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ABSTRACT 
 
Developing accurate and robust palmprint verification 
algorithms is one of the key issues in automatic palmprint 
recognition systems. Recently, orientation based coding 
algorithms, such as Competitive Code (CompCode) and 
Orthogonal Line Ordinal Features (OLOF), have been 
proposed and have been attracting much research attention. 
Such algorithms could achieve high accuracy with high 
feature matching speed for real time implementation. By 
investigating the relationship between these two different 
coding schemes, we propose in this paper a feature-level 
fusion scheme for palmprint verification. Only the stable 
features which are consistent between the two codes are 
extracted for matching. The experimental results on the 
public palmprint database show that the proposed fusion 
code could achieve at least 14% EER (Equal Error Rate) 
reduction compared with either of the original codes. 
 

Index Terms—palmprint verification, feature-level 
fusion, orientation coding 
 

1. INTRODUCTION 
 
As a substitution or complementary technology for 
traditional personal authentication methods, biometric 
techniques are becoming more and more popular in public 
security applications. Biometrics is the study of methods for 
uniquely recognizing humans based upon one or more 
intrinsic physical or behavioral traits, including the 
extensively studied fingerprint, face, iris, speech, hand 
geometry, etc [1]. Palmprint authentication as an emerging 
biometrics technology has been drawing much attention in 
both academic and industry societies [2-10] because it owns 
many merits, such as robustness, user-friendliness and cost-
effectiveness. 

Palmprint is composed of three main kinds of features: 
principal lines (usually three dominant lines on the palm), 
wrinkles (weaker and more irregular lines) and minutia 
(ridge and valley features which are similar to those in 
fingerprint images) [2]. Unlike fingerprint which requires a 
high resolution (about 500dpi) to capture clear minutia 
features, the principal lines and wrinkles in a palmprint 
could be captured under a low resolution (<100dpi) and 
they could provide enough discriminatory information for 

personal identification. Fig. 1-a shows the Region of 
Interest (ROI) of a palmprint sample image [2].  

Competitive Code (CompCode) [8] and Orthogonal Line 
Ordinal Features (OLOF) [9] are state-of-the-art algorithms 
for palmprint verification because they could achieve very 
high accuracy with a high matching speed. Taking palm 
lines as negative lines, Kong and Zhang [8] proposed to 
extract and code the orientation of palm lines for palmprint 
verification. They applied six Gabor filters to the image and 
selected one main orientation for each local region. Sun et 
al. [9] proposed a new palmprint representation. They 
compared two elongated line-like image regions, which are 
orthogonal in orientation, and then assigned one bit feature 
code. Three bits are then obtained by using three different 
orientated ordinal filters. Two example maps of CompCode 
and OLOF extracted from Fig. 1-a are shown in Fig. 1-b 
and Fig. 1-c. 

 
(a) (b) (c) 

Fig.1 (a) The ROI of a sample palmprint image and the 
extracted (b) CompCode map and (c) OLOF map. Different 
features are represented by using different gray values. 
 

From Fig. 1, we can see that the OLOF and CompCode 
maps of the same palmprint are different but both of them 
have clear representation of principal lines and wrinkles. 
Since principal lines and wrinkles are the most stable and 
robust features in low resolution palmprint images, it 
inspires us to develop a feature level fusion scheme to 
further enhance those stable features for a more robust 
feature extraction. After investigating the correlation 
between OLOF and CompCode, in this paper, we propose 
such a feature level fusion scheme according to the 
consistency between the two different codes.  

The rest of the paper is organized as follows. Section 2 
briefly reviews CompCode and OLOF. Section 3 analyzes 
the correlation between them and then fuses them. Section 4 
verifies the proposed scheme on a large public palmprint 
database. Finally, Section 5 concludes the paper. 

2. BRIEF REVIEW OF COMPCODE AND OLOF  



 
2.1. CompCode [8] 
 
To extract the orientation information from palm lines, 
CompCode uses six real parts of the neurophysiology-based 
Gabor filters θψ , which is defined as: 
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the half-amplitude bandwidth of the frequency response. 
For each pixel, six filters with 6/πθ ji = , 

j={0,1,2,3,4,5}, are applied. According to palm lines’ 
property, CompCode selects: 
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j
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as the orientation at position (x, y) of image I. To implement 
real-time palmprint recognition, CompCode uses three bits 
to represent each orientation [8]. An angular distance based 
on Hamming distance is used for distance comparison:  
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where P and Q are two CompCodes. ( )b b
i iP Q  is the ith

 bit 
plane of P(Q) and ⊗  is bitwise exclusive OR. 
 
2.2. OLOF [9] 
 
OLOF uses an orthogonal line ordinal filter to compare two 
orthogonal line-like palmprint image regions. The filter is as 
follows: 
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where θ  denotes the orientation of the 2D Gaussian filter, 
xσ  and yσ  are the horizontal and vertical scales of the 

filter.  
Similar to CompCode, three ordinal filters (0)OF , 
( / 6)OF π  and ( / 3)OF π  (refer to Fig. 2) are applied to 

each pixel and a three-bit ordinal code is obtained according 
to the sign of the filtering results. The matching metric on 
Hamming distance is defined the same as Eq. 3. 

 
Fig.2 Ordinal filters. 

 
An integer value could be computed with the three-bit 

code using the following formula: 
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where ( ),  ( 0, / 6, / 3)W θ θ π π=  is the filter response after 
convolving ( )OF θ  with the input image. 
 

3. CONSISTENT ORIENTATION CODE 
 
CompCode and OLOF could achieve high accuracy. 
Although they use different coding strategies, they have 
some consistency in representing palm stable features, as 
can be seen in Fig. 1. After investigating the correlation 
between these two codes, we propose a feature-level fusion 
scheme, namely consistent orientation code, in this section. 
 
3.1. Correlation between CompCode and OLOF 
 
Although OLOF is not designed as an orientation estimator, 
it can be used to represent a line’s orientation like the 
CompCode does. Suppose there is a straight dark line in a 
white background as shown in Fig. 3-a. We rotate Fig. 3-a 
counterclockwise by different angles, e.g. from 1 to 180 
degree with 1 degree interval (referring to Fig. 3-b ~ Fig. 3-
f for examples). The associated CompCodeI  and OLOFI  code 

maps are plotted in Fig. 4. It can be seen that there is clear 
correlation between CompCode and OLOF for this simple 
line image. Taking Fig. 3-a for example, since the dark line 
is closer to the “+” part than the “-” part of (0)OF  and 

( / 6)OF π  (referring to Fig. 2), the filtering outputs of 
(0)OF  and ( / 6)OF π  will be smaller than 0, while the 

filtering output by ( / 3)OF π  will be bigger than 0. So 
according to Eq. 5, OLOFI  is equal to 4. Meanwhile, the 
competitive code, CompCodeI , of this line will be 3 because 

/ 2( , , , )R x y πψ ω θ  has the minimal value. 
For real palmprint image, however, the structure is 

much more complex. For example, in a local region, there 
may have non-straight lines, weak lines and even multiple 
lines. Table 1 shows the co-occurrence percentage between 



CompCode and OLOF on a portion of the PolyU database 
[11] (first six images of each palm, totally 386*6=2316 
images). As we can see from Table 1, there is a strong 
correlation between CompCode and OLOF but it is hard to 
find a direct mapping function between them. Intuitively, 
the consistent parts between the two codes will reflect the 
most stable and important features in the palmprint, while 
the inconsistent parts may come from noise and the unstable 
features in the palmprint. Therefore, it inspires us to 
consider a feature-level fusion scheme to extract the 
consistent features in the two codes and remove the non-
consistent part so that the recognition accuracy could be 
further improved. 

      
(a)             (b)             (c)             (d)             (e)              (f) 

Fig. 3 An image with a straight line and its rotated image. (a) is 
the original image and (b)~(f) are the 30, 60, 90, 120 and 150 
degree counterclockwise rotated versions of (a). 
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Fig. 4 Rotation angle vs. Coding value of OLOF and 
CompCode. 

 
Table 1. Co-occurrence percentage of CompCode and OLOF 
on partial PolyU palmprint database.  

CompCode 
OLOF 

0 1 2 3 4 5 

0 0.4220 0.1733 0.4559 3.7009 8.0190 3.7362 
1 3.7728 0.4797 0.1955 0.4171 3.9493 8.4655 
2 0.0055 0.0376 0.0056 0.0391 0.0063 0.0377 
3 7.2229 4.2097 0.4286 0.1922 0.4390 4.0738 
4 0.1733 0.3500 3.6424 7.4978 3.5182 0.3580 
5 0.0388 0.0063 0.0401 0.0062 0.0393 0.0070 
6 0.4398 3.8072 8.2218 3.6534 0.4342 0.1822 
7 3.7095 8.4643 3.8915 0.4063 0.1823 0.4450 

3.2. Proposed Fusion Scheme 
 
Table 1 shows that around half (47.8912%, the sum of 
underscored number) of the CompCode and OLOF codes 
has a strong consistency. Fig. 5-a) shows the strong 

consistent part between CompCode and OLOF extracted 
from Fig. 1. As we can see, the strong consistent part is 
mainly from principal lines and strong wrinkles. 

However, the strong consistency is less than 50 percent. 
If we keep this part only, we may not have enough 
discriminate information for verification. On the other hand, 
if we regard that the part highlighted with bold number in 
Table 1 has a relatively weak consistency, the valid portion 
is more than 90 percents (93.5562%, the sum of bold 
number). The weak consistency can contribute additional 
information while some unstable parts are removed. Fig. 5-b) 
shows the weak consistent part. We can see that weak 
consistency contains almost all of principal lines and 
wrinkles. 

  
(a)                                     (b) 

Fig. 5 (a) Strong consistent part (in black color) between Fig. 1-
b and Fig. 1-c; and (b) weak consistent part (including strong 
consistent part) between Fig. 1-b and Fig. 1-c. 

 
Here, we propose two different fusion schemes: Strong 

Consistent Fusion (keep strong consistent part only) and 
Weak Consistent Fusion (keep weak consistent part only). 
The distance for the proposed fusion scheme is defined as: 
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where I  is bitwise AND operation, MP  and MQ  are the 
corresponding masks to indicate whether this pixel is kept 
according to the consistency criteria. 
 

4. EXPERIMENT RESULTS 
 
To validate our proposed consistent orientation coding 
scheme, we tested it on a large public palmprint database 
[11]. The database contains 7752 grayscale images collected 
from 386 palms. Those palmprint images were collected in 
two sessions with an average time interval of 69 days. 
Around 10 images per palm were captured per session. 

The central part (128*128) of the palm image is 
cropped by using an ROI extraction algorithm similar to [2]. 
To further reduce the influence of imperfect ROI extraction, 
we translate the feature map vertically and horizontally from 
-4 to 4 when matching it with the feature maps in the 
database. The minimal distance obtained by translated 
matching is regarded as the final distance. Compared with 



originally used searching range, -2 to 2 [8-9], here the 
searching range is increased for better accuracy. 

In palmprint verification test, each palmprint image is 
matched with all the other palmprint images in the database. 
A match is counted as correct if the two palmprint images 
are from the same palm; otherwise, the match is counted as 
incorrect. The total number of matches is 
7752×7751/2=30,042,876, and among them there are 
74,068 correct matchings. The index of equal error rate 
(EER), a point when false accept rate (FAR) is equal to 
false reject rate (FRR), is used to evaluate the performance. 
In addition, the discriminating index 'd  (d-prime) [12] is 
computed for reference. 

The curves of receiver operating characteristic (ROC) 
for the original CompCode, OLOF and the proposed two 
fusion codes are plotted in Fig. 6. The indices of EER and 

'd  are listed in Table 2. Since we increased the matching 
range and made some optimization on ROI extraction, such 
as some morphological operations after binarization to 
overcome the broken finger problem caused by shading, the 
result of CompCode is better than what was reported in the 
original publication [8]. 

Table 2 Accuracy comparison. 

Algorithm EER 'd  
FRR (when 

FAR=3.3x10-6%) 
CompCode 0.0379 5.4122 1.2273 

OLOF 0.0553 6.0301 1.5621 
Strong Consistent 0.0987 7.0468 4.4108 
Weak Consistent 0.0324 5.6925 0.7858 
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Fig. 6 Verification performance comparison. 

From the experimental results, we can see that the weak 
consistent fusion scheme could achieve much better 
performance than the original CompCode and OLOF codes, 
which is largely attributed to the removal of unstable or 
non-robust information. Although strong consistent fusion 
could get the highest 'd , it also has the highest EER value. 
It validates that 'd  is not highly correlated with ROC curve. 
The proposed method achieves at least 14% (0.0379%-

>0.0324%) EER reduction and correctly reject more than 
1,600 (0.0055%*29,968,808) impostor attempts compared 
with either of the original codes. 

 
5. CONCLUSION 

 
In this paper, we analyzed the correlation between two 
state-of-the-art palmprint verification algorithms: 
CompCode and OLOF. Based on the observations, a feature 
level fusion scheme by exploiting the consistency between 
the two codes was proposed. The experimental results on 
the public database showed that by keeping the consistent 
orientation features, the palmprint verification accuracy 
could be improved significantly compared with either the 
original CompCode or OLOF algorithm.  
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