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Abstract— Several time delay estimates have been reported Here we present a methodology to estimate time delay
for the quasar Q0957+561. They come from distinct datausing several data sets from the same source. In particular
sets and published separately. This paper presents a methode study data sets from the quasar Q0957+561. As we said
ology to estimate a single time delay given several databove, each data set may give you a distinct time delay
sets by using multi-objective optimisation. We use Generastimation, so we do multi-objective optimisation withl hil
Regression Neural Networks (GRNN) to estimate the timelimbing search. This allows us to have a time delay agree-
delay, which is one of the most accurate time delay estiment given several data sets. The idea of multi-objective
mators — and faster. For the time delay agreement, we useptimisation is that there is not only a single solution,nthe
hill-climbing search. We found that the best agreement fothere is a set of solutions [10]. We found that the best time
the time delay on Q0957+561 & = 420 days. delay isA = 420 days for the Q0957+561.

According to the best of our knowledge, this is the first
Keywords: Neural networks and applications, Heuristic searchingapproach to deal with this problem in time series via multi-

methods, Applications: time series in astronomy objective optimisation. In practice, astronomers estinthe
time delay separately for each pair of time series and by hand
1. Introduction they study the time delay agreement for the same quasar.

The reminder of the paper is orginised as follows: the
Since it was predicted that the Hubble parameter can beext section describes the data sets used in this research.
estimated through time delays on gravitational lenses [1]in §3, we describe the proposed methodology. It follows
many observation campaigns have been lunch since then [2he experiments and results section, and finally it comes the
[3], [4], [5], [6], and new projects for ambitious surveykdi  conclusions and future work.
Large Synoptic Survey Telescope (LSST) and the SuperNova
Acceleration Probe (SNAP) devoted to study dark matter ar2. Data sets

in. dgvelopment. Moreover, current surveys like The Sloan e go study six different data sets from the same quasar
Digital Sky Survey (SDSS) and Sloan Lens ACS (SLACS)q0957+561. The details are in Table 1 and the plots in Fig. 1.
are generating a tremendous amount of large monitoringg, DS1, The whole series was provided by R. Schild [11],
data sets. The above surveys are not useful only to eStimaElﬁivate communication. The column labelledcorresponds
the Hubble's parameter, because they are also important {g the amount of observations per data set. Through the third
study lensed supernovae (SNe) [7]. Therefore, time delayo|ymn, we specify the kind of data, optical o radio, and the
estimations become a big issue to study dark matter anfine means the filter and the frequency used to obtain such
microlensing. data sets. The Q0957+561 is a two images quasar, so there
So far methods to estimate time delays have been used ejther an offset or a ratio between the two components:

along a monitoring campaign devoted to a single quasar [2Jmage-A and image-B, which correspond to optical and radio
[3]. However, it is important to have a methodology thatgata respectively.

allows to estimate a time delay if one has several data sets

coming from different surveys. In particular, it is well kmo 3, M ethodol ogy

that gblve(r;_fzfi datafset you cr?n zsﬂmate a tlme_fd(:]Iay which Assume that you have several data sets for the same

Prq;?/] tr?e Isaer:]eemsorlj)rr:earl]to:setrhe aégsze?ore\:ﬁg 'mésfysgjodr;:a‘uasar, which are obtained through a monitoring campaign
' _manually or automatically (e.g. SNAP, LSST, SDSS), we

quasar Q0957+561 [2], [3], where a controversy started '?ienote them as:

the 90’s and apparently stopped in 1997 with the work o '

Kundic et al. [2]. However, the definite time delay is based

on a single data set (g-band). After that, more time delay

estimates have been published for this quasar, e.g. see [4fhereN is the number of data sets, aiticontains all data

[5], 8], [9]. setsd;. For each data sel;, we have a time delay estimation

di i=1,2,..,N (1)



Table 1: Data sets: Q0957+561

Id n Data Type Ratio/Offset Monitoring Range Ref
DS1 1232 optical r-band 0.05 16/11/1979 — 4/7/1998  [11]
DS2 422 optical r-band 0.076 2/6/1992 — 8/4/1997 [5]
DS3 100 optical r-band 0.21 3/12/1994 — 6/7/1996 [2]
DsS4 97 optical g-band 0.117 3/12/1994 — 6/7/1996 [2]
DS5 143 radio 6cm 1/1.43 23/6/1979 — 6-0Oct-1997 [3]
DS6 58 radio  4cm 1/1.44 4/10/1990 — 22/9/1997  [3]

QU957+561 at r-band (Schild) n=

Q9574561 at r-band (Ovaldsen) n=422
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Fig. 1. Data sets: Q0957+561. Image-A on DS1 is shifted umagdsfor clarity; image-A of DS2 was shifted up 0.25mag;
for DS4, the shift up is 0.05mag. For more details on thesa dets see Table 1.

A; and also a set of parametefs. The size of the set of

Algorithm 1: Initialization (D)

parameters’; depend on the method used to estimate thé for eachd; € D

time delay. The best fitting error associated to edghis

denoted bye;.

{

The first step is the initialisation of all time delays)
and parameters involveR?, see Algorithm 1.
The next step is obtaining the set of solutions, see Algo-

rithm 2.

}

Read file ford; ;

EstimateA?, e? and P? ;

What really the Algorithm 2 does, it is to find a set of
solutions rather than a single solution. In other words, weooking for the best fitting given a time deldy and two time

are performing multi-objective optimisation.

series (image-A and image-B for Q0957+561). This works
On one hand, the time delay estimation methods aréor a single data set, and this is one objective In Algorithm



Algorithm 2: Find set of solutionsp, A?, €2, P?)

I~ MAXG is the # of iterations to optimse E[A—A] */
€ — Ele] ;
PP
g1,
plot A, € ;
while E[A — A;] > 0 and € > 0 and g <MAXG
{
for eachd; € D
{
PerturbP; to obtain P, :
Get A; with P, ;
/= Hi 1l Cinbing search, optinise E[A— A */
if E[A—A;] > E[A—-A)]
{ ~
i — By
Ay — zz )
}
Yoo
plot E[A — Aj], € ;
g—g+1;
}
2, we refer to the best fitting as;, wheree = Ele;] = in the literature, GRNN method mixes the two images into

1/N va e;. SO we assume that; is calculated when the a single one given a trial time delay, and when the best
best time delayA; is estimated. Most of the time delay fitting e is reached the best time delay comes up (see [14]).
methods start with a set of suggested time delays, then thhe only parameter to estimate with GRNN method is the
best time delay is found when the fitting erkgris minimal.  spread, which is the width of the basis functiongGaussian

On the other hand, here we want that all time delaysfunctions. Thereforep;, = w;,.
for each data setl;, converge to a single time delay. In practice, EA-M-CV with a population of 300 individu-
Remember that the theory predicts that the time delay odils and 150 generations was used to estimate a time delay on
the same gravitational lens must be the same, regardless thS4 (see §2. Since EA-M-CV is stochastic, it is necessary
observation methodology (e.g. optical or radio telescppesto run several realisations, and 10 realisations takestabou
Then, the other objective is to get the minima]A — A;], 3 hours (Matlab program). GRNN takes only 20 minutes
whereE[A — A;] = 1/NYN (A - A;) andA = E[A;] =  (Matlab program), and GRNN with a C program takes only
1/N Zf.v A one second. All these experiments with the same data set

Finally, the Algorithm 2 ends when eitheris zero or (DS4) and running on the same machine (MacBook Pro,
E[A — A;] is zero. Otherwise, Algorithm 2 stops when the 2.4Ghz, Intel Core 2 Duo, 4Gb RAM, MacOS-X ver. 10.5.6).
maximum number of iterations (MAXG) has been reach.  Consequently, all experiments to test the methodology in

. 83 are performed with GRNN (C program). The results after

4. EXpeflmentS and Results performing the Algorithm 1 on the data sets in Table 1 are

We have two accurate methods to estimate time delays: §hown in Table 2. We test in the range of 5 to 8 with
EA-M-CV method is an evolutionary algorithm with mixed increments of 0.1 units, and trial time delays in the range
representation (integer and real numbers), and a objectivaf 400 to 449 with unitary increments. For perturbifigto
function based on kernel formulation and cross-validatiorobtainP;, in Algorithm 2, we generate random numbers with
[12]. This method models a single underlying function thata Gaussian distribution, zero mean and standard deviaion s
generates the two images plus the delsybetween them. to 5.
i) GRNN method, which is based on radial basis functions The results after 100 iterations (MAXG=100) are in Table
(RBF) from neural networks theory [13]. As many methods3. The total elapsed time was 4421 seconds (1 hour, 13



Table 2: Time Delays after initialisation

DS AU e P, =w;

1 428 8.510292e-04 7.3

2 427 2.491830e-04 7.45

3 426 2.112661e-04 7.7

4 420 3.081128e-04 7.1

5 449 9.356649e-02 6.5

6 402 8.736157e-02 8.0

A=42533 ©=003 E[A—A]=090

Table 3: Final Time Delays after 100 iterations

DS AV e P, = w;
T 42 2.666853e-04  0.84
2 424 1.514531e-04  1.91
3 420 1.052118e-04  2.80
4 420 3.081128e-04  7.10
5 419 4.397565e-03  0.25
6 416 1.792195e-03  0.66
A=42017 e=117TE-3 E[A-A]=15

5. Conclusions and Future Wor k

The GRNN method is an accurate and fast method for
time delay estimation. The EA-M-CV is robust time delay
estimation but it cannot manage to analyse DS1 because the
data set is large (more than one thousand observations).

Most of the data sets converge or are close to the time
delay of 420 days. The only data set that underestimate this
time delay is DS6. In Fig. 3, we can see that in the curves
showing where is the best time delay. In Fig 3a, when
is low, several time delay are feasible: 400, 416 and 420
days because the curve is sharp. However, at the initigisat
stage,A is 402 withw = 8 (see Fig. 3c). Now some value
in between, that is, whew = 6.5 we can see that there is
some feature af\ = 420, that is, the agreed time delay for
all other data sets (see Fig. 3b).

The set of solutions in Fig. 2 may change since the
perturbing method used in the experiments is stochastic (se
Algorithm 2). We did several simulations and most of them
converge to the solution shown in Fig. 2.

As part of the future work, it is desirable to compare

minutes). The best time delay by using this methodology i$he performance of this methodology with a evolutionary-

A = 420 days.

based methodology, that is, evolutionary computation (EC)

The set of solutions are depicted in Fig. 2. The firstin theory, EC is a global optimisation algorithm that may

solution, during initialisation stage, is Wh@[z — A =
9.0, on the right. The best solution is WhéHA —A;] = 1.5,

find a better set of solutions.
Another idea is to fix the initialA? into a single time

the best time delay agreement. Note that in Fig. 2, followingi€lay A” (say the mean) and then plug it back into the

the initialisation stage, at the right, the following sdaduis
are getting closer to the best solution in termsf — A,

but the fitting error is increasing. This is the tradeoff inltiau
objective optimisation.
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Fig. 2: Set of solutions, starting from the right-hand side t
the left-hand side.

variable representing the time delay estimation into the
model, regardless the time delay estimation method. Then,
for each data set obtain the log likelihood. The best time
delay it may come with the sum of all likelihoods.
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