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ABSTRACT
This paper proposes Archface, an interface mechanism for
bridging the gap between architectural design and its im-
plementation. Archface, which encapsulates the essence of
architectural design, is not only an architecture descrip-
tion language (ADL) but also a programming-level interface.
Archface is based on the component-and-connector architec-
ture, one of the most popular architectural styles. Archface

is effective for software evolution because the traceability
between design and its implementation can be realized by
enforcing architectural constraints on the program imple-
mentation. This traceability is bidirectional. Archface pro-
vides a place where design and code meet together. In Arch-

face, a component exposes program points such as method
call/execution and a connector defines how to coordinate
exposed program points. This mechanism is based on as-
pect orientation. A collaborative architecture consisting of
components can be encapsulated into a group of interfaces
and separated from implementation because dynamic pro-
gram points representing control flow can be specified in
the interfaces. We can characterize the notion of Archface

with a simple word “predicate coordination” in which pro-
gram points are exposed by a predicate (pointcut) and co-
ordinated each other by a trait-based connector (advice).
Archface facilitates not only bidirectional traceability but
also architectural reuse, composition, and verification.

Categories and Subject Descriptors: D.2.11 Software
Architectures: Language

General Terms: Design

Keywords: Architecture, ADL, Interface, Co-evolution, Bidi-
rectional Traceability, Predicate Coordination

1. INTRODUCTION
Architectural design plays an important role in the soft-

ware development because system characteristics such as ro-
bustness, reliability, and maintainability depend on software
architecture. Bass, L., et al. defined software architecture
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[4]: The software architecture of a program or computing

system is the structure or structures of the system, which

comprise of software elements, the externally visible proper-

ties of those elements, and relationships among them. Well-
designed architecture leads to high quality systems. A vari-
ety of architecture description languages (ADL) have been
proposed in order to support architectural design. An ADL
enables us to define software architecture rigorously and ver-
ify their consistency and correctness.

However, it is not easy to design software architecture re-
flecting the intention of developers and implement the result
of design modeling as a program preserving the architec-
tural correctness because there is the gap between design
and implementation. Taylor, R. N., et al. provided impor-
tant research directions in the field of software design and
architecture [26]. As one of the issues to be tackled, they
pointed out the adequate support for moving from architec-
ture to implementation and fluidly moving between design
and coding tasks. Most of the current model-driven devel-
opment (MDD) tools can generate only code skeletons from
design models. To generate full code, we have to adopt
domain-specific approaches in which a sufficient set of li-
braries are prepared for code generation or we have to create
such models that contain detailed implementation-level be-
havioral specifications. Although the former is effective, it
is not necessarily easy to construct such environments. The
latter is not favorable because design models should be ab-
stract and contain only the essential aspects of architectural
design decisions. The detailed consideration about imple-
mentation should not be included in the design models. In
the case of the skeleton code, a programmer has to write the
rest of the code and might make a mistake that violates the
architectural correctness. However, the defects embedded in
the code cannot be automatically detected because there is
no language-level traceability between architectural design
and its implementation. This traceability should be bidirec-
tional. A change in a design model should be transferred to
its implementation. Moreover, a change in the code should
be also reflected on the corresponding design model. Unfor-
tunately, current MDD tools are insufficient to realize this
kind of bidirectional traceability.

To deal with this problem, we propose Archface, a new
interface mechanism that takes into account the importance
of architecture and integrates an architectural design model
with its implementation. There are a variety of architectural
styles and patterns according to the target applications,
scope, and purposes. Archface is based on the component-

and-connector architecture [3], one of the most popular ar-



chitectural styles. For example, most of the POSA (Pattern-
Oriented Software Architecture) [5] patterns, a famous ar-
chitectural catalogue, can be represented by the component-

and-connector architecture. In the POSA patterns, collab-
oration among components is important because it deter-
mines the system behavior.

Archface plays a role as ADL at the design phase and
programming interface at the implementation phase. The
result of the architectural design modeling is stored in the
form of Archface (ADL). After that, a program preserving
the architectural intention is developed by implementing the
Archface (programming interface). Archface can be consid-
ered a kind of contract between design and implementation.

Although our idea is similar to the interface mechanism
in traditional CBSD (Component-Based Software Develop-
ment), the basic concept of Archface is essentially differ-
ent from that of CBSD. The typical interface mechanism
does not expose anything without method signatures. As
a consequence, it is difficult to encapsulate the collabora-
tion among components into the interface definitions. The
main purpose of the traditional interface mechanism is to
provide a contract between client and provider components.
Although the notion of DbC (Design by Contract) is effec-
tive for declaring a contract between them, it is necessary
to analyse the whole of a program and trace the sequence
of the method invocations between components in order to
understand their collaboration. In Archface, a component
interface exposes program points containing important ar-
chitectural information such as method call, method execu-
tion, and control flow. A connector interface defines how
to coordinate exposed program points. A collaborative ar-
chitecture can be encapsulated into a group of component
and connector interfaces. In Archface, program points are
common constructs appeared in both of design and code.
Model elements in a design model can be synchronized with
program point shadows in the code via Archface.

The Archface interface mechanism is named predicate co-

ordination in which the pointcut & advice mechanism in
AOP (Aspect-Oriented Programming) [14] is used as a mech-
anism for exposing program points (pointcut-based predi-
cates) and coordinating them (trait-based advice). By ma-
nipulating the architectural information exposed from pro-
gram points, we can define a large and complex architecture.

The remainder of this paper is structured as follows. In
Section 2, we point out the issues concerning design and
implementation. In Section 3, the concept of Archface is il-
lustrated. In Section 4, an overview of Archface for Java, a
Java-based programming language supporting Archface, is
shown. In Section 5, the effectiveness of Archface is eval-
uated. In Section 6, related work is introduced. Lastly,
concluding remarks are provided in Section 7.

2. MOTIVATION
In this section, we point out what kinds of problems occur

between design and implementation by using an example.

2.1 Example of architectural design
We use the Observer pattern as an example. The Observer

pattern, one of the GoF design patterns [8], is convenient for
discussing the problems between design and code because
the pattern not only has architectural characteristics such as
collaboration but also is relatively close to implementation.
The Observer pattern consists of Subject and Observer.

Figure 1: Observer pattern described in UML

When the state of a subject is changed, the subject notifies
a new state to all observers.

Figure 1 illustrates the Observer pattern described in UML
(Unified Modeling Language). In most cases, architectural
design models are represented by using class diagrams, inter-
action diagrams, and state machine diagrams. Constraints
are specified by OCL (Object Constraint Language). Design
decisions that cannot be represented by neither diagrams nor
OCLs are informally described in the form of notes by using
natural languages. In Figure 1, the note shows that notify
should be called under the control flow of setState.

Currently, most of the architectural design models are rep-
resented by diagrams as illustrated in Figure 1 because dia-
grams are institutive and easy to understand. However, it is
not easy to check whether a design model contains defects
because its diagram representation is not rigorous. More-
over, the diagram representation contains only restricted in-
formation. For example, only signature-based information
(method signature) is contained in the class diagrams. A
developer has to consider and guess the intent of architec-
tural design when she or he translates diagrams into code.
As a result, defects might be embedded into the code if the
developer misunderstands the meanings of the design.

List 1 is a part of the Subject implementation.

[List 1]

01: public class Subject {
02: private String state = "";
03: public String getState() { return state; }
04: public void setState(String s) { state = s; }
05: ...
06: }

List 1 does not reflect the intention of the architectural
design because setState only sets a new state and does not
execute a notification task. Although many MDD tools can
generate code from UML diagrams, most of them generate
code such as List 1. A developer has to add extra code to
the auto-generated code and might make a mistake. Em-
bedded defects might be discovered by reviewing code with
referring interaction diagrams. However, the review quality
depends on the skill of the developers. The developer might
create a detailed model using action semantics to generate
full code from UML diagrams. However, the contents of the
diagrams are semantically equivalent to the code. This vi-
olates a principle of abstractions required to architectural
design. A design model should be at an adequately abstract
level, not the same level as code.

Next, we discuss on the co-evolution between architec-
tural design and program code. Currently, many MDD
tools support round-trip engineering in which the code auto-
generated from a design model contains modifiable regions
specified by comments. These tools do not override the exist-
ing code in the modifiable regions when they re-generate the



code from a revised design model. Both design and code can
co-evolve if the code is modified within the regions. How-
ever, when a developer wants to modify the code that affects
the architecture such as collaboration among components, it
is difficult to reflect the code change on the design model be-
cause the round-trip engineering tools supporting the modi-
fiable regions cannot recover the design model from the code
but only re-generate the code from the design model. There
remain difficult problems even if these tools can recover the
design model from the code. A crucial problem is that all
of the code changes should not always be reflected on the
design model. For example, assume that notify is called in
setState. This is an implementation faithful to its architec-
tural design. Next, assume that a developer changes the old
code to the new one in which notify is not called directly
but a method is called from setState and the method calls
notify. The round-trip engineering tools that can recover
the design model from the code only reflect this calling se-
quence on the design model using an interaction diagram.
However, this kind of design recovery is not sufficient for co-
evolution because we cannot obtain a design model at the
adequately abstract level. In this case, the design model has
only constraints such that notify is called under the con-
trol flow of setState. So, the design model should not be
changed even if the code is modified. A design model can be
related to multiple code implementations. The MDD tools
supporting simple round-trip engineering cannot deal with
this relation between design and code.

2.2 Problems to be tackled
Problems between architectural design and implementa-

tion can be categorized into the following three items.

• Abstraction level of architectural design: It is not clear
which abstraction level is adequate for designing archi-
tecture. The gap between design and implementation
becomes large if the design is too abstract. On the
other hand, the difference between them becomes un-
clear if the abstraction level of the design is low. A
developer should design a software structure and clar-
ify its rationale. However, it is not easy to find the
proper abstraction level that can provide the trace-
ability between design and implementation.

• Refinement from design to code: It is not easy to re-
flect the design decisions on the code when UML or
informal natural languages are used for design nota-
tion. Although refinement using formal specification
languages such as VDM, Z, and B is effective, it is
not necessarily easy for ordinary developers to formally
prove the correctness of the refinement. A method easy
to introduce is favorable for these developers.

• Co-evolution between design and code: It is not easy
to synchronize design and code. As mentioned be-
fore, current MDD approaches cannot necessarily help
this co-evolution. Code should be modified if the de-
sign is changed. On the contrary, the design should
be changed if the code is modified. The bidirectional
traceability between design and code is needed.

These problems arise from a more essential cause: the
boundary between design and implementation is vague. That
is, it is not clear what kind of information we should specify

Design
Space

Implementaion
Space

Modeling
Language

Programming
Language

ArchfaceADL Interface

Figure 2: Archface

in a design model and what kind of information we should
program in the code. We have to explore a contract specifi-
cation method between design and code.

3. ARCHFACE
In this section, we illustrate the notion of Archface and

show an example of an architecture description.

3.1 Basic concept
Figure 2 illustrates the role of Archface that resides in

the intersection between design space and implementation
space. Archface plays a role as ADL in the design space. At
the same time, Archface plays a role of a language-level in-
terface in the implementation space. In order to achieve this
objective, we have to examine constructs appeared in both
of modeling and programming languages. Archface provides
a mechanism for exposing program points and coordinating
them as a construct resided in both ADL and interface.

Three-part modeling framework
The Archface computation model is based on the three-part
modeling framework [18] that explains a common structure
in different AOP mechanisms such as AspectJ [15] and Hy-
per/J [12]. As shown in Figure 3, the framework explains
each join point mechanism (JPM) in AOP as an interpreter
which is modeled as a tuple of nine parameters:

〈X, XJP , A, AID, AEFF , B, BID, BEFF , META〉.

These parameters are divided into the following three parts:
A/AID/AEFF , B/BID/BEFF , and X/XJP /META. A and
B are the languages in which the respective programs pA and
pB, i.e., input to the interpreter, are written. X is the result
domain of the weaving process, which is the third language
of a computation. XJP is the join point in X. AID and BID

are the means, in the language A and B, of identifying ele-
ments of XJP . AEFF and BEFF are the means, in the lan-
guage A and B, of effecting semantics at the identified join
points. META is an optional meta-language for parameter-
izing the weaving process. A weaving process is defined as a
procedure that accepts pA, pB , and META, and produces
either a computation or a new program. This framework
defines the process of AO weaving as taking two programs
and coordinating them into a single combined computation.
This framework describes the join points as existing in the
result of the weaving process rather than residing in either
of the input programs.

Mapping to Archface
In Archface, the three-part modeling framework is applied
to represent the component-and-connector architecture. Al-
though the original framework is proposed for modeling AOP,
it can be applied not only to AOP but also to traditional
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based on three-part modeling framework

CBSD. A and B are mapped to the Archface language con-
struct for specifying components. AID and BID are mapped
to pointcuts for exposing component’s program points ap-
peared in both of design and code. AEFF and BEFF are
mapped to the advice for effecting the exposed program
points. X is mapped to a trait-based connection for co-
ordinating these program points. Traits [21] is a group of
the pure methods that serve as a building block for classes.
In Archface, coordination is described as a pure method that
only handles the exposed program points without depending
on the component implementation. AEFF , BEFF , and X

are provided as a language construct for specifying connec-
tors. XJP is an event computed by a connector combining
two component’s program points. This component connec-
tion is performed by weaving. The component-binding via
method calls is performed by weaving because method calls
can be dealt with as a special case of weaving that coordi-
nates a caller’s call program point and a callee’s execution

program point.

Predicate coordination
In Archface, pointcut & advice in AOP is used as a mech-
anism for exposing program points (pointcut) and coordi-
nating them (advice). Allen, R. and Garlan, D. proposed
Wright [3], an ADL, to formalize the component-and-connector

architecture. In Write, connectors are specified as a collec-
tion of protocols that characterize roles in an interaction. In
Archface, connections are described as user-defined protocols
that specify coordination among exposed program points.

Main characteristics of AOP can be explained with predi-

cate dispatch [19] and open class. In predicate dispatch, each
method can have a predicate guard specifying the conditions
under which the method is invoked. Open class is a mecha-
nism for adding methods/fields from the outside of a class.
Inter-type declaration in AspectJ is a kind of open class.

We can characterize the notion of Archface with a sim-
ple word “predicate coordination” in which program points
are exposed by a predicate (pointcut) and coordinated each
other by a trait-based connector (advice). Predicate coordi-

nation includes the notion of open class because method/field
can be dealt with as static program points. Predicates in
Archface can be considered as a lightweight reflective mech-
anism for introspecting important architectural information
such as program behavior and structures. By manipulating
the information exposed from program points, we can define
a large and rich architecture.

Below, we explain the concept of Archface more concretely
by using code snippets written in Archface for Java. The
detailed syntax is explained in Section 4.

(2)
cflow (4)

cflow

(1)

(3)

(5)
setState

getState

notifyObservers update

updateState

Subject Observer

Figure 4: Collaborative architecture

3.2 Interface as ADL
Archface consists of two kinds of interfaces: component

and connector.
List 2 is an Archface definition for the Observer patten

shown in Figure 4. Here, addObserver and removeObserver

in Figure 1 are omitted because of the space limitation. Only
the notification interaction is described in List 2. Archface

as an ADL specifies an architecture between subject and ob-

server and does not contain implementation details.

[List 2]

01: interface component cSubject {
02: pointcut getState():execution(String getState());
03: pointcut setState():execution(void setState(String));
04: pointcut notify():execution(void notify());
05: pointcut notifyObservers() :
06: cflow(execution(void setState(String)))
07: && call(void notify());
08:
09: port out getState();
10: port out setState();
11: port out notify();
12: port in around() void :notifyObservers();
13: }
14:
15: interface component cObserver {
16: pointcut update():execution(void update());
17: pointcut updateState():
18: cflow(execution(void update()))
19: && call(String getSubjectState());
20: port out update();
21: port in around() String :updateState();
22: }
23:
24: interface connector cObserverPattern {
25: connects notifyChange
26: (port1 :cSubject.notifyObservers, port2 :cObserver.update){
27: around() void :port1 { port2.proceed(); }
28: }
29: connects obtainNewState
30: (port1 :cObserver.updateState, port2 :cSubject.getState){
31: around() String :port1 { return port2.proceed(); }
32: }
33: }

In Archface, a collaborative architecture is specified by a
set of ports based on the pointcut mechanism. There are
two kinds of ports: in for importation and out for exporta-
tion. By connecting in and out ports, program points can be
exported or imported. In Archface, we can specify AspectJ
pointcuts including call (method call), execution (method
execution), and cflow (control flow). For example, the no-

tifyObservers port (line 05-07, 12) exposes a notify’s call
program point having such a constraint that notify has to
be called under the control flow of setState. The operator
&& means Logical AND. This constraint is enforced when
the cSubject interface is implemented. That is, a class im-
plementing cSubject must satisfy the followings: 1) three
public methods getState, setState, and notify must be
defined; and 2) notify must be called under the control
flow satisfying the above constraint.

As shown in Figure 4, we can understand the following
from List 2 : 1) the state of cSubject is updated by calling



setState; 2, 3) update in cObserver is called under the
control flow of setState by connecting notifyObservers

and update ports (line 05-07, 12, 20, 25-28); 4, 5) getState
in cSubject is called under the control flow of update in
cObserver (line 09, 17-19, 21, 29-32).

The connects statement coordinates program points ex-
posed from ports. In the notifyChange statement, around
advice connects a notify’s call program point to not its ex-
ecution program point but an update’s execution program
point. The proceed method performs a program point. In
this case, the port2.proceed method performs the update’s
execution program point. Conforming to the three-part
modeling framework, an architectural event “notify & up-

date” is computed by mediating notify’s call program point
and update’s execution program point.

We think that Archface conceptually includes the notion
of traditional interface mechanisms because a method signa-
ture can be related to the execution pointcut. The exposure
of a method signature can be considered the exposure of a
method execution program point.

Archface as ADL can be composed and verified at the ar-
chitectural design level without considering implementation
details (see 4.3 and 4.4).

3.3 How to implement Archface
Although Archface enforces constraints on the class imple-

mentation, there can be a variety of actual implementation.
For example, in List 2, it is not constrained which method
calls notify. This is not specified in cSubject, and can be
implemented in any ways. For example, calling sequences
such as “setState → mA → notify” and“setState → mA

→ mB → notify” are possible.
List 3 is an implementation example of cSubject and cOb-

server. A developer has to implement the code that pro-
vides the program points exposed by Archface at the execu-
tion time. More concretely, the developer has to implement
program point shadows that expose the program points when
the program is executed.

Archface in List 2 is more abstract than the implemen-
tation in List 3 because the number of the former program
points is less than that of the latter program points. For
example, the call program point of println (line 17-18) is
not contained in the Archface definitions (List 2). In Arch-

face, only the essential part of the architectural design can
synchronize with the code by using a set of program points
selected by pointcut-based predicates. The println state-
ment is not the target of this synchronization. The ade-
quately abstract level can be kept between design and code.

[List 3]

01: architecture aObserverPattern {
02: class Subject implements cSubject;
03: class Observer implements cObserver;
04: }
05:
06: public class Subject {
07: private String state = "";
08: public String getState() { return state; }
09: public void setState(String s) { state = s; notify(); }
10: void notify(){}
11: }
12:
13: public class Observer {
14: private String state = "";
15: public void update() {
16: state = getSubjectState();
17: System.out.println("Update received from Subject,
18: state changed to : " + state);
19: }
20: String getSubjectState(){ return ""; }
21: }

Figure 5: Software process with Archface

UML Model element Pointcut

Class diagram class definition class
method definition method
field definition field

Interaction diagram message send call
message receive execution
message sequence cflow

Table 1: Mapping from UML to Archface

3.4 Modeling and Archface
Figure 5 illustrates an Archface-centric software develop-

ment process: 1) a modeler designs an architecture using
a modeling tool that can manage the model in the form of
Archface; 2) the modeler verifies the correctness and consis-
tency of the design model; 3) a programmer develops the
code conforming to the Archface; 4) if the architecture is
changed at the programming phase, the corresponding Arch-

face should be modified; and 5) the modeling tool can edit
the revised architecture because the design model is man-
aged in the form of Archface. Design and code can co-evolve
each other with Archface that exists at the center of the
development process. Model elements in the architectural
design are bridged with program point shadows in the code
via the program points specified in Archface.

Table 1 shows a program point mapping from UML model
elements to Archface pointcuts. Although Archface does
not depend on a specific modeling language, we use UML
as an example. In general, software architecture is repre-
sented by structural and behavioral aspects. The former
can be modeled by class diagrams and the latter can be rep-
resented by interaction diagrams. Program points in the
class diagrams are captured by structural pointcuts includ-
ing class/method/field (explained in 4.1). Events in the
interaction diagrams are mapped to method call/execution
program points. Constraints related to control flow are
mapped to cflow. If more rich pointcuts such as associ-

ation aspects [20], data flow [18], and trace-match [2] are
available, more rich architectural information can be encap-
sulated into an interface. Especially, association aspects is
important to support multiplicity of the relationship among
components. Although supporting these rich pointcuts is
our future work, it is not clear what kinds of pointcuts are
really needed for effective architectural descriptions. We
think that it is preferable for a developer to be able to define
domain-specific pointcuts.



Although Archface is conceptually language independent,
it is preferable to generate a language dependent Archface

(LDA) such as Archface for Java from a language indepen-
dent Archface (LIA). As a future work, we plan to take an
approach similar to IDL (Interface Description Language)
compiler. This approach is also similar to the relation be-
tween PIM (Platform Independent Model) and PSM (Plat-
form Dependent Model) in OMG’s MDA (Model-Driven Ar-
chitecture). LIA and LDA correspond to PIM and PSM,
respectively. The syntax of LIA will be defined based on
Archface for Java because the essential part of it is language
independent although its surface syntax depends on Java.

3.5 How the problems are resolved
We pointed out three problems concerning design and im-

plementation in Section 2.
The first problem is resolved by describing architecture in

Archface because the essence of the Observer pattern can be
described at the adequately abstract level without consider-
ing implementation details as shown in List 2.

The second problem is relaxed by implementing the code
conforming to Archface. The Archface compiler detects an
error if the code does not implement the Archface correctly.

The third problem is relaxed by the co-evolution between
design and code. If the design model of the Observer pattern
in List 2 is changed, List 3 might violate a new Archface

reflecting the new design. In such a case, a programmer
has to modify the code to conform to the new Archface.
On the other hand, the design model should be changed
when the code is changed with affecting Archface. As illus-
trated in Figure 5, model elements can be synchronized with
program point shadows via Archface. Although traditional
MDD tools use modifiable regions for supporting this kind of
round-trip engineering, a tool supporting Archface does not
need these regions because the round-trip can be performed
via the program points appeared in both of design and code
with keeping the adequately abstract level.

4. ARCHFACE FOR JAVA
Archface for Java is designed based on an AOP language

ccJava [27] supporting the component-and-connector archi-
tecture. This language is previously proposed by us. After
developing ccJava, we found that it could be generalized to
support not only AOP but also traditional CBSD. More-
over, we found that our idea could be applied to not only
programming but also architectural design. In this paper, we
purified our idea as predicate coordination. In Archface for

Java, ccJava language features specific to AOP are removed
and more general language constructs are introduced.

In this section, we show an overview of Archface for Java.

4.1 Language features
Table 2 shows main language constructs.

Component and connector interface
A component interface consists of port and pointcut dec-
larations. Although the syntax of pointcut designators is
basically the same as that of AspectJ, there is a crucial dif-
ference: Archface includes no class specification in the signa-
tures. For example, execution(String getState()) is not
described as Subject.getState(). This separates the cSub-
ject interface (List 2: line 01-13) from the Subject class
(List 3: line 06-11). A programmer that uses the cSubject

Interface Feature Reserved word

Component port in, out
Interface pointcut class, method, field (static)

call, execution, cflow, etc. (dynamic)
inheritance extends
implementation architecture, implements

Connector connection connects
Interface advice introduce (static)

before, after, around (dynamic)

Table 2: Archface for Java

interface does not have to be aware of the existence of the
Subject class. Component implementation is specified by
the architecture statement (List 3: line 01-04).

A connector interface represents connections among ports.
The types of advice that can be applied to an in-port are
declared in an in statement. In List 2 (line 12), only around

advice can be applied to the notifyObservers port.

Pointcut and advice
Pointcuts in Archface are based on AspectJ. The targets of
importing or exporting program points are not restricted to
call/execution/cflow: all of the primitive pointcut desig-
nators in AspectJ can be used. Furthermore, Archface pro-
vides additional pointcut designators such as class, method,
and field. Class/method/field select a set of class, method,
field definitions. These definitions are considered static pro-
gram points. Program points such as method execution are
considered dynamic. Static pointcuts and dynamic point-
cuts cannot be used in the same port definition.

All of the advice types including before, after, and around

in AspectJ can be used in Archface. We can use addi-
tional advice introduce that introduces imported methods
or fields to an original class. The introduce advice applied
to only static program points corresponds to open class.

A developer can design not only behavioral but also struc-
tural architecture by using static program points (see 4.3).

Abstract Archface
Archface descriptions reused in many applications should
not depend on a specific application. Although List 2 well
represents the Observer pattern, this Archface depends on
specific component signatures such as setState(String).
However, all of the applications that can apply the Observer

pattern do not always manage a state as a string.
To deal with this problem, Archface provides the abstract

interface mechanism for specifying only the design outline.
List 4 shows an abstract Archface aSubject and its concrete
Archface cSubject defining concrete pointcuts. Although
the former does not contain concrete method signatures. it
represents the architectural essence in the Observer pattern.
The subtyping in Archface can be explained by the subset
relation of exposed program points between super and sub
interfaces.

[List 4]

01: interface component aSubject {
02: pointcut getState();
03: pointcut setState();
04: pointcut notify();
05: pointcut notifyObservers() : cflow(setState()) && notify();
06: ...
07: }
08:
09: interface component cSubject extends aSubject {
10: pointcut getState(): execution(String getState());
11: pointcut setState(): execution(void setState(String));
12: pointcut notify(): call(void notify());
13: }



4.2 AO architecture
Archface supports not only traditional CBSD but also AO

architecture. We do not have to distinguish crosscutting
concerns from primary concerns.

List 5 shows a graphical editor program consisting of cPoint,
cLine, and cDisplay. The cDisplayUpdate connector sig-
nals cDisplay to update shapes whenever their coordinates
are changed. The operator || means Logical OR.

A developer can easily understand which component cross-
cuts over other components. In List 5, cDisplay crosscuts
over cPoint and cLine (line 22-23). The decision of cross-

cutting or primary only depends on whether a port is con-
nected to multiple ports or not.

[List 5]

01: interface component cPoint {
02: pointcut change():
03: execution(void setX(int)) || execution(void setY(int)) ||
04: execution(void moveBy(int, int));
05: port in before(), after() returning, around() : change();
06: }
07:
08: interface component cLine {
09: pointcut change():
10: execution(void setP*(Point)) ||
11: execution(void moveBy(int, int));
12: port in before(), after() returning, around() : change();
13: }
14:
15: interface component cDisplay {
16: pointcut redraw(): execution(void update());
17: port in before(), after() returning : redraw();
18: port out redraw();
19: }
20:
21: interface connector cDisplayUpdate {
22: connect(port1 :cDisplay.redraw,
23: port2 :{cPoint || cLine}.change){
24: after() returning : port2 { port1.proceed(); }
25: }
26: }

In Archface, wildcard can be used in the pointcut definitions
(line 10). For example, setP* can be matched with setP1

and setP2. Using abstract Archface and wildcard, reusable
crosscutting components can be easily defined.

4.3 Multi-view architectural composition
Since software architecture consists of multiple views in-

cluding structural and behavioral aspects, it is preferable
to describe these views independently in terms of MDSOC
(Multi-Dimensional Separation Of Concerns) [25].

Archface can represent MDSOC based on Hyper/J-like
architecture as shown in List 6.

[List 6]

01: interface component cColorView {
02: pointcut color_property() :
03: field(int color) ||
04: method(void setColor(int))||
05: method(int getColor());
06: port out color_property();
07:
08: interface component cPointView extends cPoint {
09: pointcut thisClass() : class(this);
10: port in introduce() : thisClass();
11: }
12:
13: interface connector cMerge {
14: connect(port1:cColorView.color_property,
15: port2:cPointView.thisClass){
16: introduce() : port2 from port1;
17: }

The color field and associated getter/setter methods are
introduced to a point. List 6 is an example of open class

using static program points. Two viewpoints cColorView

and cPointView can be composed together by the cMerge

connector. Using MDSOC-type connections, we can design

cColorView

cPointView

Color Architecture
(Structural composition)

static
program point

static
program point

dynamic
program point

cDisplay

DisplayUpdating
Architecture

(Behavioral composition)

Figure 6: Architectural composition

a layered architecture. List 6 can be considered as a layer
structure consisting of point and color layers.

By defining connectors, a set of small architectural views
can be composed together to construct a large architecture.
In Archface, special kind of connectors are not needed to
bridge two architectures. Ordinary connectors can be used.
A connector coordinates program points exposed by one ar-
chitecture and program points exposed by another one. In
this case, the precedence of connectors might affect the se-
mantics of a composed architecture. In Archface, precedence
is specified by the appearance order of connectors. As illus-
trated in Figure 6, Display Updating architecture in List 5
and Color architecture in List 6 can be composed together.
The former represents a dynamic aspect of architectural de-
sign and the latter represents a static aspect. cColorView is
composed with cPointView in order to update a color when
a position of a point is changed. In some situation, a devel-
oper might has to convert program points exposed by one
port to other kinds of program points that can be handled
by another port because names or signatures are differently
used between two architectures. In this case, the developer
has to define filter connectors to bridge the gap between two
architectures. cMerge in List 6 can be considered a kind of
filter that converts a port exposing program points “execu-

tion of position change” to another port exposing program
points consisting of “execution of position and color change”.

4.4 Architectural verification
It is preferable to check the correctness and consistency

of software architecture at the design level.
We show a verification method using model checking that

can check the reachability of control flow and behavioral con-
flicts. If architecture is verified at the design phase, we do
not have to verify the architectural correctness at the pro-
gramming phase. In the modeling phase, the consistency
and correctness of architectural design specified by Archface

is verified. In the implementation phase, the Archface com-
piler and associated testing tools check whether a program
conforms to the Archface definitions.

Here, we use SPIN [11] as a model checker. List 7 is the
PROMELA code translated from Archface descriptions in
List 2. Components in Archface are mapped to processes
in PROMELA (line 6, 11). Connectors are also mapped
to processes (line 16, 21). Port in and out are mapped to
message receive (?) and send (!), respectively (line 8, 13, 18,
23). Control flow is translated into the simplest case (line 8,
13) because the purpose of the verification is not to verify
program code but to check the inconsistency of architecture
descriptions. So, we only have to check the simplest case.



[List 7]

01: #define SYNCH 0
02: mtype = {setState, getState, notify, update, getSubjectState}
03: chan toSubject = [SYNCH] of {mtype};
04: chan toObserver = [SYNCH] of {mtype};
05:
06: proctype cSubject(){
07: do
08: :: to_Subject?setState -> to_Subject!notify
09: od
10: }
11: proctype cObserver(){
12: do
13: :: to_Observer?update -> to_Observer!getSubjectState
14: od
15: }
16: proctype notifyChange(){
17: do
18: :: toSubject?notify -> toObserver!update
19: od
20: }
21: proctype ObtainNewState(){
22: do
23: :: toObserver?getSubjectState -> toSubject!getState
24: od
25: }

We can verify whether the Archface in List 2 satisfies the
following constraint: if setState in cSubject is called, get-
State is called from cObserver. This constraint can be spec-
ified by an LTL (Linear Temporal Logic) formula.

4.5 Prototype implementation
The Archface compiler translates Archface definitions into

an AspectJ program. In the generated code, components
and connections are represented as a set of aspects and
classes. First, from a connector interface, the compiler gen-
erates connective relations among component interfaces and
checks if a specified class implements a corresponding com-
ponent interface. Next, a component interface is converted
to an aspect definition in AspectJ.

List 8 is the code generated from List 2 (cSubject and
cObserver components, cObserverPattern connector) and
List 3 (Subject and Observer classes). The contents of the
connector interface is converted to the advice in the gener-
ated aspects (line 11, 22). For example, notifyChange (List
2: line 25-28) is translated into the around advice in the
cSubject aspect. Factory classes (line 10, 21) are needed
to generate an executable program reflecting the collabora-
tion specified by Archface. Although default factory classes
are automatically generated, a developer can specify user-
defined factory classes.

[List 8]

01: aspect cSubject {
02: pointcut getState():
03: execution(String getState()) && within(Subject);
04: pointcut setState():
05: execution(void setState(String)) && within(Subject);
06: pointcut notifyObservers():
07: cflow(execution(void setState(String)))
08: && call(void notify()) && within(Subject);
09:
10: Observer m_observer = ObserverFactory.getInstance();
11: void around(): notifyObservers(){m_observer.update();}
12: }
13:
14: aspect cObserver {
15: pointcut update():
16: execution(void update()) && within(Observer);
17: pointcut updateState():
18: cflow(execution(void update()))
19: && call(String getSubjectState()) && within(Observer);
20:
21: Subject m_subject = SubjectFactory.getInstance();
22: String around(): updateState(){return m_subject.getState();}
23: }

The compiler detects an error if the implementation in List
3 does not conform to the Archface in List 2. If Observer
does not contain the update method, the compiler displays

POSA Archface Component Evaluation

Layer Each layer Well-fitted
Pipes&Filters Data Source, Filter, Data Sink Well-fitted
Blackboard Blackboard, Knowledge Source, Control Well-fitted
Broker Client, Client-side Proxy, Broker, Server-

side Proxy, Server
Well-fitted

MVC Model, View, Controller Well-fitted
PAC {Top,Interm.,Bottom}-Level Agent Well-fitted

Micro kernel Internal server, External server, Adapter,
Client, Microkernel

Fair

Reflection {Base,Meta}-Level, Metaobject Protocol Fair

MVC (Model-View-Controller)
PAC (Presentation-Abstraction-Control)

Table 3: POSA patterns and Archface

a message “the method update is undefined for the type Ob-
server”. Although most of the inconsistencies between design
and code can be checked by the compiler, some kinds of de-
fects are not always detected by only static analysis because
contextual pointcuts include dynamic properties. Inconsis-
tency checking should integrate static analysis with dynamic
analysis and testing. For testing, we can use aspects that
monitor the execution sequence of program points. List 9 is
an aspect for checking whether getState is executed after
setState is executed.

[List 9]

01: aspect Test {
02: pointcut testCallingSequence():
03: cflow(execution(void Subject.setState(String)))
04: && execute(String Subject.getState());
05: after() : testCallingSequence(){
06: System.out.println("OK!");
07: }

In our current implementation, the consistency check is
preformed by only type checker. We plan to support a test-
ing facility mentioned above. Furthermore, we plan to de-
velop a modeling tool for editing restricted UML diagrams
that can be mapped to Archface (see 3.4) and verifying ar-
chitecture (see 4.4). After developing these tools, we can
automate the whole of the software development process il-
lustrated in Figure 5. At this time, we have developed the
Archface language processor, the heart of Figure 5.

5. DISCUSSION
We evaluate the architectural expressiveness by using the

POSA patterns as the criteria for discussing how Archface

can represent well-known architecture. Next, we compare
the difference between Archface and other traditional ADLs.

5.1 Architectural expressiveness
Table 3 shows the relation between the POSA patterns

and Archface. The pattern catalogues in POSA consist of ex-
ample, context, problem, solution, structure, dynamics, im-
plementation, variants, known uses, example resolved, con-
sequences, and credits. Especially, structure and dynamics
are important for Archface descriptions because components
and connectors can be extracted from these catalogue items.

Most of the POSA patterns are considered the component-

and-connector architecture and can be translated into Arch-

face descriptions. Although the component granularity of
the POSA patterns is relatively large, these architectures
can be described by using abstract Archface. Architectural
patterns except Micro kernel and Reflection are well-fitted
to Archface. However, these two patterns are not enough
represented by Archface because the role of the components
appeared in these patterns are not clear. For example, the



Microkernel pattern consists of External Server, Micro-

kernel, and Internal Server. Although these components
can be represented by Archface, it is difficult to describe
Microkernel as one component in real world applications.

NFR (Non Functional Requirements) such as performance
and security are important to design high quality architec-
ture. If NFR can be encapsulated as crosscutting compo-
nents, NFR can be represented by Archface.

Here, we summarize the result of our evaluation. If com-
ponent roles are clear and NFR can be modularized as a
crosscutting component, the architecture can be well repre-
sented by Archface. Most of the POSA patterns are included
in this category. If component roles are not explicit, Arch-

face is not suitable for architectural descriptions. Although
these patterns provide design strategies or abstract design
outlines, the patterns are not directly related to the con-
crete architectural design. For example, the Microkernel

component in the Micro kernel pattern does not show how
to design a micro kernel itself. We think that an architec-
ture based on Micro kernel or Reflection should be divided
into a set of more concrete architectural models that can be
represented by Archface.

5.2 Comparison with traditional ADLs
There are many component-and-connector-based ADLs in-

cluding Darwin [16] and Wright [3]. In Darwin, FSP (Finite
State Process) is used to describe behavior and verify it. In
Wright, dynamic behavior is described using CSP (Commu-
nicating Sequential Processes). These ADLs enable a devel-
oper to describe software architecture rigorously and verify
it. Moreover, some ADL support tools can generate code
from an architecture. Allen, R. and Garlan, D. formalized
architectural connection and provided a verification method
based on model checking [3]. What is a difference between
Archface and these traditional ADL’s approaches ?

We can point out following three differences: 1) traditional
ADLs cannot support language-level bidirectional traceabil-
ity; 2) richness of the architectural expressiveness only exists
in ADLs, and 3) type of the architecture is fixed and cannot
be extended. First, we think about 1). Although there are
ADLs that can generate program code, it is difficult to re-
cover architectural design from the generated code because
the architecture is embedded into the code. On the other
hand, in Archface, an architecture is encapsulated into the
interfaces. We can understand the architecture at the code-
level. The architectural design also can be recovered from
these interfaces. As a result, bidirectional traceability can
be realized in Archface. Next, we think about the second
difference. This difference is related to the first one. In tra-
ditional ADL’s approaches, architectural information does
not exist in program code but only in ADL’ descriptions.
Due to this asymmetricity, it is difficult for a developer to co-
evolve design and implementation. This problem is relaxed
in Archface as claimed in this paper. Lastly, we discuss on
the third difference. In traditional ADLs, we cannot extend
the ability of the architecture expressiveness. For exam-
ple, an ADL supporting only control-flow-based component
interactions cannot support data flow without redesigning
and reimplementing the ADL. In Archface, the key idea is
predicate coordination in which a predicate is a kind of re-
flective mechanism for introspecting program behavior and
structures. By defining new predicates, we can extend the
architectural expressiveness as discussed in 3.4.

6. RELATED WORK
Aldrich, J. et al. proposed ArchJava [1], an extension to

Java. ArchJava unifies architecture with implementation,
ensuring that the implementation conforms to architectural
constraints. Archface enhances this approach and separates
architecture definitions from actual implementation by in-
troducing a new interface mechanism. ObjectTeams [10]
can describe collaboration as a module by introducing two
kind of modules teams and roles. Although ObjectTeams is
similar to Archface, the collaboration in ObjectTeams is not
a design-level construct but a programming-level construct.

Larch [28], a language for formally specifying program
modules, uses two tiers. The top tier is a behavioral in-
terface specification language (BISL) that uses pre-/post-
conditions. BISL is tailored to a specific programming lan-
guage. The bottom tier is the Larch Shared Language (LSL)
for describing the mathematical vocabulary used in the pre-
/post-conditions. Although the target of Larch is different
from that of Archface, both language structures are slightly
similar. BISL and LSL can be mapped to Archface lan-
guage and its pointcut definition language. Archface can be
tailored to a specific language such as Java.

There are some works that adopt pointcuts as an inter-
face mechanism. Crosscut programming interface (XPI) [23]
is an interface for specifying design rules between aspects
and classes. In Archface, pointcuts are used as an interface
between architectural design and implementation.

Using a set of abstract classes, an architecture can be de-
scribed by the collaboration among abstract classes. Design
patterns such as the Observer pattern can be represented in
this way. Hannemann, J. and Kiczales, G. provided design
pattern implementations in Java and AspectJ [9]. However,
in these cases, implementation is included in abstract classes
or aspects. On the other hand, Archface is a type that en-
forces the architectural design on its implementation. In
the traditional framework approaches, we have to read code
when we want to understand its design at the programming
phase. In Archface, we can understand the design by only
reading Archface that is bridged with a design model.

Our approach is closely related to the research on co-
evolution between design and implementation. D’Hondt, T.
et al. introduced the logic-meta programming (LMP) in or-
der to enforce the synchronization between OO design and
code [7]. Although Archface is similar to their approach in
which software design is expressed as logic meta programs
over the implementation, our approach is based on the in-
terface mechanisms that not only enforce architectural con-
straints on the program implementation but also represent
architectural abstractions. Cazzola, W. et al. proposed an
approach that deals with the problem of co-evolving the ap-
plication design models after the code refactoring [6]. In
their approach, a developer decorates the code with meta-
data describing how its design should be adapted after the
developer changes the application code. In Archface, a de-
veloper does not have to add extra meta-data for synchroniz-
ing between design and code because the Archface compiler
checks whether modified new code conforms to its Archface.
If there are code modifications that affect its design, the
code does not conform to its Archface. In this case, the de-
veloper has to modify the Archface descriptions. The idea of
adopting such a co-evolution approach to deal with AOP at
a higher-level of abstraction than just source code has also
been proposed by several researchers [13].



Aspectual components can be developed by adopting Arch-

face in which AO can be introduced only with the component-

and-connector architecture. JAsCo [24] is an AO implemen-
tation language that introduces aspect beans and connec-
tors. An aspect bean describes behavior that interferes with
the execution of a component by using a hook. A connec-
tor is used for deploying hooks within a specific context.
Although both of Archface and JAsCo are based on the
component-and-connector mechanism, the roles of compo-
nents and connectors in Archface are different from those in
JAsCo. In Archface, we do not have to distinguish an aspect
component from an ordinary component.

7. CONCLUSIONS
This paper proposed Archface that is not only an ADL

but also a programming-level interface mechanism.
Shaw, M. and Garlan, D. identified six properties that

an ADL should provide: composition, abstraction, reusabil-
ity, configuration, heterogeneity, and analysis [22]. Archface

satisfies these properties. Component interfaces can be com-
posed together by a connector interface. Architecture can
be abstracted using Archface that does not include imple-
mentation details. An interface defined in one architectural
design model can be reused in other models. Configuration
can be realized by connecting a set of component interfaces.
Archface supports heterogeneity because several kinds of ar-
chitecture types including OO-based collaboration, AO, and
MDSOC can be represented based on predicate coordination.
Analysis and verification can be performed by using a model
checker.

Archface facilitates architectural reuse, composition, evo-
lution, and verification as demonstrated in this paper. Arch-

face provides a contract place where design and code meet
together. Our main idea, predicate coordination, is very sim-
ple and we believe that the idea opens a new research direc-
tion discussing what is design and what is implementation.
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