, earlier research suggested that
TCP performs poorly over cellular (single-hop)
wireless networks [3]. This is because the packet loss
induced by the wireless link failure is erroneously
interpreted as congestion-induced, which triggers an
inappropriate response by the TCP mechanism. This
is further exemplified in MANETs, since link failures
occur more frequently due to node mobility, and give
rise to packet loss.

Many researches have since focused on
mechanisms to enhance TCP performance in wireless
environments. Example of such schemes includes
TCP Westwood (TCPW).

TCP Westwood has been initially designed in [4].
This protocol relies on a simple modification of the
TCP source protocol behaviour for a faster recovery.
This is performed by setting both a slow start
threshold and a congestion window values that result
from the effective connection while congestion is
experienced. Hence, TCPW attempts to make a more
“informed” decision, in contrast with TCP Reno,
which automatically halves the congestion window
after three duplicate ACKs. Like TCP Reno, TCPW
cannot distinguish between buffer overflow losses and
random losses.

However, in presence of random losses, TCP
Reno overreacts and reduces the window by half.
Whereas, after a packet loss, TCPW resumes with
the previous window as long as the bottleneck is not
yet saturated (i.e., there is no buffer overflow) [5, 6].

The TCPW ABSE (Adaptive Bandwidth Share
Estimation) protocol has been proposed in [7]. It
palliates TCP efficiency degradation in packet loss

Haifa Touati

CRISTAL Laboratory
National School of Computer

Science
Haifa.touati@cristal.rnu.tn

Ilhem Lengliz

CRISTAL Laboratory

Prince Salman Research Center
Prince Sultan University

Ilengliz@pscw.psu.edu.sa

Farouk Kamoun

CRISTAL Laboratory
National School of Computer

Science
Farouk.Kamoun@ensi.rnu.tn

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
48

environment. TCPW+, described and studied in [8],
is intended to improve TCPW performance in the
case of Internet transmissions. TCP Westwood+ is a
slightly modified version of the bandwidth estimation
algorithm proposed in [9] to cope with ACK
compression effect.

Nevertheless, we noted via a series of simulations
that TCP New Reno, TCPW ABSE and TCP
Westwood+ throughput drop significantly in presence
of continuous nodes’ mobility.

To address this issue , we propose a new protocol:
TCP AR (Adaptive RTO) protocol to enhance TCP
performance in mobile environments by adapting
RTO’s (Retransmission Time-Out) value to network
conditions, while preserving both the TCP New Reno
principle and TCPW ABSE throughput estimation.

The remaining of this paper is organized as follows.
In Section 2, we recall the TCPW ABSE principles.
Section 3 gives an illustrative analysis of TCP’s
throughput degradation causes. Section 4 is devoted
to the description of the new TCP AR protocol. In
Section 5, we discuss the simulation results when
TCP AR is applied in an ad hoc network. Finally,
Section 6 gives a conclusion and draws some
perspectives to this work.

2. TCPW ABSE Protocol

In this section we intend to summarize the
operation of the TCPW ABSE protocol, since the
new TCP AR we are proposing rely in its major
functioning on the TCPW ABSE protocol.

TCPW ABSE is a sender-only modification of
TCP NewReno. The TCP sender adaptively
determines a Bandwidth Share Estimate (ABSE).
The estimate is based on information in the ACKs,
and the rate at which the ACKs are received. After a
packet loss indication, which could be due to either
congestion or link errors, the sender uses the
estimated bandwidth to properly set the congestion
window and the slow start threshold. Further details
regarding bandwidth estimation are provided in
following sections.

For now, let us assume that a sender has
determined the connection bandwidth estimate as
mentioned above, and let us describe how the

estimate is used to properly set cwin and ssthresh
after a packet loss indication.

In TCPW, congestion window dynamics during
slow start and congestion avoidance are unchanged;
that is, they increase exponentially and linearly,
respectively, as in current TCP NewReno.
A packet loss is indicated by:

(a) the reception of 3 DUPACKs,
or
(b) a coarse timeout expiration.

In case (a), TCPW sets cwin and ssthresh as
follows:
Pseudo code 1 : TCPW after 3 DUPACKs
if (3 DUPACKs are received) then
 ssthresh = (ABSE * RTTmin) / seg_size;
 if (cwin > ssthresh) then /* congestion avoid. */
 cwin = ssthresh;
 endif
endif

In case a packet loss is indicated by timeout
expiration, cwin and ssthresh are set as follows:

Pseudo code 2 : TCPW after timeout
if (coarse timeout expires) then
 cwin = 1;
 ssthresh = (ABSE * RTTmin) / seg_size;
 if (ssthresh < 2) then
 ssthresh = 2;
 endif
endif

The rationale of the algorithm above is that after
a timeout, cwin and the ssthresh are set equal to 1
and ABSE, respectively. Thus, the basic Reno
behavior is still captured, while a reasonably speedy
recovery is ensured by setting ssthresh to the value
of ABSE.

2.1 Adaptive Bandwidth Share Estimation

The ABSE algorithm adapts to the congestion
level in performing its bandwidth sampling, and
employs a filter that adapts to the round trip time and
to the rate of change of network conditions. The
bandwidth share estimation is computed using a time

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
49

varying coefficient, exponentially-weighted moving
average (EWMA) filter, which has both adaptive gain
and adaptive sampling. Let tk be the time instant at
which the kth ACK is received at the sender. Let sk
be the bandwidth share sample, and kŝ the filtered
estimate of the bandwidth share at time tk. Let αk be
the time-varying coefficient at tk. The ABSE filter is
then given by:

kk

kk
k

kk1kkk

t2
t2

where
s)1(ŝ.ŝ

∆+τ
∆−τ

=α

α−+α= − (1)

and kτ a filter parameter which de termines the filter
gain, and varies over time adapting to path conditions.
In the filter formula above, the bandwidth sample at
time k is:

k

Ttt
j

k T

d

s kkj

∑
−>

= (2)

where dj is the number of bytes that have been
reported delivered by the j th ACK, and Tk is an
interval over which the bandwidth sample is
calculated.
2.1.1 ABSE adaptive sampling

ABSE provides an adaptive sampling scheme, in
which the time interval Tk associated with the k th
received ACK is appropriately chosen, depending on
the network congestion level. To determine the
network congestion level, a simple throughput filter is
proposed to estimate the recent throughput achieved.
By comparing this estimate with the instantaneous
sending rate obtained from cwin, the path congestion
level is determined. When the kth ACK arrives, a
sample of throughput during the previous RTT is
calculated as:

RTT

d

th
RTTtt

j

k
kj

∑
−

=
f (3)

where dj is the amount of data reported by ACK j. In
[6], the value (ε = 0.6) has been employed for the
constant-gain filter to calculate the recent throughput
as:

kkk ThhThT)1(ˆˆ
1 εε −+= − (4)

When RTThT k *ˆ is larger than the current cwin
value, indicating a path without congestion, Tk is set
to Tmin. Otherwise, Tk is set to:

cwin
RTThTcwin

RTTT k
k

)*ˆ(
* min−

= (5)

2.1.2 Filter Gain Adaptation
When τk is larger, αk will be larger and the filter

tends to be more stable and less agile. After a certain
point, αk basically stays unchanged as the value of τk
increases. The parameter τk adapts to network
conditions to dampen estimates when the network
exhibits very unstable behavior, and react quickly to
persistent changes. A stability detection filter can be
used to dynamically change the value of τk. The
network instability U is measured with a time-
constant EWMA filter [6, 7]:

11)1(−− −−+= kkkk ssUU ββ (6)

In (6), sk is the k th sample, and β is the gain of this
filter, which is set to be 0.6 in [6]. When the network
exhibits high instability, the consecutive observations
diverge from each other, as a result, Uk increases.
Under this condition, increasing the value of τk makes
the ABSE filter (1) more stable.

When a TCP connection is operating normally,
the interval between the consecutive
acknowledgements are likely to vary between the
smallest the bottleneck capacity allows, and one RTT.
Therefore, τk should be larger than one RTT, thus
τmin= RTT. In [6] τk is set to be:

max

*
U
U

RTTNRTT k
k +=τ (7)

The value of RTT can be obtained from the
smoothed RTT estimated in TCP [6].

3. Degradation of TCP’s throughput:
illustrative analysis

In this section we investigate the severe TCP
throughput degradation phenomena caused by mobility
induced behaviors in ad hoc environment. To
understand the causes of this behavior we analyze
traces we have got from simulations. These traces
are collected from simulations of a network model
consisting in 50 nodes moving continuously in a

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
50

300x300m area according to the random way point
model[10]. The nodes’ maximum speed is set to
20m/s. Each node uses a wireless channel model with
transmission range of 70m. Simulation time is set to
1000 seconds. From t=10 sec to the end of the
simulation, node 1 is sending FTP traffic to node 2. A
condensed version of the simulation packed trace is
shown in table 1.

Table 1 TCP network throughput degradation

Event Time Node
TCP Sequence

N°
RTO
value

s 39,468 _1_ 1231

s 41,566 _1_ 1231 2,098

s 43,566 _1_ 1231 2

s 47,566 _1_ 1231 4

s 55,566 _1_ 1231 8

s 71,566 _1_ 1231 16

s 103,566 _1_ 1231 32

s 167,566 _1_ 1231 64

s 231,566 _1_ 1231 64

s 295,566 _1_ 1231 64

s 359,566 _1_ 1231 64

s 423,566 _1_ 1231 64

s 423,746 _1_ 1246 0,18

This table lists only "s" events which denote that a
packet was sent by node 1. in the last column, we
report the RTO's values.

From t=39.468 sec, node 1 is trying to send the
packet number 1231. It retransmits it at t=41,566 s,
then at t = 43,566 s, etc. and at each retransmission
the RTO is doubled. After 11 consecutive timeouts
node 1 succeeds to transmit the packet at t=423.566
sec, RTO’s value achieves 64 sec which causes TCP
transmission to be blocked at packet 1231 for 384.1
sec. The total RTO inactivity time in this test reaches
860 seconds, so packet transmission is suspended for
up to 86% of overall simulation time.

In fact, continuous nodes’ mobility induced link
breakage between the sender and the receiver; which
in turn causes packet losses. But TCP cannot
distinguish between packet losses due to route failure
and packet losses due to congestion, so TCP agent

triggers the exponential backoff algorithm, which
consists in doubling the RTO value whenever the
timeout expires up to a limit of 64 sec that refers to
the maximum allowed timeout. After triggering its
timer for 64 sec, even if the link is recovered, TCP
will stay over one minute frozen. Subsequently this
large idle time degrades the TCP throughput.

The same behavior is observed with TCPW ABSE
and TCPW+. In fact neither TCPW ABSE nor
TCPW+ did solve this throughput degradation in such
a mobile environment since they are not designed for
this purpose.

Hence with the new proposal of the TCP AR
protocol, we intend to give a starting point to address
this issue.

4. TCP AR Protocol

From the simulations’ traces analysis presented
previously, we concluded that consecutive timeouts is
a key factor that affects TCP performance in a
wireless environment. This is because the RTO
mechanism was designed for wired ne tworks, where
a TCP agent assumes that losses are due to
congestion. If a timeout occurs, TCP concludes that
the network is experiencing a severe congestion and it
doubles the RTO (calculated from the RTT and its
variance) to give a sufficient time to the network to
recover.

To palliate this insufficiency we propose the TCP
Adaptive RTO (TCP AR), a new approach that
combines TCPW ABSE throughput estimation
method with a new RTO backoff mechanism. TCP
AR adapts the RTO value to network conditions
preventing the RTO's exponential backoff when
losses are not due to congestion but to link failure.

The key idea of this protocol is that if a packet loss
is detected by a timeout while the network is not
experiencing a congestion state, it is not necessary to
trigger the TCP RTO backoff mechanism. In order to
distinguish between timeouts caused by congestion
and those caused by ad hoc environments
characteristics, TCP AR estimates network
throughput. To do so, it deploys the throughput filter
already proposed in TCP Westwood ABSE [cf.
section 2, equations (3) and (4)].

And then when a timeout occurs, TCP AR uses
this estimation to detect if the network is congested or

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
51

no (so to double or no the RTO value). The path
congestion level is then determined by comparing this
estimate to the instantaneous sending rate obtained

from cwin: if RTTht k *ˆ is larger than the current
cwin value, this indicates a path without congestion.

Pseudo code 3 : TCP AR
if RTO expires then

 if kth
∧

*RTT > cwin then
 (no congestion)
 keep RTO’s value fixed
 else
 RTO = RTO*2
 Endif
Endif

Our solution inherits from ABSE only the
estimation process, all other mechanisms (especially
cwnd and ssthresh adjustments) are kept as in the
standard New Reno version. Compared to TCPW
ABSE, TCP AR uses only one estimator instead of
three in ABSE, hence decreasing the complexity and
reducing the computational overhead induced by the
estimation process.

5. Performance Evaluation

In this section we compare TCP AR performance
to that of New Reno, W ABSE and TCPW+ under
various network conditions including cross traffic and
mobility effects. In these experiments we compare:

 1. TCP throughput versus nodes mobility speed
2. TCP throughput versus background

CBR(Constant Bit Rate) load
All simulations presented in this paper were run

using the LBL Network Simulator NS-2 [11] with the
CMU wireless extensions. Channel propagation
model is the Two Ray Ground reflection model, which
is the standard propagation model used in TCP
evaluation over MANETs[12]. The IEEE 802.11
DCF protocol is used at the MAC layer, and the link
bandwidth is set to 2 Mbps (the NS-2 default setting).

5.1. Simulation model
Since grid topologies are more representative of

adhoc configurations [13], we consider in our
experiments the grid shown in figure 1.

 Figure 1 Simulation topology

As reported in figure 1, the network model
consists in 50 nodes placed uniformly randomly
throughout a 300x300m space. All nodes use a
wireless channel model with a transmission range of
70m. The choice of these settings aims simultaneously
at avoiding network partitioning and increasing the
average number of hops. The nodes move according
to the random way point model. Simulations are run
for 1000 seconds. Note that these parameters have
been widely used in previous TCP MANET
investigations [12, 13 and 14]. All of our simulations
results are based on the average value of 60
scenarios (movement patterns).

We implemented TCPW ABSE and TCP AR on
NS2. To simulate TCPW+, we used the TCPW+
module yet implemented in NS-2[15]. Then, we
measured the throughput of TCP New Reno, TCPW
ABSE, TCPW+ and TCP AR for different scenarios.

For the current work, we used the proactive
routing OLSR protocol (Optimized Link State Routing
Protocol) [16]. In a future work we will resume this
study using the reactive routing protocol: DSR
(Dynamic Source Routing)[17] and AODV (Ad hoc
On-Demand Distance Vector)[18].

5.2. TCP throughput versus nodes mobility
speed

Table 3 Simulations’ scenarios
 Scenario1 Scenario2
Number of nodes 50 30

Node density 1/1800 1/3000
Pause Time (s) 0 0

Max speed (m/s) 0, 2, 20, 40 0, 2, 20, 40

300 m

300 m

 1

 2

FTP

CBR

CBR

CBR

CBR

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
52

These results compare the throughput of TCP
New Reno, TCP Westwood ABSE, TCPW+ and
TCP AR while varying the maximum nodes’ speed.
Maximum speed values are chosen to reflect mobility
ranging from walking to vehicular speeds: 0 m/s,
which simulate a static network, 2m/s (pedestrian),
20m/s and 40m/s (vehicular). We used a pause time
of 0 second, so that each node is in continuous motion
during the simulation. We repeated these tests for 50
and 30 nodes to vary nodes’ density in the network.
Results are reported in figure2.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum speed (m/s)

TCP NR
TCPW ABSE

TCPW+
TCP AR

 (a) Network with 50 mobile nodes (scenario 1)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

kb
ps

)

Maximum speed (m/s)

TCP NR
TCPW ABSE

TCPW+
TCP AR

(b) Network with 30 mobile nodes (scenario 2)

Figure 2 A comparison of TCP AR, TCPW ABSE,
TCPW+ and TCP New Reno versus nodes’ speed

TCP AR shows significant improvements of
throughput over TCP NR, TCPW ABSE and
TCPW+. For example when maximum nodes’ speed
is set to 40m/s, TCP AR throughput gain reaches
152% over New Reno, 205% over ABSE and 376%
over Westwood+. We can see that the throughput
gain increases as the maximum speed increases. It is
because when nodes move rapidly link breakage will
be repaired quickly so when TCP AR retransmits the
lost packet there is more chance that the route is

reestablished. TCP New Reno, TCPW ABSE and
Westwood+ from their side will attempt to retransmit
this packet much more lately.

In a static network, i.e. nodes speed set to 0 m/s,
TCP AR gives the same throughput as New Reno,
ABSE and Westwood+. So our proposal doesn’t
degrade TCP throughput when nodes don’t move.

Finally, we remark that TCP Westwood ABSE
gives a comparable throughput as New Reno, and
sometimes it gives lower throughput. Unlike, in a
wired and in a mixed wireless-wired environment,
where TCPW ABSE improves TCP throughput [19,
20], in a mobile ad hoc network, TCPW ABSE
performances degrade. In fact, TCPW ABSE
induces a lot of computational overhead to estimate
the bandwidth. This estimation will be used only when
a packet loss is detected by the reception of three
duplicate ACKs. But in this environment, and from
traces analysis, we notice that packet losses are often
detected by timeout. So, TCPW will not use the
bandwidth estimation and behaves like New Reno.
Tables 4 and 5 report a synthesis of TCP AR
throughput gain over New Reno, ABSE and TCPW+.

Table 4 Synthesis of TCP AR gain in scenario 1

 50 nodes speed
AR vs NR AR vs ABSE AR vs W+

0 m/s 0,05% 0,06% 0,25%

2 m/s 11,86% 15,27% 44,15%

20 m/s 54,67% 46,57% 293,01%

40 m/s 152,75% 205,40% 376,85%

Table 5 Synthesis of TCP AR gain in scenario 2

30 nodes Speed
AR vs NR AR vs ABSE AR vs W+

0 0,32% -0,08% 0,11%

2 14,71% 14,89% 19,77%

20 161,41% 172,29% 292,99%

40 122,21% 147,53% 191,68%

3.3. TCP throughput versus CBR load
Table 5 Simulations’ scenarios

 Scenario3 Scenario4
Node density 1/1800 1/1800
Pause Time (s) 0 200

CBR load (kbps) 0, 10, 40, 80, 200 0,10, 40, 80,200

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
53

These simulations compare the throughput of TCP
New Reno, TCPW ABSE, TCPW+ and TCP AR
while varying the volume of background traffic:
- without CBR traffic,
- 10 CBR connections offering a total load of 10 kbps
- 10 CBR connections offering a total load of 40 kbps
- 10 CBR connections offering a total load of 80 kbps
- and finally, with 10 CBR connections offering a total

load of 200 kbps
The background load is generated by 10 CBR

connections. The CBR packet sizes were fixed at 512
bytes. We run the tests for two different pause time :
1. 0 second (scenario 3): all nodes are in continuous
motion during the simulation; this reproduces an
environment with high mobility;
2. 200 seconds (scenario 4): to test if the TCP AR
protocol can usually maintain a good performance in a
network with low mobility and in presence of
background traffic.

Results are plotted on Figure 3.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

T
hr

ou
gh

pu
t

(k
bp

s)

CBR load (kbps)

TCP NR
TCP W ABSE

TCP W+
TCP AR

(a) Pause Time = 0 sec (scenario 3)

 0

 50

 100

 150

 200

 0 50 100 150 200

T
hr

ou
gh

pu
t (

kb
ps

)

CBR load (kbps)

TCP NR
TCP W ABSE

TCP W+
TCP AR

(b) Pause Time = 200 sec (scenario 4)

Figure 3 Comparison of TCP AR, ABSE, Westwood+ and
New Reno throughput versus CBR load

Figure 3 (a) shows that both in a congested and a
non congested network, TCP AR achieves a
significant gain in the throughput compared to TCP
NR, TCPW ABSE and TCPW+ when nodes are in
continuous motion since consecutive timeouts are
more likely to be due to routes failures than due to
congestion. So while New Reno, TCPW ABSE, and
TCPW+ are blocked due to their large RTO, TCP
AR connection is re-established faster and data
transmission is resumed.

Results plotted in figure 3 (b) show that in the
worst case (without CBR traffic) TCP AR offers
comparable throughput to those of New Reno and
Westwood. Elsewhere, it outperforms them.

We can see that the throughput gain gets higher
when the pause time is set to 0 s (nodes in continuous
motion) than when it is set to 200s. In fact, as nodes’
mobility increases, as the routes’ failure probability
gets higher. Table 6 and 7 synthesize TCP AR
throughput gain over TCP NR, TCPW ABSE and
TCPW+ for various CBR load.

Table 6 Synthesis of TCP AR gain in scenario 3
Pause Time = 0 second CBR Load

(kbps) AR vs NR AR vs ABSE AR vs W+

0 57,85% 65,07% 342,63%

10 81,42% 64,24% 115,19%

40 59,31% 72,16% 95,87%

80 72,57% 72,85% 61,66%
200 65,28% 47,88% 36,02%

Table 7 Synthesis of TCP AR gain in scenario 4

PauseTime = 200 seconds CBR Load
(kbps) AR vs NR AR vs ABSE AR vs W+

0 2,57% 0,07% 44,22%

10 10,54% 11,81% 28,84%

40 13,13% 11,16% 27,02%

80 9,02% 6,85% 28,75%
200 42,00% 21,07% 34,42%

6. Conclusions and further work

TCP New Reno performs poorly in mobile ad hoc
networks caused by frequent route changes. In this

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
54

paper we propose a new scheme called TCP AR.
With this mechanism, a TCP sender can determine if
a retransmission timeout is due to network congestion
or temporary route loss by comparing the
instantaneous sending rate to the throughput
estimation. Hence, TCP AR doubles the RTO’s value
only if the timeout is due to congestion, otherwise the
RTO’s value is frozen.

Simulations’ results show that TCP AR achieves a
better performance when compared with TCP NR,
TCPW ABSE and TCPW+ in terms of efficiency
(expressed via the network throughput). It provides
up to 152% throughput gain with respect to New
Reno, and shows more outstanding improvements in
performance as node’s mobility increases. TCP AR is
a pure end to end approach and not dependent on
lower layers.

In a future work, we intend to carry out more
simulations to investigate other performance metrics
such fairness and friendliness of TCP AR toward
TCP NR, to study the effects of reactive routing
protocol on the performance of our solution and to
implement the TCP AR protocol.

7. References

[1] Jacobson V., Congestion Avoidance and Control,
ACM Computer Communications Review, 18(4): 314 - 329,
August 1988.
[2] Jacobson V., Berkeley TCP evolution from 4.3-Tahoe to
4.3 Reno, Proceedings of the 18th Internet Engineering
Task Force, University of British Colombia, Vancouver, BC,
Sept. 1990.
[3] Abdullah-Al-Mamun M., Rahman M.,Tan H.,
performance evaluation of TCP over routing protocols for
mobile ad hoc networks, CHINACOM 2006.
[4] Casetti C., Gerla M., Lee S., Mascolo S., Sanadidi M.,
TCP with Faster Recovery , MILCOM 2000.
[5] Gerla M., Sanadidi M.Y., Wang R., Zanella A., Casetti C.,
Mascolo S., TCP Westwood: Congestion Window Control
Using bandwidth Estimation, In Proceedings of IEEE
Globecom, Volume: 3, pp1698-1702, 2001.
[6] Wang R., Valla M., Sanadidi M.Y., Gerla M.,
Efficiency/Friendliness Tradeoffs in TCPWestwood,
Seventh IEEE Symposium on Computers and
Communications, 2002.

[7] Casetti C., Gerla M., Mascolo S., Sanadidi M.Y., Wang
R., TCP Westwood : End-to-End Bandwidth Estimation for
Enhanced Transport over Wireless Links, Journal of
Wireless Networks, Volume 8, pp 467-479, 2002.
[8] Ferorelli R., Grieco L. A., Mascolo S., Piscitelli G.,
Camarda P., Live Internet measurements using Westwood+
TCP Congestion Control, IEEE Globecom 2002, Taipei,
Taiwan, November 18-20, 2002.
[9] Grieco, L. A., and Mascolo, S., Westwood TCP and easy
RED to improve Fairness in High Speed Networks,
Proceedings of IFIP/IEEE Seventh International Workshop
on Protocols For High-Speed Networks, PfHSN02, (Berlin,
Germany, April, 2002).
[10] Camp T., Boleng J., Davies V., A Survey of Mobility
Models for Ad Hoc Network, Research. Dept. of Math. and
Computer Sciences Colorado School of Mines, Golden,
2002.
[11] Network Simulator Ns2, http://www.isi.edu/nsnam/ns.
[12] Papanastasiou S., Ould-Khaoua M, Mackenzie L. M.,
On the evaluation of TCP in MANETs, Proc. of
International Workshop on Wireless Ad-hoc Networks,
London, UK, 23 - 26 May 2005.
[13] Chen. L.-J., Sun. T., Yang, G., Sanadidi, M. Gerla, M.,
AdHoc Probe: Path Capacity Probing in Ad Hoc
Networks, Proceedings of the First International
Conference on Wireless Internet WICON '05, pp 156- 163,
Budapest, Hungary, July 10 - 15, 2005
[14] Holland G., Vaidya N., Analysis of TCP performance
over Mobile ad hoc networks. Proceedings of the fifth
annual ACM/IEEE International conference on Mobile
computing and networking, pp 219-230, ACM Press 1999.
[15] TCP Westwood+ NS-2 modules, June 2003,
http://193.204.59.68/mascolo/tcp%20westwood
[16] Clausen T., Jacquet P., Optimized Link State Routing
Protocol (OLSR), RFC 3626, IETF MANET Working
Group, http://hipercom.inria.fr/olsr/rfc3626.txt, 2003.
[17] D. Johnson D. A. Maltz, “Dynamic source routing in ad
hoc wireless networks,” Mobile Computing.
[18] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad
hoc On - Demand Distance Vector (AODV) Routing”. RFC
3561, July 2003.
[19] Lengliz I., Touati H., Kamoun F., Sanadidi M. Y.,
Experimentations towards TCP Westwood application in
ad-hoc mobile networks, Med-Hoc Net’03, Mahdia,
Tunisia, June 25-28, 2003.
[20] Lengliz I., Touati H., Kamoun F., Sanadidi M. Y.,
Measurements on Fairness and Friendliness of TCP
Westwood in Wireless Environments, Med-Hoc Net’04,
Bodrum, Turky, June 25-30, 2004.

The Sixth Annual Mediterranean Ad Hoc Networking WorkShop, Corfu, Greece, June 12-15, 2007
55

