
A High-Level Cellular Programming Model for

Massively Parallel Processing

Giandomenico Spezzano and Domenico Talia

ISI-CNR
 c/o DEIS, Università della Calabria

87036 Rende (CS), Italy
E-mail : {spezzano, talia}@si.deis.unical.it

Abstract
Cellular automata are used for designing high-

performance applications in many areas. This paper
describes CARPET, a high-level programming language
based on the cellular automata model. CARPET is a
programming language designed to support the
development of parallel high performance software. It
exploits the computing power of a highly parallel
computer releasing a user from using explicit parallel
constructs. A CARPET implementation has been used for
programming cellular algorithms in the CAMEL parallel
environment. By CARPET a user might write programs to
describe the actions of thousands of simple active agents
interacting locally, then the CAMEL environment allows a
user to observe the global complex evolution that arises
from their parallel execution and their local interactions.

1. Introduction

A model of parallel computation represents an abstract
machine designed to separate the concerns of program
development from those of effective parallel execution. In
fact, a model acts as a stable target for the software
development process. Software developers can assume the
existence of a stable abstract machine, so they can design
software for it, without being concerned about architecture
issues and developments. At the same time, a model
represents a clear starting point for the implementation
effort (design environment, compiler, run-time system)
directed at each parallel architecture [9].

Models exist at different levels of abstraction.
However, a parallel computation model, to be useful,
should mainly be easy to program, expressive, architecture
independent and eff iciently implementable. These
requirements are quite demanding and some of them are in
tension with each others. For this reason very often people

prefer to define low-level models that are eff iciently
implementable but make it hard to design and implement
parallel software. To solve this problem it is necessary to
find the best trade-off between expressiveness and
eff iciency defining models that are both at high level and
might be implemented efficiently.

Today available parallel computing systems can be
exploited to eff iciently support applications in several
application areas. However, the lack of eff iciently
implemented high-level languages, tools, and development
environments does not allow to program parallel
algorithms that are portable, efficient and expressive.

According to the Skilli corn’s classification [8] the
restricted-computation structures represent one of the
most important models of parallel processing. The interest
for this model is due to the possibilit y to restrict the form
of computations so as to restrict communication volume
achieving high performance. This allows to offer a user a
structured model of parallel programming and improve the
performance of the parallel algorithms reducing the
overheads due to the communication latency. Further,
tools can be designed to estimate the performance of
various constructs of a high-level language on a specific
parallel architecture.

Cellular processing languages based on the cellular
automata model [11] represent a significant example of
restricted-computation models that are used to design
parallel computation for a large number of applications in
biology, physics, geophysics, chemistry, economics,
artificial life, and engineering.

A cellular automaton consists of one-dimensional or
multi -dimensional lattice of cells, each of which is
connected to a finite neighborhood of cells which are
nearby in the lattice. Each cell i n the regular spatial lattice
can take any of a finite number of discrete state values.
Time is discrete, as well , and at each time step all the cells
in the lattice are updated by means of a local rule called
transition function, which determines the cell ’s next state

based upon the states of its neighbors. That is, the state of
a cell at a given time depends only on its own state in the
previous time step and the states of its nearby neighbors at
the previous time step.

Different neighborhoods can be defined for the cells.
The most common neighborhoods in the two-dimensional
case are the von Neumann neighborhood consisting of the
North, South, East, West neighbors and the Moore
neighborhood composed of the 8 nearest neighbor cells. In
the three dimensional case up to 26 neighbors can be taken
in consideration. The states of each cell composing an
automaton are updated synchronously in parallel. The
global behavior of the system is determined by the
evolution of the states of all cells as a result of multiple
interactions.

In our approach a parallel cellular algorithm is
composed of all the transition functions of cells that
compose the lattice. Each transition function generally
contains a same local rule, but it is also possible to define
some cells with different state transition functions
(inhomogeneous cellular automata). Differently from early
cellular approaches where cell state is defined as a single
or a set of bits, and for extending the range of applications
to be programmed by cellular algorithms, we define the
state of a cell as a set of typed substates that can be shorts,
integers, floats and doubles. Further, we introduce a logic
neighborhood that inside the same radius may represent a
wide range of different neighborhoods also time-
dependent.

These features have been implemented in a high-level
language, called CARPET (CellulAR Programming
EnvironmenT), that allows to design cellular algorithms.
In particular, the CARPET language has been used for
programming cellular algorithms in the CAMEL (Cellular
Automata environMent for systEms ModeLing) [1]
parallel environment. CAMEL is a software environment
designed to support the parallel execution of cellular
algorithms, the visualization of the results, and the
monitoring of the program execution. The parallel
execution of cellular algorithms is implemented by the
parallel execution of the state transition function of each
cell i n a SPMD fashion. It offers the computing power of a
highly parallel computer, hiding the architecture issues
from a user. By CARPET a user might write cellular
programs to describe the actions of thousands of simple
active agents interacting locally, then the CAMEL system
executes in parallel those actions allowing a user to
observe the global complex evolution that arises from all
the local interactions.

A number of cellular programming languages such as
CELLANG [4], CDL [5], CARP [6], CEPROL [7] have
been defined. However none of those contains all the
features of CARPET neither a parallel run-time support
has been implemented for them. Reference [12] surveys

and compares CARPET and some of those languages.
In this paper we briefly introduce the CAMEL system

because it is both the development environment and the
parallel run-rime system of CARPET. Then we discuss the
main features of the CARPET language. Finally we give
some performance figures to show the speed-up of
CARPET programs.

2. Overview of CAMEL

The CAMEL system is a parallel environment based on
the cellular automata model for developing scientific and
engineering applications [2]. CAMEL has been
implemented on a parallel computer composed of a mesh
of Transputers connected to a host node. The current
implementation of CAMEL does not limit the number of
Transputers which can compose the parallel computer, so
no changes should be necessary in the software of
CAMEL whether a very large number of Transputer
should be used. Moreover, CAMEL has been designed to
be ported on other MIMD distributed-memory platforms.

CAMEL is both the parallel run-rime system of the
CARPET language and a development environment for
editing, compili ng, configuring, executing, monitoring
and visualizing the output of CARPET programs. In all
these operations a user is supported by the CAMEL user
interface (UI) that by pop-up menus assists him in all the
software development process.

The CAMEL run-time system is composed by a set of
macrocell processes each running on a single processing
element of the parallel machine and by a controller
process running on a master processor. Each macrocell
process implements a CA portion composed of several
elementary cells. It makes use of a communication system
which handles the data exchange among cells and of a
load balancing algorithm that balances the mapping of the
CA portions on the processing elements. Reference [1]
gives a detailed description of the load balancing
algorithm.

Using this parallel architecture, CAMEL allows the
parallel execution of the transition function of cells.
Besides the UI the CAMEL system offers the Graphical
Interface (GI) to rapidly and interactively explore and
analyze very large amounts of scientific data gathered
during the execution of computer simulations.

Furthermore, a tool called IVT (Interactive
Visualization Tool), designed by MATLAB, has been
added to CAMEL to improve data visualization. Utili zing
data computed by simulation, IVT provides a variety of
functions and services, including 2 and 3-dimensional
graphical displays of data, hard copy of graphical displays
and text, interactive color manipulation, animation
creation and display, rotation of the images, saving of data
in files according to different data formats.

3. The CARPET language

The CARPET language is a programming model that
allows the definition of cellular algorithms. CARPET is a
high-level language based on C with additional constructs
to describe the rules of the state transition function of a
single cell of a cellular automaton. The main features of
CARPET are the possibilit y to describe the state of a cell
as a set of typed substates each one by a user-defined
type, and the simple definition of complex neighborhoods
(e.g., hexagonal, Margolus, etc.), that can be also time
dependent, in a n-dimensional discrete Cartesian space.

Using CARPET a wide variety of cellular algorithms
can be designed in a simple but very expressive way. The
language utili zes control structures, types, operators and
expressions of the C language. However it is enhanced by
a declaration part that allows to specify the dimensions of
the automaton, the radius of the neighborhood, the type of
the neighborhood, and to describe the state of a cell as a
set of typed substates that can be: shorts, integers, floats
and doubles. Furthermore, a set of global parameters
describe the global characteristics of the system (e.g., the
permeability of a soil).

Special constructs allow at each iteration of the
program execution to modify the values of the substates
of a cell and define a set of cells (e.g., those of the border)
with a different transition function. This last characteristic
is very interesting because it simpli fies the modeling
phase of a system that can be represented by a network of
cellular automata each describing one of the components
in which the model has been divided to capture the
different aspects of a phenomenon.

The language does not provide statements to configure
the automata, to visualize the cell values or to define data
channels that can connect the cells according to different
topologies. The configuration of cellular automata is
defined by the UI of the run-time system (i.e., the
CAMEL environment). The UI allows, by menu pops, to
define the size of the cellular automata, the number of the
processors onto which the automata must be executed, and
to choose the colors to be assigned to the cell substates to
support the graphical visualization of their values.

The exclusion from the language of constructs for
configuration and visualization of the data allows to
execute the same CARPET program with different
configurations. Further, it is possible to change from time
to time the size of the automaton and/or the number of the
nodes onto which the automaton should be executed.
Finally, this approach allows to select the more suitable
range of the colors for the visualization of data.

The execution of a program with different
configurations allows to evaluate a model using various
resolution obtained changing the size of the cell . This

allows also to measure the scalabilit y and the eff iciency of
the system.

The structure of a CARPET program is similar to that
of a C program. A program is composed by a declaration
part that appear only once in the program and must
precede any statement (except those of C pre-processor)
and by a body program. The body program has the usual
C statements, without I/O instructions, and a set of special
constructs to update the state of a cell . The body program
is executed iteratively for a number of steps that a user
can select by the UI. CARPET allows to use C functions
or procedures to improve the structure of the programs.

3.1. Declaration part

The declaration part describes the dimensions of an
automaton, the radius of the neighborhood, the state of
cells, the cells belonging to the neighborhood and the
global parameters. These declaration are contained inside
of the cadef section.

cadef
 {

dimension n;
 radius r;

state { type_specifier substate_name;
 type_specifier substate_name;

 }

neighbor id[n] {[xval, yval, zval] id,
...

 [xval, yval, zval] id };
parameter {id value, id value,};

 }

3.1.1. Dimension

This definition allows to specify by a numeric literal
the number of dimensions of an automaton, in a discrete
Cartesian space. For example:

dimension 2 ;

defines a two-dimensional automaton.
The maximum number of dimensions allowed in the

current implementation is 3. Each dimension is wrap
around, e.g., a two-dimensional lattice forms a torus.
Border functions can be used to disable the wrap-around.

3.1.2. Radius

Radius defines a numeric value that specifies the
radius of the neighborhood of a cell . This value is strictly
connected with the dimension definition. For example,
in a 2-dimension automaton defining the radius equal to 1
the number of the neighbors can be up to 8. In the three
dimensional case with radius equal to 1 the number of the
neighbors can be up to 26.

The next example defines a radius equal to 2:

radius 2 ;

Our implementation supports a radius equal to 1 for
three dimensional lattices, up to 2 for two dimensional
lattices, and up to 50 for one dimensional lattices.

3.1.3. State

In CARPET the state of a cell i s composed of a set of
typed substates, unlike classical cellular automata where
the state is represented by a few bits. The types of
substates are: shorts (16 bits integers), integers, floats
(reals), and doubles (64 bits reals).

By typification of substates, CARPET allows to extend
the range of the applications that can be coded by cellular
algorithms simpli fying the writing of the programs and
improving their readability.

Most systems and languages such as CELLANG,
define the cell substates only as integers. In this case, for
example, if a user must store a real value in a substate
then he must write some procedures for the data retyping.
The writing of these procedures makes the program longer
and diff icult to read or change. The CARPET language
frees the user of this tedious task and offers him a high
level abstraction to define the cell state. The set of
substates is defined through the state declaration. A type
specifier must be declared for each substate. In the
following example the state is constituted of three
substates (a short and two floats).

state(short direction; float speed, mass);

The predefined variable cell refers the current cell i n
the n-dimensional space under consideration. The
different substates can be referred appending to the
reserved word cell the name of the substate by the
underscore symbol ‘_‘ . For example, cell_speed refers
the speed substate of the previous example.

3.1.4. Neighbor

As mentioned before, through the radius it is possible
to define the maximum number of cells which might
compose the neighborhood of a cell and that can be
accessed to read their state.

For accessing a substate of a neighbor cell i s needed to
specify the indexing of the cell relative to the current cell .
Relative indexing is explicated by a number of indexes
equal to the dimension of the automata enclosed in square
brackets and separated by commas. The figure 1 shows,
for a two dimensional square automaton with radius equal
to 1, the indexing of a cell relative to the current cell
indexed with [0,0]. For example, the cell N situated at
north is indexed with [0,-1], having used in the

implementation the reference system indicated in figure 1.

[0,0]

[0,-1] [1,-1]

[1,0][-1,0]

[-1,1] [0,1] [1,1]

[-1,-1]

+y

+x
NNW

W

SW

NE

SES

E

Figure 1. Relative indexing of a cell with respect to
the cell [0,0].

CARPET generalizes the concept of neighborhood and
allows a user to define by the neighbor declaration a
logic neighborhood that inside the same radius may
represent a wide range of different neighborhoods.
Neighborhoods can be asymmetrical or have any other
special topological properties (e.g., hexagonal).

The neighborhood is identified by the name of a vector
with dimension equal to the number of elements
composing the logic neighborhood. The elements of the
logic neighborhood are put in round brackets and are
separated by commas. Each element is described by
relative indexing. Furthermore, to each of these elements
it can be associated a name that can be used as an alias in
referring to the neighbor cell . The von Neumann
neighborhood can be defined as follows:

neighbor Neumann[4] ([0,-1] North,

[-1,0] West, [0,1] South, [1,0] East);

The code in figure 2 shows how through the Neumann
vector it is easy to access to the green substate. This
access way simpli fies to access the substates using the for
statement. Further, the green substate of the cell l ocated
at West can be accessed by West_green or
Neumann_green[1].

3.1.5. The step variable

By the predefined variable step, CARPET allows to
know the number of iterations that have been executed.
Step is updated automatically by the system. Initially the
value of step is 0 and it is incremented by 1 each time
that the state of all the cells of the automaton have been
updated. This feature allows also to implement
neighborhoods which are time dependent.

The step variable allows also to change dynamically
the values of the substates dependent upon the iterations.
A system characterized by several temporal phases can be
described using this feature in a transition function. For

example, the first iteration can be used to set up some
parameters, the second iteration can initialize some
substates and the next iterations can calculate, for a
defined number of steps, the transition function describing
the phenomenon.

cadef

{
 dimension 2;

 radius 1;

 state (short red, green, bleu);

 neighbor Neumann[4]([0,-1] North,

 [-1,0] West,[0,1] South,[1,0] East);

 }

 short sum, i;

....
for(i=0; i < 3; i++)

sum = sum + Neumann_green[i];

....

Figure 2. Referencing the green substate of a
neighbor cell.

3.1.6. Global parameters

In modeling a complex system it is often necessary to
describe some global features of the system. CARPET
allows to define global parameters and to initialize them
to specific values. Global parameters can be defined by
the parameter declaration.

The type of parameters must be float, by default its
value is zero. The following example shows the use of
two global parameters adherence and permeab

(permeability) initialized to 0.5 and 10.0.

parameter (adherence 0.5, permeab 10.0);

The value of a global parameter is the same in each cell
of the automaton. For this reason, the value of each
parameter cannot be changed in the code of the cell
transition function. But, to assure that it will be updated
for all the cells in the lattice, it can only be modified by
the UI during the automaton execution.

3.2. Statements

To guarantee the semantics of cell state updating in
cellular automata theory the value of one of the substates
of a cell can be modified only by the update construct.
After an update execution the value of the substate, in
the current iteration, is unchanged. The new value does
take effect at the beginning of the next iteration.

For this reason, the updating of the value of a substate

cannot be performed by a direct assignment. The output of
the program will be wrong if a value is assigned to a
substate without the update statement. For example, the
function:

update (cell_temp,45);

assigns to the temp substate the value 45. This value will
be really available only in the next iteration.

Input and output of a CARPET program can be
performed through files o by the edit function of the UI. A
file can hold the values of one substate of all cells, these
values can be loaded at the step 0 to initialize the
automaton. The substate values can be the result of a
previous simulation or they can be generated by a C
program. In fact, the output of a CARPET program can be
used as input to initialize another automaton because the
format of the input and output is identical.

In regular intervals the output of a CARPET program
can automatically be saved in a file to calculate global
statistical functions (i.e. histogram, etc.) or to be post-
processed by a visualization tool.

A user can use additional substates to store values that
indicate statistical proprieties of a variable (i.e., mean
values) or to hold a history of a substate. For instance, the
average of the temp substate can be calculated and stored
as shown in figure 3. Notice that the predefined step
variable indicates the number of iterations that have been
executed.

cadef

{
dimension 2

radius 1

state (float temp, mean);

}

 avgtemp = (cell_mean + cell_temp)/step;
 update(cell_mean, avgtemp);

Figure 3. Evaluation of the average of the temp
substate.

3.2.1. Special operations

Generally, the rules defined in CARPET are
deterministic, i.e., the new state of a cell i s uniquely
determined by the current state of its neighbors: from the
same initial conditions one invariably obtains the same
evolution. However, CARPET offers the possibilit y to
define non deterministic rules by the use of a random

function.
Further, CARPET allows to define cells with different

transition functions by means of the GetX, GetY, GetZ
operations that return the value of the coordinates X, Y,
and Z of the cell i n the automaton. Using those functions it
is possible to specify a different transition function for a
single cell . Varying only a coordinate it will be possible to
associate the same transition function to all cells belonging
to the same row or column. The example in figure 4 shows
how to assign a different transition function for the cell
having coordinates (5,8).

cadef

{
 dimension 2;

radius 1;

}

 Xpos = GetX;

 Ypos = GetY;

 if (Xpos == 5 && Ypos == 8)

 func_trans_1();

 else

 func_trans_2();

Figure 4. Definition of a different transition function
for the cell (5,8).

4. A simple example

The example in figure 5 shows how the CARPET
language can be used to implement a simple simulation of
the propagation of a forest fire.

In this example each cell represents a portion of the
land. Cells in the lattice can have the values included
between ‘0’ and ‘2’ . The ground is represented by ‘0’
value, the fire is represented by ‘1’ value and the tree is
represented by ‘2’ value. Fire spreads from a cell which is
on fire to a von Neumann neighbor that is treed, but not on
fire.

This simple example shows as using a high-level
language designed for programming cellular algorithms
may strongly simpli fy the algorithms design process and
reduce the program code.

5. An advanced example

In this section we show how by CARPET can be
designed a cellular algorithm that implements gas
diffusion simulation using the Margolus neighborhood
[10].

The Margolus neighborhood is a complex time-
dependent neighborhood defined as follows:

1. the array of cells is partitioned into a finite, disjoint
and uniformly arranged collection of blocks having
2×2 size.

2. the same transition function is applied to every block,
rather than to a single cell as in an ordinary cellular
automaton. The blocks do not overlap and no
information is exchanged between adjacent blocks.

3. two partitions are used, as showed in figure 6, at
alternative times. At each step, there is not any overlap
between the blocks used at one step and those used at
the next one.

#define ground 0

#define fire 1

#define tree 2

cadef

{

 dimension 2; /*bidimensional lattice */

 radius 1;

 state (short land);

 neighbor cross[4] ([0,-1]North,[-1,0]West,

 [0,1]South,[1,0]East);

}

{

if (cell_land == fire ||

 (cell_land == tree &&

 (North_land==fire || South_land==fire ||

 East_land==fire || West_land==fire)))

update(cell_land, cell_land - 1) ;

}

Figure 5. The forest fire simulation written in
CARPET.

 (a) (b)

Figure 6. The two partitions for Margolus
neighborhood. The black cell will have a different
neighborhood considering from time to time the
partition (a) (thick lines), or the partition (b) (thin
lines).

cadef
{

dimension 2;

radius 1;

state (short which, rand, gas);

neighbor Margolus[9]([1,0]East,[1,1]SE,[0,1]South,[-1,1]SO,
 [-1,0]West,[-1,-1]NW,[0,-1]North,[1,-1] NE,[1,0] East);
}
 int i; short temp, temprand;
{
 if((cell_which == 0 && step %2 == 1)||(cell_which == 3 && step % 2 == 0))
 { temprand = 0;
 for(i=0; i < 3; i++)
 temprand = temprand + Margolus_rand[i];
 temprand = temprand + cell_rand;
 if (temprand % 2 == 1)

 update(cell_gas, South_gas);

 else

 update(cell_gas, East_gas);

 } else

 if((cell_which == 1 && step % 2 == 1)||(cell_which == 2 && step % 2 == 0))
 { temprand = 0;
 for(i=2; i < 5; i++)
 temprand = temprand + Margolus_rand[i];
 temprand = temprand + cell_rand;

 if (temprand % 2 == 1)

 update(cell_gas, West_gas);

 else

 update(cell_gas, South_gas);

 } else

 if((cell_which == 3 && step %2 == 1)||(cell_which == 0 && step % 2 == 0))
{ temprand = 0;

 for(i=4; i < 7; i++)
 temprand = temprand + Margolus_rand[i];
 temprand = temprand + cell_rand;

 if (temprand % 2 == 1)

 update(cell_gas, North_gas);

 else

 update(cell_gas, West_gas);

 } else
 { temprand = 0;
 for (i=6; i < 9; i++)
 temprand= temprand + Margolus_rand[i];
 temprand = temprand + cell_rand;
 if (temprand % 2 == 1)

 update(cell_gas, East_gas);

 else

 update(cell_gas, North_gas);
 }
 temp = (cell_rand + East_rand + North_rand + West_rand + South_rand) % 2
 update(cell_rand, temp);
}

Figure 7. Gas diffusion using a Margolus neighborhood.

Gas diffusion can be simulated using the Margolus
neighborhood. The program showed in figure 7, based on
the version described in [10], simulates the diffusion of a
gas implementing a random walk for each
particle/molecule of gas. The random walk can be
implemented using the two partitions defined in the
Margolus neighborhood at alternate times and having each
block of cells randomly rotate their gas particles either
clockwise or counter-clockwise. The Margolus
neighborhood is implemented in CARPET using the step
variable and the which substate that allows to distinguish
between one partition and the other. The which substate is
initialized alternating rows of 0s and 1s with rows of 2s
and 3s indicating the cells relative position in a block. The
figure 8 shows a portion of the automaton with which
values and the Margolus neighborhood.

0 1 0 1 0 1 0

0 1 0 1 0 1 0
2 3 2 3 2 3 2

2 3 2 3 2 3 2

Figure 8. Initialization of the which substate with the
Margolus neighborhood.

The neighborhood is defined in the program in figure 7
by the Margolus vector that acts as an alias for a group of
neighbor cells with radius equal to 1. Each four-cell block
has the same random number. This is done by maintaining
in each cell a two-values (0 or 1) rand substate.

By using step and the value of the which substate, a
random number shared by each cell of the block can be
calculated. This random number is used to determine
whether the particles of gas, denoted by the value of the
gas fields, are rotated clockwise or counter-clockwise. To
maintain an ever changing rand substate for each cell , a
new value is calculated using the von Neumann
neighborhood implicitly defined in the Margolus vector.

This algorithm that by CARPET has been coded in a
program composed of about 50 lines would require several
hundred lines of code if a language without high-level
constructs for defining cellular data structures and
programming cellular algorithms was used.

6. Performance

CARPET has been used to implement complex cellular
programs to solve real problems in areas such as fluid
dynamics, traff ic planning, image processing, and genetic
algorithms [2]. In particular, CARPET has been used in
the CABOTO project, funded by the PCI ESPRIT
programme, to implement parallel CA models for the

simulation of bioremediation of contaminated soils [3].
In this section we present the performance results of the

CARPET program that simulates a soil bioremediation
model which includes water flow modeling, phenol
contamination and the bioremediation event simulation. In
this application the fluid flow with diffusion-transport of
contamination agents inside the soil and their mutual
influences are viewed as a dynamic system based on local
interactions with discrete time and space, where the space
is represented by cubic cells. Each cell i s characterized by
specific values (the state) of selected physical parameters,
representing physical-chemical specifications, relevant to
the evolution of the phenomenon. Here we show the
program speed-up and eff iciency using different
configurations (grid sizes) of the automaton.

In the program execution, 100 steps simulate 50
minutes of the real phenomenon. Table 1 shows the speed-
up measures of the parallel model implementation using
different grid sizes on 2, 4, 8, 16, and 32 processors.
These measures show how much faster the simulation runs
on a parallel computer increasing the number of
processing elements (PEs).

Grid sizes of the cellular automaton

PEs 32x15x11 64x15x11 96x15x11 128x15x1
1

1 1 1 1 1
2 1.967 1.980 1.984 1.977

4 3.830 3.908 3.932 3.930
8 7.441 7.717 7.800 7.812

16 14.119 14.986 15.328 15.421
32 26.204 28.461 29.527 29.960

Table 1. Program speed-up.

Table 2 shows the eff iciency measures of the parallel
model implementation using different grid sizes on 2, 4, 8,
16, and 32 PEs. These measures show how each single
processor is eff iciently used during the execution of the
simulation.

Different grid sizes of the cellular automaton

PEs 32x15x11 64x15x11 96x15x11 128x15x11
1 1 1 1 1

2 0.983 0.990 0.992 0.989
4 0.957 0.977 0.983 0.982

8 0.930 0.964 0.975 0.976
16 0.882 0.936 0.958 0.964
32 0.818 0.889 0.923 0.936

Table 2. Efficiency measures.

7. Conclusions

This paper presented the main features of the CARPET
programming language and discussed its use for designing
cellular algorithms. Further, the paper showed
performance figures of a parallel implementation of
CAMEL on a distributed memory MIMD computer. This
implementation is based on the CAMEL system that
represents the parallel run-time support for the CARPET
language. However, should be mentioned that the
CAMEL system can be replaced with a different run-time
support without affecting the CARPET constructs and
semantics.

Currently we are working to redesign the CARPET
run-time support for implementing it using the message
passing interface (MPI) standard. This work will permit to
port CARPET on several parallel hardware platforms such
as the IBM SP2, the Meiko CS2, the CRAY T3D, and
workstation clusters where the MPI package is available.

The CARPET approach is quite different from that
followed in the implementation of early cellular
processing systems where low-level languages are used to
implement cellular algorithms. These languages make
diff icult to implement, read and port cellular algorithms.
Further, really useful simulations are very complex to be
programmed by such systems because of they poor
expressiveness.

Our experience during the design, implementation and
use of the CARPET language showed us that high-level
languages are very useful for the development of parallel
algorithms for solving real complex problems in several
application areas, and in particular in science and
engineering. According to this approach, very complex
simulations such as fluid flow modeling, soil
bioremediation, and freeway traff ic flow simulation might
be implemented by a few hundreds lines of code.

Finally, from the parallel programming point-of-view
the CARPET language represents a good trade-off
between expressiveness and eff iciency defining a
programming model that it is both at high level and at the
same time can be implemented eff iciently on parallel
computers. In our opinion high-level languages like
CARPET will allow to enlarge the use of the cellular
automata model in solving complex problems preserving
high performance and expressiveness, and may contribute
to enlarge the community of users of parallel computers.

References

[1] Cannataro M., Di Gregorio S., Rongo R., Spataro W.,
Spezzano G., and Talia D., “A Parallel Cellular Automata
Environment on Multicomputers for Computational
Science” , Parallel Computing, North-Holland,
Amsterdam, 1995, vol. 21, pp. 803-824.

[2] Di Gregorio S., Rongo R., Spataro W., Spezzano G., and

Talia D., “A Parallel Cellular Tool for Interactive
Modeling and Simulation” , IEEE Computational Science
& Engineering, IEEE CS Press, 1996, vol. 3, pp. 33-43.

[3] Di Gregorio S., Rongo R., Spataro W., Spezzano G., and
Talia D., “A Parallel Cellular Simulator for
Bioremediation of Contamined Soils” , in Development
and Applications of Computer techniques to
Environmental Studies VI, Computational Mechanics
Publ., Southampton, 1996, pp. 685-695.

[4] Eckart J. D., “Cellang 2.0: Reference Manual” , ACM
Sigplan Notices 1992, vol. 27, no. 8, pp. 107-112

[5] Hochberger C. and Hoffmann R., “CDL - a Language for
Cellular Processing, Proc. 2nd Intern. Conference on
Massively Parallel Computing Systems, IEEE CS Press,
1996.

[6] Junger G., “Cellular Automaton Tool User Manual” ,
GMD, Sankt Augustin, Germany, 1994.

[7] Seutter F., “CEPROL a Cellular Programming Language”,
Parallel Computing, North-Holland, Amsterdam, 1985,
vol. 2, pp. 327-333.

[8] Skilli corn D. B., “Models for Practical Parallel
Computation” , Int. Journal of Parallel Programming,
1991, vol. 20, no. 2, pp. 133-158.

[9] Skilli corn D. B. and Talia D., “Models and Languages for
Parallel Computation” , submitted to ACM Computing
Survey, 1996.

[10] Toffoli T. and Margolus N., Cellular Automata Machines:
A New Environment for Modeling, MIT Press, 1986.

[11] von Neumann J., “Theory of Self-Reproducing
Automata”, Comm. in Mathematical Physics, 1985, vol.,
96, pp. 15-57.

[12] Worsch T., “Programming Environments for Cellular
Automata”, Proceedings of the 2nd Conference ACRI '96,
Springer-Verlag, Workshop in Computing series, London,
1996.

