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Abstract: The operational improvement of cross-docking centres in the literature involves job
scheduling, layout design and dock assignment. The mentioned research is mainly concerned
with makespan, number of tardy jobs or travel distance. However, these measures may not fully
represent the main advantages of cross-docking operations. Little has been done to optimize the
major performance measures of a cross-docking centre, which substantiates the main advan-
tages of cross-docking technology. In this paper, inventory holding cost, transportation cost and
backorder penalty cost are aggregated into total cost and a solution framework has been devel-
oped by integrating simulation, genetic algorithm (GA) and smart computing budget allocation
(SCBA) for a comprehensive total cost minimization problem. This problem has huge search
space even for medium-sized problem scenarios. To address this difficulty, the framework
employs simulation to estimate the total cost, GA to search for better design and SCBA to effi-
ciently allocate the simulation budget. Numerical experiments show that the proposed frame-
work operates effectively in cases of different problem scales.
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1 INTRODUCTION

Considered to be one of the most effective lean

logistics strategies, cross docking is known for the

great advantage of tremendous inventory cost

reduction without sacrificing the customer service

level. In addition, cost reduction in transportation

is another major incentive as economies in trans-

portation cost can be achieved by consolidation of

different products intended for the same destina-

tion to full truck loads [1]. Some industries, in

which logistics play a key role, have taken great

advantages from this strategy. One of the most

successful examples can be seen in the retail

giant, Walmart [2]. Other companies which have

benefited from using this strategy include express

mail/package delivery company, UPS [3], automo-

bile manufacturing leader, Toyota [4], and less than

truckload (LTL) logistic providers [5].

Abundant academic research has started to emerge

especially in recent years. However, the literature to

date mainly focuses on either operation scheduling or

design optimization of a cross-docking centre. Little

research has been done to optimize the major perfor-

mance measures of a cross-docking centre, which

demonstrates the main advantages of cross-docking

technology. The lack of optimization of comprehen-

sive performance measures might lead to misjudge-

ment of the impacts of cross docking. An optimal

trade-off among inventory cost, transportation cost

and customer service level serves as the motivation

to fill this research gap. The complex dynamics of the
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whole cross-docking system makes an analytical

study extremely hard, if not impossible. Discrete

event simulation is thus employed here to evaluate

the performance measures of such systems. Along

with high modelling flexibility, simulation brings a

cumbersome computational burden. Furthermore,

the huge solution search space could be another

disaster. To tackle these challenges, a solution frame-

work that integrates a genetic algorithm (GA) with the

smart computing budget allocation (SCBA) method is

proposed.

As more industries have adopted lean strategy now-

adays, they implement a ‘pull’ strategy to manage

their physical flows throughout the supply chain.

However, this trend has not been fully discussed in

related cross-docking research. To fill this gap, the

cross-docking centres (CDC) under study in this

paper are assumed to operate in a ‘pull’ strategy

which rarely appears in existing literature. The details

of the operational rules will be given in Section 3.

The rest of the paper is organized as follows.

Section 2 presents a brief literature review on both

cross docking and optimal computing budget alloca-

tion (OCBA). A description of the cross-docking

centre operation problem is presented in Section 3.

The solution framework which integrates simulation,

GA and SCBA is developed in Section 4. Section 5 pre-

sents extensive numerical tests to verify the efficiency

and effectiveness of the proposed method. Summary

and conclusions are provided in Section 6.

2 LITERATURE REVIEW

Studies on cross docking have been proposed from

different points of view for nearly two decades. They

can be categorized into four main subjects, namely

layout design of cross-docking centres, logistics net-

works design, inbound and outbound job scheduling,

and the impacts of cross docking on the supply chain

system performance. As comprehensive performance

optimization is one of the major contributions of this

research compared to the existing literature, atten-

tion will be paid to the performance measures and

optimization methodologies used in the publications

reviewed.

2.1 Layout design

This is also known as the truck dock assignment prob-

lem in the cross-docking environment. The labour

cost, which is estimated by worker travel distance, is

one of the main performance measures used in such a

problem. Gue [5] compared two different scheduling

policies for assigning incoming trailers to open docks

based on this performance measure. Bartholdi and

Gue [6] proposed a model to reduce labour cost by

balancing the worker travelling distances and worker

waiting time caused by congestions. Bartholdi and

Gue [7] conducted computational experiments with

respect to labour costs to determine the best shape

for cross docks of various sizes. Lim et al. [8] and Miao

et al. [9] formulated an integer programming model

to describe the truck dock assignment problem with

operational time and total capacity constraints. The

objective of their model was to minimize the total

cost, which comprises the operational cost and the

penalty cost, where the operational cost is similar to

the labour cost described above and the penalty cost

will be incurred for all the unfulfilled shipments.

2.2 Network design

This particular topic focuses on the logistics or supply

chain network design in which one or more cross-

docking centres are involved. Sung and Song [10]

and Sung and Yang [11] study a cross-docking

supply chain network design problem. The cross-

docking network consist of three phases including

origin, intermediate (CDC) and destination phase.

The setup cost of CDC and transportation cost

incurred by moving items between phases are mini-

mized by a Tabu search-based algorithm and branch-

and-price algorithm, respectively. The fixed costs to

open the CDC and costs to deliver products in a net-

work comprising of a central manufacturing plant,

multiple CDCs and retail stores were minimized by

Ross and Jayaraman [12] using simulated annealing

integrated with TABU search.

2.3 Job scheduling

Some studies treat the inbound and outbound job

scheduling problems as machine scheduling prob-

lems. Li et al. [13] proposed such a scheduling

model with time window constraints. The objective

of minimizing the penalty cost of job earliness and

tardiness was achieved by a genetic algorithm. Song

and Chen [14] studied a two-stage cross-docking

scheduling problem and minimized the makespan

using proposed heuristics. A special form of the

same problem in which only one machine exists in

each stage was solved by a branch-and-bound algo-

rithm in Chen et al. [15]. Boysen et al. [16] studied a

similar problem with just one inbound and outbound

dock. The inbound and outbound truck-scheduling

problem is divided into two sub-problems, namely

fix a particular inbound sequence and then find the

optimal outbound sequence. A more general problem

applied in the frozen food industry is presented by

Boysen [17] where zero-inventory is an essential
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prerequisite. Yu and Egbelu [18] keep makespan as

the objective although extending the problem with

more detailed issues. The product assignment from

inbound trucks to outbound trucks and the

sequences of the inbound and outbound trucks are

optimized simultaneously.

2.4 System performance

Little research has been done to optimize the major

performance measures of a cross-docking centre. The

impact of cross docking on retailers’ system-wide

inventory holding cost was examined by Waller

et al. [19] while the same customer service level is

kept in the retail stores.

As simulation optimization is employed as the

solution framework, a brief review of this methodol-

ogy is given below. A general framework can be

defined as

min
�2�

J ð�Þ � E ½Lð�; eÞ	 ð1Þ

where J(�) is the performance measure of the studied

system, L(�, e) is the sample performance, e represents

the stochastic effects in the system, � is a vector of

decision variables and � is the set of all feasible

solutions.

The above simulation optimization problem has

been extensively studied in recent decades. Several

review papers are available for this particular area

[20–23].

A relatively new approach, called optimal comput-

ing budget allocation (OCBA), is proposed and shown

to be timely efficient with higher accuracy by Chen

and Lee [24]. However, this method evaluates all fea-

sible solutions and allocates fixed number of addi-

tional simulation runs to these solutions step-by-

step based on the present performance results

obtained so far. As the alternative solution number

becomes really huge, this method is no longer prac-

tical. Thus, the key idea of allocating the simulation

budget more efficiently is integrated with meta-heur-

istics to tackle the problem. The essential of

meta-heuristics is to balance the trade-off between

intensification and diversification; herein accuracy

of the performance evaluations for different solutions

is added, which will lead to a more sophisticated con-

trol strategy.

This solution framework has been successfully

implemented to solve several real life problems

recently, such as adjusting nurses’ schedules in hos-

pital emergency departments to improve service

quality [25], improving robustness of the flight sched-

ule [26] and allocating aircraft spare parts [27]. In this

paper, a novel solution framework, which integrates

GA and SCBA method, is proposed to optimize the

operational control of the cross-docking centre

(CDC).

While the importance of the cross-docking distri-

bution has been recognized, little research has been

done for cross-docking performance optimization.

We present a GA-based simulation optimization

approach with embedded SCBA to optimizing the

cross-docking performance in a supply chain

network.

3 PROBLEM DESCRIPTION

The CDC may serve multiple types of customers with

multiple types of products. Let P¼ {1, 2, . . . , m}

denote the set of all product type indices. For any

subset of product K(P, we say an order is of type K

if it consists of one unit of each product in K and zero

units in PnK. Customer orders of type K arrive at the

system following a stationary Poisson process,

denoted as {AK(t), t� 0}, with rate lK. It is assumed

that each order’s type is independent of the other

orders’ types and of all other events. D¼ {1, 2, . . . , n}

is used to denote the set of all order types.

For each product i, let Di denote the family of sub-

sets of D that contains i. Then it is clear that the

demand process for product i is also a Poisson pro-

cess with rate:

li ¼
X

K2Di

lK ð2Þ

Upon the arrival of any customer order, the customer

order is transformed into several product orders

according to the subset of products this customer

order requires. As CDC carries no inventory ahead,

a replenishment order for a specific product type

will not be placed to the supplier until a certain

amount (order point, xi) of backorders for this prod-

uct type is accumulated. The unfilled order is back-

logged and is charged at a penalty cost rate of bK for

order type K. Sufficient transportation capacity, i.e.

an unlimited number of trucks, is assumed thus

once the suppliers receive the replenishment order,

the amount of products required will be delivered to

the CDC in a truck. The load volume of each truck is

considered and the maximum load number of each

product type is assumed to be xmax
i . The transporta-

tion cost consists of constant cost, Ci (for product i)

and variable cost related to the product amount.

As the variable cost corresponds with only total

replenish amount, it does not vary when different

order points are chosen, i.e. how many deliveries

have to be made, thus only constant transportation

cost is included in total cost. Orders are filled

when all the products that they require arrive, on
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a first-come-first-served basis. Figure 1 gives an illus-

tration of the operation. Different shapes, such as an

inverted triangle, circle and rhombus, represent dif-

ferent types of products. Each order of order type K1

requires a product of both types of inverted triangle

and circle. Each order of order type K2 requires a

product of both types of inverted triangle and

rhombus.

As the product demand rates, li, and lead-times, li,

may differ in product types, items filling one cus-

tomer order may not arrive simultaneously. The

items arriving earlier are stored in the CDC until all

the remaining items required arrive, and the stored

items make up the inventory. Inventory holding cost

rate is hi per item for product type i. Moreover, the

product unloading and loading time are assumed to

be constant and could be negligible. Thus, the order is

immediately satisfied once the trucks arrive at the

CDC. The notations are given in Appendix 1.

The objective of this problem is to determine the

order point for each product type to minimize the

average total cost that includes inventory holding

cost, transportation cost and backorder penalty

cost. The mathematical model for the problem can

be described as below.

MIN
xi�xmax

i
; 8i2P

Xm

i¼1

hiE ðIiÞ þ
Xm

i¼1

CiSi þ
X
K2D

bK E ðBK Þ ð3Þ

where E(Ii) and E(BK) in equation (3) are average

on-hand inventory level of product i and average

backorder level of order type K, respectively.

Unfortunately, no analytical solution is available for

the performance measures of such a complex system

and simulation is thus employed to estimate the

system performance that is being transformed into

average total cost. All the operation details and con-

straints are integrated in the simulation model.

4 A SOLUTION FRAMEWORK INTEGRATING
GA AND SCBA

The solution framework mainly constitutes of three

parts, which are simulation, GA and SCBA, respec-

tively. As no analytic solution for such a system is

available, simulation is employed to evaluate average

on-hand inventory level and average backorder level

in equation (3). However, as simulation can only eval-

uate the performances of given design alternatives, it

lacks the ability to explore more promising solutions

in the search space. Thus, a GA integrated with a

newly developed SCBA is proposed to tackle this

problem. GA has been shown to be efficient when

integrated with computing budget allocation [26,

27]. Generally, GA explores the unsearched space by

generating new solutions whereas SCBA allocates

more computing budget to the more promising solu-

tions. The work progress of the whole framework is

shown in Fig. 2.

4.1 Coding scheme

Each chromosome, which represents a set of order

points of all types of product, is represented as follows

X¼ (x1, x2, . . . , xm), where m is the number of product

type. Each gene in a chromosome, xi, represents the

order point of a specific product type i, i2P.

4.2 Initialization

The population size is chosen to be 100, which

is widely adopted in the literature and the genetic

algorithm starts the search by randomly generating

a population of candidate solutions. Each gene, xi, is

generated from an integer uniform distribution in the

interval of 1; xmax
i

� �
.

4.3 Chromosome evaluation

A computer program is developed to evaluate differ-

ent order point settings. The program will generate

the performance measures, E(Ii), Si and E(BK), and

calculate the average total cost which is then used

to calculate the fitness value for the setting.

4.4 Fitness function

A simple fitness function (equation (4)) is adopted.

The main shortcoming of this function will be over-

come by the child generation strategy, thus it is hired

Product 
backorder

Replenishment 
order 

Products Leadtimes   Customer 
orders 

K1

K2

Product type leadtime 

Customer order Replenishment order 

Fig. 1 Cross-docking centre operation

1178 Y Wu, M Dong, and D Yang

Proc. IMechE Vol. 225 Part B: J. Engineering Manufacture

 at PENNSYLVANIA STATE UNIV on March 4, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


for its simplicity. The lower the average total cost the

higher the fitness value.

fitnessðX Þ ¼
1

E ðTC Þ
ð4Þ

where E TCð Þ¼
Pm

i¼1 hiE Iið Þ þ
Pm

i¼1 CiSi þ
P

K2D bK�

E BKð Þ is the average total cost for setting X.

4.5 Parent selection

The Roulette wheel parent selection is used. The

chance of each chromosome being selected is directly

proportional to its fitness value.

4.6 Crossover operator

The string-of-change crossover, which is a modified

single point crossover, is used here. This operator will

pick the crossover point from all genes equally except

those points, which may result in no change between

parents and offspring. This will slow down the con-

vergence and diminish the searched settings.

4.7 Mutation operator

Mutation is randomly applied to each of the genes in

a new chromosome. If a gene is picked to be mutated,

its value will either go up or go down by 1 with equal

probability of 0.5. Two exceptions are if the value of

gene equals to 1, it will increase by 1 with probability

1, or the value of gene equals to xmax
i , it will decrease

by 1 with probability 1.

4.8 Formation of child population

After generating an offspring population, chromo-

somes from both offspring and parent population

will be ranked and the best 100 will be placed in the

child population, which will in turn be the parent

population for the next generation. By selecting the

best 100 chromosomes, the algorithm ensures that

the best members of the population will be presents

in the next generation. For some application exam-

ples, this approach might cause the problems of pre-

mature convergence. However, in this case, since the

evaluation of the chromosomes is performed through

simulation, the problem will be greatly mitigated

since the simulation generates estimations for the

performance evaluation instead of the exact values.

The premature convergence could be avoided due to

this randomness.

4.9 SCBA

The key idea of SCBA is to allocate more of the sim-

ulation budget on the critical designs rather than

waste it on non-critical designs. Chen et al. [15] first

implemented this idea by allocating several pilot sim-

ulation replications to all the alternative designs and

then gradually increased the computing budget,

which was allocated according to the current values

obtained from allocated computing budget. This

framework works perfectly in the case with relatively

small design space as the example used in Chen et al.

[15]. However, this strategy is not applicable when a

huge number of alternative designs need to be eval-

uated. Thus, a smart computing budget allocation

strategy is developed here to tackle such a problem.

The idea is still to allocate more simulation repli-

cations to potentially good designs, thus an elite

group, the members in which will receive more sim-

ulation replications, is proposed to keep the best sev-

eral results obtained so far. Since GA is employed as

the search technique, the optimal solution is not

Generate first 
generation (size=100)

Allocate N reg replications 
simulation budget to each 
chromosome in temporary 

offspring generation

Select best 100 chromosomes from 
the parent generation and the 

temporary offspring generation to 
form the offspring generation

Allocate Neli replications 
simulation budget to each 

chromosome in elite group

Is this stopping 
criterion reached?

Generate new  
elite group

Selection, crossover and 
mutation to form a temporary 

offspring generation

Allocate N reg replications 
simulation budget to each 

chromosome

End 

N

Y

Is this the first 
generation?

Y

N

Fig. 2 Flow chart of the solution framework

Cross-docking centre operation optimization using simulation-based genetic algorithm 1179

Proc. IMechE Vol. 225 Part B: J. Engineering Manufacture

 at PENNSYLVANIA STATE UNIV on March 4, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


expected to be found within the random first popu-

lation in the early stage, especially in cases with huge

search space. Therefore, the replication number for

the elite group increases a certain amount with gen-

eration. With more replications, the designs in the

elite group will have more accurate performance esti-

mations. Those new designs which were generated at

each iteration have to prove themselves by running

more replications of simulations in order to replace

the existing members in the elite group.

4.10 Termination rule

In order to illustrate the effectiveness and efficiency

of the proposed solution framework, the results from

the proposed framework will be compared to that

from the exhaustive method in the small size case

and to that from random search methods and a reg-

ular genetic algorithm in medium and large size

cases. To make different algorithms comparable, it

is of interest to see which algorithm offers the best

results when given the same number of simulation

replications. This means the computation times will

be roughly the same. Therefore, running out of total

replication number will be adopted as the termina-

tion rule for all the algorithms in this paper except the

exhaustive method. In other words, the algorithms

will stop when a maximum amount of time has

been spent.

4.11 GA integrated with SCBA

Step 0: Initialization: Randomly generate an initial

population of size Npop; set elite group Geli¼1,

assign total replication number Rtotal ¼ M (M

could be any positive integer, e.g. 50 000).

Step 1: Evaluation: Estimate the performance of each

design in the parent population by running

Rpop replications of simulation, set Rtotal¼

Rtotal�Npop * Rpop.

Step 2 : Fitness assignment: Assign a fitness value

using equation (4) to each of the designs in the

parent population.

Step 3: Initial elite group formation: Select top Neli

designs from the parent population according to

the estimations of their performance; set the cur-

rent total elite simulation replication number

TReli ¼ Rpop, set the performance threshold to be

the estimation of the worst design in the elite

group.

Step 4: Parent selection: Select a pair of parents using

the Roulette wheel parent selection method.

Step 5: Crossover: Perform string-of-change crossover

to generate a pair of offspring.

Step 6: Mutation: For each offspring, apply mutation

to the genes.

Step 7 : Checking: Check if the number of offspring

is equal to Npop. If there is not a sufficient

number of offspring, go to Step 4, else, proceed

to Step 8.

Step 8 : Evaluation: Estimate the performance of each

offspring by running Rpop replications of simula-

tion, set Rtotal¼Rtotal�Npop * Rpop.

Step 9 : Challenging elite group: Select all the offspring

(say the number is Ncha), whose estimated perfor-

mances are better than the elite performance

threshold, allocate TReli�Rpop replications of

simulation to each of these designs and if the esti-

mated performance is still better than the elite

performance threshold then replace the worst

design in elite group with the current new

design, Rtotal¼Rtotal�Ncha * (TReli�Rpop). Check

if TReli 5TRmax
eli (TRmax

eli is a predefined number

that the elite group should be replicated at last),

if so, allocate Reli replications of simulation to each

design in the new elite group and set TReli¼

TReliþReli and Rtotal¼Rtotal�Neli * Reli, then

update the elite performance threshold with the

estimated performance of the new worst design

in elite group.

Step 10 : Formation of child population: The newly

generated offspring and the parent population

are combined together and the best Npop are

then selected. These designs make up the child

population.

Step 11 : Termination: If Rtotal� 0, end the algorithm.

Otherwise, replace the parent population by the

child population and return to Step 4.

5 NUMERICAL EXPERIMENTS

The numerical results are presented in this section to

verify the efficiency of the proposed solution frame-

work by comparing it to exhaustive method in small

size case and to random search method and regular

genetic algorithm in medium and large size cases,

respectively. All the algorithms and simulation were

tested on an Intel Core 2 Duo computer with CPU

2.33 GHz and RAM 2048 MB. The following sub-sec-

tion describes the three benchmark methods.

5.1 Other approaches

5.1.1 Exhaustive method

This method evaluates all the feasible designs with

same amount of simulation replications and gener-

ates the optimal design based on the estimated per-

formance. As problem size grows, the alternative
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space will grow exponentially. Thus, this method is

only practical in very small cases.

5.1.2 Random search method

The random search method works as follows:

Step 0 : Randomly generate a feasible design

X0 ¼ x0
1 ; x0

2 ; . . . ; x0
m

� �
and evaluate this design

with R replications of simulation, set the current

design to be the best design and the minimum

total cost TCmin to be the estimated total cost

obtained from simulation.

Step 1: Generate new design: Choose xt
i from all the

order points with equal probability,

If xt
i ¼ 1; xtþ1

i ¼ xt
i þ 1;

If xt
i ¼ xmax

i ; xtþ1
i ¼ xt

i � 1;

If 15xt
i 5xmax

i ; xtþ1
i ¼

xt
i þ 1;

xt
i � 1;

	
with probability of 0:5:

Set xtþ1
j ¼ xt

j , where j2P, j 6¼ i.

Step 2: Evaluate new design: Evaluate the new design

with R replications of simulation, if the estimated

total cost TCt <TCmin, set TCmin ¼ TCt and the

best design to be Xt.

Step 3 : Check whether or not the termination condi-

tion is satisfied. If yes, end algorithm. Otherwise,

go to step 1.

5.1.3 Regular genetic algorithm

The regular genetic algorithm is the same as that

described in Section 4, except no SCBA is embedded,

which means each design will be allocated a prede-

fined amount of simulation replications.

5.2 Parameters setting

5.2.1 Problem parameters

This problem was studied in three different sizes:

small, medium and large sizes, respectively. The

numbers of product types and order types are given

in Table 1.

The detailed parameters, such as order arrival rate,

backorder cost rate, maximum load number, con-

stant transportation cost, replenish lead-time and

inventory holding cost rate, are presented in

Appendix 2.

5.2.2 Simulation parameters

The main parameters to be determined here were the

warm-up length and the total simulation length. In

the present study, the replication/deletion approach

was applied when generating simulation outputs for

the performance measures of each design. The order

waiting time and product inter-arrival time of ran-

domly chosen type were monitored in both small

and medium size cases. From Figs 3–5, it can be

seen that the system reached stability very fast; this

is because of the sufficient transportation capacity

assumption. Therefore, a relatively short warm-up

length (1 day) was chosen and the total simulation

length was fixed to be a week (7 days).

5.2.3 Solution framework parameters

The population size was set to be 100 (Npop¼ 100) and

the elite group size was set to be 20 (Neli ¼ 20). For

each design in newly generated population, Rpop ¼ 2

replications were assigned. Reli ¼ 2 replications of

simulation were assigned to each design in the elite

group every generation until TRmax
eli ¼ 50 replications

was reached. In all the other methods (exhaustive,

random search and regular GA), 50 replications were

assigned to each selected design. All the parameters

mentioned above were obtained through some trial

numerical experiments in which different levels of

parameters were tested and those parameters which

generate less overall total cost were chosen.

5.3 Numerical results

The solution framework was tested using different

cases of small, medium and large sizes, respectively.

In small size cases, the solution framework was com-

pared with the exhaustive method and the results are

listed in Tables 2 and 3. Deviations were the optimal

total cost value gaps between the exhaustive method

and the proposed solution framework (represented

by SCBA).

Dev ¼
Total costSCBA � Total costexhaustivej j

Total costexhaustive
� 100%

In medium and large size problems, the compari-

sons among the proposed solution framework,

random search method and regular GA are shown

in Figs 6 and 7. Total replications of 50 000 runs

were assigned in each method, thus the computa-

tion times for different methods were roughly

the same, which were about 3–4 h for the medium

Table 1 Problem scale parameters

Size Product type Order type

Small 4 3
Medium 40 40
Large 100 60
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size problem and 60 h for the large size problem.

It is quite obvious from Figs 6 and 7 that the pro-

posed method outperforms the other two methods

for its lower total cost and performance variance.

To show the better convergence of the proposed

solution framework, experiments with total

replication of 2 000 000 runs were carried out for the

medium size problem, the optimization process is

recorded in Fig. 8. Clearly, SCBA converges much

faster than the regular GA. Each instance of these

experiments took about 80 h.

0

1

2

3

4

5

6

7

8

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191 1261 1331 1401 1471 1541 1611

Fig. 4 Product inter-arrival time from 50 independent replications in small size case
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6

8

10

12

1 178 355 532 709 886 1063 1240 1417 1594 1771 1948 2125 2302 2479 2656 2833 3010 3187 3364 3541 3718 3895 4072

Fig. 3 Order delay time from 50 independent replications in small size case

0
0.2
0.4
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0.8

1
1.2
1.4

1.6
1.8

2

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511

Fig. 5 Order delay time from 50 independent replications in medium size case

Table 3 Small-size case 2

Method Exhaustive SCBA Dev

Unit time total cost 28.30 28.42 0.42%
30.87 9.08%
28.98 2.40%
30.24 6.86%
28.89 2.08%

Compute time 800 s 8 s

Table 2 Small-size case 1

Method Exhaustive SCBA Dev

Unit time total cost 26.22 27.86 6.25%
26.58 1.37%
26.36 0.53%
27.06 3.20%
27.75 5.84%

Compute time 700 s 8 s
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6 CONCLUSIONS

This investigation studied the performance optimiza-

tion of cross-docking centre operations, which is

widely recognized as an efficient technology with

great potential to reduce the inventory and transpor-

tation cost in distribution networks. The system is

modelled with a focus on the product order point

optimization, which plays a key part in the daily oper-

ations. Unfortunately, no exact method is available

for the performance evaluation for such complex

operations especially when there exists multiple

product types and order types. Thus, simulation is

employed to estimate the system performance from

which the total cost can be obtained. A novel solution

framework integrating simulation, genetic algorithm

(GA) and smart computing budget allocation (SCBA)

is proposed to search for the optimal order point for

each product type. Numerical results show that the

proposed solution framework works well in all cases

including small, medium and large size problems.

In the small size cases, the differences between the

results obtained from the proposed solution frame-

work and exhaustive method were within 10%; how-

ever, the new approach only takes about 1% of the

computation time that the exhaustive method

requires. In the medium and large size cases, the

framework also outperformed the regular genetic

algorithm and random search method when roughly

same amount of time was assigned to each method.

In a future study, instead of studying the total cost,

multiple performance measures, which may conflict

with each other will be treated separately. In that

case, a multi-objective optimization approach

should be integrated into the framework in this paper.
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APPENDIX 1

Notation

m number of product types

P set of all product indices

N number of order types

D set of all order types

lK arrival rate of order type K, K2D

bK backorder cost rate of order type K, K2D

BK backorder level of order type K, K2D

xmax
i maximum load number for product i, i2P

li demand rate for product i, i2P

Ci constant transportation cost of product i, i2P

li replenish lead-time for product i, i2P

hi inventory holding cost rate of product i. i2P

Ii on-hand inventory level of product i, i2P

Si replenish time rate of product i, i2P

Decision variable

xi order points of products i, i2P

APPENDIX 2

All the parameters were randomly generated with

practical use. All the order inter-arrival times and

replenishment lead-times were exponentially distrib-

uted. The mean values of the order inter-arrival times

were generated from an uniform distribution with an

interval [2, 4], the backorder cost rates were uniformly

generated from an interval [2, 3], constant transporta-

tion costs were uniformly generated from an interval

[15, 25], replenishment lead-times were uniformly

generated from an interval [1, 3], inventory holding

cost rates were uniformly generated from an interval

[0, 2], and the maximum load numbers were

Table A1 Product parameters for small-size case 1

Product type h C E[l] (h) xmax
i

1 1 20 2 10
2 1 20 2 10
3 1 20 2 10
4 1 20 2 10

Table A2 Order parameters for small-size case 1

Order type 1/l(h) b

1 2.5 2
2 4 2
3 2 2
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generated from a discrete uniform distribution with

an interval [6, 15]. The detailed parameters of three

scales are presented in Tables A1 to A9 (all the nota-

tions are consistent to those in Section 3).

The order-product matrix contains the information

about what product types a certain order type requires.

In Table A3 and A7, rows in the matrix represent pro-

duct types and columns represent order types. For

example, number 1 in row 3 and column 2 means an

item of product type 3 is required by each order type 2.

Small size case 2 has the same order parameters

and same order-product matrix as case 1. The pro-

duct parameters are listed in Table A4.

The order–product matrix for large size problem is

omitted for the sake of space.

Table A5 Product parameters for medium-size problem

Product type h C E[l] xmax
i Product type h C E[l] xmax

i

1 0.764 20.58 1.707 8 21 0.744 15.57 1.015 14
2 0.201 19.00 2.722 11 22 0.711 21.25 2.434 7
3 1.193 21.28 2.286 7 23 1.821 22.19 1.674 11
4 1.798 17.79 1.434 7 24 0.932 24.06 1.429 10
5 1.769 15.44 2.471 14 25 0.852 23.41 2.847 11
6 1.917 24.14 2.924 14 26 0.608 18.33 2.217 14
7 0.029 18.48 2.862 15 27 1.951 16.22 1.209 11
8 0.815 23.09 2.177 7 28 1.613 15.10 1.994 6
9 1.726 24.53 2.766 12 29 1.982 24.44 2.137 10

10 0.277 15.01 2.635 14 30 0.513 22.44 1.874 9
11 0.490 22.21 1.410 13 31 1.903 23.38 2.185 9
12 0.091 20.47 1.080 10 32 0.107 21.76 1.621 12
13 0.065 23.84 1.679 7 33 1.410 20.07 2.408 11
14 0.328 21.03 1.272 12 34 1.633 18.67 1.155 11
15 0.439 17.16 2.655 9 35 1.945 15.56 1.408 9
16 0.034 22.00 2.016 13 36 0.933 22.08 2.711 15
17 0.570 23.83 2.421 11 37 0.600 20.07 2.993 12
18 0.686 16.06 1.702 7 38 1.500 21.12 1.450 9
19 1.107 21.02 1.497 7 39 0.703 15.10 1.536 15
20 0.715 21.82 2.801 6 40 1.551 20.08 1.814 14

Table A3 Order-product matrix for small-size case 1

Order 1 Order 2 Order 3

Product 1 1 0 1
Product 2 1 1 0
Product 3 1 1 0
Product 4 0 1 1

Table A4 Product parameters for small-size case 2

Product type h C E[l] (h) xmax
i

1 3 20 2 8
2 2 20 2.5 10
3 1 20 2.5 15
4 1.5 20 3 12

Table A6 Order parameters for medium-size problem

Order type 1/l b Order type 1/l b

1 2.498 2.310 21 2.464 2.826
2 3.837 2.630 22 3.726 2.706
3 2.732 2.279 23 3.367 2.066
4 2.955 2.430 24 3.167 2.347
5 3.642 2.391 25 3.597 2.846
6 2.270 2.630 26 3.811 2.549
7 3.051 2.962 27 2.680 2.648
8 3.517 2.088 28 2.462 2.799
9 2.261 2.049 29 2.186 2.295

10 2.912 2.532 30 2.086 2.590
11 3.401 2.322 31 3.311 2.967
12 2.340 2.708 32 3.459 2.706
13 2.101 2.360 33 2.765 2.411
14 2.677 2.262 34 2.933 2.431
15 3.570 2.623 35 3.163 2.760
16 3.434 2.897 36 2.282 2.728
17 2.001 2.823 37 2.454 2.110
18 3.477 2.859 38 3.487 2.155
19 3.575 2.633 39 2.347 2.797
20 2.525 2.188 40 3.074 2.991
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Table A8 Product parameters for large-size problem

Product type h C E[l] xmax
i Product type h C E[l] xmax

i

1 1.348 18.00 2.089 12 51 1.409 23.15 1.811 6
2 1.687 21.74 1.647 9 52 0.552 16.71 2.254 10
3 1.033 21.61 1.933 9 53 1.931 21.52 1.784 11
4 0.355 20.53 2.323 8 54 1.286 18.18 2.797 14
5 1.944 17.87 2.040 9 55 1.996 17.40 1.409 6
6 0.620 19.50 1.341 6 56 0.792 19.76 2.227 6
7 0.950 20.74 1.728 10 57 0.861 24.71 1.984 6
8 1.826 22.22 1.746 6 58 0.564 22.42 2.559 13
9 1.774 16.50 1.019 11 59 0.896 20.52 2.873 14

10 0.670 19.58 1.628 12 60 1.062 20.76 2.093 9
11 1.374 21.21 2.278 14 61 1.620 16.87 2.100 7
12 1.262 22.84 2.616 8 62 0.162 21.65 1.599 12
13 0.069 16.06 2.585 8 63 0.732 22.15 1.977 12
14 1.806 24.16 1.187 11 64 0.910 18.61 2.923 7
15 0.402 15.44 2.476 9 65 0.294 22.98 2.734 13
16 1.355 23.24 2.463 9 66 0.627 20.88 1.677 12
17 0.799 24.67 2.525 14 67 0.439 22.25 1.765 9
18 0.990 21.65 2.530 10 68 0.783 23.42 1.625 6
19 1.549 24.72 2.171 9 69 0.792 17.54 2.052 13
20 1.373 24.90 2.587 14 70 1.495 17.03 2.615 12
21 1.713 16.82 1.389 8 71 0.635 23.89 2.795 9
22 1.292 16.82 1.641 14 72 0.155 19.61 1.445 8
23 1.634 15.16 1.497 10 73 1.702 21.65 2.534 13
24 1.750 23.37 1.328 10 74 0.958 18.83 1.315 11

(continued)

Table A7 Order-product matrix for medium-size problem

0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0
1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1
1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0
1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0
0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0
1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0
0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0
1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0
1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0
1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0
0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1
1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1
0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1
0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1
0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0
0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0
1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0
0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1
1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0
1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0
0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1
0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0
0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0
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Table A8 Continued

Product type h C E[l] xmax
i Product type h C E[l] xmax

i

25 1.842 19.29 2.940 14 75 1.859 19.77 2.337 12
26 1.647 24.15 1.888 11 76 1.068 17.35 1.647 14
27 0.786 23.73 1.388 12 77 0.925 24.77 2.187 11
28 0.321 21.36 1.759 9 78 0.227 22.80 1.365 7
29 0.017 18.01 1.319 12 79 0.732 20.51 1.809 12
30 1.538 18.66 1.766 10 80 1.896 19.15 2.428 6
31 1.619 22.20 2.606 8 81 1.637 21.42 2.045 12
32 1.045 18.20 1.869 7 82 1.900 24.47 1.781 9
33 1.971 16.02 2.752 11 83 0.107 17.35 2.797 11
34 1.947 23.03 1.031 7 84 1.142 22.88 2.136 11
35 1.646 21.83 1.576 14 85 0.138 18.12 2.771 10
36 1.001 17.06 2.291 10 86 0.642 18.75 2.463 9
37 0.586 18.06 2.601 6 87 0.272 17.15 2.937 6
38 0.861 15.37 2.797 9 88 0.082 18.09 2.848 14
39 0.003 16.55 2.356 13 89 1.171 20.88 2.165 14
40 0.490 16.60 1.654 9 90 1.501 18.70 2.917 13
41 0.846 21.85 1.576 8 91 1.265 22.49 2.001 6
42 0.667 16.37 2.149 6 92 0.075 16.92 1.378 7
43 0.523 17.50 1.046 11 93 1.252 18.62 2.393 12
44 0.045 18.54 2.601 9 94 0.156 16.55 1.811 10
45 0.059 21.62 1.922 12 95 1.361 24.69 1.481 10
46 1.727 20.20 2.837 8 96 1.340 16.32 1.773 11
47 0.246 16.79 1.951 9 97 1.583 22.73 2.758 6
48 1.158 17.81 2.549 11 98 0.429 16.24 1.921 9
49 0.915 23.96 1.386 9 99 1.806 22.52 1.991 7
50 1.469 18.00 2.616 11 100 1.017 23.15 2.352 7

Table A9 Order parameters for large-size problem

Order type 1/l b Order type 1/l b

1 2.772 2.364 31 2.033 2.374
2 2.327 2.390 32 2.289 2.622
3 2.349 2.187 33 3.537 2.936
4 3.791 2.758 34 2.073 2.483
5 3.227 2.896 35 3.644 2.868
6 3.758 2.222 36 2.339 2.659
7 2.278 2.663 37 2.191 2.876
8 3.497 2.664 38 3.326 2.679
9 3.151 2.448 39 3.351 2.736
10 2.303 2.948 40 3.478 2.190
11 3.369 2.742 41 2.019 2.398
12 3.018 2.432 42 2.054 2.214
13 3.290 2.802 43 2.710 2.481
14 2.541 2.890 44 2.251 2.921
15 2.434 2.977 45 2.732 2.228
16 3.276 2.350 46 2.064 2.885
17 3.803 2.758 47 2.465 2.302
18 2.198 2.151 48 2.905 2.018
19 2.666 2.021 49 3.153 2.093
20 2.560 2.070 50 3.224 2.335
21 3.215 2.028 51 3.024 2.292
22 2.555 2.088 52 3.220 2.620
23 2.683 2.839 53 3.945 2.809
24 2.660 2.095 54 2.514 2.917
25 2.238 2.408 55 3.517 2.485
26 2.211 2.907 56 2.563 2.837
27 3.466 2.543 57 3.723 2.908
28 3.281 2.404 58 2.958 2.935
29 2.794 2.524 59 3.281 2.765
30 3.280 2.544 60 2.700 2.144
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