
CGI2014 manuscript No.
(will be inserted by the editor)

Ray tracing via GPU rasterization

Wei Hu · Yangyu Huang · Fan Zhang · Guodong Yuan · Wei Li

Received: date / Accepted: date

Abstract Ray tracing is a dominant method for gener-

ating a wide variety of global illumination effects, such

as reflections/refractions, shadows, etc. In this paper,

we propose an efficient technique to perform nearly ac-

curate ray tracing using the programmable graphics

processor units (GPUs). With the aid of the linked-

list A-buffer and the uniform voxel grid to represent

scene geometry, the ray-scene intersection can be effi-

ciently computed via the built-in rasterization on G-

PUs. Based on this novel ray-scene intersection tech-

nique, a new ray-tracing framework which supports var-

ious light transport algorithms is introduced, includ-

ing Ray Casting, Whitted Ray-tracing, Ambient Oc-

clusion, Path Tracing, and so on. The experimental re-

sults demonstrate the accuracy and efficiency of our

approach.

Keywords Ray tracing · Global illumination ·
Rasterization · GPUs

1 Introduction

Ray tracing is a classical method for rendering global

illumination (GI) effects, especially reflections, refrac-

tions and shadows. The core problem of ray tracing is

how to efficiently compute intersections of a ray with

W. Hu · Y. Huang · F. Zhang · W. Li
College of Information Science and Technology, Beijing Uni-
versity of Chemical Technology, Beijing 100029, China
Tel.: +86-18010181180
Fax: +86-10-64434931
E-mail: huwei@mail.buct.edu.cn

G. Yuan
Computer School, Beijing Information Science and Technol-
ogy University, Beijing 100010, China

geometric scene primitives. For highly complex scenes,

ray tracing usually becomes time consuming due to ex-

cessive amount of intersection tests. Therefore, the pri-

mary approach to accelerate ray tracing focuses on im-

proving the performance of ray-scene intersection tests.

To avoid “brute-force” issue of intersection tests, many

hierarchical data structures have been proposed and im-

plemented on CPU, such as BSP tree, kd-tree, octree,

uniform grid, etc, which have been comprehensively sur-

veyed in [1].

Ray tracing on GPUs has been well studied in recent

years [7–11]. The early methods [11] only employ GPUs

as a high performance processor to accelerate ray trac-

ing, with the similar data structures implemented on C-

PUs. Therefore, it is hard to integrate these techniques

into the traditional hardware rasterization pipeline. Re-

cently, some scene representation techniques, including

voxelization and sampled textures on GPUs, has been

proposed (see Section 2), and corresponding ray tracing

methods can achieve good performance since primary

rays can be efficiently replaced by rasterization. Howev-

er, these methods are hard to trace primary/secondary

rays recursively in a unified framework, and generally

are proposed for rendering limited global effects.

This paper proposes a ray tracing method via hard-

ware rasterization pipeline. Uniform grid voxels and

per-fragment linked-list A-buffer [2,3] are adopted to

represent the scene geometries, which are stored as tex-

ture buffers on GPUs. All rays are then tested against

the scene to compute the intersections by using these

GPU-based scene representations. Our framework traces

rays only via GPU rasterization, which leads to easy im-

plementation and convenient integration into the ren-

dering pipeline. Additionally, compared with the exist-

ing rasterization-based techniques, our method achieves

a better balance between accuracy and performance.



2 Wei Hu et al.

(a) 35 ms (b) 27 ms (c) 660 ms (d) 1030 ms

Fig. 1 From left to right, Ray Casting, Whitted Ray-tracing, Ambient Occlusion, and Path Tracing results (size = 800×600)
generated by our method with full dynamic scenes. All secondary effects (depth layers, shadows, reflections, and refractions)
are produced by tracing rays via GPU rasterization. The depth of whitted ray tracing is 3, and we trace 128 rays per-fragment
for rendering AO and 384 rays per-fragment for two-bounce path tracing (with importance sampling on lights). Zooming in
for details.

Utilizing such a ray tracing scheme, several ray-tracing

style models, such as Ray Casting, Whitted Ray-tracing [4],

Ambient Occlusion [5], Path Tracing[6], etc, can be ef-

ficiently implemented, as shown in Figure 1.

This paper is organized as follows: First, the closely

related works are surveyed in Section 2. Second, Sec-

tion 3 describes the theory and implementation details

of our ray-scene intersection algorithm. Then, how to

build up a ray-tracing framework via the new intersec-

tion method, so as to implement various global light

transport methods, is presented in Section 4. Section 5

shows the experimental results and discusses the com-

parisons with the state-of-the-art prior methods. Final-

ly, the paper is concluded in Section 6 and proposes

potential avenues for future research.

2 Related Work

Over the last 20 years, various hierarchical structures to

accelerate ray tracing on CPUs have been proposed as

summarized in [1]. Recently, ray tracing on GPUs has

attracted lots of research interests [7–10] since [11] in

2002. Nvidia also proposed Optix R© ray tracing engine

on GPUs[12]. However, the GPU is only regarded as a

general purpose many-core processor in these methods,

and hence it is nontrivial to integrate these methods

into the existing OpenGL/Direct3D style rasterization

pipelines.

Some rasterization-based techniques have been pro-

posed for achieving ray-tracing to render various effect-

s, such as reflection, refraction, caustics and shadows,

on GPUs. The scene geometry is approximated by the

corresponding sampled texture or the volumetric rep-

resentation that can be stored as textures on GPUs,

so it is feasible to compute the ray-scene intersections

in the fragment shader via texture fetching. The en-

vironment map and the shadow map are just sampled

forms for rendering approximate reflection, refraction

and shadows. To improve accuracy of the intersection

test, a straightforward solution is to store more geom-

etry data in textures. Hence, single or multiple layered

textures generated by rendering scenes from different

sampling positions, are used to approximate scenes[13–

17]. The major limitation of these techniques is that the

generated textures only represent part of the scene, or

the representation and the corresponding ray-scene in-

tersections depend on specific objects(reflectors/ refrac-

tors) or sampling locations. Although rays can be traced

fairly accurately (mirror reflection/refraction support-

ed), these methods could not be used as general ray

tracing solutions. Layered Depth Images(LDIs) [18–20],

which are constructed via depth peeling along orthogo-

nal projections, are proposed to represent scene objects.

Ray tracing on LDIs is firstly presented in [18]. Howev-

er, due to the excessive memory cost of high-resolution

LDIs, the rendering performance is low for accurate

ray-scene intersections. [19] accelerates the ray-scene

testing by reducing sizes of LDIs, at the cost of high-

frequency effects. Furthermore, rays cannot be traced

within scene objects in these methods, so rendering re-

fractions is not supported. Moreover, pre-processing is

also required when generating many LDIs [19].

Voxel-based ray tracing methods attract more and

more attentions recently, because of geometry-independent

scene description and the evolving of fast voxelization

methods. Some scene voxelization and ray-voxel inter-

section techniques have been proposed for rendering

global illumination interactively [21–26]. However, only

diffuse indirect lighting (reflection) is rendered in [21–

23], due to lack of precision caused by low-resolution

uniform voxel grids. CUDA is used to construct voxel

octrees in [24]. Rasterization-based efficient sparse voxel

octree [25,26] can improve precision so that glossy re-

flections can be rendered interactively. Nevertheless, it

is still difficult to compute accurate ray-scene intersec-



Ray tracing via GPU rasterization 3

A 643 uniform grid, and 3 12802 A-buffers

, ... ,

Normal, position, ..., buffers for deferred shading

The fragment shader

Tracing rays

Ray casting Whitted ray tracing Ambient occlusion Path tracing

Fig. 2 The uniform grid (with the average normal value for each cell) and A-buffers (with surface attribute values for each
pixel) are used to represent the complex scene. Accurate ray-tracing can be conducted in the fragment shader via deferred
shading. Therefore, Ray Casting, Whitted Ray-tracing (ambient lighting enabled), Ambient Occlusion, and Path Tracing can
be implemented by using our ray-tracing framework.

tions efficiently, and moreover, generating sparse vox-

el octree is relatively time-consuming so that it is not

applicable for rendering fully dynamic scenes (see dis-

cussion in Section 5). Novak and Dachsbacher[27] pro-

posed rasterized bounding volume hierarchy(RBVH) to

represent a scene, and surface data are contained in B-

VHs as atlas for accurate ray tracing. However, RBVHs

cannot be constructed by using only rasterization-based

pipeline (CUDA is required), and the construction time

is still too slow to render complex dynamic scenes in

real-time.

There are also some rasterization-based global il-

lumination methods, such as GPU-based bidirectional

path tracing[28]. However, to the best of our knowledge,

these methods are usually not general enough, and few

of them focus on achieving fundamental high-precision

ray-tracing frameworks.

Inspired by voxel and LDI based techniques, we

present a novel method that integrates these two tech-

niques to represent scene geometries, and a correspond-

ing ray-scene intersection method to trace rays. More-

over, in order to demonstrate the capability of this new

ray-tracing scheme, we implement various light trans-

port methods, such as Ray Casting, Whitted-style Ray-

tracing, Ambient Occlusion, and Path Tracing, based

on our ray-tracing framework. The framework of our

algorithm is illustrated in Figure 2.



4 Wei Hu et al.

3 Ray-Scene Intersection

As shown in Figure 2, our approach firstly generates

a two-level representation of the input scene, which

includes a uniform voxel grid and three per-fragment

linked-list A-buffers, to facilitate ray tracing. The uni-

form voxel grid is a coarse level of the actual geometric

meshes, and the A-buffer represents scenes more pre-

cisely due to its high resolution. Note that a 1K × 1K

A-buffer corresponds to a resolution of a uniform grid

of 1K3. This two-level representation allows to avoid

using actual geometric meshes to compute ray-scene in-

tersections while still providing high accuracy and good

efficiency. During the tracing process, a ray is traced

against the uniform voxel grid firstly, and then if an

initial intersection is detected, the ray is further tested

against the A-buffers to compute the precise intersec-

tion point. Therefore, various GI effects can be efficient-

ly rendered using our new ray tracing technique.

3.1 Scene Representation

We generate the uniform voxel grid and A-buffers for

the input scenes via the rasterization-based rendering

pipeline on GPUs. Thanks to the recently introduced

image load, store and atomic operations in OpenGL,

the two-level representation can be generated in a single

pass.

Firstly, we define the resolution of the voxel grid

and the A-buffer. Then, a 3D texture to store the voxel

grid and three texture buffers to store A-buffers are

allocated.

Secondly, each triangle of the mesh is input into the

GPU rendering pipeline. In the geometry shader, all tri-

angle vertices are projected orthographically along the

three main axes of the scene and outputted to the cor-

responding layers. The reason to use three projections

is to avoid the degenerated triangle when its normal is

perpendicular to the projection direction. Depth testing

is disabled to prevent face culling, at least one fragment

shader thread is generated for each triangle in the scene.

Lastly, for each fragment, the corresponding voxel

grid can be computed easily, and we directly fill the

corresponding grid with the fragment’s normal for se-

lecting the correct A-buffer (described in Section 3.2)

using image store operations. Since multiple fragments

can fall into the same grid, in order to average all the

normals, the same technique proposed in [29] is used.

Meanwhile, using the technique described in [3], we can

generate three A-buffers containing all the attributes

(the depth, position, normal, and BRDF, etc) that we

want to store.

Furthermore, another rendering pass is processed to

sort linked-list of each fragment, and then write sorting

results back to A-buffers. This sorting process can fur-

ther accelerate ray-scene intersection computation as

discussed in Section 3.2.

3.2 Ray-scene intersection

The ray-scene intersection test is computed in the frag-

ment shader after rasterization, and the scene (One u-

niform grid and three A-buffers) is accessed as textures

and buffers.

To compute ray-scene intersections, we first traverse

the ray on the coarse-level uniform grid. As shown in

Figure 3, the uniform voxel grid simplifies the computa-

tion of determining which voxel would be visited along

a given ray. We use the classic 3D-DDA grid traversal

algorithm [30] to step the ray along successive voxel-

s (Green-edge cells in the figure). If the current voxel

contains scene geometry (Red-filled cells in the figure),

the precise intersection point is further determined us-

ing A-buffers. The 3D-DDA algorithm requires only a

small number of steps to trace the ray, and the cost of

traversal is linear to the number of the visited voxels.

Since the resolution of the voxel grid is relatively low,

the average traversal cost for this initial intersection

test is small.

Pin

Pout

Fig. 3 Tracing the ray on the uniform grid firstly, and the
precise intersection point is then computed by comparing
depth values in the A-buffer, which is selected from 3 A-
buffers by using the average normal value in the current cell.

If the current voxel contains geometry, we should

further trace the ray on the A-buffers of the scene. In

Figure. 3, the corresponding entry point Pin and exit

point Pout could be easily computed with the 3D-DDA

algorithm, and then these two points would be project-



Ray tracing via GPU rasterization 5

ed to the corresponding A-buffer, which is selected by

using the average normal value of the current voxel.

Given a point, we could access sorted link-listed val-

ues of the corresponding pixel in the A-buffer, and de-

termine whether the point is inside scene objects by

comparing depth values. Linear searching from Pin to

Pout by using 2D-DDA on the A-buffer could be em-

ployed to find the first intersection point Pinter. Al-

though the resolution of the A-buffer is high, the num-

ber of searching steps would be low with the restricted

range between Pin and Pout. To further improve the

performance of ray tracing, we introduce a search algo-

rithm inspired by [20], as illustrated in Figure 4. First-

ly, we find the first point Pk inside (or outside for re-

fraction) the object with an approximate linear search;

Secondly, a binary search similar to [31] is conducted

to find the intersection point Pinter between Pk and

Pk−1. An appropriate step length for the linear search

might greatly reduce the comparison times to compute

Pinter. Moreover, in some cases (for example, tracing

shadow rays), the accurate position of the intersection

point is unnecessary, so the binary search can be ig-

nored to improve the performance.

P0

P1

P2

P3

Pinter

Fig. 4 Pinter is firstly identified between P1 and P2

through a linear searching, and then accurately computed
by another binary searching[31].

Fig. 5 We can assume that only one smooth surface is con-
tained in a voxel cell. Therefore, we can simply judge the in-
tersection by a binary searching between Pin and Pout (one-
step linear search), especially for generating low-frequency
effects.

Since the uniform voxel grid size is relatively smal-

l, in most scenarios, we can assume that only one s-

mooth surface is contained in a voxel cell. Therefore,

if the entry point Pin is outside the object, there are

two circumstances: the exit point Pout is inside or out-

side the object. If Pout is inside the object (see the left

one in Figure 5), a binary searching can rapidly iden-

tify Pinter. If Pout is outside the object, our algorithm

might miss the accurate Pinter if the linear-search step

length is large (see the middle one in Figure 5)). S-

ince the possibility that the ray intersects the object is

low under this circumstance, usually a three-step lin-

ear search is enough for generating results with high

precision, and one-step linear search is also appropriate

for rendering low-frequency effects. Figure 6 gives some

comparisons of searching techniques. We can see that

three-step linear search is visually close to ground truth

2D-DDA search, and even a one-step linear search is

sufficient to well approximate the low-frequency effect-

s. We notice that there are some differences caused by

sharp surfaces. Since the assumption of one-step linear

search, one smooth surface in a voxel cell, is not obeyed

here.

(a) 69 fps (b) 157 fps (c) 210 fps

(d) 11 fps (e) 19 fps (f) 27 fps

Fig. 6 Whitted Ray-tracing (top) and Ambient Occlusion
with 128 rays per-fragment (bottom) using 2D-DDA lin-
ear search (left), three-step linear search (middle), and one-
step linear search (right). Notice some differences (see teapot
spout and dragon horn) caused by sharp surfaces. The sizes of
the uniform grid and A-buffers are 643 and 10242 respective-
ly. The sub-caption indicates rendering frames per-second.

Since the times of depth comparison in the A-buffer

are limited by three-step/one-step linear search, the

resolution of A-buffers does not have great impact on

the performance of the step search. Therefore, high-

resolution A-buffers is preferred and adopted in our im-

plementation.

4 Illumination Model Implementation

Based on the new ray-scene intersection technique, var-

ious global light transport methods can be fully imple-



6 Wei Hu et al.

mented on GPUs (see Figure 2). Deferred shading is

employed to avoid costly ray tracing for occluded frag-

ments.

In our implementation of Ray Casting, primary

rays are generated and traced against scene object-

s, and final colors are accumulated in a single frag-

ment shader. Since multiple intersections are naturally

supported, we can render multi-layer effects(see Fig-

ure. 1(a)) by recursively tracing rays until rays are out

of the bounding box.

In the Whitted Ray-tracing, reflection rays and

refraction rays are traced recursively for each inter-

section in the fragment shader, and shadow rays are

generated at all intersection points. Since recursion is

not allowed in GLSL, we implement the recursive ray-

tracing with loops and stacks. In our implementation,

we set maximum ray-tracing depth = 3 to achieve sat-

isfying results.

Tens or hundreds of sampling rays are required for

each fragment in Ambient Occlusion and Path Trac-

ing. In our implementation, tracing more than 64 rays

per-fragment in one single fragment shader is currently

not supported due to the constrained number of shader

instructions and OpenGL window time-out limitations.

Fortunately, Ambient Occlusion and Path Tracing both

can be computed by using sum and average operations.

To trace more rays efficiently, a multiple-pass render-

ing pipeline is essential. Two framebuffers (FBcurr and

FBcomp ) and corresponding multiple-pass rendering

methods are introduced to composite final results, as

shown in Algorithm. 1.

There are two proposed multiple-pass rendering meth-

ods, the progressive rendering method and the gener-

al rendering method in our solution. The progressive

method iteratively refines the final result after each

rendering passes, and can be applied for interactively

previewing the complex lighting effects. The procedure

PRender() is executed for each frame, and the proce-

dure InitCompBuffer() (and the representation con-

struction) is executed only when the display content

is changing (moving camera, updating scene objects,

etc). In our general rendering method, the procedure

InitCompBuffer() is also executed for each frame, so

the final result is totally re-generated. λ is the sampling

number in a single rendering pass, and λ×η is the total

number of sampling rays of current fragment. Accord-

ing to our experiments, a short shader is preferred for

better performance, and we set λ = 8 for AO and λ = 3

for path tracing (due to multi-bounce path length) in

our implementation. Figure 7 illustrates the multi-pass

composition results with different rendering passes.

Algorithm 1 Composition for multi-sampling methods
. Init composition buffers
procedure InitCompBuffer()

Enable the framebuffer FBcomp;
Clear color and depth buffers;
η = 1;

end procedure

. The Progressive Rendering method
procedure PRender()

. Rendering objects
Enable the framebuffer FBcurr;
Clear color and depth buffers;
Draw objects with λ sampling rays;
Disable the framebuffer FBcurr;
. Accumulate FBcurr

Enable the framebuffer FBcomp;
Enable alpha blending;
Set glBlendFunc(GL ONE, GL ONE);
Draw a quad with the texture FBcurr;
Disable the framebuffer FBcomp;
. Composite results
Clear output color and depth buffers;
Display FBcomp according to η and λ;
η++;

end procedure

. The General Rendering method
procedure GRender(int renderPasses)

. Rendering objects
InitCompBuffer();
for η = 1 to renderPasses do

Enable the framebuffer FBcurr;
Clear color and depth buffers;
Draw objects with λ sampling rays;
Disable the framebuffer FBcurr;
. Accumulate FBcurr

Enable the framebuffer FBcomp;
Enable alpha blending;
Set glBlendFunc(GL ONE, GL ONE);
Draw a quad with the texture FBcurr;
Disable the framebuffer FBcomp;

end for
. Composite results
Clear output color and depth buffers;
Display FBcomp according to renderPass and λ;

end procedure

5 Results and Comparisons

Our technique was implemented in OpenGL/GLSL and

all the results were rendered on a PC equipped with

an Intel Xeon R© CPU E5-1620 with 3.7 GHz and an N-

vidia GeForce R© 780 GTX graphics card. The sizes of

uniform grids and A-buffers should be well investigated

to keep well balance between quality and performance.

According to our experience, a (
√

3n)3 uniform grid is

a optimal choice for n2 A-buffers. Except of the marked

places, all the rendering results in the paper were gener-

ated using 643 uniform grids and 12802 A-buffers, and

the size of the screen buffer is 800 × 600. Note that



Ray tracing via GPU rasterization 7

(a) 2 passes/12 ms (b) 8 passes/52 ms (c) 24 passes/148 ms (d) 64 passes/392 ms

Fig. 7 AO effects with different rendering passes (the sampling number λ = 8 for one single pass). About 0.75 ms is required
for tracing one sampling ray. Note that the timing of constructing scene representation is not included.

all performance data are recorded for full dynamic

scenes except with the progressive rendering method,

that is to say, uniform voxel grids and A-buffers are

re-constructed for each frame.

5.1 Accuracy of ray-scene intersection

To verify the accuracy of our ray-scene intersection method,

we compare Whitted ray tracing results rendered using

our framework to the references generated with Optix

ray-tracing engine[12]. Figure 8 illustrates the results

of this comparison. It can be seen from the figure, our

results closely match the references.

Fig. 8 Comparison of ray-tracing accuracy as implemented
in our method (left) and Optix (right). The ray-tracing depth
values are 3 in the top one. Two point lights are used in the
bottom one.

5.2 Comparison with Related Techniques

Regular voxel[22,23] and sparse voxel octrees (SVOs)[26]

were proposed to represent scene objects for render-

ing global illumination on GPUs. Restricted to memory

limitation and traversal performance, the low-resolution

regular voxel is preferred in [22,23]. Although some

low-frequence effects can be rendered via regular voxels

only, to render accurate results as ours, the sampling

number or the voxel resolution should be higher, which

would cause performance and memory problems (see

Figure 9). It is clear that the same results could be

generated with 12803 and 64 sampling rays by using

regular voxel grids in Figure 9, but the GPU memory

capability limits the size of voxel grids.

(a) 643/64/16.8 (b) 643/64/46.3 (c) 2563/96/7.7

Fig. 9 Comparison of rendering AO with our technique (left)
and only voxel grids[23] (right two). The general rendering
method is used here. The sub-caption indicates the size of
voxel grid, the sampling rays per-fragment, and the rendering
frames per-second (fps).

Compared with regular voxels, SVOs can describe

scenes with higher precision. [26] implemented global

illumination computation by using Octrees and cone-

tracing, and achieved good performance. However, the

SVO technique also has limitations on dynamic con-

struction performance. Moreover, the SVO structure is

well suited to cone-tracing, but accurate tracing rays

on leaf level of SVOs is time-consuming in the fragment

shader. We compared the method with our implement-

ed SVO as shown in Table 1, our method spends less

time on constructing scene representations and tracing

rays achieving the same precision (the precision that a

1K × 1K A-buffer can achieve is the same as a unifor-

m grid of 1K3, and a 10-level octree). Therefore, our

algorithm is more applicable for dynamic scenes and

complex illumination models.

Admittedly, some low-frequency effects are better

supported in SVO cone-tracing, since a few number of



8 Wei Hu et al.

Table 1 Performance comparison between our method and SVO. To achieve the same precision, we trace rays on leaf nodes
of SVO.

Scene Method Construction Tracing Rays Others Total
Figure. 1(b) Ours 13.2 ms 11.6 ms 2.7 ms 27.5 ms
Figure. 1(b) SVO 42.8 ms 84.6 ms 3.8 ms 131.2 ms
Figure. 8 top Ours 10.8 ms 8.7 ms 2.6 ms 22.1 ms
Figure. 8 top SVO 35.6 ms 79.6 ms 2.9 ms 109.1 ms

cones can approximate Ambient Occlusion and indirect

illumination well. Therefore, SVOs can render Ambi-

ent Occlusion of static scenes more rapidly. However,

Cone-tracing is naturally not suitable for illumination

methods that require high-precision ray-object inter-

section (hard shadow, mirror reflections, soft shadows

under area lights, etc). On the contrary, our method can

trace rays more precisely with high performance, which

results in the fact that almost all the ray-tracing based

illumination methods, even Monte-Carlo path tracing,

can be implemented using our ray-tracing framework.

5.3 Other Results

In Figure 10, we present two examples with reflection-

s and soft shadows by sampling the environment map

(left) and the area light (right). The BRDF importance

sampling technique[32] is employed for generating sam-

pling rays on the teapot in the left figure.

(a) 1389 ms (b) 820 ms

Fig. 10 Lighting from the environment map (left) and the
rectangle area light (right) with 1024 sampling rays per-
fragment. The Ward BRDF is used to render the teapot, and
the sphere is rendered with mirror reflections. The progressive
rendering method is used here (128 passes with λ = 8). The
sub-caption indicates the total rendering timing (including
representation constructing timing).

Similar to other voxel-based methods, our solution

is suitable for rendering small-scale and near-field illu-

mination, due to the limitations of GPU capabilities.

Yet, this doesn’t mean that our solution can only be

applied for rendering simple scenes. Figure 11 gives our

path tracing results of the Sponza model under rectan-

gle area lights.

(a) 5110 ms (b) 4030 ms

Fig. 11 The Sponza model under area lights with path trac-
ing. The progressive rendering method is used here. A 2563

size of the uniform grid is used here, due to complex scene
objects. Low performance is caused by the high depth-level
of A-buffers and the large size of the uniform grid. The sub-
caption indicates the total rendering timing (including repre-
sentation constructing timing).

6 Conclusion and Future Work

We presented a 100% rasterization-based ray tracing

framework in this paper. Uniform voxel grids and linked-

list A-buffers were employed to represent complex scenes

accurately, and a new ray-intersection method based

on such scene representations was developed for trac-

ing rays. Most global light transport methods could

be implemented in the fragment shader. Our method

has better tradeoff between accuracy and performance,

compared with existing solutions based on GPU raster-

ization. Note that all secondary effects are generated by

tracing rays in our method. Actually, our method can

benefit the traditional OpenGL/Direct3D applications.

For example, our solution can be applied to render only

mirror reflections/refractions, and shadows can still be

generated by using shadow mapping. Therefore, we be-

lieve that our method can be directly applied in com-

puter games or utilized as a fast preview method for

sophisticated lighting simulations in off-line rendering.

As a sampling-based method, our method certainly

has some limitations, and there exist some future space

to improve the quality and the performance. Water-

tight objects are required for tracing rays accurate-

ly, and some gracile objects might be missed in A-

buffers due to limited resolutions. As for some large

and complex scenes, the sizes of uniform voxel grid and

A-buffers, as well as the layer depth of A-buffers, would

be large to keep high precision ray-tracing, which would

result in memory and performance problems or even be-



Ray tracing via GPU rasterization 9

yond the capability of current GPUs. It might be solved

by using multiple-layer or dynamic-loaded buffers. Fur-

thermore, utilizing multiple-type buffers (static and dy-

namic objects, near and far objects, coarse and precise

representation, etc) could also accelerate representation

construction and ray-scene intersections too. Moreover,

replacing our uniform voxel grids with SVOs could re-

duce memory costs for large static scenes too. Finally,

based on our framework, in future we will further study

the implementation of more complicated global illumi-

nation methods, such as photon mapping, bi-directional

path tracing, and so on.

Acknowledgements We would like to thank the anony-
mous reviewers for their constructive comments. We thank
Zhao Dong for his valuable suggestions. This work was sup-
ported jointly by Nation Nature Science Foundation of China
(No.61003132) and 973 Program of China (No.2011CB706900).

References

1. Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.: Ray
tracing animated scenes using coherent grid traversal.
ACM Transaction on Graphics 25(3), 485-493 (1999)

2. Carpenter, L.: The A-buffer, an antialiased hidden sur-
face method. In: Proceedings of the 11th annual con-
ference on computer graphics and interactive techniques
(SIGGRAPH’84),pp.103-108 (1984)

3. Yang. C., Hensley, J., Grun, H., Thibieroz, N.: Real-
time concurrent linked list construction on the gpu.
In: Proceedings of the 21st Eurographics conference on
Rendering(EGSR’10),pp.1297-1304 (2010)

4. Whitted, T.: An Improved Illumination Model for Shad-
ed Display, Communications of the ACM 23(6):343-349
(1980)

5. Zhukov, S., Iones, A., Kronin, G.: In: Proceedings of the
Eurographics Workshop, pp.45-55 (1998)

6. Kajiya, J.: The rendering equation. In: Proceedings of the
13th annual conference on Computer graphics and inter-
active techniques(SIGGRAPH’86), pp.143-150, (1986)

7. Wang, R., Wang, R., Zhou, K., Pan, M., Bao, H.: An effi-
cient GPU-based approach for interactive global illumina-
tion. ACM Transactions on Graphics 28(3), Artical No.91
(2009)

8. Aila, T., Karras, T.: Architecture considerations for trac-
ing incoherent rays. In: Proceedings of the Conference on
High Performance Graphics(HPG’10), pp:112-122 (2010)

9. Aila, T., Laine, S.: Understanding the efficiency of ray
traversal on GPUs. In: Proceedings of the Conference on
High Performance Graphics(HPG’09), pp:113-122 (2009)

10. Zhou, K., Hou, Q., Wang, R. Guo. B.: Real-time KD-tree
construction on graphics hardware. ACM Transactions on
Graphics 27(5), Artical No. 126 (2008)

11. Purcell, T., Buck, I., Mark, W., Hanrahan, P.: Ray trac-
ing on programmable graphics hardware. ACM Transac-
tions on Graphics 21(3), 703-712 (2002)

12. Parker, S., Bigler, J., Dietrich, A., Friedrich, H., Hobe-
rock, J., Luebke, D., Mcallister, D., Mcguire, M., Mor-
ley, K., Robison, A., Stich, M.: Optix: a general purpose
ray tracing engine. ACM Transactions on Graphics 29(4),
Artical No. 66 (2010)

13. Umenhoffer, T., Patow, G., Kalos, L.: Robust multiple
specular reflections and refractions. In: GPU Gems 3,
pp.387-407 (2010)

14. Rosen, P., Popescu, V., Hayward, K., Wyman, C.: Non-
pinhole approximations for interactive rendering. IEEE
Computer Graphics and Application, 31(6), 68-83 (2011)

15. Wyman, C.: Interactive image-space refraction of nearby
geometry. In: Proceedings of the 3rd international confer-
ence on Computer graphics and interactive techniques in
Australasia and South East Asia(GRAPHITE’05), pp.205-
211 (2005)

16. Kalos, L., Umenhoffer, T.: Specular effects on the GPU:
state of the art. Computer Graphics Forum 28(6), 1586-
1617 (2009)

17. Yao, C., Wang, B., Chan, B., Yong, J., Paul, J.: Multi-
image based photon tracing for interactive global illumina-
tion of dynamic scenes. Computer Graphics Forum 29(4),
1315-1324 (2010)

18. Burger, K., Hertel, S., Kruger, J., Westermann, R.: G-
PU rendering of secondary effects. In: Proceedings of In-
ternational Workshop on Vision, Modeling and Visualiza-
tion(VMV’07), pp.51-61 (2007)

19. Niebner, M., Schafer, H., Stamminger, M.: Fast indirect
illumination using layered depth images. The Visual Com-
puter 26(6), 679-686 (2010)

20. Zhang, C., Hsieh, H, Shen, H.: Real-time reflections
on curved objects using layered depth textures. In Pro-
ceedings of IADIS International Conference on Computer
Graphis and Visualization (2008)

21. Kaplanyan, A., Dachsbacher, C.: Cascaded light propa-
gation volumes for real-time indirect illumination, In: Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games(I3D’10), pp.99-107
(2010)

22. Thiedemann, S., Henrich, N., Muller, S.: Voxel-based
global illumination. In: Proceedings of the 2011 ACM
SIGGRAPH symposium on Interactive 3D Graphics and
Games(I3D’10), pp.103-110 (2011)

23. Papaioannou, G., Menexi, M., Papadopoulos, C.: Real-
time volume-based ambient occlusion. IEEE Transaction
on Visualization and Computer Graphics 16(5), 752-762
(2010)

24. Laine, S., Karras, T.: Efficient sparse voxel octrees. In:
Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games(I3D’10), pp.55-63
(2010)

25. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gi-
gavoxels: ray-guided streaming for efficient and detailed
voxel rendering. In: Proceedings of the 2009 symposium
on Interactive 3D graphics and games, pp.15-22 (2009)

26. Crassin, C., Neyret, F., Sainz, M., Green, S., Eise-
mann, E.: Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum 30(7), 1921-1930
(2011)

27. Novak, J., Dachsbacher, C.: Rasterized bounding vol-
ume hierarchies. Computer Graphics Forum 31(2), 403-412
(2012)

28. Tokuyoshi, Y., Ogaki, S.: Real-time bidirectional path
tracing via rasterization. In: Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games(I3D’12), 183-190 (2012)

29. Crassin, C., Green, S.: Octree-based sparse voxelization
using the GPU hardware rasterizer. In: OpenGL Insights,
pp.303-318 (2012)

30. Amanatides, J., Woo, A.: A fast voxel traversal algorithm
for ray tracing. In: Proceedings of EuroGraphics’87, pp.3-
10 (1987)



10 Wei Hu et al.

31. Policarpo, F., Oliveira, M., Comba, J.: Real-time relief
mapping on arbitrary polygonal surfaces. In: Proceedings
of the 2005 symposium on Interactive 3D graphics and
games(I3D’05), pp.155-162 (2005)

32. Colbert, M., Krivanek, J.: Real-time shading with filtered
importance sampling. Computer Graphics Forum 27(4),
1147-1154 (2008)


