A High-Level Cellular Programming Model for

Massively Parallel Processing

Giandomenic&pezzano anBbomenicoTalia

ISI-CNR
c/o DEIS,Universitadella Calabria
87036Rende (CS), Italy
E-mail: {spezzano, talia}@i.deis.unical.it

Abstract

Cellular automata are used for designing high
performance apgications in many areas. This paper
describes CARPHT, a high-levd programning languag
based on the cdlular automata model. CARPET is a
programnming langua@ designed to suppat the
devdopment of parallel high performance software. It
exploits the mputing pover of a highly parallel
computer releasing a wser from using explicit parallel
constructs. A CARPET implementation has been used for
programming cdlular algorithms in the CAMEL parallel
environment. By CARPET a user might write programs to
describe the actions of thousands of simple active agents
interacting locally, then the CAMEL environment allows a
user to observe the globd complex ewlution that arises
from their parallel execution and their local interactions.

1. Introduction

A model of parallel computation represents an abstract
madine designed to separate the concerns of program
development from those of effedive paralel exeaution. In
fad, a model ads as a stable target for the software
development process Software developers can asaume the
existence of a stable ebstrad machine, so they can design
software for it, without being concerned about architecture
isaies and developments. At the same time, a model
represents a dea starting point for the implementation
effort (design environment, compiler, runtime system)
directed at each parallel architecture [9].

Models exist at different levels of abstradion.
However, a parallel computation model, to be useful,
should mainly be eay to program, expressve, architecure
independent and efficiently implementable. These
requirements are quite demanding and some of them arein
tension with ead others. For this reason very often people

prefer to define low-level models that are dficiently
implementable but make it hard to design and implement
paralel software. To solve this problem it is necessry to
find the best trade-off between expressveness and
efficiency defining models that are both at high level and
might be implemented efficiently.

Today available parallel computing systems can be
exploited to efficiently suppat applicaions in several
applicaion aress. However, the lack of efficiently
implemented high-level langueges, todls, and devel opment
environments does not alow to program paralel
algorithms that are portable, efficient and expressive.

According to the Skillicorn’s clasdficaion [8] the
restricted-computation structures represent one of the
most important models of parallel processng. The interest
for this model is due to the possbility to restrict the form
of computations ® as to restrict communicaion volume
adhieving high performance This allows to dffer a user a
structured model of parallel programming and improve the
performance of the parallel algorithms reducing the
overheads due to the cmmunicaion latency. Further,
tools can be designed to estimate the performance of
various congtructs of a high-level language on a spedfic
parallel architecture.

Cellular processng languages based on the célular
automata model [11] represent a significant example of
restricted-computation models that are used to design
paralel computation for a large number of applicaions in
biology, physics, geophysics, chemistry, emnomics,
artificial life, and engineering.

A cdlular automaton consists of one-dimensiona or
multi-dimensional lattice of cdls, ead of which is
conneded to a finite neighborhood d cdls which are
neaby in the lattice Each cdl in the regular spatial lattice
can take awy of a finite number of discrete state values.
Timeis discrete, aswell, and at eat time step all the cdls
in the lattice ae updated by means of a locd rule cdled
transition function, which determines the cdl’s next state



based upon the states of its neighbors. That is, the state of
a cdl at a given time depends only on its own state in the
previous time step and the states of its nearby neighbors at
the previous time step.

Different neighborhoods can be defined for the cdls.
The most common neighborhoods in the two-dimensional
case ae the von Neumann reighborhood consisting of the
North, South, East, West neighbors and the Moore
neighborhood compased of the 8 nearest neighbor cdls. In
the threedimensional case up to 26 neighbors can be taken
in consideration. The states of ead cdl composing an
automaton are updated synchronously in paralel. The
global behavior of the system is determined by the
evolution of the states of all cdls as a result of multiple
interactions.

In our approach a paralle cdlular algorithm is
composed of al the transition functions of cdls that
compose the lattice Eacdh transition function generally
contains a same locd rule, but it is also pessble to define
some cdls with different state transition functions
(inhamogeneous cdlular automata). Differently from ealy
cdlular approaches where cdl state is defined as a singe
or a set of bits, and for extending the range of applicaions
to be programmed by cdlular algorithms, we define the
state of a cdl as a set of typed substates that can be shorts,
integers, floats and doules. Further, we introduce alogic
neighbahoodthat inside the same radius may represent a
wide range of different neighborhoods also time-
dependent.

These feaures have been implemented in a high-level
language, cdled CARPET (CelulAR Programming
EnvironmenT), that allows to design cdlular agorithms.
In particular, the CARPET language has been used for
programming cdlular algorithms in the CAMEL (Cellular
Automata environMent for systEms Modeling) [1]
paralel environment. CAMEL is a software environment
designed to suppat the parallel exeadtion of cdlular
algorithms, the visudizaion of the results, and the
monitoring of the program exeaution. The paralléel
exeaution of cdlular algorithms is implemented by the
paralel exeaution of the state transition function of ead
cdl inaSPMD fashion. It offers the mmputing power of a
highly parallel computer, hiding the achitedure isaes
from a user. By CARPET a user might write célular
programs to describe the adions of thousands of simple
adive gents interading locdly, then the CAMEL system
exeautes in parallel those adions allowing a user to
observe the global complex evolution that arises from all
the local interactions.

A number of cdlular programming languages such as
CELLANG [4], CDL [5], CARP [6], CEPROL [7] have
been defined. However none of those wntains &l the
fedures of CARPET neither a parallel runtime suppart
has been implemented for them. Reference [12] surveys

and compares CARPET and some of those languages.

In this paper we briefly introduce the CAMEL system
becaise it is both the development environment and the
paralel runrime system of CARPET. Then we discussthe
main feaures of the CARPET language. Finally we give
some performance figures to show the speed-up of
CARPET programs.

2. Overview of CAMEL

The CAMEL systemisaparalel environment based on
the cdlular automata model for developing scientific and
engineeing applicaions [2]. CAMEL has been
implemented ona parallel computer composed of a mesh
of Transputers conreded to a host node. The airrent
implementation & CAMEL does nat limit the number of
Transputers which can compaose the parallel computer, so
no changes s$odd be necessary in the software of
CAMEL whether a very large number of Transputer
shoud be used. Moreover, CAMEL has been designed to
be ported on other MIMD distributed-memory platforms.

CAMEL is both the paralel runrime system of the
CARPET language and a development environment for
editing, compiling, configuring, exeauting, monitoring
and \isualizing the output of CARPET programs. In all
these operations a user is suppated by the CAMEL user
interface(Ul) that by popup menus asssts him in al the
software development process.

The CAMEL run-time system is compaosed by a set of
macrocedl processes ead runnng ona single processng
element of the paralel madine and by a controller
process runnng on a master processor. Each macrocdl
process implements a CA portion composed of severa
elementary cdls. It makes use of a mmmunication system
which handles the data exchange anong cdls and o a
load balancing algorithm that balances the mapping o the
CA portions on the processng elements. Reference [1]
gives a detaled description d the load halancing
algorithm.

Using this paralel architecure, CAMEL alows the
parale exeattion o the transtion function o cdls.
Besides the Ul the CAMEL system offers the Graphicd
Interface (GI) to rapidly and interadively explore and
analyze very large amourts of scientific data gathered
during the execution of computer simulations.

Furthermore, a tod cdled IVT (Interactive
Visuadlization Tool), designed by MATLAB, has been
added to CAMEL to improve data visualization. Utili zing
data computed by simulation, IVT provides a variety of
functions and services, including 2 and 3-dimensional
graphicd displays of data, hard copy d graphicd displays
and text, interadive lor manipulation, animation
creaionand dsplay, rotation d the images, saving o data
in files according to different data formats.



3. The CARPET language

The CARPET language is a programming model that
alows the definition d cdlular algorithms. CARPET is a
high-level language based on C with additional constructs
to describe the rules of the state transition function d a
singe cdl of a cdlular automaton. The main feaures of
CARPET are the posshility to describe the state of a cél
as a set of typed substates eaty ore by a user-defined
type, and the simple definition o complex neighbahoods
(e.g., hexagoral, Margolus, etc.), that can be dso time

dependent, in a-dimensional discrete Cartesian space.

Using CARPET a wide variety of cdlular algorithms
can be designed in asimple but very expressve way. The
language utili zes control structures, types, operators and
expressons of the C language. However it is enhanced by
adedaration part that allows to spedfy the dimensions of
the aitomaton, the radius of the neighbahood the type of
the neighbahood and to describe the state of a cdl as a
set of typed substates that can be: shorts, integers, floats
and douHes. Furthermore, a set of global parameters
describe the global charaderistics of the system (e.g., the
permeability of a soil).

Speda constructs alow at ead iteration o the
program exeaution to modify the values of the substates
of a cdl and define aset of cdls (e.g., those of the border)
with a different transition function. This last charaderistic
is very interesting because it simplifies the modeling
phase of a system that can be represented by a network of
cdlular automata eab describing ore of the mmporents
in which the model has been dvided to capture the
different aspects of a phenomenon.

The language does naot provide statements to configure
the aitomata, to visualizethe cdl values or to define data
channels that can conred the cdls acording to dfferent
topdogies. The mnfiguration d cdlular automata is
defined by the Ul of the runtime system (i.e, the
CAMEL environment). The Ul allows, by menu pofs, to
define the size of the cédlular automata, the number of the
processors onto which the aitomata must be exeauted, and
to choose the mlorsto be adgned to the cdl substates to
support the graphical visualization of their values.

The exclusion from the language of constructs for
configuration and visualizdion d the data dlows to
exeaute the same CARPET program with dfferent
configurations. Further, it is possble to change from time
to time the size of the automaton and/or the number of the
nodes onto which the aitomaton shoud be exeauted.
Finally, this approach allows to seled the more suitable
range of the colors for the visualization of data.

The eeaution o a progam with dfferent
configurations allows to evaluate amodel using various
resolution oliained changing the size of the cdl. This

allows also to measure the scdability and the dficiency of
the system.

The structure of a CARPET program is gmilar to that
of a C program. A program is compaosed by a dedaration
part that appea only once in the program and must
precale avy statement (except those of C pre-processor)
and by a body program. The body program has the usua
C statements, without 1/0 instructions, and a set of spedal
constructs to updite the state of a cdl. The body pogram
is exeauted iteratively for a number of steps that a user
can seled by the Ul. CARPET alows to use C functions
or procedures to improve the structure of the programs.

3.1. Declaration part

The dedaration part describes the dimensions of an
automaton, the radius of the neighbahood the state of
cdls, the cdls belongng to the neighbahood and the
global parameters. These dedaration are mntained inside
of thecadef section.

cadef
{
di nensi on n;
radius r;
state { type_specifier substate_nane;
type_specifier substate_nane;

nei ghbor id[n] {[xval, yval, zval] id,
[xval, yval, zval] id }:
parameter {id value, id value, ..... };
}

3.1.1. Dimension

This definition alows to spedfy by a numeric litera
the number of dimensions of an automaton, in a discrete
Cartesian space. For example:

di nension 2 ;

definesa two-dimensional automaton.

The maximum number of dimensions alowed in the
current implementation is 3. Each dmension is wrap
around e.g., a two-dimensiona lattice forms a torus.

Border functions can be used to disable the wrap-around.

3.1.2. Radius

Radi us defines a numeric value that spedfies the
radius of the neighbahood d a cdl. Thisvalueis grictly
conreded with the di mensi on definition. For example,
in a 2-dimension automaton cefining the radius equal to 1
the number of the neighbas can be up to 8. In the three
dimensional case with radius equal to 1 the number of the
neighborscan be up t@6.



The next example defines a radius equal to 2:

radius 2 ;

Our implementation suppats a radius equal to 1 for
three dimensional lattices, up to 2 for two dmensional
lattices, and up to 50 for one dimensional lattices.

3.1.3. State

In CARPET the state of a cdl is composed of a set of
typed substates, unlike dasdcd cdlular automata where
the state is represented by a few bits. The types of
substates are: shorts (16 hts integers), integers, floats
(reals), andloubleg(64 bitsreals).

By typification d substates, CARPET all ows to extend
the range of the gplications that can be aded by cdlular
algorithms gmplifying the writing o the programs and
improving their readability.

Most systems and langueges auch as CELLANG,
define the cdl substates only as integers. In this case, for
example, if a user must store ared value in a substate
then he must write some procedures for the data retyping.
The writing d these procedures makes the program longer
and dfficult to read or change. The CARPET language
frees the user of this tedious task and dfers him a high
level abstradion to define the cdl state. The set of
substates is defined throughthe st at e dedaration. A type
spedfier must be dedared for ead substate. In the
following example the state is constituted of three
substates (a short and two floats).

state(short direction; float speed, mass);

The predefined variable cel | refers the aurrent cdl in
the n-dimensional space under consideration. The
different substates can be referred appending to the
reserved word cel | the name of the substate by the
underscore symbol ‘_*. For example, cel | _speed refers
thespeed substate of the previous example.

3.1.4. Neighbor

As mentioned before, throughthe radius it is possble
to define the maximum number of cdls which might
compose the neighbahood d a cdl and that can be
accessed to read their state.

For accessng a substate of a neighba cdl is needed to
spedfy the indexing o the cdl relative to the aurrent cdl.
Relative indexing is explicaed by a number of indexes
equal to the dimension d the automata enclosed in square
bradets and separated by commas. The figure 1 shows,
for atwo dmensional square automaton with radius equal
to 1, the indexing o a cdl relative to the airrrent cdl
indexed with [0,0]. For example, the cdl N stuated at
north is indexed with [0,-1], having wed in the

implementation the reference system indicated in figure 1.

NW | N | NE [-1-1]f[0.-1]|[1,-1]
+X
W E [-1,0]{[0,0] | [1,0]
SW| g |SE [-1,1] | [0,1] |[2.1]
+y

Figure 1. Relative indexing of a cell with respect to
the cell [0,0].

CARPET generalizes the cmncept of neighbahoodand
allows a user to define by the nei ghbor dedaration a
logic neighbahood that inside the same radius may
represent a wide range of different neighbahoodk.
Neighbahoods can be asymmetricd or have any aher
special topological properties (e.g., hexagonal).

The neighbahoodis identified by the name of a vedor
with dmension equal to the number of elements
composing the logic neighbahood The dements of the
logic neighbahood are put in round lradkets and are
separated by commas. Each element is described by
relative indexing. Furthermore, to ead of these dements
it can be sswciated a name that can be used as an diasin
referring to the neighba cdl. The von Neumann
neighborhood can be defined as follows:

nei ghbor Neumann[4] ([0,-1] North,
[-1,0] West, [0,1] South, [1,0] East);

The mde in figure 2 shows how throughthe Neumann
vedor it is eassy to accessto the green substate. This
accessway simplifies to accessthe substates using the for
statement. Further, the gr een substate of the cdl | ocaed
a West can be accesed by West_green or
Neumann_green[ 1].

3.1.5. The step variable

By the predefined variable st ep, CARPET allows to
know the number of iterations that have been exeauted.
St ep is updeted automaticdly by the system. Initialy the
value of step is0 and it is incremented by 1ead time
that the state of all the cdls of the aitomaton have been
updated. This fedure dlows also to implement
neighborhoods which are time dependent.

The st ep variable dlows aso to change dynamicdly
the values of the substates dependent uponthe iterations.
A system charaderized by several temporal phases can be
described using this feaure in a transition function. For



example, the first iteration can be used to set up some
parameters, the seamnd iteration can initidize some
substates and the next iterations can cdculate, for a
defined number of steps, the transition function describing
the phenomenon.

cadef
{
di mensi on 2;
radi us 1;
state (short red, green, bleu);
nei ghbor Neurmann[4] ([0, -1] North,
[-1,0] West,[0,1] South,[1,0] East);
}

short sum i;

for(i=0; i < 3; i++)
sum = sum + Neumann_green[i];

Figure 2. Referencing the green substate of a
neighbor cell.

3.1.6. Global parameters

In modeling a mmplex system it is often necessary to
describe some global feaures of the system. CARPET
alows to define global parameters and to initialize them
to spedfic values. Global parameters can be defined by
thepar anet er declaration.

The type of parameters must be f | oat, by default its
value is zero. The following example shows the use of
two dobal parameters adherence and perneab
(permeability)initialized to 0.5 and 10.0.

paraneter (adherence 0.5, perneab 10.0);

The value of aglobal parameter isthe samein ead cdl
of the automaton. For this resson, the value of ead
parameter canna be canged in the cde of the cdl
trangition function. But, to asaure that it will be updated
for al the cdls in the lattice it can orly be modified by
the Ul during the automaton execution.

3.2. Statements

To guarantee the semantics of cdl state updating in
cdlular automata theory the value of one of the substates
of a cdl can be modified oy by the updat e construct.
After an updat e exeaution the value of the substate, in
the arrent iteration, is unchanged. The new value does
take effect at the beginning of the next iteration.

For this reason, the updating o the value of a substate

canna be performed by adired assgnment. The output of
the program will be wrong if a value is asdgned to a
substate withou the updat e statement. For example, the
function:

update (cell _tenp, 45);

asdgns to the t enp substate the value 45. This value will
be really available only in the next iteration.

Inpu and ouput of a CARPET program can be
performed throughfiles o bythe edit function o the Ul. A
file can hdd the values of one substate of al cdls, these
values can be loaded at the step O to initidize the
automaton. The substate values can be the result of a
previous smulation a they can be generated by a C
program. In faa, the output of a CARPET program can be
used as inpu to initialize another automaton because the
format of the input and output is identical.

In regular intervals the output of a CARPET program
can automaticdly be saved in a file to cdculate global
statisticd functions (i.e. histogram, etc.) or to be post-
processed by a visualization tool.

A user can use aditional substates to store values that
indicae statistica proprieties of a variable (i.e., mean
values) or to hdd a history of a substate. For instance, the
average of thet enp substate can be cdculated and stored
as down in figure 3. Notice that the predefined st ep
variable indicaes the number of iterations that have been
executed

cadef

{

di nension 2
radius 1
state (float tenp, nean);

avgtenp = (cell _nmean + cell _tenp )/step;
updat e(cel | _rmean, avgtenp);

Figure 3. Evaluation of the average of the temp
substate.

3.2.1. Special operations

Generally, the rules defined in CARPET are
deterministic, i.e., the new state of a cdl is uniquely
determined by the aurrent state of its neighbors: from the
same initial conditions one invariably obtains the same
evolution. However, CARPET offers the paosshility to
define non deterministic rules by the use of a randam




function.

Further, CARPET allows to define cdls with different
trangition functions by means of the Get X, GetY, GetZ
operations that return the value of the wordinates X, Y,
and Z of the cdl in the attomaton. Using those functions it
is possble to spedfy a different transition function for a
single cdl. Varying only a wordinate it will be possble to
asociate the same transition function to al cdlsbelonging
to the same row or column. The example in figure 4 shows
how to assgn a different transition function for the cdl
having coordinates (5,8).

cadef

{

di rensi on 2;
radi us 1;

Xpos = CGetX;

Ypos Gety;

if (Xpos == 5 && Ypos == 8)
func_trans_1();

el se

func_trans_2();

The Margolus neighborhood is a @mplex time-
dependent neighborhood defined as follows:

1. the aray of cdls is partitioned into a finite, digoint
and uniformly arranged colledion of blocks having
2x2 size.

2. the same transition function is applied to every block,
rather than to a singe cdl as in an ordinary cdlular
automaton. The blocks do not overlap and no
information is exchanged between adjacent blocks.

3. two partitions are used, as dowed in figure 6, at
alternative times. At ead step, there is not any overlap
between the blocks used at one step and those used at
the next one.

Figure 4. Definition of a different transition function
for the cell (5,8).

4. A ssimple example

The example in figure 5 shows how the CARPET
language can be used to implement a simple simulation o
the propagation of a forest fire.

In this example each cdl represents a portion of the
land. Cells in the lattice can have the values included
between ‘0" and ‘2'. The ground is represented by ‘0’
value, the fire is represented by ‘1’ value and the treeis
represented by ‘2’ value. Fire spreads from a cdl which is
on fire to avon Neumann reighbor that is treed, but not on
fire.

This smple eample shows as using a high-level
language designed for programming cdlular agorithms
may strongly simplify the dgorithms design process and
reduce the program code.

5. An advanced example

In this dion we show how by CARPET can be
designed a cdlular agorithm that implements gas
diffuson smulation wsing the Margolus neighborhood
[10].

#define ground 0O
#define fire 1
#define tree 2
cadef

{

di rensi on 2; / *bi di mensi onal lattice */
radi us 1;

state (short |and);

nei ghbor cross[4] ([0,-1]North,[-1, 0] West,

[0, 1] Sout h, [1, 0] East);

}
{
if (cell_land == fire ||
(cell _land == tree &&
(North_land==fire || South_land==fire ||
East _land==fire || West_land==fire)))
update(cell _land, cell _land - 1)
}

Figure 5. The forest fire simulation written in
CARPET.

@ (b)
|

=

Figure 6. The two partitions for Margolus
neighborhood. The black cell will have a different
neighborhood considering from time to time the
partition (a) (thick lines), or the partition (b) (thin
lines).




cadef

{
di nensi on 2;
radi us 1;
state (short which, rand, gas);
nei ghbor Margolus[9]([1,0]East,[1, 1] SE, [0, 1] South,[-1, 1] SO
[-1,0]West,[-1,-2]NW[O,-1]North,[1,-1] NE[1,0] East);
}
int i; short tenp, tenprand;
{

if((cell _which == 0 & step %2 == 1)||(cell _which == 3 && step %2 == 0))
{ tenprand = O0;
for(i=0; i < 3; i++)
tenprand = tenprand + Margolus_rand[i];
tenprand = tenprand + cell _rand;
if (tenprand %2 == 1)
updat e(cel | _gas, South_gas);
el se
updat e(cel | _gas, East_gas);
} else
if((cell _which == 1 & step %2 == 1)||(cell_which == 2 && step %2 == 0))

{ tenmprand = O0;
for(i=2; i <5; i++)
tenprand = tenprand + Margol us_rand[i];
tenprand = tenprand + cell _rand;

if (tenprand %2 == 1)
updat e(cel | _gas, West_gas);

el se
updat e(cel | _gas, South_gas);
} else
if((cell _which == 3 && step %2 == 1)||(cell _which == 0 & step %2 == 0))
{ tenprand = O0;
for(i=4; i <7; i++)
tenprand = tenprand + Margolus_rand[i];
tenprand = tenprand + cell _rand;
if (tenprand %2 == 1)
updat e(cel | _gas, North_gas);
el se
updat e(cel | _gas, West_gas);
} else

{ tenprand = O;
for (i=6; i < 9; i++)
tenmprand= tenprand + Margolus_rand[i];
tenprand = tenprand + cell _rand;
if (tenprand %2 == 1)
updat e(cel | _gas, East_gas);
el se
updat e(cel | _gas, North_gas);
}
temp = (cell _rand + East_rand + North_rand + West_rand + South_rand ) %2
updat e(cel | _rand, tenp);

}

Figure 7. Gas diffusion using a Margolus neighborhood.




Gas diffusion can be smulated using the Margolus
neighborhood The program showed in figure 7, based on
the version described in [10], simulates the diffusion of a
gas implementing a random wak for ead
particle/molecule of gas. The random wak can be
implemented using the two partitions defined in the
Margolus neighborhood at alternate times and having eat
block of cdls randomly rotate their gas particles either
clockwise or courter-clockwise. The Margolus
neighborhoodis implemented in CARPET using the st ep
variable and the whi ch substate that allows to distinguish
between one partition and the other. Thewhi ch substate is
initialized aternating rows of 0s and 1s with rows of 2s
and 3sindicaingthe cdlsrelative position in a block. The
figure 8 shows a portion of the aitomaton with whi ch
values and th&largolus neighborhood.

0| 11 0 1] 0] 1

Nl O N O

21 3| 2| 3| 2| 3
0| 1/ 0101
21 3] 2| 3| 2| 3

Figure 8. Initialization of the which substate with the
Margolus neighborhood.

The neighborhood is defined in the program in figure 7
by the Mar gol us vedor that ads as an alias for agroup of
neighbor cdlswith radius equal to 1 Each four-cdl block
has the same random number. This is done by maintaining
in each cell a two-values (0 ord3and substate.

By using st ep and the value of the whi ch substate, a
random number shared by ead cdl of the block can be
cdculated. This random number is used to determine
whether the particles of gas, denoted by the value of the
gas fields, are rotated clockwise or counter-clockwise. To
maintain an ever changing r and substate for eat cdl, a
new value is cdculated using the von Neumann
neighborhood implicitly defined in thear gol us vector.

This algorithm that by CARPET has been coded in a
program compaosed of about 50 lines would require several
hurdred lines of code if a language without high-level
congtructs for defining cdlular data structures and
programming cellular algorithms was used.

6. Performance

CARPET has been used to implement complex cdlular
programs to solve red problems in areas auch as fluid
dynamics, traffic planning, image processng, and genetic
algorithms [2]. In particular, CARPET has been used in
the CABOTO projed, funded by the PClI ESFRIT
programme, to implement parallel CA models for the

simulation ofbioremediatiorof contaminated soilg3].

In this sdion we present the performance results of the
CARPET program that simulates a soil bioremediation
model which includes water flow modeling, phenol
contamination and the bioremediation event simulation. In
this application the fluid flow with diffusion-transport of
contamination agents inside the soil and their mutual
influences are viewed as a dynamic system based on locd
interadions with discrete time and space where the space
is represented by cubic cdls. Eac cdl is charaderized by
spedfic values (the state) of seleded physicd parameters,
representing physicd-chemicd spedficdions, relevant to
the evolution of the phenomenon. Here we show the
program speed-up and efficiency using different
configurations (grid sizes) of the automaton

In the program exeaution, 100 steps dmulate 50
minutes of the red phenomenon. Table 1 shows the speed-
up measures of the parallel model implementation using
different grid sizes on 2, 4, 8, 16, and 32 pocessors.
These measures $iow how much faster the simulation runs
on a paralel computer incressing the number of
processing elementREs).

Grid sizes of the cellular automaton

PEs | 32x15x11 | 64x15x11 | 96x15x11 | 128x15x1
1

1 1 1 1 1

2 1.967 1.980 1.984 1.977

4 3.830 3.908 3.932 3.930

8 7.441 7.717 7.800 7.812

16 14.119 14.986 15.328 15.421]]

32 26.204 28.461 29.527 29.960

Table 1. Program speed-up.

Table 2 shows the dficiency measures of the parallel
model implementation using different grid sizeson 2, 4, 8,
16, and 32 PEs. These measures $ow how ead single
processor is efficiently used during the exeaution of the
simulation.

Different grid sizes of the cellular automaton

PEs | 32x15x11 | 64x15x11 | 96x15x11 | 128x15x11
1 1 1 1

0.983 0.990 0.992 0.989

0.957 0.977 0.983 0.982
8 0.930 0.964 0.975 0.97
16 0.882 0.936 0.958 0.964
32 0.818 0.889 0.923 0.936

Table 2. Efficiency measures.



7. Conclusions

This paper presented the main feaures of the CARPET
programming language and dscussed its use for designing
cdlular agorithms. Further, the paper showed
performance figures of a paralel implementation o
CAMEL on a distributed memory MIMD computer. This
implementation is based on the CAMEL system that
represents the paralel runtime suppat for the CARPET
language. However, shoud be mentioned that the
CAMEL system can be replacal with a different run-time
suppat withou affeding the CARPET constructs and
semantics.

Currently we ae working to redesign the CARPET
runtime suppat for implementing it using the message
passng interface(MPI) standard. This work will permit to
port CARPET on several parall el hardware platforms sich
as the IBM SP2, the Meiko CS2, the CRAY T3D, and

workstation clusters where the MPI package is available.

The CARPET approach is quite different from that
followed in the implementation o ealy cdlular
processng systems where low-level languages are used to
implement cdlular agorithms. These languages make
difficult to implement, read and pat cdlular agorithms.
Further, redly useful simulations are very complex to be
programmed by such systems becaise of they poa
expressiveness.

Our experience during the design, implementation and
use of the CARPET language showed us that high-level
languages are very useful for the development of parallel
algorithms for solving red complex problems in several
application aress, and in paerticular in science ad
engineeing. According to this approach, very complex
smulations such as fluid flow modeling, soil
bioremediation, and freeway traffic flow simulation might
be implemented by a few hundreds lines of code.

Finaly, from the paralel progranming pant-of-view
the CARPET language represents a good trade-off
between expressveness and efficiency defining a
programming model that it is both at high level and at the
same time can be implemented efficiently on parallel
computers. In ou opinion highlevel languages like
CARPET will dlow to enlarge the use of the cdlular
automata model in solving complex problems preserving
high performance and expressveness and may contribute

to enlarge the community of users of parallel computers.

References

[1] Cannataro M., Di Gregorio S., Rongo R., Spataro W.,
Spezzano G., and TaliaD., “A Parallel Cellular Automata
Environment on Multicomputers for Computational
Science”, Parall el Computing, North-Holland,
Amsterdam, 1995v0l. 21, pp. 803-824.

(2]

(3]

(4]

(5]

(6]

(8]

(9]

[10]

(13

[12]

Di Gregorio S., Rongo R., Spataro W., Spezzano G., and

Tdia D., “A Padld Cdlular Tod for Interadive
Modeling and Simulation”, IEEE Computationd Science
& Engineering,IEEE CS Pressl996, vol.3, pp. 33-43

Di Gregorio S., Rongo R., Spataro W., Spezzano G., and
Tdia D., “A Padle Cdlular Simulator for
Bioremediation d Contamined Soils’, in Devdopment
and Applications of Computer techniques to
Environmental Studies VI, Computational Medhanics
Publ., Southampton, 1996, pp. 685-695.

Eckart J. D., “Cellang 2.0: Reference Manua”, ACM
Sigplan Noticed4992 vol. 27, no. 8, pp. 107-112

Hochberger C. and Hoffmann R., “CDL - a Language for
Celular Processng, Proc. 2nd Intern. Conference on
Massvdy Parallel Computing Systems, |IEEE CS Press
1996

Junger G., “Celular Automaton Tod User Manud”,
GMD, SanktAugustin, Germany, 1994.

Seutter F., “CEPROL a Cellular Programming Language”,
Parallel Computing, North-Holland, Amsterdam, 1985
vol. 2, pp. 327-333.

Skillicorn D. B., “Models for Pradicd Paraléd
Computation”, Int. Journa of Parallel Programming,
1991, vol. 20, no. 2, pp. 133-158.

Skilli corn D. B. and TaliaD., “Models and Languages for
Parallel Computation”, submitted to ACM Computing
Survey 1996.

Toffoli T. and Margolus N., Cellular Automata Machines:
A New Environment for ModelinylIT Press, 1986.

von Neumann J, “Theory of Sef-Reproducing
Automata”, Comm in Mathematical Physics, 1985 val.,
96, pp. 15-57.

Worsch T., “Programming Environments for Cellular
Automata”, Procedalings of the 2nd Conference ACRI '96,
Springer-Verlag, Workshopin Computing series, London
1996.



