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1" Abstract—In this paper, we consider a scenario where  Wyner in [2] showed that the above negative result is
a source node wishes to broadcast two confidential messagesa consequence of Shannon’s restrictive assumption that the
for two respective receivers, while a wire-tapper also receives 5qyersary has access to precisely the same information as the

the transmitted signal. This model is motivated by wireless leqitimat . idered L. hich
communications, where individual secure messages are broadcast egitimate receiver. Wyner considered a scenario in which a

over open media and can be received by any illegitimate receiver. Wire-tapper receives the transmitted signal over a degraded
The secrecy level is measured by equivocation rate at the eaves-channel with respect to the legitimate receiver's channel. He

dropper. We first study the general (non-degraded) broadcast further assumed that the wire-tapper has no computational
channel with confidential messages. We present an inner bound limitations and knows the codebook used by the transmitter.

on the secrecy capacity region for this model. The inner bound H d the | | of i t th d b
coding scheme is based on a combination of random binning and "¢ Measured the level o ignorance at (n€ eavesdropper by

the Gelfand-Pinsker bining. This scheme matches the Marton’s itS equivocation and characterized the capacity-equivocation
inner bound on the broadcast channel without confidentiality region. Interestingly, a non-negative perfect secrecy capacity
constraint. We further study the situation where the channels are js always achievable for this scenario.

degraded. For the degraded broadcast channel with confidential 110 secrecy capacity for the Gaussian wire-tap channel is
messages, we present the secrecy capacity region. Our achievable

coding scheme is based on Cover’s superposition scheme ano':h"’““”mt(:"rized by Leung-Yan-Cheong in [3]. Wyner's work then

random binning. We refer to this scheme as Secret Superposition IS €xtended to the general (non-degraded) broadcast channel
Scheme. In this scheme, we show that randomization in the first with confidential messages (BCC) by Csiszar and Korner [4].

layer increases the secrecy rate of the second layer. This capacityThey considered transmitting confidential information to the
region maiches the capacity region of the degraded broadcast ogitimate receiver while transmitting common information

channel without security constraint. It also matches the secrecy to both the leqitimat . d th ire-t Th
capacity for the conventional wire-tap channel. Our converse © PO e legiimate receiver an € wire-tapper. lhey

proof is based on a combination of the converse proof of the €stablished a capacity-equivocation region of this channel.
conventional degraded broadcast channel and Csiszar lemma. The BCC is further studied recently in [5]-[7], where the

source node transmits a common message for both receivers,
along with two additional confidential messages for two re-
The notion of information theoretic secrecy in communispective receivers. The fading BCC is investigated in [8],
cation systems was first introduced by Shannon in [1]. TH®] where the broadcast channels from the source node to
information theoretic secrecy requires that the received signiaé legitimate receiver and the eavesdropper is corrupted by
of the eavesdropper does not provide even a single bit infonultiplicative fading gain coefficients, in addition to additive
mation about the transmitted messages. Shannon considevbde Gaussian noise terms. The Channel State Information
a pessimistic situation where both the intended receiver aft@iSl) is assumed to be known at the transmitter. In [10], the
the eavesdropper have direct access to the transmitted sigraafect secrecy capacity is derived where the channels are slow
(which is called ciphertext). Under these circumstances, faling. Moreover, the optimal power control policy is obtained
proved a negative result showing that perfect secrecy canfbe different scenarios regarding availability of CSI. In [11],
achieved only when the entropy of the secret key is greatbe wire-tap channel is extended to the parallel broadcast
than or equal to the entropy of the message. In modern crygirannels and the fading channels with multiple receivers.
tography, all practical cryptosystems are based on Shannndidé&re, the secrecy constraint is a perfect equivocation for each
pessimistic assumption. Due to practical constraints, secna¢ssages, even if all the other messages are revealed to the
keys are much shorter than messages. Therefore, these peawesdropper. The secrecy sum capacity for a reverse broadcast
tical cryptosystems are theoretically susceptible of breakimgannel is derived for this restrictive assumption. The notion
by attackers. However, the goal of designing such practiaafl the wire-tap channel is also extended to multiple access
ciphers is to guarantee that there exists no efficient algorittehannels [12]-[15], relay channels [16]-[19], parallel channels
for breaking them. [20] and MIMO channels [21]-[26]. Some other related works

on communication of confidential messages can be found in
IFinancial support provided by Nortel and the corresponding matchirLg7]_[31]_

funds by the Natural Sciences and Engineering Research Council of Can dzi\ thi id . h d
(NSERC), and Ontario Centres of Excellence (OCE) are gratefully acknowl- 1 tNIS Paper, we consider a scenario wnere a source node

edged. wishes to broadcast two confidential messages for two respec-
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Yi described by finite set¥, );,)»,Z, and a conditional distribu-

tion P(y1,y2, z|x). The input of the channel is € X and the
outputs argy;, y2, z) € (V1 x V2 x Z) for receiverl, receiver
X QY 2, and the eavesdropper, respectively. The transmitter wishes
to send independent messag@¥,W,) to the respective
receivers inn uses of the channel while insuring perfect
" W/ secrecy. The channel is discrete memoryless in the sense that
n
Fig. 1. Broadcast Channel with Confidential Messages P(y{l, yy, Z"\x") — H p(yu’ Yo.is Z7.|sz) (1)
=1

R R H 1
tive receivers, while a wire-tapper also receives the transmitt@d((2" ", 2""**), n) code for a broadcast channel with confi-
signal. This model is motivated by wireless communicationdential messages consists of a stochastic encoder
where individual secure messages are br.qadcast over shared . ({1,2,...,2M9) x {1,2, ..., 2"F=2}) — x™, 2)
media and can be received by any illegitimate receiver. In
fact, we simplify the restrictive constraint imposed in [11fnd two decoders,
and assume that the e_avesdropper does not have access to the gVt —{1,2,...,2"R1) ©)
other messages. We first study the general broadcast channel
with confidential messages. We present an achievable ratsl
region for this channel. Our achievable coding scheme is based g2 : V8 —{1,2,...,2"=} (4)

on the combination of the random binning and the Gelfand; o . . o
Pinsker bining [32]. This scheme matches the Marton’s innq’he average probability of error is defined as the probability

. ) NNELat the decoded messages are not equal to the transmitted
bound [33] on the broadcast channel without confidentiali essages; that is,

constraint. We further study the situation where the channgl's
are physically degraded and characterize the secrecy capacity P = P(g (YY) # Wy U go(YS) # Wa). (5)
region. Our achievable coding scheme is based on Cover’sl_he knowledae that the eavesdropper gets afibutand
superposition coding [34] and the random binning. We ref ¢ ) 9 d sianaz” i dplpd 9 Y
to this scheme as Secret Superposition Coding. This capa?i@ rom its received sign IS modeled as
region matches the capacity region of the degraded broadcast I(Z", W) = H(Wy) — HW,|Z™), (6)
channgl without sgcunty constraint. It also matches the secrecy (2", Wa) = H(Wa) — H(Wa|Z™), @)
capacity of the wire-tap channel.

The rest of the paper is organized as follows. In section and
we introduce the system model. In Section Ill, we provide an n _ n
inner bound on the secrecy capacity region when the channeIsI(Z (W1, W2)) = H(Wy, W) = H(Wh, W2|27). - (8)
are not degraded. In section IV, we specialize our chanrérfect secrecy revolves around the idea that the eavesdropper
to the physically degraded and establish the secrecy capaciéynot get even a single bit information about the transmitted
region. In Section V, we conclude the paper. messages. Perfect secrecy thus requires that

[I. PRELIMINARIES I(Z", W) =0< H(Wy) = HW:|Z"), 9
I(Z", Wy) =0 < H(W,) = HW,|Z™),

In this paper, a random variable is denoted by a capital
letter (e.g. X) and its realization is denoted by a correspondiggg
lower case letter (e.g. x). The finite alphabet of a random
variable is denoted by a script letter (eAg) and its probability (2", (W1, W2)) = 0 < H(Wy, Ws) = H(Wy, W2|Z").
distribution is denoted by’(z). Let X' be a finite alphabet set (10)
and denote its cardinality by¥’|. The members oft™ will The secrecy levels of confidential messagjes and IV, are
be written asz™ = (21,22, ..., ¥,,), Where subscripted lettersmeasured at the eavesdropper in terms of equivocation rates
denote the components and superscripted letters denote Vihéch are defined as follows.
vector. The notation~! denotes the vectdtr,, zs, ..., 7;_1).

A similar notation will be used for random variables andefinition 1 The equivocation rate®.,, R and Re;, for
random vectors. the Broadcast channel with confidential messages are:

Consider a Broadcast Channel with Confidential messages
as depicted in fidl In this confidential setting, the transmitter
(X) wants to broadcast some secret messages to the legit-
imated receiversY(,Y:), and prevent the eavesdroppéf)(
from having any information about the messages. A discrete
memoryless broadcast channel with confidential messages is

1

Rey = ~H(W:|Z"), (11)
1 )

Rep = gH(Wg|Z”),

1
Reio = EH(W17W2\ZTL)-



The perfect secrecy rateR; and R, are the amount of (Vi V) € A
information that can be sent to the legitimate receivers not / \

only reliably but also confidentially.
1 (1 ‘e 1

Definition 2 A secrecy rate pair(R;, R) is said to be
achievable if for anye > 0, there exists a sequence of
(271 2nE2) n) codes, such that for sufficiently large we 2 2
have:

PM< e, (12)

Re> Ry — ey, (13)

Rea> Ry — €9, (14)

RelQZ Rl + R2 — €3. (15) 271731 271R2
In the above definition, the first condition concerns the reli-

ability, while the other conditions guarantee perfect secrecy
for each individual message and both messages as well. The Fig. 2. The Stochastic Encoder
capacity region is defined as follows.

Definition 3 The capacity region of the broadcast channel
with confidential messages is the closure of the set of gl (v::

. . Z)=¢) codewords. Similarly, it generat@g(/(V;¥2)=¢)
achievable rate pair§ Ry, Rs).

independent and identically distributed sequenggsccord-
IIl. GENERAL BCCs ing to the distributionP(vy) = []""_, P(v2,;). Next, randomly

In this section, we consider the general broadcast changiﬁtribme these sequences into"™ bins such that each bin
: 9 G6htains 27(I(V2:2)~<) codewords. Index each of the above

w_|th conﬂdenpal messages and pres_ent an achievable ratebﬁ%é by wi € {1,2,...27%} and w, € {1,2,..,27%2}
gion. Our achievable coding scheme is based on a combmat}%g ectivel
of the random binning and the Gelfand-Pinsker bining schemes P Y-
[32]. The following theorem illustrates the achievable rate 2) Encoding To send messages, andws,, the transmitter
region for this channel. looks forv?* in bin w, of the first bin set and looks fa#; in bin
_ _ wq Of the second bin set, such that?, v}) € Al (Pv, v,)
Th_eorem 1 Let IR{ dgnote the union of all non-negative ratghere Agn)(Pthz) denotes the set of jointly typical se-
pairs (R1, Rz) satisfying quencesv} and v} with respect toP(vi,vs). The rates are
Ri< I(Vi; Y1) — I(Vy; 2), (16) such that there exist more than one joint typical pair, the
B transmitter randomly chooses one of them and then generates
Ro< I(Va;Y2) — I(Va; Z), : n ;
z™ according toP(z" (v}, vy) = [[;_; P(xilvis,v2,). This
Ry + Ro< I(Vi; Y1) +1(Va; Y2) — I(V1, V25 Z) — I(Vi; V). scheme is equivalent to the scenario in which each bin is
over all joint distributionsP (vy, v2 ) P(x|v1, v2) P(y1, Yo, 2|). divided into subbins and the transmitter randomly chooses
Then any rate pair(R;, R;) € R; is achievable for the one of the subbins of binw; and one of the subbins of bin

broadcast channel with confidential messages. ws. It then looks for a joint typical sequenger’, vy) in the
corresponding subbins and generatés

Remark 1 If we remove the secrecy constraints by setting 3) Decoding The received signals at the legitimate re-

Z = (), then the above rate region reduces to Marton’ﬁeivers,y? andy2, are the outputs of the channdtéy?|z") =
achievable region for the general broadcast channel. T, P(yi.:|a;) and P(y5|z™) = [T, P(ys.ilzi), respec-
i=1 el - i=1 il )y
R K2 If  th b ) _ tively. The first receiver looks for the unique sequenge
emar we remove one of the users by setting 8.~ gych that(vf, 1) is jointly typical and declares the index of
0, then we get the Csiszar and Korner's secrecy capacity fﬁ{e bin containingv] as the message received. The second
the other user. receiver uses the same method to extract the mesasage

Proof:

1) Codebook GenerationThe structure of the encoder is
depicted in Fi®. Fix P(v1), P(ve) and P(z|vi,v2). The
stochastic encoder generats!(V1:Y1)=¢) independent and
identically distributed sequenceg according to the distri- 5) Equivocation CalculationThe proof of secrecy require-
bution P(vf) = T[], P(vi:). Next, randomly distribute ment for each individual messad&3} and {L4) is straightfor-
these sequences in@"t bins such that each bin containsvard and may therefore be omitted.

4) Error Probability Analysis Since the region ofl12) is
a subset of Marton’s region then, error probability analysis is
the same as [33].



To prove the requirement oi%) considerH (W, Wa|Z™), P’ (y2|y1) and P’(z|y2) such that

region of the physically degraded broadcast channel with
Wy, Wo, V', Va¥) + H(Z|V*, V') — ne,, confidential messages.
Z")

—~
<o
~

T =

Theorem 2 The capacity region for transmitting independent
)+ H(Z™|V{", Vy') —ne, — H(Z™)  secret information over the degraded broadcast channel is the

we have
P(ya|z) = ZP (y1]2) P (yolyn) (18)
nRelg = H(W W2|Zn
> H(Wi, Wy, Z") — H(Z") ZP el ) P’ (2u2)
- H( WQ,Vln VQ ,Zn)
- 2V |W1’W2’Z )~ H(Z") Lemma 1 The secrecy capacity region of a broadcast channel
= H(Wy, Wa, V", V3") with confidential messages depends only on the conditional
+ H(zZ" |W1,W2,V1 , V) marginal distributionsP (y1|z), P(y2|x) and P(z|x).
- HW V' W, We, 27) — H(Z™) Proof: The proof is very similar to [34] and may
(g H(Wy, Wa, VI', V3 Thetrrefofre”be_omitt:]ed here. 1 characterive [ )
n the followin eorem, we characterize the capac
H(ZM W, W, VI V) — nen — H(Z™) wing we 'y 2 pacty
(
(
H(VY
(

convex hull of the closure of allR;, Ry) satisfyin
HO) + HOVE) — 10777) (R, Rz} satistying

— IV VS Z7) — ney i< I(X;n|U) + I(U; Z) — 1(X; Z), (19)

(;) I(Vln; Yln) + I(‘/Qn; szn) _ I(‘/ln; V2n) Ry< I(U7 3/2) - I(U, Z) (20)

— IV, V3 Z™) — ney for some joint distribution? (u) P(z|u) P(y1, y2, z|x).
> nRi+nRy —ney,,
Remark 3 If we remove the secrecy constraints by setting
where (a) follows from Fano’s inequality which statesz — (), then the above theorem reduces to the capacity region
that fOF sufficiently largen we haveH (Vi*, V3* W1, W2, Z")  of the degraded broadcast channel.
< h( ) +nP2 I(V1,Va; Z) < ne,. Here P, denotes the
wiretapper’s error probability of decoding?, v%) in the case Proof:

that the bin numbers, andw, are known to the eavesdropper. Achievability The coding scheme is based on Cover's
Since the sum rate is less thdiiVy, Va; Z), then P?, — superposition coding and the random bining. We refer to this

0 for sufficiently largen. (b) follows from the following Scheme as Secure Superposition Coding scheme. The available
Markov chain:(Wy, W5) — (Vi, V) — Z. Hence, we have resources at the encoder are used for two purposes: to confuse
H(ZMWy, Wy, V', V) = H(Z™ |V, V). (c) follows from the eavesdropper so that perfect secrecy can be achieved for

the fact thatH (Wy, Wy, Vi*, VJ*) > H(V;", V). (d) follows both layers, and to transmit the messages in the main channels.
from that fact thatH (V") = I(V{;Y") and H(Vy*) = To satisfy confidentiality, the randomization used in the first
IV Y. layer is again used in the second layer. This makes a shift
m of I(U;Z) in the bound of R;. The formal proof of the
achievability is as follows:
IV. THE SECRECY CAPACITYREGION OF THEDEGRADED 1) Codebook GenerationThe structure of the encoder

BCCs is depicted in Fi@B. Let us fix P(u) and P(x|u). The

In this section, we consider the degraded broadcast chan#f@chastic encoder generatg(/(VY>)~<) independent and

with confidential messages and establish its secrecy capaégntically distributed sequences® according to the distri-
region. bution P(u™) = []i_, P(u;). Next, we randomly distribute
these sequences in@#*f2 bins such that each bin contains

Definition 4 A broadcast channel with confidential messag@s( (7:7)=<) codewords. We index each of the above bins by

is said to be physically degraded, ¥ — Y; — Y, — z 2 € {1,2,...,2""}. For each codeword af", it also gen-
forms a Markov chain. In the other words. we have eratesZ"U(X Vil0)—e) independent and identically distributed

sequencest™ according to the distributionP(z"|u") =
P(y1,y2, z|z) = P(y1]x) P(y2ly1) P(zly2). (A7) TIi_, P(x:|u;). We randomly distribute these sequences into
271 pins such that each bin contaigg(!(X;2)—1(U;Z)—e)
Definition 5 A broadcast channel with confidential meseodewords. We index each of the above bins by €
sages is said to be stochastically degraded if its conditiondl, 2, ..., 271},
marginal distributions are the same as that of a physically de- 2) Encoding To send messages; andw,, the transmitter
graded broadcast channel, i.e., if there exist two distributiomandomly chooses one of the codewords in hisy say u".



@ 1 probability of decodingz™ given the bin number and the
codewordu™ are known to the eavesdropper. Since the rate
L v e 2 is less thanl(X; Z), then P2, — 0 for sufficiently largen.
(b) follows from the fact thatW,,U) — X — Z forms a
2 Markov chain. Thus we hav&(W,,U™; Z"| X™) = 0, where
it is implied that H(Z™|W,,U™, X™) = H(Z™X"™). (¢
- follows from two identities:H (X"|U") = I[(X™; Y{"|U™) and
2 H(Z™X™) — H(Z"U") = I(U™; Z") — [(X™; Z™). Since
the proof of the requiremeniLd) is straightforward, we need
to prove the requirement ofL¥).
Nt nReis = HWy,Wa|Z™)
> HW,Wy,Z2") - H(Z")
Fig. 3. Secret Superposition structure = HW., Wy, U" X", Z7)
- HU™, X"|\W1,Wy,Z")— H(Z")
Th ] the t it domlv ch - = HWy,Wo, U™, X™)+ H(Z"|W1, W5, U", X")
en givenu™, the transmitter randomly chooses one n wn n n
in bin w; of the second layer and sends it. — HU", X*W1, Wy, 27) — H(Z")
3) Decoding The received signal at the legitimate receivers, @ H(Wy, Wo, U™, X™)
y? and y¥, are the outputs of the channeR(y}|2") = N n n on n
[T, Plysile:) and P(y3la™) = TI, Plyale), respec- o HEHILITUT AT = e = HZT)
tively. Receiver2 determines the unique” such thatu”, y%) = HWy,Wo,U", X"+ H(Z|U", X")
are jointly typical and declares the index of the bin containing — e, — H(Z™)
u™ as the message received. If there is none of such or more ©
than of one such, an error is declared. Receivdooks for > HU",X")+H(Z"|U",X") —ne, — H(Z")
the unique(u™, 2™) such that(u™, 2™, y7') are jointly typical — HU") + H(X"|U") — I(U", X" Z") — ney
and declares the indexes of the bins containifigand 2™ as @
the messages received. If there is none of such or more than = I({U™Yy") + I(X™Y|U™) — (X Z7)
of one such, an error is declared. — (U™ Z"X") — ne,
4) Error Probability Analysis Since each rate pair ofLg) > Ry +nRy — ne,,

is in the capacity region of the degraded broadcast channel

without confidentiality constraint, then it can be readily shown ’ . .

that the error probability is arbitrarily small, c.f. [34]. where  (a) follows —from ~Fano's inequality —that
5) Equivocation CalculationTo prove the secrecy require-H (U™, X""[Wi, Ws, Z") < h(Puwe’) + nPy I(U, X;2Z) <

ment of {L3), we have ne, for suﬁicigntly largen. Here Py, derjotes the wiretapper’s
. error probability of decodingu™,2™) in the case that the
nRe = H(W.|Z") bin numbersw; and w. are known to the eavesdropper.
> HWh|Z™,U") The eavesdropper first looks for the uniqué in bin w;
= H(W,Z"U") — H(Z"|U™) gf the tfri]rst Iayek;, sucfh tha;_(ijt is join(;[ly tygica! wlith:". "
n ooy i ince the number of candidate codewords is less than
- H(W:L,X ’ZnIUn) H(Z"U") I(U; Z), then the probability of error is arbitrarily small
H(X" W, z",U") for a sufficiently largen. Next, givenu™, the eavesdropper
(@) H(Wy, X™U™) + H(Z"|Wy, U™, X™) Ioo!<s for_ the un_iqL_lea:" ir_1 bin w; which is join_tly
H(zmMUm typical with 2™. Similarly, since the number of available
- H(ZM|U") —nen candidates is less thaf{X; Z), then the probability of error
(g) H(X™U™) + H(Z"|X™) decoding is arbitrarily small(b) follows from t.he fact that
— H(zMum) - (W1,W3) - U — X — Z forms a Markov chain. Therefore,
(2] en we have I(Wy, Wa; Z"|U™, X™) = 0, where it is implied
O x| o + 10 27 that H(Z"|Wy, Wy, U™, X™) = H(Z"|U", X™). (c) follows
— (X" Z") — ney from the fact that H(W,,W,, U™, X™) > H({U", X").
> WR (d) follows from that fact thatd(U") = I(U™;Yy") and
Z Ny — Neép, H(anUn) — I(X";YYL|U7L).

where (a) follows from Fano’s inequality which states that Converse The transmitter sends two independent secret
H(X™Wy,Z™ U™ < h(Pq(Jé)) +nP? I(X;Z) < ne, for messagedl/; andW; to receiverl and receive® respectively.

we

sufficiently largen. Here P}, denotes the wiretapper's errorLet us defineU; = (Wg,Yffl). The following chain of



inequality clarifies the proof: Proof: We need to prove the first bound. The second
bound can similarly be provem.R; is bounded as follows:

(a) I 1
. . i i+1 (a)
an >~ ;I(W11Y1,1|W27Z17Y1 7Z ) an S H(Wl‘WQ,Zn)+n€3
. (®)
+ noytne < H(Wi|Wa, Z7) — HWL|Y{, Wa) +né1 + nes
= ZI(Wl;YLi|Ui,Zi7Zi+1)+7’L(51+7’L63 = I(Wl,Yln‘Wg)—I(Wl,Zn|W2)+TL51 + nes
i=1
0 & =i where (a) follows from the secrecy constraint that
LY U 7 7
= ;I(X“YMW“Z“Z )+ ndy + nes HOWy, WalZ") > H(W.,Wa) — nes, the fact that
< H(W,|Z™) < H(W,) and the fact that two mes-
© ZI(Xi;YU,U,»,Zi\Zi“)—I(X,»;Zi\ii“) sages are independentb) follows from Fano's in-
= ’ equality that H(Wy|Y*,W2) < nd;. Next, we ex-
— (X3 Uil Zs, 7Y 4 0y + nes pand I(Wy;Y{"|W>) and I(Wl;Z"\Wg_) starting with
n I(Wy; Y1|Wa) and I(Wy; Z™|W3), respectively.
DS H(XYilUL 27 4+ I(X: U 20
=1 - . vn v v i—1
_ I(X“Z,L|ZZ+1) _ I(Xi;UZ'|Zi,ZH—1) I(Wlayl |W2) - ;I(W17Y11,|W27Y1 )
—+ TL(Sl +7’L63 zn: —_— -
B - - = I(Wh, Z'7 Yo (W, Y777
QS (X ViU 2 - 1(X; 2] 2 =
- _ — I(Z™ YW, We, YT
+ I(Z,L, Ui|Zl+ ) - I(Z,L, (]A)(,‘,ZhL ) n ) .
+  ndy + nes = ) I(W; Yy, (W, Yy, 27
n =1
f —i —i ~. .
&0 ST I(XsVilUs, Z0Y) — 1(X 5 23| 274 b I(Z Y W, YiEY)
i=1 =i i—
. — I(Z7L Yy W, Wy, YTt
+ I(ZZ,UZ|ZZ+1) +n51 +n63 »,(L ! ‘ ! 2 ! )
= > I(W Y Wa, Y1 2T
a) follows from the following lemma 2). (b =l
+ A —Ay

follows from the data processing theorenic) follows
from the chain rule. (d) follows from the fact n Sii i1
that I(X;;Y, Ui, Zi| 2™ = I(X;Ui|Z2) + Wh;ere, A = 3,17 4_;1Y1i|W2.’Y1 ) and A,
I(Xi; Yaa|Us, Z7Y) + (X5 Zi|Ya 5, Ui, Z7F1) and from the iy L(Z Y [Wh, W, Y. Similarly, we have,
fact thatZi+t1U; — X; — Y1, — Ya,; — Z; forms a Markov

chain, which means thaf (X;; Z;|V1,,U;, ZT1) = 0. n - Zit1
; s Vin 2777) I(Wy; ZM W) = I(Wh; Zi|Wo, Z
(e) follows from the fact that I(X;;U;|Z!) (W Z7[W2) ; (W3 Z:[We )
I(Xi;Ui| Zi, 2T = I(Zi; Ul 2 = 1(Zi; U] Xy, 2. n ~
(f) follows from the fact thatZi+'U; — X; — Z; forms = ) I(W,Y{ Y Zi|Wa, 27
a Markov chain. Thud (Z; U; 2| X;) = 0 which implies i=1
that I(Z:; Ui X;, Z1) = 0. — IOV Zi W, W, 2
= > I(W Zi|Wa, Y1, 21
Lemma 2 : For the broadcast channel with confidential mes- }Z;i,ll ZW,. Zit1
sages of(Wy,Ws) — X" — Y*YJ*Z", the perfect secrecy + I L i, Z )
rates are bounded as follows, = 1Y) Zi| W, W, Z')
: = > I(Wi Zi|Wa, Y1, 21
nRi< S I(Wi Yia Wa, Zi, Y~ Z7) 4 ndy + nes, N ’A:ff A
i=1 ’
nRy< Y I(Wa: Yail 23, Y31 ZHY) + by + ney. where, A} = S I(Y[Th Zi|We, Z1H) and A5 =
i=1 S I(YYTY ZiWh, Wa, ZPF1Y). According to lemmar of



[4], Ay = A7 and As = Aj. Thus, we have,

nRy < Z T(Wy; Y| We, Y7 H Zi“)
i=1

- I(Wl;Zi|W2,Y1i7172i+l)+TL51+TL63

= Y H(Wi|Wa, Z,Y{ 7, 21
=1

— H(Wl\Wg,Yu,Yf_l,ZHI)+n51 +’Il€3

> HW|Wa, Z, Y1, 21
i—1
—  H(W1|Wa, Y14, Z;, Y71, Z”l) + ndy + nes

= ZI(Wl;Y1i|W2,Zi,Y1i_1,Zi+l)+TL51+n63,

=1

is uniformly distributed over{1,2,...,n} and independent
of (W, Wo, X™, Y], Y3"). Let us defineU = Ug, V =
(ZQJrva)a X = XQ» Y1 = Yl,Qa Y, = Y27Q, Z = ZQ,
then we can bound; and R, as follows
Ri< I(X;a|U V) + (U3 Z|V) = I(X; Z|V),
Ro< I(U; Ya|V) — I(U; Z|V).

(21)
(22)
Since Conditional mutual informations are average of uncon-

ditional ones, the maximum region is achieved whérns a
constant. This proves the converse part. |

V. CONCLUSION

A generalization of the wire-tap channel to the case of two
receivers and one eavesdropper is considered. We established
an inner bound for the general (non-degraded) case. This
bound matches Marton’s bound on broadcast channels without

where (a) follows from the fact that conditioning alwayssecurity constraint. Furthermore, we considered the scenario

decreases the entropy. [ ]
For the second receiver, we have

(@ & . _
nRy < > I(WyYaul¥y ™', Zi, Z7) + ndy + ney

=1
n ) .

= Y HYaulY3 ', 7,2
=1

—  H(You|Wo,Y3 ™, Zi, ZHY) + nda + ney

() n .

< Y H(2ilZi, 27

=1
—  H (Yo W, Y LYY Zi Z7FY) 4 ndy 4 ney
9 iH(YQ,AZi, ZH)
i=1
—  H(Y2,|Us, Zi, Z7Y) + ndy + ney
= i I(Ys,:;U;| Z;, Z”l) + nds + neq

i=1

n

= Y IV U2 + I(Yas; Zi|U, 27
i=1

— I(Yg,i;Zi|Zi+1) + ndy + ney

= Y IMaaUIZ) - 125 UZ T
=1
+ I(Z;;UilYa, Z) + nds + ney

= > IV Uil 27 = 1(2; U, 27
=1
4+  nds + neq,

where (a) follows from the lemmai2). (b) follows from the
fact that conditioning always decreases the entrapyfollows
from the fact that; ~' — W, ZF1Y{ ™" — Vo, — Z; forms
a Markov chain.(d) follows from the fact thatz**'U; —
Y, — Z; forms a Markov chain. Thug(Z;; U; Z*[Y3;) = 0
which implies thatl(Z;; U;|Ya;, Z*™1) = 0. Now, following
[34], let us define the time sharing random varia@levhich

in which the channels are degraded. We established the perfect
secrecy capacity region for this case. The achievability coding
scheme is a secret superposition scheme where randomization
in the first layer helps the secrecy of the second layer. The
converse proof combines the converse proof for the degraded
broadcast channel without security constraint and the perfect
secrecy constraint.

REFERENCES

[1] C.E. Shannon, “Communication Theory of Secrecy SysteBa|'System
Technical Journalvol. 28, pp. 656-715, Oct. 1949.

[2] A. Wyner, “The Wire-tap ChanneBell System Technical Journalol.

54, pp. 13551387, 1975

[3] S. K. Leung-Yan-Cheong and M. E. Hellman, “Gaussian Wiretap Chan-
nel,” IEEE Trans. Inform. Theoryol. 24, no. 4, pp. 451456, July 1978.

[4] I. Csiszar and J. Korner, “Broadcast Channels with Confidential Mes-
sages,”|EEE Trans. Inform. Theoryvol. 24, no. 3, pp. 339348, May
1978.

[5] R. Liu, I. Maric, P. Spasojevic and R. D. Yates, “Discrete Memoryless
Interference and Broadcast Channels with Confidential Messdgd=
Trans. Inform. TheoryVol. 54, Issue: 6, pp.2493-2507, Jun 2008.

[6] J. Xu and B. Chen, “Broadcast Confidential and Public Messages,”
Proc. 42nd Conf. Information Sciences and Systems (CE8)ceton,
NJ, Mar. 2008.

[7] J. Xu, Y. Cao, and B. Chen ,“Capacity Bounds for Broadcast Channels
with Confidential Messages”, available [attp://arxiv.org/PS |
cache/arxiv/pdi/0805/0805.4374v1.pdf !

[8] Y. Liang and H. V. Poor, “Secure Communication Over Fading Chan-
nels,” in Proc. 44th Annu. Allerton Conf. Communication, Control and
Computing Monticello, IL, pp. 817823, Sep. 2006.

[9] Y. Liang, H. V. Poor and S. Shamai (Shitz), “ Secure Communication
Over Fading Channels'lEEE Trans. Inform. TheopyMolume 54, Issue
6, pp.2470 - 2492, June 2008.

[10] P. K. Gopala, L. Lai and H. EI-Gamal, “ On the Secrecy Capacity of
Fading Channels”, available attp://arxiv.org/PS _cache/cs/
pdi/0610/0610103v1.pdf !

[11] A. Khisti, A. Tchamkerten and G. W. Wornell, “Secure Broadcast-
ing,” available ahttp://arxiv.org/PS _cache/cs/pdf/0702/
0/02093vl.pdf |

[12] E. Tekin, S. Serbetli, and A. Yener, “On secure Signaling for the
Gaussian Multiple Access Wire-tap Channéh’ Proc. 2005 Asilomar
Conf. On Signals, Systems, and Compuytésilomar, CA, November
2005.

[13] E. Tekin and A. Yener, “The Gaussian Multiple Access Wiretap Channel
with Collective Secrecy Constraintsfi Proc. Int. Symp. On Inf. Theory
(ISIT), Seattle, WA, July 914, 2006.

[14] Y. Liang and V. Poor, “Generalized Multiple Access Channels with
Confidential Messagesih Proc. Of IEEE Int. Symp. Inf. Theory (ISIT)
2006.


http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.4374v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.4374v1.pdf�
http://arxiv.org/PS_cache/cs/pdf/0610/0610103v1.pdf�
http://arxiv.org/PS_cache/cs/pdf/0610/0610103v1.pdf�
http://arxiv.org/PS_cache/cs/pdf/0702/0702093v1.pdf�
http://arxiv.org/PS_cache/cs/pdf/0702/0702093v1.pdf�

[15] E. Tekin and A. Yener, “The General Gaussian Multiple Access
and Two-Way wire-Tap Channels: Achievable Rates and Cooerative
Jamming,”, available ehttp://arxiv.org/PS _cache/cs/pdf/
0/702/0/02112v2.pdf

[16] Y. Oohama, “Coding for Relay Channels with Confidential messages,”
in Proc. Of IEEE Information Theory Workshopp. 87 89,2001.

[17] Y. Oochama, “Relay channels with confidential message®E Trans.
on Information TheorySubmitted, available dtttp://arxiv.org/
PS_cache/cs/pdt/0611/0611125v/.pdt

[18] L. Laiand H. El Gamal, “The Relay- Eavesdropper Channel: Cooperation
for Secrecy,”|EEE Trans. Inf. Theorysubmitted, available éfttp:
/larxiv.org/PS _cache/cs/pdi/0612/0612044v1.pdf !

[19] M. Yuksel and E. Erkip., “The Relay Channel with a Wiretappém,”
Proc. Forty-First Annual Conference on Information Sciences and Systems
(CISS) Baltimore, MD, USA, Mar. 2007.

[20] z. Li, R. Yates, and W. Trappe, “Secrecy Capacity of Independent
Parallel Channels,in Proc. 44th Annu. Allerton Conf. Communication,
Control and ComputingMonticello, IL, pp. 841848,Sep. 2006.

[21] F. Oggier, B. Hassibi, “ The MIMO Wiretap ChanneCpommunications,
Control and Signal Processing, 2008. ISCCSP 2008. 3rd International
Symposium oril2-14 March 2008 Page(s):213 - 218

[22] S. Shafiee, L. Nan and S. Ulukus, “Secrecy Capacity of the 2-2-
1 Gaussian MIMO Wire-tap ChannelCommunications, Control and
Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium
on,12-14 March 2008 Page(s):207 - 212

[23] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, “On the Gaussian MIMO
Wiretap Channel,in Proc. IEEE Int. Symp. Information Theory (IS|T)
Nice, France, June 24-29, 2007.

[24] A. Khisti and G. Wornell, “Secure Transmission with Multiple Antennas:
The MISOME Wiretap Channel,JEEE Trans. Inf. Theorysubmitted,
available athttp://arxiv.org/PS _cache/arxiv/pdf/0708/
0708.4219v1.pdf |

[25] T. Liu and S. Shamai (Shitz), “A Note on the Secrecy Capac-
ity of the Multi-antenna Wiretap ChannellEEE Trans. Inf. Theory
available athttp://arxiv.org/PS _cache/arxiv/pdf/0710/
0/10.4105v1.pat

[26] R. Liu and H. V. Poor, “Secrecy Capacity Region of a Multi-
antenna Gaussian Broadcast Channel with Confidential Messages,”
available athttp://arxiv.org/PS _cache/arxiv/pdt/0709/
0709.46/1v1.pdt

[27] X. Tang, R. Liu, P. spasojevic and V. Poor, “The Gaussian Wiretap
Channel with a Helping Interferer,Proceedings of the 2008 IEEE
International Symposium on Information Theofpronto, ON, Canada,
July 6-11, 2008

[28] C. Chan, “Success Exponent of Wiretapper: A Tradeoff between Se-
crecy and Reliability,” available dittp://arxiv.org/PS _cache/
arxiv/pdf/0805/0805.3605v4.pdf

[29] X. Tang, R. Liu, P. Spasojevic and VPoor “Interference-Assisted Se-
cret Communication,” available fittp://arxiv.org/PS _cache/
arxiv/pdf/0804/0804.1382v1.pdf

[30] L.Lai, H. EI-Gamal, V. Poor, “Secrecy Capacny of the Wiretap Channel
with Noisy Feedback,” available attp://arxiv.org/PS _cache/
arxiv/pdf/0710/0710.0865v1.pdf |

[31] O.Ozan Koyluoglu, H.EI-Gamal, “On the Secure Degrees of Freedom
in the K-User Gaussian Interference ChannBkdceedings of the 2008
IEEE International Symposium on Information Theomoronto, ON,
Canada, July 6-11, 2008

[32] S. I. Gelfand and M. S. Pinsker, “Coding for Channel with Random
Parameters,Problemy Peredachi Informatsivol. 9, no. 1, pp. 1931,
1980.

[33] K. Marton, “A Coding Theorem for the Discrete Memoryless Broadcast
Channel,”IEEE Trans. on Inf. Theoryol. 25, no. 1, pp. 306311, May
1979.

[34] T. Cover and J. Thomaglements of Information Thearyohn Wiley
Sons, Inc., 1991.


http://arxiv.org/PS_cache/cs/pdf/0702/0702112v2.pdf�
http://arxiv.org/PS_cache/cs/pdf/0702/0702112v2.pdf�
http://arxiv.org/PS_cache/cs/pdf/0611/0611125v7.pdf�
http://arxiv.org/PS_cache/cs/pdf/0611/0611125v7.pdf�
http://arxiv.org/PS_cache/cs/pdf/0612/0612044v1.pdf�
http://arxiv.org/PS_cache/cs/pdf/0612/0612044v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0708/0708.4219v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0708/0708.4219v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.4105v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.4105v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.4671v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.4671v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.3605v4.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0805/0805.3605v4.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0804/0804.1382v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0804/0804.1382v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.0865v1.pdf�
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.0865v1.pdf�

