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Abstract— Several time delay estimates have been reported
for the quasar Q0957+561. They come from distinct data
sets and published separately. This paper presents a method-
ology to estimate a single time delay given several data
sets by using multi-objective optimisation. We use General
Regression Neural Networks (GRNN) to estimate the time
delay, which is one of the most accurate time delay esti-
mators – and faster. For the time delay agreement, we use
hill-climbing search. We found that the best agreement for
the time delay on Q0957+561 is∆ = 420 days.

Keywords: Neural networks and applications, Heuristic searching
methods, Applications: time series in astronomy

1. Introduction
Since it was predicted that the Hubble parameter can be

estimated through time delays on gravitational lenses [1],
many observation campaigns have been lunch since then [2],
[3], [4], [5], [6], and new projects for ambitious surveys like
Large Synoptic Survey Telescope (LSST) and the SuperNova
Acceleration Probe (SNAP) devoted to study dark matter are
in development. Moreover, current surveys like The Sloan
Digital Sky Survey (SDSS) and Sloan Lens ACS (SLACS)
are generating a tremendous amount of large monitoring
data sets. The above surveys are not useful only to estimate
the Hubble’s parameter, because they are also important to
study lensed supernovae (SNe) [7]. Therefore, time delay
estimations become a big issue to study dark matter and
microlensing.

So far methods to estimate time delays have been used
along a monitoring campaign devoted to a single quasar [2],
[3]. However, it is important to have a methodology that
allows to estimate a time delay if one has several data sets
coming from different surveys. In particular, it is well know
that given a data set you can estimate a time delay which
may be different from another data set, even if they come
from the same source. It is the case for the most studied
quasar Q0957+561 [2], [3], where a controversy started in
the 90’s and apparently stopped in 1997 with the work of
Kundic et al. [2]. However, the definite time delay is based
on a single data set (g-band). After that, more time delay
estimates have been published for this quasar, e.g. see [4],
[5], [8], [9].

Here we present a methodology to estimate time delay
using several data sets from the same source. In particular
we study data sets from the quasar Q0957+561. As we said
above, each data set may give you a distinct time delay
estimation, so we do multi-objective optimisation with hill
climbing search. This allows us to have a time delay agree-
ment given several data sets. The idea of multi-objective
optimisation is that there is not only a single solution, then
there is a set of solutions [10]. We found that the best time
delay is∆ = 420 days for the Q0957+561.

According to the best of our knowledge, this is the first
approach to deal with this problem in time series via multi-
objective optimisation. In practice, astronomers estimate the
time delay separately for each pair of time series and by hand
they study the time delay agreement for the same quasar.

The reminder of the paper is orginised as follows: the
next section describes the data sets used in this research.
In §3, we describe the proposed methodology. It follows
the experiments and results section, and finally it comes the
conclusions and future work.

2. Data sets
We do study six different data sets from the same quasar

Q0957+561. The details are in Table 1 and the plots in Fig. 1.
For DS1, The whole series was provided by R. Schild [11],
private communication. The column labelledn corresponds
to the amount of observations per data set. Through the third
column, we specify the kind of data, optical o radio, and the
Type means the filter and the frequency used to obtain such
data sets. The Q0957+561 is a two images quasar, so there
is either an offset or a ratio between the two components:
image-A and image-B, which correspond to optical and radio
data respectively.

3. Methodology
Assume that you have several data sets for the same

quasar, which are obtained through a monitoring campaign
manually or automatically (e.g. SNAP, LSST, SDSS), we
denote them as:

di i = 1, 2, ..., N (1)

whereN is the number of data sets, andD contains all data
setsdi. For each data setdi, we have a time delay estimation



Table 1: Data sets: Q0957+561
Id n Data Type Ratio/Offset Monitoring Range Ref
DS1 1232 optical r-band 0.05 16/11/1979 – 4/7/1998 [11]
DS2 422 optical r-band 0.076 2/6/1992 – 8/4/1997 [5]
DS3 100 optical r-band 0.21 3/12/1994 – 6/7/1996 [2]
DS4 97 optical g-band 0.117 3/12/1994 – 6/7/1996 [2]
DS5 143 radio 6cm 1/1.43 23/6/1979 – 6-Oct-1997 [3]
DS6 58 radio 4cm 1/1.44 4/10/1990 – 22/9/1997 [3]
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Fig. 1: Data sets: Q0957+561. Image-A on DS1 is shifted up 0.6mag for clarity; image-A of DS2 was shifted up 0.25mag;
for DS4, the shift up is 0.05mag. For more details on these data sets see Table 1.

∆i and also a set of parametersPi. The size of the set of
parametersPi depend on the method used to estimate the
time delay. The best fitting error associated to each∆i is
denoted byei.

The first step is the initialisation of all time delays∆0

i

and parameters involvedP 0

i
, see Algorithm 1.

The next step is obtaining the set of solutions, see Algo-
rithm 2.

What really the Algorithm 2 does, it is to find a set of
solutions rather than a single solution. In other words, we
are performing multi-objective optimisation.

On one hand, the time delay estimation methods are

Algorithm 1: Initialization (D)
for eachdi ∈ D
{

Read file fordi ;
Estimate∆0

i
, e0

i
andP 0

i
;

}

looking for the best fitting given a time delay∆ and two time
series (image-A and image-B for Q0957+561). This works
for a single data set, and this is one objective In Algorithm



Algorithm 2: Find set of solutions (D, ∆0

i
, e0

i
, P 0

i
)

/* MAXG is the # of iterations to optimise E[∆−∆i] */
∆← E[∆0

i
] ;

e← E[e0

i
] ;

∆i ← ∆0

i
;

Pi ← P 0

i
;

g ← 1 ;
plot ∆, e ;
while E[∆−∆i] > 0 and e > 0 and g <MAXG
{

for eachdi ∈ D
{

PerturbPi to obtainP̃i ;
Get ∆̃i with P̃i ;
/* Hill Climbing search, optimise E[∆−∆i] */

if E[∆−∆i] > E[∆− ∆̃i]
{

Pi ← P̃i ;
∆i ← ∆̃i ;
∆← E[∆i] ;

}
}
plot E[∆−∆i], e ;
g ← g + 1 ;

}

2, we refer to the best fitting asei, wheree = E[ei] =
1/N

∑
N

i
ei. So we assume thatei is calculated when the

best time delay∆i is estimated. Most of the time delay
methods start with a set of suggested time delays, then the
best time delay is found when the fitting errorei is minimal.

On the other hand, here we want that all time delays,
for each data setdi, converge to a single time delay.
Remember that the theory predicts that the time delay of
the same gravitational lens must be the same, regardless the
observation methodology (e.g. optical or radio telescopes).
Then, the other objective is to get the minimalE[∆−∆i],
whereE[∆−∆i] = 1/N

∑N

i
(∆−∆i) and∆ = E[∆i] =

1/N
∑

N

i
∆i.

Finally, the Algorithm 2 ends when eithere is zero or
E[∆−∆i] is zero. Otherwise, Algorithm 2 stops when the
maximum number of iterations (MAXG) has been reach.

4. Experiments and Results
We have two accurate methods to estimate time delays: i)

EA-M-CV method is an evolutionary algorithm with mixed
representation (integer and real numbers), and a objective
function based on kernel formulation and cross-validation
[12]. This method models a single underlying function that
generates the two images plus the delay∆ between them.
ii) GRNN method, which is based on radial basis functions
(RBF) from neural networks theory [13]. As many methods

in the literature, GRNN method mixes the two images into
a single one given a trial time delay∆, and when the best
fitting e is reached the best time delay comes up (see [14]).
The only parameter to estimate with GRNN method is the
spread, which is the width of the basis functionsω, Gaussian
functions. Therefore,Pi = ωi.

In practice, EA-M-CV with a population of 300 individu-
als and 150 generations was used to estimate a time delay on
DS4 (see §2. Since EA-M-CV is stochastic, it is necessary
to run several realisations, and 10 realisations takes about
3 hours (Matlab program). GRNN takes only 20 minutes
(Matlab program), and GRNN with a C program takes only
one second. All these experiments with the same data set
(DS4) and running on the same machine (MacBook Pro,
2.4Ghz, Intel Core 2 Duo, 4Gb RAM, MacOS-X ver. 10.5.6).

Consequently, all experiments to test the methodology in
§3 are performed with GRNN (C program). The results after
performing the Algorithm 1 on the data sets in Table 1 are
shown in Table 2. We testω in the range of 5 to 8 with
increments of 0.1 units, and trial time delays in the range
of 400 to 449 with unitary increments. For perturbingPi to
obtainP̃i, in Algorithm 2, we generate random numbers with
a Gaussian distribution, zero mean and standard deviation set
to 5.

The results after 100 iterations (MAXG=100) are in Table
3. The total elapsed time was 4421 seconds (1 hour, 13



Table 2: Time Delays after initialisation
DS ∆0 e Pi = ωi

1 428 8.510292e-04 7.3
2 427 2.491830e-04 7.45
3 426 2.112661e-04 7.7
4 420 3.081128e-04 7.1
5 449 9.356649e-02 6.5
6 402 8.736157e-02 8.0

∆ = 425.33 e = 0.03 E[∆ − ∆i] = 9.0

Table 3: Final Time Delays after 100 iterations
DS ∆0

e Pi = ωi

1 422 2.666853e-04 0.84
2 424 1.514531e-04 1.91
3 420 1.052118e-04 2.80
4 420 3.081128e-04 7.10
5 419 4.397565e-03 0.25
6 416 1.792195e-03 0.66

∆ = 420.17 e = 1.17E − 3 E[∆ − ∆i] = 1.5

minutes). The best time delay by using this methodology is
∆ = 420 days.

The set of solutions are depicted in Fig. 2. The first
solution, during initialisation stage, is whenE[∆ − ∆i] =
9.0, on the right. The best solution is whenE[∆−∆i] = 1.5,
the best time delay agreement. Note that in Fig. 2, following
the initialisation stage, at the right, the following solutions
are getting closer to the best solution in terms ofE[∆−∆i],
but the fitting error is increasing. This is the tradeoff in multi-
objective optimisation.
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Fig. 2: Set of solutions, starting from the right-hand side to
the left-hand side.

5. Conclusions and Future Work
The GRNN method is an accurate and fast method for

time delay estimation. The EA-M-CV is robust time delay
estimation but it cannot manage to analyse DS1 because the
data set is large (more than one thousand observations).

Most of the data sets converge or are close to the time
delay of 420 days. The only data set that underestimate this
time delay is DS6. In Fig. 3, we can see that in the curves
showing where is the best time delay. In Fig 3a, whenω
is low, several time delay are feasible: 400, 416 and 420
days because the curve is sharp. However, at the initialisation
stage,∆ is 402 withω = 8 (see Fig. 3c). Now some value
in between, that is, whenω = 6.5 we can see that there is
some feature at∆ = 420, that is, the agreed time delay for
all other data sets (see Fig. 3b).

The set of solutions in Fig. 2 may change since the
perturbing method used in the experiments is stochastic (see
Algorithm 2). We did several simulations and most of them
converge to the solution shown in Fig. 2.

As part of the future work, it is desirable to compare
the performance of this methodology with a evolutionary-
based methodology, that is, evolutionary computation (EC).
In theory, EC is a global optimisation algorithm that may
find a better set of solutions.

Another idea is to fix the initial∆0

i
into a single time

delay ∆0 (say the mean) and then plug it back into the
variable representing the time delay estimation into the
model, regardless the time delay estimation method. Then,
for each data set obtain the log likelihood. The best time
delay it may come with the sum of all likelihoods.
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