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ON GORENSTEIN WEAK INJECTIVE MODULES

TIWEI ZHAO AND YUNGE XU

Abstract. In this paper, we introduce the notion of Gorenstein weak injective modules

in terms of weak injective modules and characterize rings over which all modules are

Gorenstein weak injective. Moreover, we discuss the relations between weak cosyzygy

and Gorenstein weak cosyzygy of a module. In addition, we discuss the stability of

Gorenstein weak injective modules.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary. Unless

stated otherwise, an R-module will be understood to be a left R-module. As usual,

pdR(M) and idR(M) will denote the projective and injective dimensions of an R-module

M , respectively. For unexplained concepts and notations, we refer the readers to [7, 19].

In 1970, to generalize the homological properties from Noetherian rings to coherent

rings, Stenström introduced the notion of FP-injective modules in [20]. In this pro-

cess, finitely generated modules should in general be replaced by finitely presented mod-

ules. Recall that an R-module M is called FP-injective if Ext1R(N,M) = 0 for any

finitely presented R-module N , and accordingly, the FP-injective dimension of M , de-

noted by FP -idR(M), is defined to be the smallest non-negative integer n such that

Extn+1

R (N,M) = 0 for any finitely presented R-module N . Recently, as an extending

work of Stenström’s viewpoint, Gao and Wang introduced the notion of weak injective

modules ([14]). In this process, finitely presented modules were replaced by super finitely

presented modules (see [13] or Sec. 2 for the definition). It was shown that many results

of a homological nature may be generalized from coherent rings to arbitrary rings (see

[12, 14] for details).

In 1965, Eilenberg and Moore first introduced the viewpoint of relative homological

algebra in [8]. Since then the relative homological algebra, especially the Gorenstein

homological algebra, got a rapid development. Nowadays, it has been developed to an

advanced level (e.g. [3, 4, 6, 7, 15, 16, 17, 21]). However, in the most results of Gorenstein

homological algebra, the condition ‘noetherian’ is essential. In order to make the similar

properties of Gorenstein homological algebra hold in a wider environment, Ding and his

coauthors introduced the notions of Gorensteon FP-injective and strongly Gorenstein flat
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modules (see [5, 18] for details). Later on, Gillespie renamed Gorenstein FP-injective

modules as Ding injective, and strongly Gorenstein flat modules as Ding projective ([11]).

However, under their definition these Gorenstein FP-injective modules are stronger than

the Gorenstein injective modules (see [7, Def. 10.1.1] for the definition), and an FP-

injective module is not necessarily Gorenstein FP-injective in general. To solve this ques-

tion, Gao investigated another class of Gorenstein FP-injective modules in [9, 10] which

extended the class of FP-injective modules, that is, an R-module M is called Gorenstein

FP-injective if there exists an exact sequence of FP-injective R-modules

· · · // E1
// E0

// E0 // E1 // · · ·

such that M = Coker(E1 → E0) and the functor HomR(P,−) leaves this sequence exact

whenever P is a finitely presented R-module with pdR(P ) < ∞. Under Gao’s definition

these Gorenstein FP-injective modules are weaker than the Gorenstein injective modules,

and every FP-injective module is Gorenstein FP-injective. However, the condition ‘coher-

ent’ is essential in his paper. So, in order to make the properties of this class of Gorenstein

FP-injective modules hold over any ring, it seems that we have to replace FP-injective

modules by weak injective modules.

In Section 2, we first introduce the notion of Gorenstein weak injective modules in

terms of weak injective modules and give some basic properties. Then we characterize

rings over which all modules are Gorenstein weak injective and others. Finally, we discuss

the relations between weak cosyzygy and Gorenstein weak cosyzygy of a module. In

Section 3, we mainly discuss the stability of Gorenstein weak injective modules.

2. Gorenstein weak injective modules

In this section, we give the definition of Gorenstein weak injective modules and dis-

cuss some of the properties of these modules. We first recall some terminologies and

preliminaries. For more details, we refer the readers to [7, 12, 14].

Definition 2.1. ([7]) Let F be a class of R-modules. By an F-preenvelope of an R-

module M , we mean a morphism ϕ : M → F where F ∈ F such that for any morphism

f : M → F
′

with F
′

∈ F , there exists a morphism g : F → F
′

such that gϕ = f , that is,

there is the following commutative diagram:

M

f   ❇
❇❇

❇❇
❇❇

❇

ϕ
// F

g

��

F ′

If furthermore, when F
′

= F and f = ϕ, the only such g are automorphisms of F , then

ϕ : M → F is called an F-envelope of M .
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Dually, one may give the notion of F-(pre)cover of an R-module. Note that F -envelopes

and F -covers may not exist in general, but if they exist, they are unique up to isomor-

phism.

In the process that some results of a homological nature may be generalized from

coherent rings to arbitrary rings, the notion of super finitely presented modules plays a

crucial role. Recall from [13] that an R-moduleM is called super finitely presented if there

exists an exact sequence · · · → F1 → F0 → M → 0, where each Fi is finitely generated

and projective. Then Gao and Wang gave the definition of weak injective modules in

terms of super finitely presented modules in [14], which is a generalization of the notion

of FP-injective modules.

Definition 2.2. ([14]) An R-module M is called weak injective if Ext1R(N,M) = 0 for

any super finitely presented R-module N .

We denote by WI(R) the class of all weak injective R-modules. By [12, Thm. 3.4],

every R-module has a weak injective preenvelope. So for any R-module M , M has a right

WI(R)-resolution, that is, there exists a HomR(−,WI(R))-exact complex

0 // M // E0 // E1 // E2 // · · · ,

where each Ei is weak injective. Moreover, since every injective R-module is weak injec-

tive, this complex is also exact.

Now we give the notion of Gorenstein weak injective modules in terms of weak injective

modules as follows.

Definition 2.3. An R-module M is called Gorenstein weak injective if there exists an

exact sequence of weak injective R-modules

W = · · · // W1
// W0

// W 0 // W 1 // · · ·

such that M = Coker(W1 → W0) and the functor HomR(N,−) leaves this sequence exact

whenever N is a super finitely presented R-module with pdR(N) < ∞.

Remark 2.4. (1) Every weak injective R-module is Gorenstein weak injective.

(2) Since every FP-injective R-module is weak injective, every Gorenstein FP-injective

R-module (in sense of Gao’s definition) is Gorenstein weak injective. If R is a left coherent

ring, then the class of Gorenstein weak injective R-modules coincides with the class of

Gorenstein FP-injective R-modules. Moreover, we have the following implications by [9,

Prop. 2.5]:

Gorenstein injective R-modules ⇒ Gorenstein FP-injective R-modules

⇒ Gorenstein weak injective R-modules.
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If R is an n-Gorenstein ring (i.e. a left and right Noetherian ring with self injective

dimension at most n on both sides for some non-negative integer n), then these three

kinds of R-modules coincide.

(3) The class of Gorenstein weak injective R-modules is closed under direct products.

(4) If W = · · · // W1
// W0

// W 0 // W 1 // · · · is an exact sequence of weak in-

jective R-modules such that the functor HomR(N,−) leaves this sequence exact whenever

N is a super finitely presented R-module with pdR(N) < ∞, then by symmetry, all the

images, the kernels and the cokernels of W are Gorenstein weak injective.

Proposition 2.5. Let M be a Gorenstein weak injective R-module. Then ExtiR(N,M) =

0 whenever N is a super finitely presented R-module with pdR(N) < ∞ and i ≥ 1.

Proof. By Definition 2.3, there exists an exact sequence 0 → M → W 0 → M1 →

0 with W 0 weak injective and M1 Gorenstein weak injective, such that the functor

HomR(N,−) leaves this sequence exact whenever N is a super finitely presented R-module

with pdR(N) < ∞. Moreover, consider the following exact sequence

0 // HomR(N,M) // HomR(N,W 0) // HomR(N,M1) // Ext1R(N,M) // Ext1R(N,W 0) .

Since W 0 is weak injective, we have Ext1R(N,W 0) = 0, and hence Ext1R(N,M) = 0. Since

M1 is Gorenstein weak injective, we also have Ext1R(N,M1) = 0. Consider the following

exact sequence

0 = Ext1R(N,W 0) // Ext1R(N,M1) // Ext2R(N,M) // Ext2R(N,W 0) .

Note that Ext2R(N,W 0) = 0 by [14, Prop. 3.1], and hence Ext2R(N,M) ∼= Ext1R(N,M1) =

0. We repeat the argument by replacing M1 with M to get a Gorenstein weak injective

R-module M2 and the isomorphisms Ext3R(N,M) ∼= Ext2R(N,M1) ∼= Ext1R(N,M2) = 0.

Continue this process, we may obtain a Gorenstein weak injective R-moduleM i−1 and the

isomorphisms ExtiR(N,M) ∼= Exti−1

R (N,M1) ∼= · · · ∼= Ext1R(N,M i−1) = 0 for i ≥ 1. �

The following proposition shows that we may simplify the definition of Gorenstein weak

injective R-modules.

Proposition 2.6. An R-module M is Gorenstein weak injective if and only if there exists

an exact sequence of weak injective R-modules

W = · · · // W1
// W0

// W 0 // W 1 // · · ·

such that M = Coker(W1 → W0).

Proof. ⇒ It is trivial.

⇐ By the definition of Gorenstein weak injective R-modules, it suffices to show that

the complex HomR(N,W) is exact whenever N is a super finitely presented R-module

with pdR(N) < ∞. We use induction on n = pdR(N) < ∞. The case n = 0 is trivial. Let
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n ≥ 1, and assume that the result holds for the case n − 1. Consider an exact sequence

0 → K → P0 → N → 0, where P0 is finitely generated projective and K is super finitely

presented. Then pdR(K) = n − 1. Since each term of W is weak injective, we may get

the following exact sequence of complexes

0 → HomR(N,W) → HomR(P0,W) → HomR(K,W) → 0.

Clearly, the complex HomR(P0,W) is exact. Moreover, the complex HomR(K,W) is also

exact by the induction hypothesis. So the complex HomR(N,W) is exact, and hence M

is Gorenstein weak injective. �

Corollary 2.7. Let M be an R-module. Then the following are equivalent:

(1) M is Gorenstein weak injective;

(2) There is an exact sequence · · · → W1 → W0 → M → 0, where each Wi is weak

injective;

(3) There is an exact sequence 0 → L → W → M → 0, where W is weak injective and

L is Gorenstein weak injective.

Proof. (1) ⇒ (3) It is trivial.

(3) ⇒ (2) Since L is Gorenstein weak injective, by Definition 2.3, there is an exact

sequence · · · → W2 → W1 → L → 0, where each Wi is weak injective. Assembling this

sequence with the sequence given in (3), we have the following commutative diagram:

· · · // W2
// W1

//

  ❇
❇❇

❇❇
W // M // 0

L

>>⑦⑦⑦⑦⑦

  ❆
❆❆

❆❆

0

==④④④④④④
0

.

Let W0 = W , then (2) holds.

(2) ⇒ (1) Since every R-module has a weak injective preenvelope by [12, Thm. 3.4],

we may easily get an exact sequence 0 → M → W 0 → W 1 → · · · , where each W i is weak

injective. Assembling this sequence with the sequence given in (2), we get the following

exact sequence

W = · · · // W1
// W0

// W 0 // W 1 // · · ·

such thatM = Coker(W1 → W0). By Proposition 2.6,M is Gorenstein weak injective. �

Definition 2.8. The Gorenstein weak injective dimension of an R-module M , denoted

by GwidR(M), is defined as inf{n | there is an exact sequence 0 → M → G0 → G1 →

· · · → Gn → 0 with Gi Gorenstein weak injective for any 0 ≤ i ≤ n}. If no such n exists,

set GwidR(M) = ∞.

Proposition 2.9. Given an exact sequence 0 → L → M → N → 0 with M weak injective.

If L is Gorenstein weak injective, then so is N . Otherwise, GwidR(L) ≤ GwidR(N) + 1.
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Proof. The first assertion follows from Corollary 2.7. Assume that GwidR(N) = n < ∞.

Then, by Definition 2.8, there exists an exact sequence

0 → N → G0 → G1 → · · · → Gn → 0

with Gi Gorenstein weak injective for any 0 ≤ i ≤ n. Assembling this sequence with the

exact sequence 0 → L → M → N → 0, we may easily get that GwidR(L) ≤ n + 1 =

GwidR(N) + 1. �

Proposition 2.10. Given an exact sequence 0 → L → M → N → 0 with L weak

injective. If N is Gorenstein weak injective, then so is M .

Proof. Assume that N is Gorenstein weak injective. Then, by Corollary 2.7, there exists

an exact sequence 0 → K → W → N → 0, where K is Gorenstein weak injective and W

is weak injective. Consider the following pull-back diagram:

0

��

0

��
K

��

K

��
0 // L // W ′ //

��

W //

��

0

0 // L // M //

��

N //

��

0

0 0

(1)

Since L and W are weak injective, it follows from the middle row in the diagram (1) that

W ′ is weak injective. By the middle column in the diagram (1) and Corollary 2.7, we

have that M is Gorenstein weak injective. �

We now give a characterization for rings whose every module is Gorenstein weak injec-

tive as follows.

Proposition 2.11. The following are equivalent:

(1) Every R-module is Gorenstein weak injective;

(2) Every projective R-module is weak injective.

Proof. (1) ⇒ (2) Let P be a projective R-module. Then P is Gorenstein weak injective

by hypothesis. So there exists an exact sequence 0 → K → W → P → 0, where W is

weak injective. It is obvious that this sequence is split, and hence P is weak injective as

a direct summand of W .

(2) ⇒ (1) Let M be any R-module. If every projective R-module is weak injective, then

by assembling a projective resolution of M with its weak injective resolution, we may get

the following exact sequence of weak injective R-modules

· · · // W1
// W0

// W 0 // W 1 // · · ·
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such that M = Coker(W1 → W0). Thus M is Gorenstein weak injective by Proposition

2.6. �

Corollary 2.12. Let R be a left noetherian ring. Then R is quasi-Frobenius if and only

if every R-module is Gorenstein weak injective.

Proof. If R is quasi-Frobenius, then every projective R-module is injective. Conse-

quently, every projective R-module is weak injective, and the result holds by Proposition

2.11. The converse follows from Proposition 2.11 and the fact that the injective R-modules

coincide with the weak injective R-modules over a left noetherian ring R. �

Let M be an R-module. Recall from [14] that the weak injective dimension of M ,

denoted by widR(M), is defined to be the smallest non-negative integer n such that

Extn+1

R (N,M) = 0 for any super finitely presented R-module N . Accordingly, we define

the left global weak injective dimension of a ring R as

ℓ.wiD(R) = sup{widR(M) | M is any R-module}.

Proposition 2.13. Every weak injective R-module is Gorenstein weak injective with

equivalent if ℓ.wiD(R) < ∞.

Proof. Assume that ℓ.wiD(R) = n < ∞ and let M be a Gorenstein weak injective

R-module. The case n = 0 is trivial. Let n ≥ 1. Since M is Gorenstein weak injective,

there is an exact sequence

· · · // W1
// W0

// M // 0

with each Wi weak injective. Let Kn = Ker(Wn−1 → Wn−2). Then we get an exact

sequence

0 // Kn
// Wn−1

// · · · // W1
// W0

// M // 0 .

By hypothesis, widR(Kn) ≤ n, and hence M is weak injective by [14, Prop. 3.3]. �

The next proposition gives a description of rings over which all Gorenstein weak injective

R-modules are weak injective.

Proposition 2.14. The following are equivalent:

(1) Every Gorenstein weak injective R-module is weak injective;

(2) For any R-module M , GwidR(M) = widR(M).

Proof. (1) ⇒ (2) Let M be an R-module. Since every weak injective R-module is

Gorenstein weak injective, it is obvious that GwidR(M) ≤ widR(M). So it suffices to show

that widR(M) ≤ GwidR(M). Without loss of generality, we assume that GwidR(M) =

n < ∞ for some non-negative integer n. Then, by Definition 2.8, there is an exact

sequence 0 → M → G0 → G1 → · · · → Gn → 0 with Gi Gorenstein weak injective for
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any 0 ≤ i ≤ n. Note that each Gi is weak injective by hypothesis. Thus, widR(M) ≤ n =

GwidR(M) by [14, Prop. 3.3], as desired.

(2) ⇒ (1) It is trivial. �

Consider the following exact sequence

0 // M
d0

// W 0 d1
// W 1 // · · · ,

where each W i is weak injective. Let V i = Cokerdi−1 for any i ≥ 1. Then we call V i the

i-th weak cosyzygy of M .

Similarly, if each W i is Gorenstein weak injective in the above sequence, then we call

V i the i-th Gorenstein weak cosyzygy of M .

As what Huang and his coauthor have done in [17], we investigate the relations between

weak cosyzygy and Gorenstein weak cosyzygy of an R-module as follows.

Since every weak injective R-module is Gorenstein weak injective, it is obvious that

every i-th weak cozysygy of an R-module M is the i-th Gorenstein weak cozysygy of M .

The following theorem shows that the converse holds to some extent.

Definition 2.15. A ring R is called GWI-closed if the class of Gorenstein weak injective

R-modules is closed under extensions.

Theorem 2.16. Let R be a GWI-closed ring, n a positive integer and V n an n-th Goren-

stein weak cosyzygy of an R-module M . Then V n is an n-th weak cosyzygy of some R-

module N , and there is an exact sequence 0 → G → N → M → 0, where G is Gorenstein

weak injective.

Proof. We use induction on n. For the case n = 1, there is an exact sequence 0 →

M → G0 → V 1 → 0 with G0 Gorenstein weak injective. By the definition of Gorenstein

weak injective R-modules, there is an exact sequence 0 → G → W 0 → G0 → 0 with W 0

weak injective and G Gorenstein weak injective.

Consider the following pull-back diagram:

0

��

0

��
G

��

G

��

0 // N //

��

W 0 //

��

V 1 // 0

0 // M //

��

G0 //

��

V 1 // 0

0 0

(2)

It follows from the middle row in the diagram (2) that V 1 is the first weak cosyzygy of an

R-module N . Moreover, we get the desired exact sequence 0 → G → N → M → 0 from

the second column in the diagram (2).
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Now let n ≥ 2 and suppose that the result holds for the case n− 1. Let V n be an n-th

Gorenstein weak cosyzygy of M . Then we have the following exact sequence

0 // M // G0 // G1 // · · · // Gn−1 // V n // 0 ,

where each Gi is Gorenstein weak injective. Since Gn−1 is Gorenstein weak injective, there

is an exact 0 → G′ → W n−1 → Gn−1 → 0 with G′ Gorenstein weak injective and W n−1

weak injective.

Consider the following pull-back diagrams:

0

��

0

��

G′

��

G′

��

0 // V ′ //

��

W n−1 //

��

V n // 0

0 // V n−1 //

��

Gn−1 //

��

V n // 0

0 0

(3)

and

0

��

0

��

G′

��

G′

��

0 // V n−2 // G′′ //

��

V ′

��

// 0

0 // V n−2 // Gn−2 //

��

V n−1 //

��

0

0 0

(4)

where V n−i = Coker(Gn−i−2 → Gn−i−1) for i = 1, 2. For the exact sequence 0 → G′ →

G′′ → Gn−2 → 0 in the diagram (4), since G′ and Gn−2 are Gorenstein weak injective,

G′′ is also Gorenstein weak injective by hypothesis. Moreover, by the middle row in the

diagram (4), we have that V ′ is an (n− 1)-st Gorenstein weak cosyzygy of M . Thus V ′

is the (n − 1)-st weak cosyzygy of some R-module N by the induction hypothesis. In

addition, by assembling the middle row in the diagram (3), we may get that V n is the

n-th weak cosyzygy of N , as desired. �

3. The stability of Gorenstein weak injective R-modules

In this section, we mainly consider the stability of Gorenstein weak injective R-modules.

We denote by GWI(R) the class of Gorenstein weak injective R-modules. The stability

of Gorenstein categories was first considered by Sather-Wagstaff et al. in [21] and further
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investigated by many authors, see [1, 2, 22, 23, 24, 25]. They considered a class of R-

modules of the form Im(G0 → G0) for some exact sequence of Gorenstein projective

R-modules (see [7, Def. 10.2.1] for the definition)

G = · · · // G1
// G0

// G0 // G1 // · · ·

such that the complexes HomR(G, H) and HomR(H,G) (or, only HomR(G, H)) are exact

for any Gorenstein projective R-module H , and proved that these modules are nothing

but Gorenstein projective R-modules.

Inspired by the above, we begin with the following question.

Question. Given an exact sequence of Gorenstein weak injective R-modules

G = · · · // G1
// G0

// G0 // G1 // · · ·

such that M = Coker(G1 → G0) and the functor HomR(N,−) leaves this sequence exact

whenever N is a super finitely presented R-module with pdR(N) < ∞, is M Gorenstein

weak injective?

We call an R-module M defined as in the above question two-degree Gorenstein weak

injective, and denote by GWI2(R) the class of two-degree Gorenstein weak injective R-

modules. It is obvious that there is containment GWI(R) ⊆ GWI2(R).

In the following, we show that the answer to the above question is affirmative over

GWI-closed rings.

Theorem 3.1. Let R be a GWI-closed ring. Then GWI(R) = GWI2(R).

Before giving the proof of Theorem 3.1, we need the following preliminaries.

Definition 3.2. An R-module M is called strongly two-degree Gorenstein weak injective

if there exists an exact sequence

· · · // G
d
// G

d
// G

d
// G // · · · ,

where G is Gorenstein weak injective, such thatM = Cokerd and the functor HomR(N,−)

leaves this sequence exact whenever N is a super finitely presented R-module with pdR(N) <

∞.

We denote by SGWI2(R) the class of strongly two-degree Gorenstein weak injective

R-modules. It is obvious that there is containment SGWI2(R) ⊆ GWI2(R).

Lemma 3.3. Let M be an R-module. Then the following are equivalent:

(1) M is strongly two-degree Gorenstein weak injective;

(2) There exists an exact sequence 0 → M → G → M → 0, where G is Gorenstein

weak injective, such that the functor HomR(N,−) leaves this sequence exact whenever N

is a super finitely presented R-module with pdR(N) < ∞;
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(3) There exists an exact sequence 0 → M → G → M → 0, where G is Gorenstein weak

injective, such that Ext1R(N,M) = 0 whenever N is a super finitely presented R-module

with pdR(N) < ∞.

Proof. (1) ⇒ (2) It follows immediately from Definition 3.2.

(2) ⇒ (3) Let 0 → M → G → M → 0 be an exact sequence with G Gorenstein weak

injective, applying the functor HomR(N,−) with N super finitely presented to it, we have

the following exact sequence

· · · // HomR(N,G) // HomR(N,M) // Ext1R(N,M) // Ext1R(N,G) // · · · .

By Proposition 2.5, Ext1R(N,G) = 0. Moreover, the sequence 0 → HomR(N,M) →

HomR(N,G) → HomR(N,M) → 0 is exact by hypothesis. Thus we have Ext1R(N,M) = 0.

(3) ⇒ (1) We first obtain the following commutative diagram from the exact sequence

0 → M → G → M → 0 in (3):

0
!!❇

❇❇
0

M

==⑤⑤⑤

!!❇
❇❇

G = · · · //

""❉
❉❉

G //

==⑤⑤⑤
G //

!!❇
❇❇

· · · .

M

==⑤⑤⑤

!!❇
❇❇

❇
M

##●
●●

●●

;;✇✇✇✇

0

<<②②②②
0 0

==⑤⑤⑤⑤
0

Moreover, it is easy to get an exact sequence 0 → HomR(N,M) → HomR(N,G) →

HomR(N,M) → 0 by hypothesis, and hence we have the following commutative diagram:

0
((◗◗

◗◗◗
◗ 0

**❱❱❱
❱❱❱

❱❱❱ 0
**❱❱❱

❱❱❱
❱❱❱ 0

HomR(N,M)

44❤❤❤❤❤❤❤❤❤

**❯❯❯
❯

HomR(N,M)

44❤❤❤❤❤❤❤❤❤

**❯❯❯
❯

HomR(N,M)

66❧❧❧❧❧❧

((◗◗
◗◗◗

· · · //

''PP
PP

P

77♥♥♥♥♥
HomR(N,G) //

**❯❯❯
❯

44✐✐✐✐

HomR(N,G) //

**❯❯❯
❯

44✐✐✐✐

· · · .

HomR(N,M)

44✐✐✐✐

**❱❱❱
❱❱❱

❱❱❱
HomR(N,M)

44✐✐✐✐

**❱❱❱
❱❱❱

❱❱❱
HomR(N,M)

66♠♠♠♠♠

))❘❘
❘❘❘

❘

0

66♠♠♠♠♠♠
0

44❤❤❤❤❤❤❤❤❤ 0

44❤❤❤❤❤❤❤❤❤ 0

It follows then that the complex HomR(N,G) is exact whenever N is a super finitely

presented R-module with pdR(N) < ∞, and thus M is strongly two-degree Gorenstein

weak injective. �

Proposition 3.4. Let M be an R-module. If M is two-degree Gorenstein weak injective,

then it is a direct summand of some strongly two-degree Gorenstein weak injective R-

module.
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Proof. Since M is two-degree Gorenstein weak injective, there exists an exact sequence

of Gorenstein weak injective R-modules

G = · · · // G1

d1
// G0

d0
// G−1

d−1
// G−2

// · · ·

such that M = Cokerd1 and the functor HomR(N,−) leaves this sequence exact whenever

N is a super finitely presented R-module with pdR(N) < ∞. For all m ∈ Z, we denote by

Σm
G the exact sequence obtained fromG by increasing all indexes bym: (Σm

G)i = Gi−m

and dΣ
mG

i = di−m for all i ∈ Z. Then we get the following exact sequence

⊕

m∈Z

(Σm
G) = · · · //

⊕
Gi

⊕di
//
⊕

Gi

⊕di
//
⊕

Gi

⊕di
//
⊕

Gi
// · · · .

Since Coker(⊕di) ∼= ⊕Cokerdi, M is a direct summand of Coker(⊕di). Moreover, from the

isomorphism HomR(N,
⊕

m∈Z
(Σm

G)) ∼=
∏

m∈Z
HomR(N,Σm

G), we have that Coker(⊕di)

is a strongly two-degree Gorenstein weak injective R-module, as desired. �

Lemma 3.5. Let R be a GWI-closed ring. Then the class of Gorenstein weak injective

R-modules is closed under direct summands.

Proof. Let M ∼= L ⊕ N be a Gorenstein weak injective R-module. Then there exists

an exact sequence 0 → G0 → W0 → M → 0 such that W0 is weak injective and G0 is

Gorenstein weak injective. Set N0 = Ker(W0 → N). Then we have two exact sequences:

0 → N0 → W0 → N → 0 and 0 → G0 → N0 → L → 0. By adding a trivial exact

sequence 0 → 0 → N → N → 0 to the second sequence, we get an exact sequence

0 → G0 → N0⊕N → L⊕N → 0. Note that G0 and L⊕N are Gorenstein weak injective,

so is N0 ⊕N by hypothesis. We repeat the argument by replacing N with N0 to get N1

and an exact sequence 0 → N1 → W1 → N0 → 0 with W1 weak injective. Continue

this process, we may obtain an exact sequence · · · → W1 → W0 → N → 0, where each

Wi is weak injective, which shows that N is Gorenstein weak injective by Corollary 2.7.

Similarly, L is Gorenstein weak injective. �

Now we give the proof for our main theorem.

Proof of Theorem 3.1. Since GWI(R) ⊆ GWI2(R), it suffices to show that GWI2(R) ⊆

GWI(R). Since every two-degree Gorenstein weak injective R-module is a direct sum-

mand of some strongly two-degree Gorenstein weak injective R-module, and the class

of Gorenstein weak injective R-modules is closed under direct summands by Lemma

3.5, so we only need to prove that every strongly two-degree Gorenstein weak injec-

tive R-module is Gorenstein weak injective R-module. Let M be a strongly two-degree

Gorenstein weak injective R-module. Then, by Lemma 3.3, there is an exact sequence

0 → M → G → M → 0 with G Gorenstein weak injective. Moreover, by Corollary

2.7, there is an exact sequence 0 → G1 → W → G → 0 with W weak injective and G1

Gorenstein weak injective.
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Consider the following pull-back diagram:

0

��

0

��
G1

��

G1

��
0 // N //

��

W //

��

M // 0

0 // M //

��

G //

��

M // 0

0 0

(5)

From the middle row in the diagram (5), we obtain an exact sequence 0 → N → W →

M → 0 with W weak injective. Thus, in order to show that M is Gorenstein weak

injective, it suffices to prove that N is Gorenstein weak injective by Proposition 2.9.

Consider the following pull-back diagram:

0

��

0

��
G1

��

G1

��
0 // M // G2

//

��

N

��

// 0

0 // M // G //

��

M //

��

0

0 0

(6)

Since G and G1 are Gorenstein weak injective, G2 is also Gorenstein weak injective by

the middle column in the diagram (6). Hence there exists an exact sequence 0 → G3 →

W0 → G2 → 0 such that W0 is weak injective and G3 is Gorenstein weak injective.

Consider the following pull-back diagram:

0

��

0

��
G3

��

G3

��
0 // N1

//

��

W0
//

��

N // 0

0 // M //

��

G2
//

��

N // 0

0 0

(7)

From the middle row in the diagram (7), we obtain an exact sequence 0 → N1 → W0 →

N → 0 with W0 weak injective. We repeat the argument by replacing N with N1 to get

N2 and an exact sequence 0 → N2 → W1 → N1 → 0 with W1 weak injective. Continue
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this process, we may obtain an exact sequence · · · → W1 → W0 → N → 0, where each

Wi is weak injective, which shows that N is Gorenstein weak injective by Corollary 2.7.

We have completed the proof.
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