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Abstract
We propose a new class of Markov-switching (MS) models for business
cycle analysis. As usually done in the literature, we assume that the
MS latent factor is driving the dynamics of the business cycle but
the transition probabilities can vary randomly over time. Transition
probabilities are generated by random processes which may account for
the stochastic duration of the regimes and for possible stochastic relations
between the MS probabilities and some explanatory variables, such as
autoregressive components and exogenous variables. The presence of
latent factors and nonlinearities calls for the use of simulation-based
inference methods. We propose a full Bayesian inference approach which
can be naturally combined with Monte Carlo methods. We discuss the
choice of the priors and a Markov-chain Monte Carlo (MCMC) algorithm
for estimating the parameters and the latent variables. We provide an
application of the model and of the MCMC procedure to data of Euro
area. We also carry out a real-time comparison between different models
by employing sequential Monte Carlo methods and some concordance
statistics, which are widely used in business cycle analysis.
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1 Introduction

Turning points detection and forecasting of the economic activity level are
challenging problems in business cycle analysis. In this paper we consider a
model-based framework and a Bayesian inference approach to deal with these
issues.

Early contributions in the non-linear literature applied Markov Switching
(MS) models (see for example Goldfeld and Quandt (1973) and Hamilton (1989))
and threshold autoregressive models (see Tong (1983) and Potter (1995)) to
capture turning points and model the asymmetry in the business cycle dynamics.

These contributions have been extended in many directions. Kim (1994)
applies MS to dynamic linear models. In this case the Hamilton’s filter is useless
and he proposes a Bayesian approach for inference. Kim and Nelson (1999b)
provide a complete introduction to inference methods based on Markov-chain
Monte Carlo (MCMC) for MS state space models.

In the basic MS models for business cycle the switching process indicates
the phase of the economic cycle and may assume at least two regimes, which
are usually interpreted as: positive growth trend and negative growth trend.
Kim and Murray (2001) and Kim and Piger (2000) consider MS models with
three-regimes (recession, high-growth and normal-growth).

Other extensions are in Sichel (1991), Watson (1994), Diebold and Rudebusch
(1996), Durland and McCurdy (1994) and Filardo (1994), which assume that the
MS transition probabilities depend on the duration of the current phase of the
cycle and thus are time-varying. Moreover, Billio and Casarin (2009) consider
stochastic transition probabilities. Finally some multivariate extensions to the
Hamilton (1989) model can be found in Diebold and Rudebusch (1996) and
Krolzig (1997, 2004).

In the present work we combine a state space approach to the business
cycle with the possibility to consider a non homogeneous MS model. The
first contribution is to assume that the transition probabilities of the Markov-
switching process vary randomly over time. More specifically we assume that
the probabilities are stochastic processes with beta distributed innovations. The
main advantages of using a beta random variables is that it is naturally defined
on a bounded interval and is a flexible probabilistic model. See Ferrari and
Cribari-Neto (2004) for an introduction to beta regression models.

Models with stochastic transition have been already proposed in econometrics
by Gagliardini and Gouriéroux (2005) in a continuous time setting. In that work
the probability of transition of the credit quality from one rating class to another
one is modelled as a Jacobi diffusion process, which is naturally defined on a
bounded interval. The ergodic distribution of the Jacobi process is a beta. This
probabilistic fact suggests us that a beta noise process could be a very good
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candidate process for modelling, in a discrete-time setting, random fluctuations
on bounded intervals.

The use of random transition probabilities implies that the duration of the
different regimes is stochastic and has thus a dynamics. The dynamics of the
MS transition probabilities in the existing works is usually modelled by means of
a deterministic (e.g. linear-logistic) relationship between the probabilities and a
set of explanatory variables. We introduce a residual term in order to account
for unexplained variations in duration. Moreover, the variations in the MS
probabilities and in the duration can be explained thanks to an autoregressive
structure.

In this work we introduce a very flexible parameterization which allows for a
easy identification of the location and scale parameters involved in the model. In
this sense the proposed model represents an extension of the stochastic transition
model proposed in Billio and Casarin (2009). The proposed parameterization
allow us to model directly the mean of the process (i.e. the transition
probabilities) and make easier the inference procedure on the parameter.

Another relevant contribution of the present work is to propose a full Bayesian
inference approach for random transition MS models. We refer the reader to
Bauwens, Lubrano and Richard (1999) for an introduction to Bayesian inference
for dynamic models. Kim and Nelson (1999b) provide a review on Bayesian
inference method for MS models. Moreover, we follow an inference approach
based on Monte Carlo simulation methods, see Billio, Casarin and Sartore (2007)
for an updated review on the simulation-based inference methods for business
cycle models and Billio, Monfort and Robert (1999) for MCMC-based inference
for MS ARMA processes. We follow a data-augmentation approach and propose
a MCMC algorithm for jointly estimating the latent MS autoregressive process
and the stochastic transition probabilities. Finally, we provide an application to
the business cycle of the Euro area and employ Sequential Monte Carlo (SMC)
methods, also known as Particle Filters (Doucet, Freitas and Gordon (2001)), to
obtain a sequential comparison between some competing models.

The work is structured as follows. Section 2 introduces a probabilistic state
space representation of dynamic models and presents a new MS model with
stochastic transition probabilities. Section 3 proposes a Bayesian inference
approach for the stochastic transition models. Section 4 provides an application
to the Business cycle of the Euro area. Section 5 concludes.

2 Stochastic-Transition Models

We consider a MS latent factor model to extract the phases of the business cycle.
In this model, the observable yt is a measure of the unobservable level xt of the
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economic activity and the economic phases are represented through a Markov
chain process, st. The transition probabilities of the MS models usually applied
in the literature (see for example Kim and Nelson (1999b)) are constant over
time or depend on a set of exogenous variables, which may include the lagged
variables or a duration process.

Let yt be the observable variable and xt and st two latent variables. We
propose a new Stochastic-Transition MS (ST-MS) model which has the following
measure and transition densities

yt|xt ∼ N (xt, σ
2
y) (1)

xt|xt−1, st ∼ N (µst + ρst xt, σ
2
x st

) (2)

st|st−1 ∼ P (st = j|st−1 = i) = pij,t, with i, j ∈ {0, . . . , K − 1}. (3)

with K ∈ N the maximum number of regimes. In this paper we will consider
K = 2, that correspond to the recession, st = 0, and expansion, st = 1, phases
of the business cycle.

Under a stochastic modelling point of view the assumption of a deterministic
relation between the conditioning variables and the transition probabilities can
be unsatisfactory. In fact, the empirical evidence is in favor of phases with
different duration and this may be only partially explained by a set of exogenous
variables. It seems more reasonable to assume that time variations in the
duration may also depend on the intrinsic random nature of the adjustments
in the economic activity. Billio and Casarin (2009) recently show that stochastic
transition MS outperforms the constant and the time-varying transition MS
models in terms of forecasting abilities. In this work we propose a more flexible
parameterization.

A beta random variable takes values in the standard unit interval and its
density can assume quite different shapes

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1I[0,1](x) (4)

with Γ(z) the gamma function and α > 0, β > 0. In particular, the mean and
variance of a beta random variable are

E(X) =
α

α + β
, V(X) =

αβ

(α + β)2(α + β + 1)

This parameterization of the beta distribution is inconvenient because α and
β are both shape parameters and they are difficult to interpret in terms of
conditional expectations. If we let η = α/(α+β) and φ = (α+β), with η ∈]0, 1[
and φ > 0 we obtain a reparameterization of the model which allow us to model
separately the mean and the scale of the variable.
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We employ the above reparameterization and propose to capture the
unexplained part of the transition probability pij,t with a dynamic beta model
(see for example Ferrari and Cribari-Neto (2004)). The conditional density of
pii,t is thus

pii,t ∼ Γ(φ)

Γ(ηitφ)Γ(φ(1− ηit))
pφηit−1

ii,t (1− pii,t)
φ(1−ηit)−1I]0,1[(pii,t) (5)

with φ > 0 and ηit ∈]0, 1[, ∀i ∈ {0, 1}. The location parameter ηit represents the
mean of the variable and φ can be interpreted as a precision parameter.

We consider a set of explanatory variables vit ∈ Rnvi (boldface means that the
quantity is a vector) and let Ft = σ({pii,s, s ≤ t, }) and Gt = σ({(v′1s,v

′
2s)

′, s ≤
t−1}). Both the conditional mean and the conditional variance of the transition
probabilities E(pii,t|Ft−1 ∨ Gt) = ηit and V(pii,t|Ft−1 ∨ Gt) = ηit(1− ηit)/(1 + φ)
depend on the set of variables and allow us to easily provide forecasts. Moreover,
this model can account for heteroscedasticity. In particular, for a given value of
ηit, the variance of the random variable increases with φ.

Let ηit = h(ψ′
ivit), with with ψi ∈ Rnvi and h(z) : R 7→]0, 1[. There

are several possible choices for h. For instance, we can use the probit or the
log-log functions. In this paper we consider the logistic transform: h(x) =
1/(1 + exp{−x}). The set of variables vit can be different for each transition
probability and can include the lagged values of pii,t and of st. The resulting
class of models allows many useful specifications.

For example when the transition density pii,t depends on its past values

ηit = h(ψ0i + ψ1ipii,t−1 + . . . + ψpipii,t−p) (6)

then we will have a pure beta autoregressive models of order p. Another special
case is the duration dependent model

ηit = h(ψ0i + ψ1idii,t) (7)

with dt = (dt−1 + 1)Ist−1(st−2) + (1 − Ist−1(st−2)) (see for example Durland and
McCurdy (1994) and Filardo (1994)).

In this work we will focus on the beta autoregressive specification. We use
some of the parameter estimates for the Euro area (see Section 3) to simulated a
sample of transition probabilities (see Fig. 1) from the ST-MS model. In order
to highlight the effect of the exogenous variable vit = (1, ut)

′ on the recession and
expansion phases of the business cycle we assume for ut the following artificial
dynamics: ut = 0.2+0.4It≥150+0.4It≥300. Note that an increase in the exogenous
produces and increase in the probability of staying in a recession and a decrease
of the probability of staying in a recession phase. Moreover the simulation
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Figure 1: Up and middle: sample paths (continuous gray line) of the stochastic
probabilities of staying in recession p00,t and in expansion p11,t, simulated from
model ST-MS with ψ0 = (1.67, 0.71)′, ψ1 = (2.51,−1.03)′, φ = 90 and vit =
(1, ut)

′, evolution of the conditional mean E(pii,t|Ft−1 ∨ Gt) (continuous black
line) and of the 5% and 95% quantiles (dashed black lines) of the conditional
density. Bottom: the exogenous process ut = 0.1 + 0.4It≥150 + 0.4It≥300.

experiment shows that the transition probabilities exhibit random fluctuations
generated by the beta process.

Under a modelling point of view, the random variations in the transition
probability make the ST-MS a flexible model, which may accounts for time-
varying and stochastic duration of the MS regimes. It is not easy to find
the analytical relationship between the parameters of the beta processes and
the conditional and unconditional distributions of duration processes. Thus
we carry out a Monte Carlo simulation study in order to estimate the effect
of the autoregressive coefficient ψ1i, with i = 0, 1, and of the precision
parameter φ of the beta process on the unconditional distribution of the duration.
The distribution of the duration has been estimated with 100 Monte Carlo
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Figure 2: Effects of the autoregressive coefficient ψ1i and of the scale φ of the beta
process on the stochastic duration of the second regime (i = 1). The mean of
the duration process has been estimated with 100 Monte Carlo experiments. In
each experiments we simulated a path of 5,000 realizations from a ST-MS model
with ψ0 = (1.9, 0.01)′, ψ01 = 1.9, varying ψ11 ∈ [0, 1], φ = 90 and explanatory
variables vit = (1, pii,t−1)

′. Mean (continuous line) and 5% and 95% quantiles
(dashed lines) of the duration distribution.

experiments. In each experiment we simulated a path of 5, 000 realizations from
a ST-MS model with parameters ψ0 = (1.9, 0.01)′, ψ01 = 1.9, ψ11 ∈ [0, 1],
φ = 90 and explanatory variables vit = (1, pii,t−1)

′. We observed that increasing
the value of the parameter φ, with φ ∈ [0, 300], increases the dispersion level of
the duration density and has a negligible effect on the duration mean. Increasing
the persistence of the transition probability pii,t, i.e. the value of ψ1i, produces
a positive shift of the duration density. The graph on the left of Fig. 2 shows
the Monte Carlo estimates of the relationship between ψ11 and the mean and
the quantiles of the unconditional duration distribution for the second regime.
In our application we will estimate the value of the persistence parameters,
thus the duration mean will be implicitly determined. An alternative to the
estimation of the persistence parameter is the calibration on the basis of the
inverse relationship between persistence and duration mean and of exogenous
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information on the duration of the regimes.

3 Bayesian Inference

We introduce the following notation which will be useful for defining both the
MCMC and SMC estimation procedures. Let Z ⊂ Rnz , Y ⊂ Rny and θ ⊂ Rnθ

be three measurable spaces, called state, observation and parameter spaces
respectively. Denote with {zt; t ∈ N}, zt ∈ Z, the hidden state (or latent
variable) vectors of a dynamic model, with {yt; t ∈ N0}, yt ∈ Y , the observable
variable vectors and with θ ∈ Θ the parameter vector of the model.

Let zr:t
∆
= (zr, . . . , zt) be the collection of state vectors from time r up to time

t, with r ≤ t and z−t
∆
= (z0, . . . , zt−1, zt+1, . . . , zT ) the collection of all the state

vectors up to time T , without the t-th element. We employ the same notation
for the observable variables and the parameter vector.

For the proposed ST-MS model ny = 1, with yt = yt and nz = 4, with
zt = (xt, st, p00,t, p11,t)

′. For the estimation purposes we introduce the following
reparameterization µst = µ0 +dµst and ρst = ρ0 +dρst, with the subset, A1 ⊂ Θ,
of parameter values which are satisfying at some identifiability and stationarity
constraints, which are δµ > 0 and |ρst| < 1 respectively. The dimension
of the parameter space is nθ = 8 + nv1 + nv2, and the parameter vector is
θ = (σ2

y, µ0, dµ, ρ0, dρ, σ
2
x0, σ

2
x1,ψ

′
0,ψ

′
1, φ)′

The complete-data likelihood of the model is

L(y1:T , z1:T |θ) =
T∏

t=1

(
f(yt|xt,θ)f(xt|xt−1, st, θ)f(st|st−1, p00t, p11,t,θ)

f(pii,t|st−r:t−1, pii,t−q:t−1,θ)
)
f(x0|s0, θ)f(s0|p00,0, p11,0,θ)f(p00,0)f(p11,0)

where

f(yt|xt,θ) = (2πσ2
y)
− 1

2 exp

{
− 1

2σ2
y

(yt − xt)
2

}
IR(yt)

f(xt|xt−1, st,θ) = (2πσ2
x)
− 1

2 exp

{
− 1

2σ2
x

(xt − µst − ρstxt)
2

}
IR(xt)

f(st|st−1, p00,t, p11,t,θ) = (p1−st
00,t (1− p00,t)

st)1−st−1(pst
11,t(1− p11,t)

1−st)st−1I{0,1}(st)

f(pii,t|vit,θ) =
Γ(φ)

Γ(ηitφ)Γ(φ(1− ηit))
pφηit−1

ii,t (1− pii,t)
φ(1−ηit)−1I]0,1[(pii,t)

and f(x0|s0,θ), f(s0|p00,0, p11,0,θ), f(p00,0), f(p11,0) represent the densities
associated to the initial distributions of the latent variables. We assume
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the uniform distribution for the initial transition probabilities, the ergodic
distribution associated to pii,0 for the initial regime and the stationary
distribution for x0 in each regimes. In the following we will assume that vit

may contain pii,t−1 and do not contain lagged values of st. Then we denote
with f(pii,t|pii,t−1,θ) the resulting transition density. The proposed inference
approach can be extended to the case the transition depends on the past values
of the chain, as in the duration dependent models.

3.1 Priors

Let us consider the following partition of the parameter vector θ =
(θ′1,θ

′
2,θ

′
3,θ

′
4)
′, with θ1 = σ2

y, θ2 = (µ0, dµ, ρ0, dρ)
′, θ3 = (σ2

x0, σ
2
x1)

′, θ4 =
(ψ′

0,ψ
′
1)
′ and θ5 = φ.

Due to the linear and Gaussian dynamics of the observable variable we assume
a conjugate prior for θ1

σ2
y ∼ IG

(
α0

2
,
β0

2

)
(8)

which is an inverse gamma, with density f(θ1).
Given the conditionally linear and Gaussian dynamics of the latent factor, it

is natural to consider a truncated multivariate normal prior for θ2

θ2 ∼ N4 (m0, Σ0) IA1(θ2) (9)

with density f(θ2) and parameter constraints A1 as defined in the previous
section. We assume the following independent priors for the elements of θ3

σ2
x0 ∼ IG

(
α1

2
,
β1

2

)
, σ2

x1 ∼ IG
(

α2

2
,
β2

2

)
(10)

with densities f(σ2
xk), k = 0, 1.

For the elements of θ4 we consider two independent priors

ψk ∼ Nnkv

(
m1+k, Σ1+k

)
(11)

with density f(ψk), k = 0, 1. Note that φ is a precision parameter, which should
positive definite, thus we assume an inverse gamma distribution

φ ∼ IG (α3, β3) (12)

as a prior for θ5 and denote with f(θ5) its density.
The MCMC estimation procedure, which will be presented in the next

section, requires proper prior distributions for the parameters. In the empirical
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application the hyper-parameters will be set to be nearly noninformative. The
standard deviation of the prior will be chosen to have a range of variability of
the prior which is greater than the range of variability in the actual parameters.
This assumption allows us to have a flat prior in the regions of the parameter
space where the likelihood have high values.

More specifically, for the scale parameter priors, the hyper-parameter values
α0 = 1, β0 = 1, αk = 1, βk = 1, with k = 1, 2, are quite standard in business
cycle analysis. We assume m0 = 04 and Σ0 = 100 I3 for the prior on the latent
factor parameters. Finally we set m1+k = 0nkv

, Σ1+k = 100 I3 for the priors
on the coefficients of the stochastic transition and α3 = 1 β3 = 1 for its scale
parameter.

3.2 MCMC Algorithm

We follow the data augmentation approach (see Tanner and Wong (1987)) and
apply MCMC in order to simulate from the joint posterior distribution of the
parameters and latent variables. More specifically, we consider a Gibbs sampling
algorithm. Some components of the Gibbs sampler can be simulated exactly
while others will be simulated by a Metropolis-Hastings step. The resulting
MCMC is an hybrid Gibbs sampler.

The iteration j, with j = 1, . . . , J , of the hybrid Gibbs sampler includes
two steps. First we simulate the parameter vector θ(j) from its full conditional
distribution given the values of the latent variables z

(j−1)
0:T simulated at the

previous step. In order to simulate from the full conditional of the parameter
vector, we consider the following partition θ = (θ′1,θ

′
2,θ

′
3,θ

′
4,θ

′
5)
′, with the

blocks of parameters defined in the previous section. Then we simulate from
the full conditional distribution of θi given the vector of remaining parameters
denoted with θ−i, for i = 1, . . . , 5, i.e.

θ
(j)
1 ∼ f(θ1|θ(j−1)

2 ,θ
(j−1)
3 , . . . , θ

(j−1)
5 ,y1:T , z

(j−1)
0:T ) (13)

θ
(j)
2 ∼ f(θ2|θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
5 ,y1:T , z

(j−1)
0:T ) (14)

. . . (15)

θ
(j)
5 ∼ f(θ5|θ(j)

1 , θ
(j)
2 , . . . , θ

(j)
4 ,y1:T , z

(j−1)
0:T ) (16)

In the second step, we simulate the latent variables z
(j)
0:T given the updated
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parameter value θ(j) as follows

x
(j)
0:T ∼ f(x0:T |y1:T , s

(j−1)
0:T ,p

(j−1)
00,0:T ,p

(j−1)
11,0:T ,θ(j)) (17)

s
(j)
0:T ∼ f(s0:T |y1:T ,x

(j)
0:T ,p

(j−1)
00,0:T ,p

(j−1)
11,0:T , θ(j)) (18)

p
(j)
00,0:T ∼ f(p00,0:T |y1:T ,x

(j)
0:T , s

(j)
0:T ,p

(j−1)
11,0:T , θ(j)) (19)

p
(j)
11,0:T ∼ f(p11,0:T |y1:T ,x

(j)
0:T , s

(j)
0:T ,p

(j)
00,0:T , θ(j)) (20)

We now present the full conditional distributions of the Gibbs sampler and
discuss the sampling methods which will be used to generate values from these
distributions.

Define Y = (y1, . . . , yT )′ and V = (x1, . . . , xT )′. The full conditional posterior
distribution of σ2

y is

f(σ2
y|θ−1,y1:T , z0:T ) ∝

T∏
t=1

f(yt|xt,θ)f(θ2)

∝ (σ2
y)
−T/2 exp

{
− 1

2σ2
y

[(Y − V )′(Y − V )]

}
(σ2

y)
−α0/2−2 exp

{
− β0

2σ2
y

}

∝ (σ2
y)
−(α0+T )/2−2 exp

{
− 1

2σ2
y

[β0 + (Y − V )′(Y − V )]

}
(21)

which is proportional, up to a normalizing constant, to the density of the
distribution IG (

ᾱ0/2, β̄0/2
)

with

ᾱ0 = α0 + T, β̄0 = β0 +
T∑

t=1

(yt − xt)
2 (22)

Thus we can be simulated exactly from the posterior of σ2
y

Consider V introduced above and define the (T × 4) matrix W =
(w1, . . . ,wT )′, with wt = (1, st, xt−1, stxt−1)

′ and the T -dimensional diagonal
matrix Σ = diag{(σ2

x s1
, . . . , σ2

x sT
)′} then the full conditional of θ2 can be written

as

f(θ2|θ−2,y1:T , z0:T ) ∝
T∏

t=1

f(xt|xt−1, st,θ)f(x0|s0,θ)f(θ2)

∝ exp

{
−1

2
(V −Wθ2)

′Σ−1(V −Wθ2)− 1

2
(θ2 −m2)

′Σ−1
0 (θ2 −m2)

}
g(θ2)

∝ exp

{
−1

2

[
θ′2W

′Σ−1Wθ2 − 2θ′2W
′Σ−1V + θ′2Σ

−1
0 θ2 − 2θ′2Σ

−1
0 m0

]}
g(θ2)

∝ exp

{
−1

2

[
(θ2 − m̄0)

′Σ̄−1
0 (θ2 − m̄0)

]}
g(θ2) (23)
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with m̄0 = Σ̄0(W
′Σ−1V + Σ−1

0 m0) and Σ̄0 = (Σ−1
0 + W ′Σ−1W )−1. Due to its

diagonal structure the matrix Σ can be easily inverted. Note that the prior is
not completely conjugate because the posterior is proportional to the density of
a normal distribution with proportionality factor which depends on θ2. Thus we
adjust for this factor with a Metropolis-Hastings step. At the j-th step of the
Gibbs, given θ

(j−1)
2 , we simulate θ

(∗)
2 form the proposal distribution N4(m̄0, Σ̄0),

with and acceptance probability % = min{1, g(θ
(∗)
2 )/g(θ

(j−1)
2 )}.

The full conditional of θ3 is

f(θ3|θ−3,y1:T , z0:T ) ∝
T∏

t=1

f(xt|xt−1, st,θ)f(x0|s0,θ)f(θ3)

∝
1∏

k=0

(
(σ2

x k)
−nk/2 exp

{
−σ−2

x k

1

2

T∑
t=1

(I{k}(st)(xt − µk − ρkxt−1)
2)

})

1∏

k=0

(
(σ2

x k)
−α1+k/2 exp

{
−β1+k

2
σ−2

x k

})
g(θ3)

∝
1∏

k=0

(σ2
x k)

−ᾱ1+k/2 exp

{
− β̄1+k

2
σ−2

x k

}
g(θ3) (24)

with nk =
∑T

t=1 I{k}(st), ᾱ1+k = α1+k +nk and β̄1+k = β1+k +
∑T

t=1(I{k}(st)(xt−
µk − ρkxt−1)

2). The posterior is proportional to the product of two inverse
gamma, with a proportionality factor depending on θ3. For simulating σ−2

x k we
use a Metropolis-Hastings step with proposal IG(ᾱ1+k/2, β̄1+k/2) and acceptance
probability determined as we have done for θ2.

The full conditional of the elements of θ4 is

f(ψi|θ−4,y1:T , z0:T ) ∝
T∏

t=1

f(pii,t|pii,t−1, θ)f(ψi)

∝
T∏

t=1

(Γ(ηitφ)Γ(φ(1− ηit)))
−1 pφηit−1

ii,t (1− pii,t)
φ(1−ηit)−1f(ψi)

∝
T∏

t=1

exp {Aith(ψ′
ivit)− log Γ(ηitφ)− log Γ(φ(1− ηit))} f(ψi) (25)

with Ait = log((pii,t/(1 − pii,t))
φ). Values of ψi are generated with the aid of a

M.-H. step. One possibility would be to employ a symmetric random walk, but
this procedure does not use the local information of the posterior. Instead we
obtain a proposal distribution by taking the logarithm of the full conditional,
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g(ψi), and then calculating a second-order Taylor expansion centered around ψ̃i

g(ψi) ≈ g(ψ̃i) + (ψi − ψ̃i)
′∇(1)g(ψ̃i) +

1

2
(ψi − ψ̃i)

′∇(2)g(ψ̃i)(ψi − ψ̃i)

with the gradient vector and Hessian matrix

∇(1)g(ψi) =
T∑

t=1

[
Ait − φΨ(0)(φηit) + φΨ(0)(φ(1− ηit))

]
h(1)(v′1tψi)v1t

−Σ−1
1+i(ψi −m1+i)

∇(2)g(ψi) =
T∑

t=1

{[
Ait − φΨ(0)(φηit) + φΨ(0)(φ(1− ηit))

]
h(2)(v′1tψi)−

[
φ2Ψ(1)(φηit) + φ2Ψ(1)(φ(1− ηit))

] (
h(1)(v′1tψi)

)2
}

v1tv
′
1t − Σ−1

1+i

where h(k) is the k-th order derivative of h and Ψ(0) and Ψ(1) are the digamma
and the trigamma functions respectively.

If ψ̃i is the mode of the full conditional then ∇(1)g(ψ̃i) = 0. However, we do
not know the mode, thus we evaluate ψ̃i by a Newton-Rapson step. Suppose at

the iteration j of the algorithm we have an estimate ψ̃
(j−1)

i of the mode, then it
is updated as follows

ψ̃
(j)

i = ψ̃
(j−1)

i + Σ
(j−1)
i ∇(1)g(ψ̃

(j−1)

i )

where Σ
(j−1)
i = −

(
∇(2)g(ψ̃

(j−1)

i )
)−1

. On the j-th iteration, the M.-H. (Chib and

Greenberg (1995) and Tanner(1993)) generates a candidate ψ
(∗)
i from a normal

distribution with mean ψ̃
(j)

i and variance Σ
(j−1)
i . Then the candidate is accepted

with log-probability

min

{
0, g(ψ

(∗)
i )− g(ψ

(j−1)
i )− 1

2
(ψ

(j−1)
i − ψ̃

(j)

i )′
(
Σ

(j−1)
i

)−1

(ψ
(j−1)
i − ψ̃

(j)

i )+

1

2
(ψ

(∗)
i − ψ̃

(j)

i )′
(
Σ

(j−1)
i

)−1

(ψ
(∗)
i − ψ̃

(j)

i )

}

After an initial, transitory period, the sequences ψ̃i and Σ
(j−1)
i stabilize and

do not need to be updated. Thus the computational time for the M.-H. step
decreases.
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For the parameter φ the posterior is

f(φ|θ−5,y1:T , z0:T ) ∝
T∏

t=1

f(pii,t|pii,t−1,θ)f(θ5)

∝
T∏

t=1

1∏
i=0

Γ(φ) (Γ(ηitφ)Γ(φ(1− ηit)))
−1 pφηit−1

ii,t (1− pii,t)
φ(1−ηit)−1f(θ5)

∝ exp

{
φ

T∑
t=1

Bt + l(φ)− β3/φ− log(φ)(α3 + 1)

}
(26)

with Bt =
∑1

i=0(ηit log(pii,t)+ (1 − ηit) log(1 − pii,t)) and l(φ) =∑T
t=1

∑1
i=0 [log Γ(φ)− log Γ(ηitφ)− log Γ(φ(1− ηit))]. We apply a M.-H. step

with a Gaussian proposal for the transformed parameter ϕ = log φ in order to
guarantee the positive definiteness. We built the proposal by proceeding in the
same fashion we did for the full conditional of ψi. Let gφ(φ) be the log-posterior
and consider the second-order approximation of g(ϕ) = gφ(exp(ϕ)) + ϕ about ϕ̃

g(ϕ) ≈ g(ϕ̃) + (ϕ− ϕ̃)g(1)(ϕ̃) +
1

2
g(2)(ϕ̃)(ϕ− ϕ̃)2 (27)

The first and second derivatives with respect to φ are

g
(1)
φ (φ) =

T∑
t=1

Bt + 2TΨ(0)(φ)−
T∑

t=1

1∑
i=0

[
Ψ(0)(φηit)ηit

+Ψ(0)(φ(1− ηit))(1− ηit)
]
+ β3/φ

2 − (α3 + 1)/φ

g
(2)
φ (φ) = 2TΨ(1)(φ)−

T∑
t=1

1∑
i=0

[
Ψ(1)(φηit)η

2
it

+Ψ(1)(φ(1− ηit))(1− ηit)
2
]− 2β3/φ

3 + (α3 + 1)/φ2

thus g(1)(ϕ) = g
(1)
φ (exp(ϕ)) exp(ϕ) + 1 and g(2)(ϕ) = g

(2)
φ (exp(ϕ)) exp(2ϕ) +

g
(1)
φ (exp(ϕ)) exp(ϕ).

We update the value of the approximated mode ϕ̃(j) by the recursion

ϕ̃(j) = ϕ̃(j−1) + σ(j−1)g(1)(ϕ̃(j−1))

with σ(j−1) = −(g(2)(ϕ̃(j−1)))−1. The proposal of the M.-H. steps is a Gaussian
distribution with mean ϕ̃(j) and variance σ(j−1). The acceptance probability is
determined as done for the sampler of ψi.

We consider a single-move Gibbs sampler for the latent factor xt. We found
that in our application the sampler performs quite well in terms of mixing. More
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efficient multi-move Gibbs samplers can be applied (see for example Carter and
Köhn (1994)). The full conditional of the latent factor xt for t = 1, . . . , T − 1, is

f(xt|y1:T ,x−t, s1:T ,p00,1:T ,p11,1:T ,θ) ∝
∝ f(yt|xt,θ)f(xt|xt−1, st,θ)f(xt+1|xt, st+1,θ)

∝ exp
{
− 1

2

[
x2

t

(
σ−2

y + σ−2
x st

+ ρ2
st+1

σ−2
x st+1

)− 2xt

(
ytσ

−2
y + (µst + ρstxt−1)σ

−2
x st

+ρst+1(xt+1 − µst+1)σ
−2
x st+1

) ]}
(28)

which is proportional to the density of the normal distribution N1(mxt, Σxt) with

Σxt =

(
1

σ2
y

+
1

σ2
x st

+
ρ2

st+1

σ2
x st+1

)−1

mxt = Σxt

(
yt

σ2
y

+
µst + ρstxt−1

σ2
x st

+
ρst+1(xt+1 − µst+1)

σ2
x st+1

)

The full conditional of xT is proportional to a Gaussian density with mean
mxT and variance ΣxT given by

ΣxT =

(
σ2

yσ
2
x sT

σ2
x sT

+ σ2
y

)
, mxT =

(
yT σ2

x sT
+ (µsT

+ ρsT
xT−1)σ

2
y

σ2
x sT

+ σ2
y

)

For the initial value x0 we simulate conditionally on x1, s0 and s1 from
N (m0, σ0) with σ0 = (a−1

s0
+ σ−2

x s1
ρ2

s1
) and m0 = σ0(b

−1
s0

as0 + σ−2
x s1

(x1 − µs1)ρs1)
where ak = µk/(1− ρk) and bk = σ2

x k/(1− ρ2
k) are the parameters of the initial

distribution of x0 conditionally on s0 = k.
Due to its diagonal structure, ΣX can be easily inverted. Note that for the

application to the business cycle proposed in Section 4 the simulation method for
xt is computationally feasible. Note however that other sampling techniques such
as a block-wise Gibbs sampling or a forward-filtering and backward-sampling
algorithm, can be used. See for example Billio, Casarin and Sartore (2007) for
a review with applications to business cycle models. These kind of algorithms
allows for an efficient sequential sampling from the posterior when the number
of observations is high and the hidden states cannot be updated simultaneously.

The full conditional density of s1, . . . , sT is

f(s1:T |y1:T ,x0:T ,p00,0:T ,p11,0:T ,θ) ∝
T∏

t=1

ωt(st, st−1) (29)

with ωt(st, st−1) = f(xt|xt−1, st,θ)f(st|st−1, p00,t, p11,t,θ).
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In order to generate st with t = 1, . . . , T we do not a apply a single-move
sampler (see Albert and Chib (1993), but a multi-move sampler as suggested by
many authors (see Liu, Wong and Kong (1994) and Carter and Köhn (1994).
More specifically we follow Billio, Monfort and Robert (1999) and built a global

M.-H. algorithm. At the j-th steps of the Gibbs we simulate s
(∗)
t for t = 1, . . . , T

from the joint proposal

g(s1:T |s(j−1)
1:T ) =

T−1∏
t=1

νt(st, st−1, s
(j−1)
t+1 )

∑1
k=0 νt(k, st−1, s

(j−1)
t+1 )

νT (sT , sT−1)∑1
k=0 νT (k, sT−1)

(30)

with

νt(st, st−1, s
(j−1)
t+1 ) = f(xt|xt−1, st, θ)f(st|st−1, p00,t, p11,t,θ) ·

·f(s
(j−1)
t+1 |st, p00,t+1, p11,t+1, θ)

and νT (sT , sT−1) = f(xT |xT−1, sT , θ)f(sT |sT−1, p00,T , p11,T ,θ). Then we accept

with probability min{1, %(s
(∗)
1:T , s

(j−1)
1:T )} where

%(s
(∗)
1:T , s

(j−1)
1:T ) =

=
T−1∏
t=1

ωt(s
(∗)
t , s

(∗)
t−1)

ωt(s
(j−1)
t , s

(j−1)
t−1 )

νt(s
(j−1)
t , s

(j−1)
t−1 , s

(j−1)
t+1 )

νt(s
(∗)
t , s

(∗)
t−1, s

(j−1)
t+1 )

∑1
k=0 νt(k, s

(∗)
t−1, s

(j−1)
t+1 )

∑1
k=0 νt(k, s

(j−1)
t−1 , s

(j−1)
t+1 )

=
T−1∏
t=1

∑1
k=0 νt(k, s

(∗)
t−1, s

(j−1)
t+1 )

∑1
k=0 νt(k, s

(j−1)
t−1 , s

(j−1)
t+1 )

f(s
(j−1)
t+1 |s(j−1)

t , p00,t, p11,t,θ)

f(s
(j−1)
t+1 |s(∗)

t , p00,t, p11,t,θ)

This M.-H. chain on the path s1:T has smaller variance than the variance of
the component-wise MCMC chain. In the implementation of the algorithm we
choose to switch to a single-move Gibbs step when the acceptance rate of the
global M.-H. is low. For the initial value s0 we apply a specific M.-H. step.

The full conditional of p00,t is

f(p00,t|y1:T ,x0:T , s−t,p00,−t,p11,0:T ,θ) ∝
∝ f(st|st−1, p00,t, p11,t,θ)f(p00,t|p00,t−1, st, θ)f(p00,t+1|p00,t, st+1,θ)

∝ p
φηit+(1−st)(1−st−1)−1
00,t (1− p00,t)

φ(1−ηit)+st(1−st−1)−1g(p00,t)I]0,1[(p00,t) (31)

In order to simulate from the posterior we employ a M.-H. algorithm. At
the j-th iteration, let p

(j−1)
00,t be the previous value of the M.-H. chain, then we

simulate p
(∗)
00,t from the proposal Be(αt, βt), with αt = φηit + (1 − st)(1 − st−1)

and βt = φ(1− ηit) + st(1− st−1) and set p
(j)
00,t = p

(∗)
00,t with probability

min
{

1, g(p
(∗)
00,t)/g(p

(j−1)
00,t )

}
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where g(p00,t) = (p00,t/(1−p00,t))
φηit . We proceed in a similar way for simulating

from the posterior of the transition probability p11,t. We design a specific M.-H.
steps for the initial values pii,0, i = 0, 1.

3.3 SMC Estimates

The MS models considered in this works have the following probabilistic state-
space representation (Harrison and West (1997) and Doucet et al. (2001))

yt ∼ p(yt|zt,y1:t−1,θ) (32)

zt ∼ p(zt|zt−1,y1:t−1,θ) (33)

(z0,θ) ∼ p(z0|θ)p(θ), (34)

with t = 1, . . . , T . In this representation p(yt|zt,y1:t−1,θ) and p(zt|zt−1,y1:t−1,θ)
are the measurement and transition densities respectively. The densities p(z0|θ)
and p(θ) are the priors on initial state and parameters. The time index in the
transition and measurement densities indicates that they could possibly depend
on a set of exogenous variables.

In this work we deal with a sequential inference problem. We aim to estimate
the parameters and the latent variables of the model (32)-(34) sequentially over
time. Following Berzuini et al. (1997) we include the parameters θ into the state
vector and then apply a nonlinear filtering procedure defined on the augmented
state space.

Let δx(y) be the Dirac’s mass centered in x and let us introduce the following
dynamics for the parameter vector: θt ∼ δθt−1(θt), with initial condition θ0 = θ
a.s. and include the parameter θt into the hidden states. We define the
augmented state vector ξt = (z′t, θ

′
t)
′ and the augmented state space Ξ = Z×Θ.

Assume that the density p(ξt|y1:t) is known at time t. Note that if t = 0 the
density p(ξ0|y0) = p(z0|θ0)p(θ0) is the initial distribution of the model in Eq.
(32)-(34). The following recursions

p(ξt+1|y1:t) =

∫

Ξ

p(zt+1|zt,y1:t,θt+1)δθt(θt+1)p(ξt|y1:t)dξt (35)

p(ξt+1|y1:t+1) =
p(yt+1|zt+1,y1:t,θt+1)p(ξt+1|y1:t)

p(yt+1|y1:t)
(36)

define the states prediction and filtering densities respectively.
When the model is nonlinear and non-Gaussian these recursions can be solved

by employing Sequential Monte Carlo methods (see for example Arulampalam,
Maskell, Gordon and Clapp (2001) and Doucet et al. (2000)). In this work
we apply a special class of SMC algorithms called regularised particle filters,
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which have been introduced by Musso, Oudjane and LeGland (2001) and Liu
and West (2001). Casarin and Marin (2009) compare different particle filters,
within the class of the kernel-regularised filters, and find that the regularised
APF outperforms regularised SIR and SIS when the unknown parameters of the
model are estimated sequentially. Thus in what follows we will consider the
regularised APF approach.

Assume that at the initial time step a weighted random sample (particle
set) SN

0|0 = {ξi
0, w

i
0}N

i=1 is approximating the prior density and that at time t

a weighted sample SN
t|t = {ξi

t, w
i
t}N

i=1, is approximating the filtering density as
follow

p̂N(ξt|y1:t) =
N∑

i=1

δξi
t
(ξt)w

i
t

The element ξi
t of the sample is called particle and the particles set, SN

t|t,
can be viewed as a random discretisation of the state space Ξ at time t, with
associated probability weights wi

t. At the time step t + 1, as a new observation
yt+1 arrives, we can approximate Eq. (35)-(36) as follows

p̂N(ξt+1|y1:t) =
N∑

i=1

p(zt+1|zi
t,y1:t, θt+1)δθi

t
(θt+1)w

i
t (37)

p̂N(ξt+1|y1:t+1) ∝
N∑

i=1

p(yt+1|zt+1,y1:t,θt+1)p(zt+1|zi
t,y1:t, θ

i
t)δθi

t
(θt+1)w

i
t (38)

which are called state and observable empirical prediction densities and empirical
filtering density respectively.

In the regularised APF algorithms the filtering density in Eq. (38) is
approximated through a weighted kernel density estimator

p̂N(ξt+1|y1:t+1) ≈ 1

N

N∑
i=1

ω(ξt+1)Nnθ
(θt+1|mi

t, b
2 Vt), (39)

where the weights are ω(ξt+1) = wi
tp(yt+1|zt+1,y1:t,θ

i
t)p(zt+1|zi

t,y1:t,θt+1) and
the parameters of the Gaussian distribution are mi

t = aθi
t + (1 − a)θ̄t and

Vt =
∑N

i=1(θ
i
t− θ̄t)(θ

i
t− θ̄t)

′wi
t, with θ̄t =

∑N
i=1 θi

tw
i
t, a ∈ [0, 1] and b2 = (1−a2).

A new random set SN
t+1|t+1 from the regularised filtering density at time

t + 1, can be obtained by the following two steps. First jointly simulate the
random index ij (selection step) and the particle value ξj

t+1 (mutation step),
with j = 1, . . . , N , from

q(ξj
t+1, i

j|y1:t+1) ∝ p(zj
t+1|zij

t ,y1:t,θ
j
t+1)Nnθ

(θj
t+1|mij

t , b2 Vt)q(i
j|y1:t+1)
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with q(ij|y1:t+1) = p(yt+1|µij

t+1,y1:t,m
ij

t )wij

t . Secondly apply an importance
sampling argument to the kernel density estimator and evaluate the following
weights

wj
t+1 ∝

p(yt+1|zj
t+1,y1:t,θ

j
t+1)

p(yt+1|µij
t+1,y1:t,mij

t )
(40)

3.4 Hypothesis Testing

Assume that we are interested in a test for the null hypothesis H0 : θ ∈ Θ0

against the alternative H1 : θ ∈ Θ1. In a Bayesian framework this corresponds
to the evaluation of the Bayes factor (see (Robert 2001)), that is the ratio of the
posterior probabilities of the null and the alternative hypotheses over the ratio
of the prior of the null and the alternative hypotheses. Let

p(y1:T |θ) =

∫

XT

p(y1:T , z1:T |θ)dz1:T

then the Bayes factor is,

Bπ,T
01 =

∫
Θ0

p(y1:T |θ)π0(θ)dθ∫
Θ1

p(y1:T |θ)π1(θ)dθ
=

m0(y1:T )

m1(y1:T )
(41)

with m0(y1:T ) and m1(y1:T ) the marginals under the null and the alternative
hypotheses respectively. The test of hypothesis requires to run two MCMC
chains, ones under the null hypothesis and the other under the alternative
hypothesis. The two set of simulated values allow the approximation of all
the integrals involved in the Bayes factor.

Finally we will apply the Jeffreys’ scale to judge the evidence in favor of or
against the null brought by the data: log10(B

π,T
10 ) between 0 and 0.5, then the

evidence against the null is poor, if between 0.5 and 1, it is substantial, between
1 and 2, it is strong and above 2 is decisive.

4 An Application to the Euro-zone Business

Cycle

4.1 Data

We consider monthly observations from January 1970 to May 2009 of the
Industrial Production Index (IPI) of the Euro area. In order to get the IPI
at the Euro zone level a back-recalculation has been performed (see Anas et al.
(2007a, 2007b) and Caporin and Sartore (2006) for details). The ST-MS model
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Figure 3: Up: log-change in percent of the European Industrial Production Index
(IPI) and the GCCI-type index at the monthly frequency for the period: July
1991 to May 2009. Bottom: square of the IPI log-change.

has been applied to the log-change of the IPI index (upper chart of Fig. 3). The
presence of time-varying volatility (bottom chart of Fig. 3) suggests that the
model should account for different regimes in the volatility level.

The exogenous variables vit, i = 1, 2, which are driving the transition
probabilities of the ST-MS model, are the constant term, an autoregressive
component and a growth cycle coincident indicator (GCCI). For the construction
of the coincident see Anas et al. (2008).

4.2 MCMC Estimation Results

Figures 4 and 5 graph the output of 5,000 MCMC iterations. For each parameter
the graphs show the raw output of the MCMC chain (grey lines) and the ergodic
averages (black lines). Consider for example the parameters ψi, i = 0, 1 and φ
of the stochastic transition, which are the most difficult to estimate due to the
analytical form of the posterior density. From a graphical inspection of the M.-H.
outputs for these parameters, it seems that the proposals, based on the second-
order approximation of the log-posterior, are quite efficient allowing the M.-H.
chains to explore the space and then to stabilize quickly after an initial burn-in
period. The progressive average of the acceptance rate over the iterations of
these two M.-H. steps is given in the last row of Fig. 5. At the last iteration the
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average acceptance rates are between 0.4 and 0.5.
The initial, transitory period, which is more evident in the ergodic averages

for the different Gibbs components, is due to the initialization of the algorithm.
After some iterations the MCMC chain is then converging to the stationary
distribution. We try different starting points for the MCMC chain and verify
that they result in similar final estimates and convergence behaviour. An initial
sample of 1,000 values will be excluded from the MCMC sample when calculating
the posterior means, the standard deviations and the quantiles (see Tab.1). We
choose the size of the initial sample on the basis of a graphical inspection of
the progressive averages over the MCMC iterations, but the a more rigorous
method could be used. Even if convergence diagnostics for MCMC remains an
open question (see Robert and Casella (1999)), the problems of the choice of the
size of the initial sample and of the convergence detection of the Gibbs sampler
may be assessed by using for example the convergence diagnostic (CD) statistics
proposed in Geweke (1992). Let n = 5, 000 be the MCMC sample size and
n1 = 1000, and n2 = 3000 the sizes of two non-overlapping sub-samples. For the
parameter θ, let

θ̂1 =
1

n1

n1∑
j=1

θ(j), θ̂2 =
1

n2

n∑
j=n+1−n2

θ(j)

be the MCMC sample mean and σ̂2
i their variances estimated with the non-

parametric estimator

σ̂2
i

ni

= Γ̂(0) +
2ni

ni − 1

hi∑
j=1

K(j/hi)Γ̂(j),

Γ̂(j) =
1

ni

ni∑

k=j+1

(θ(k) − θ̂i)(θ
(k−j) − θ̂i)

where we choose K(x) to be the Parzen kernel (see Kim and Nelson (1999a))
and h1 = 100 and h2 = 500 are the bandwidths. Then the following statistics

CD =
θ̂1 − θ̂2√

σ̂2
1/n1 + σ̂2

2/n2

(42)

converges in distribution to a standard normal (see Geweke (1992)), under the
null hypothesis that the MCMC chain has converged.

As indicated in Table 1 the means of the rate of log-change in the IPI index
during the contraction and expansion phases are µ̂0 = −0.2425 and µ̂1 = 0.2674.
The HPD region of the parameter dρ does not include zero, thus we conclude
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that the difference between the contraction and expansion rates of growth is
significantly different from zero. The speed of reversion and the variance are
ρ̂0 = 0.1909 and σ2

x0 = 0.1179 during the contraction phase and ρ̂ = 0.1721
and σ2

x1 = 0.0885 during the expansion phase. Note however that the HPD
region of dρ contains zero thus the difference between the speed of recession and
contraction is not significant. The HPD regions of σ2

x0 and σ2
x1 overlap, thus we

should test the hypothesis that the two parameters are not significantly different.
In particular we test the null hypothesis H0 : σ2

x0 = σ2
x1 against the alternative

H1 : σ2
x0 6= σ2

x1. The log-Bayes factor on the whole sample is log BF π,T
10 = 0.4201,

thus the evidence against the null is poor.
The estimates of the parameters of the stochastic-transition put on evidence

that the constant component of the probability of the two regimes are h(ψ̂00) =
0.8415 and h(ψ̂01) = 0.9255 respectively, where h is the logistic function defined
in Section 2. The estimates of the persistence parameters, ψ̂10 = 0.2609 and
ψ̂11 = 0.5073, indicate that the MS transition probability has a significant
autoregressive dynamics (the HPD regions of the two parameters do not include
the zero). As expected the effect of the GCCI-type indicator is positive for the
probability of staying in recession (ψ̂20 = 0.7144) and negative for the probability
of staying in expansion (ψ̂21 = −1.0384).

4.3 Sequential Model Comparison

In this section we apply SMC to evaluate the ability of the model ST-MS to
capture different features of the cycle. To this aim we compare the ST-MS
with two competing models, i.e. the constant transition (CT-MS) model with
transition probabilities

st|st−1 ∼ P (st = j|st−1 = i) = pij, with i, j ∈ {0, 1}. (43)

and the dynamic transition (DT-MS) model with transition probabilities

st|st−1 ∼ Pt (st = j|st−1 = i) = pij,t (44)

and then use the reference cycle in Anas et al. (2007b) as a benchmark.
In order to apply the PF to the ST-MS we consider the following monotonic

transformation of the parameter vector: θt = ( log(σyt), µ0t, log(µ1t), log((1 +
ρ0t)/(1 − ρ0t)), log((1 + ρ1t)/(1 − ρ1t)), log(σx0 t), log(σx1 t), ψ′

0t, ψ′
1t log(φt),),

which allows us to introduce some necessary constraints on the parameters space.
Then we include θt into the state vector and apply the regularised APF given in
Section 3 to filter the hidden states and sequentially estimate the parameters. In
our applications we set a = (3δ−1)(2δ)−1 and b2 = (1−a2). From our simulation
experiments we choose δ = 0.99 and N = 5, 000, in order to simultaneously
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Figure 4: Raw MCMC output (grey lines) and ergodic averages (black lines)
over the 5,000 MCMC iterations for the parameters σ2
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ψ0, ψ1 and φ of the stochastic transition model.
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θ θ̂T q0.025 q0.975 s.d. CD
σy 0.5640 0.4065 0.7448 0.0866 0.0448
µ0 -0.2425 -0.4077 -0.0864 0.0802 -0.0021
dµ 0.5099 0.2949 0.7211 0.1084 -0.0458
ρ0 0.1909 0.0031 0.3833 0.1779 -0.0160
dρ -0.0188 -0.2373 0.1685 0.1002 -0.0047
σ2

x0 0.1179 0.0396 0.1454 0.0268 -0.0564
σ2

x1 0.0885 0.0349 0.1275 0.0241 -0.0653
ψ00 1.6697 1.5053 2.1064 0.1588 0.0863
ψ10 0.2609 0.1042 0.6636 0.1491 0.1164
ψ20 0.7144 -0.1874 1.5079 0.4566 -0.0443
ψ01 2.5190 1.6886 3.4467 0.4386 -0.0223
ψ11 0.5073 0.1165 0.9582 0.2534 -0.0356
ψ21 -1.0384 -2.1452 -0.0130 0.5441 0.0184
φ 36.9830 30.1593 58.3173 7.4694 -0.0037

Table 1: First column: estimated parameters for the ST-MS model for the log-
change of the Euro Industrial Production Index. Other columns: parameter
estimates, 0.025 and 0.975 quantiles, standard deviations (s.d.) and convergence
diagnostic statistics (CD). The statistics have been obtained by iterating 5,000
times the Gibbs sampler and then discarding the first 1,000 iterations to have a
MCMC sample from the stationary distribution.

minimize the parameter estimation bias, due to the regularization step, and
avoid the degeneracy problem. We initialized the particle filter with a properly
weighted sample (see Casarin and Marin (2009)) obtained by running the Gibbs
sampler given in Section 3 on an initial set of observations.

In order to asses the degree of similarity between the three models we consider
a set of indicators, which are widely used in the literature on business cycle
analysis. First we employ the concordance statistic (C) for regular periodic
behavior in the business cycles proposed by Harding and Pagan (2002). Let
s̃it = I]0.5,1](p̂t) be the filtered regime at time t, with p̃it =

∑N
j=1 wj

t I{0}(s
j
t), for

the three models: CT-MS (i = 1), DT-MS (i = 2) and ST-MS (i = 3). Then the
concordance statistics measures the proportion of time during which two series
s̃it and s̃jt, are in the same state. The degree of concordance is then

Cij
T =

1

T

{
T∑

t=1

(s̃its̃jt) + (1− s̃it)(1− s̃jt)

}
(45)

where T is the sample size. This measure ranges between 0 and 1, with 0
representing perfectly counter-cyclical switches, and 1 perfectly synchronous
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AF CT-MS DT-MS ST-MS
AF 1 0.4261 0.6150 0.6223

CT-MS 1 0.3693 0.3681
DT-MS 1 0.8750
ST-MS 1

β = 0.5
Statistics AF vs CT-MS AF vs DT-MS AF vs ST-MS
QPST (β) 0.0057 0.0057 0.0057
TPST (β) 0.0078 0.0071 0.0063
CGoFT (β) 0.0057 0.0057 0.0057
RCT (β) 0.0056 0.0057 0.0057

Table 2: Up: degree of concordance {Cij
T } between the filtered business cycle

phases from our models: CT-MS, DT-MS and ST-MS and the cycle estimated
in Anas et al. (2007b) (AF) for the sample period July 1991-February 2006.
Bottom: concordance level measured with QPS, TPS, CGoF and RC statistics
for the three models and for β = 0.5 with the reference cycle given in Anas et
al. (2007b).

shifts. For two regimes described by random walks, the measure will be 0.5
in the limit.

We evaluate other criteria based on the following indicator

It = ((1− p̃it)− p̃it) (46)

The indicator It is in the [−1, 1] interval. It is close to 1 when the economy
is in a recession phase and close to 1 in a expansion phase. Given a threshold
β ∈ [0, 1], it is possible to define the following decision rule. We will say that
the economy is a recession phase if It ∈ [−1,−β[ and in an expansion phase
if It ∈ [β, 1]. The threshold β can be estimated empirically and take generally
values in the [0.3, 0.5] interval.

The first criteria is the the Quadratic Probabilistic Score (QPS) proposed in
Brier (1950).

QPST (β) =
1

T

T∑
t=1

(
I{It<β} − rt

)2
(47)

with IA the indicator function, which is 1 if It < β and 0 otherwise and rt the
reference cycle given in Anas et al. (2007b). This criterion suffers from the
drawbacks that two non-correlated variables may exhibit a high value of QPS if
their persistence is strong (Harding and Pagan, 2006). Thus Darne and Ferrara
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Figure 6: Left Column: Sequential estimate of the recession probability in
the Euro area (upper charts) and sequentially filtered regimes (bottom charts,
s̃t) for model the three MS models. Right Column: Sequential evaluation
of QPSi

t(β) = 1
t

∑t
k=1(I{Iik<β} − rk)

2 and TPSi
t(β) = 1

t

∑t
k=1[1 + (2rk −

1)(arctan(Iikβ)/ arctan(β))] for β = 0.5, t = 1, . . . , T , Iik the recession indicator
resulting from Mi and rk the reference cycle in Anas et al. (2007b) (AF).

(2009) propose the Cyclical Goodness of Fit (CGoF) criterion, defined as

CGoFT (β) =
1

T

T∑
t=1

[
1 + (2rt − 1)(I{It>β} − I{It<−β})

]
. (48)

Another indicator is the readability criterion (RC)

RCT (β) =
1

T

T∑
t=1

I{−β≤It≤β}. (49)

In the regime between expansion and recession phases the signal is difficult to
interpret. Therefore, a readable indicator counts how many times the signal
stays in the intermediate zone. Note that QPS and RC are based on step-wise
transform of the signal It which associate a loss equal to 2 to the large errors
(out of the interval [−β, β]) and 1 for errors in the interval [−β, β]. It is also
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possible to introduce a continuously transformed probabilistic score (TPS)

TPST (β) =
1

T

T∑
t=1

[
1 + (2rt − 1)

arctan(βIt)

arctan(β)

]
, (50)

with β ∈ [0, +∞[. In this indicator a continuous nonlinear function associates a
loss level between 2 and 0 to all the errors in the [−1, 1] interval.

The concordance and QPS, TPS, CGoF and RC statistics allow us to
conclude that each one of the three models captures different features of the
recession phases, when compared to the AF’s cycle. In particular the left column
of Fig. 6 exhibits the sequentially filtered regimes. The outputs of the three
models differ in terms of numbers of turning points detected in the business
cycle and in terms of phases duration. The concordance and QPS statistics,
over the period July 1991 - February 2006, indicates that the regime changes
detected with the ST-MS are similar to the shifts in Anas et al. (2007b) (AF)
and have a lower concordance, below 0.4, with the regimes changes detected
with model CT-MS. The ST-MS and DT-MS have a high degree of concordance
(above 0.6) with the reference cycle. The QPS and CGoF statistics (right
column Fig. 6 and Tab. 2) bring us to conclude that the three models seem
to be equivalent (CGoF=0.0057, QPS=0.0057), but the TPS, which considers a
continuous weighting function for all the errors in the [−1, 1] interval, indicates
that the output of the ST-MS model (TPS=0.0063) is more similar to the
reference cycle than the regime changes detected with the CT-MS (TPS=0.0078)
and DT-MS (TPS=0.0071) models. Fig. 7 evidences the differences between the
three models in detecting the beginning of the last recession period in the sample.

5 Conclusion

We propose a new class of Markov-switching latent factor models with stochastic
transition probabilities. This class of models can account for time variation
and randomness in the duration of the different regimes. The proposed
parameterization has been employed in the context of inference on beta mixture
and on beta regression modelling and allows a straightforward interpretation of
the model parameters. We suggest an inference procedure based on the Bayesian
paradigm and propose a MCMC estimation procedure. Finally, we apply the
stochastic transition model and the MCMC estimation framework to the data
of the Euro-zone business cycle and compare the results with exiting datations.
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