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Abstract 

 
Diagnosis of diseases and disorders afflicting mankind has 
always been a candidate for automation. Numerous attempts 
made at classification of symptoms and characteristic 
features of disorders have rarely used neural networks due to 
the inherent difficulty of training with sufficient data. But, the 
inherent robustness of neural networks and their adaptability 
in varying relationships of input and output justifies their use 
in clinical databases. To overcome the problem of training 
under conditions of insufficient and incomplete data, we 
propose to use three different neural network classifiers, each 
using a different learning function. Consequent combination 
of their beliefs by Dempster-Shafer evidence combination 
overcomes weaknesses exhibited by any one classifier to a 
particular training set. We prove with conclusive evidence 
that such an approach would provide a significantly higher 
accuracy in the diagnosis of disorders and diseases. 
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1. INTRODUCTION 
 
The applications of data mining in the field of medicine 
include diagnosis of diseases, prediction of the effectiveness 
of surgical procedures, analysis of medical tests and 
medications, and discovery of relationships among clinical 
and pathological data. Clinical databases store large amounts 
of information about patients and their medical conditions. 
Data mining techniques can be applied on these databases to 
identify patterns and relationships which can help in studying 
the symptoms, diagnosis and treatment of diseases [2]. These 
techniques are especially useful for the prediction or early 
diagnosis of a disease. In the case of certain diseases like 
cancer, early diagnosis is very important - it might help save 
the patient’s life. This paper aims to study and apply a formal 
evidence combination technique for mining medical data for 
prediction of or screening for a disease. Input data, consisting 
of feature vectors, is input to three different neural network 
based classifiers. The classifiers used in this paper are a Back 
Propagation Network (BPN), Kohenen Learning Network 
(KN) and a Resilient Back Propagation Network (RProp). 

Each of the classifiers provides beliefs for each class. These 
pieces of evidence are then combined to reach a final 
diagnosis using Dempster’s belief combination formula [14]. 
In this paper, experiments are carried on breast cancer data 
and thyroid disorder data [15]. The approach proposed has 
two primary advantages: Robustness across multiple data sets 
with multiple classifiers and management of uncertainty in 
the presence of unequal error costs. 
In the rest of the paper we first give a brief introduction to the 
theory of belief functions and evidence. We then describe the 
three neural network based classifiers under consideration in 
Section 3. The use of the Dempster-Shafer evidence 
combination approach in the context of these classifiers is 
discussed in Section 4. Section 5 describes our experimental 
evaluation and the results. Section 6 concludes the paper and 
predicts the direction of future work in this field. 
 

2. BACKGROUND ON DEMPSTER-SHAFER THEORY 
 
We present here briefly the basis of the Dempster-Shafer 
theory (DST) or the Mathematical Theory of Evidence 
(MTE), also sometimes called the theory of probable or 
evidential reasoning. The DST is usually considered as a 
generalization of the Bayesian theory of subjective 
probability to handle uncertain information. 
Belief is, very simply, a measure of a trust or confidence that 
a particular event will occur [9,14]. Let us consider sources of 
evidence providing various degrees of support for the 
occurrence of event A. All degrees of support for event A are 
combined to form a numerical measure of belief that event A 
occurred. A mathematical function that translates degree of 
support to belief is known as a Belief Function [1]. Basic 
belief m(X), which represents the strength or belief mass of 
some evidence for event X provided by the source of 
information under consideration, has the following properties: 

     ( )∑ = 1Xm  where Ω∈X           (1) 

     ( ) 0=Φm    where Φ  is empty.              (2) 

Here, Ω  represents the total event space. Equation 2 
indicates that the belief of an empty set is always zero. 
The belief function for an event A is given by 

     Bel(A) = ( )∑ Xm      where AX ⊆  and Ω⊆A      (3) 



The theory of evidence deals with the evaluation of beliefs 
from a number of evidences [9] and their combination. For 
example, consider three sources of evidence P, Q and R. Let 
the event space be Ω  = {A, B}. The measure assigned by 
evidence P is given by BelP (A), BelP(B) and 
BelP(uncertainty) . Since the events A and B along with the 
uncertain component of probability constitute exhaustive 
events, we have 
 
     BelP(A) + BelP(B) + BelP(uncertainty)=1                      (4a) 
Similarly we have 
     BelQ(A) + BelQ(B) + BelQ(uncertainty)=1                     (4b) 
     BelR(A) + BelR(B) + BelR(uncertainty)=1                      (4c) 
 
A decision can be made based on a combination of these 
beliefs. 
In this paper, we use classifier output to form evidence and a 
decision such as benign or malignant forms an event, as 
indicated before. Thus, a possible event space is 

Ω  = {benign, malignant} 
In the following sections we will illustrate in brief the 
operations of the three classifiers under consideration - Back 
Propagation Network (BPN), Kohenen Network (KN) and 
Reverse Propagation Network (RN) – and discuss how beliefs 
for each class and the uncertainty are calculated. 
 

3. THE THREE NEURAL NET BASED CLASSIFIERS 
 
Learning in neural networks proceeds as follows. During the 
training phase, the network is provided with examples called 
training sets. Each training set consists of a list of input values 
and the corresponding output. The network uses these training 
sets to learn the mapping from the input to the output. Each 
neural network follows a different method of learning.  

A. Back Propagation Network (BPN) 
The BPN learning process works in small iterative steps: one 
of the test cases is applied to the network, and the network 
produces some output based on the current state of it's 
synaptic weights (initially, the output will be random). This 
output is compared to the known-good output, and a mean-
squared error signal is calculated. The error value is then 
propagated backwards through the network, and small 
changes are made to the weights in each layer. The weight 
changes are calculated to reduce the error signal for the case 
in question. The whole process is repeated for each of the test 
cases. The cycle is repeated until the overall error value drops 
below some pre-determined threshold and stabilises. At this 
point the network has learned the given system well enough. 
The BPN learning network asymptotically approaches the 
ideal function. 
BPN learning depends on two parameters - ξ , learning 
parameter that specifies the step width of the gradient descent, 
and maxδ , the maximum difference between a teaching value 
and an output that is tolerated. 

B. Kohenen Learning Network (KN) 

A Kohonen neural network is a self organizing mapping 
technique that allows one to project multidimensional points 
to two dimensional network. There are two key concepts 
important in understanding KNs - competitive learning and 
self-organization. 
Competitive learning is simply finding a neuron that is most 
similar to the input pattern (W stands for the winner neuron). 
The network modifies this neuron and its neighbour neurons  
(a competitive learning with self-organization) to be even 
more similar to it. The input to train the network is a set of 
uniformly distributed points in each sector (the sector identity 
is not a part of input), described by x, y and z coordinates. 
The resultant network is able to organize points according to 
their sector identity. 
For the winning neuron and its physical neighbors, the 
following training laws are used to modify weights.  
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C. Resilient Back Propagation Network (RProp) 
The purpose of the RProp training algorithm is to eliminate 
small gradient changes in the weights and biases the 
magnitudes of the partial derivatives. Only the sign of the 
derivative is used to determine the direction of the weight 
update; the magnitude of the derivative has no effect on the 
weight update. The size of the weight change is determined 
by a separate update value. The update value for each weight 
and bias is increased by a factor incδ  whenever the derivative 

of the performance function with respect to that weight has 
the same sign for two successive iterations. The update value 
is decreased by a factor decδ  whenever the derivative with 
respect that weight changes sign from the previous iteration. 
If the derivative is zero, then the update value remains the 
same. Whenever the weights oscillate, the weight change will 
be reduced. If the weight continues to change in the same 
direction for several iterations, then the magnitude of the 
weight change will be increased. 
Under RProp learning (typically simulated on non-recursive 
networks), the learning depends on two parameters - 0δ , the 

starting value for all δ s, and maxδ , the upper limit for the 

update values δ . 

 
4. EVIDENCE COMBINATION 

 

A. Uncertainty Evaluation 
Here, we see how to evaluate uncertainty for each classifier. 
We use the class differentiation quality as our uncertainty 
measure [2]. The idea behind this perspective is that the 
closer the values of beliefs for K classes to each other, the 
more uncertain the classifier is about its decision. As the 
beliefs start spreading apart uncertainty starts decreasing.  



Let uncertainty be denoted as H(U) [2]. If there are K possible 
classifications, the distance between the belief values and the 
value 1/K are evaluated. If all the classes have the same 
distance then the ambiguity involved in the classification is 
the highest. If one class shows maximum possible distance 
then the ambiguity involved is the least. Generalizing from 
this, a measure of uncertainty can be computed. 
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We use this measure to compute uncertainty as H(U) and then 
normalize the belief values ( ) ( )imiBel .α=  so that 
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Thus, we obtain   
     ( )UH.1 βα −=             (9) 
The Dempster-Shafer Theory (DST or Dempster’s Rule) of 
evidence combination deals with these beliefs.  

B. Combining classifiers using DST 
Dempster’s Rule assumes that observations are independent 
and have a non-empty set intersection [14]. Any two beliefs 
Bel1 and Bel2 with elements Ai and Bi respectively may be 
combined into a new belief function using Dempster’s rule of 
combination [3]. Let the combined belief mass be assigned to 
Ck, where C is a set of all subsets produced by BA ∩ . The 
mathematical representation of the rule is 
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In this paper, we perform pair-wise combination of classifiers.  
We first combine, for instance, beliefs of Back Propagation 
Network (BPN) classifier and Kohenen Network (KN) 
classifier. In the second step, we combine the output of the 
first step (BK) with the evidence from the Resilient Back 
Propagation Network (RProp) classifier. 
Let us assume that the BPN classifier provides beliefs 
Bel_BPN(A) and Bel_BPN(B), where Bel_BPN is the belief 
provided by BPN and A and B are the two classes (positive 
and negative prediction) under consideration.  
Similarly for KN classifier beliefs are given as Bel_KN(A) 
and Bel_KN(B). Uncertainties for the two classifiers are 
U_BPN and U_KN respectively. 
Naturally, 
     U_BPN =1 - Bel_BPN(A) - Bel_BPN(B)      (11a) 
     U_KN   =1 - Bel_KN(A) - Bel_KN(B)       (11b) 
 

Bel(A) is a belief mass given to class A, say benign class of 
the disease under consideration. It is evaluated by multiplying 
benign belief masses of BPN and KN, assuming independent 
evidence sources. Added to this is the product of uncertainty 
in KN and benign belief of BPN, belief for benign of KN and 
uncertainty of BPN. To obtain the combined belief for the 
hypothesis, all these basic beliefs are summed.  
Thus,  
     Bel_comb(A) = Bel_BPN(A) x Bel_KN(A)  

+ U_BPN x Bel_KN(A) 
+ Bel_BPN(A) x U_KN        (12) 

Three terms exist in the above equation, because each term 
containing an uncertain term needs to be considered as 
potential support for any hypothesis. 
 

5. EXPERIMENTAL EVALUATION 
 
An experimental evaluation was carried out on two datasets – 
one on breast cancer and the other on thyroid disorders [15]. 
The breast cancer data has a total of 700 instances, each 
consisting of 9 attributes. All the attributes take values 
between one and ten. The classes are benign and malignant 
and they are denoted as 0 and 1 respectively. The thyroid 
disorders dataset consists of 215 records, each consisting of 5 
attributes, with three possible classes in output – normal 
activity, hypothyroid activity and hyperthyroid activity – 
denoted as 0, 1 and 2 respectively.  

A. Example 1 – Breast cancer 
The breast cancer data has a total of 700 instances, each 
consisting of 9 attributes. All the attributes take values 
between one and ten. The classes are benign and malignant 
and they are denoted as 0 and 1 respectively. 458 records 
belong to class benign and 242 records belong to class 
malignant. 450 datasets were used to train the network and 
250 datasets (in five groups of 50 each) were used as test sets. 
In the five test sets, 148 were class benign and 102 were class 
malignant.  
Table 1 shows the test results of breast cancer dataset in the 
form of a confusion matrix. Confusion matrices are listed for 
the three individual neural net based classifiers as well as the 
combination. The class denoted by 2 corresponds to 
indecision. This classification is extremely important in 
contexts where the cost of a false or erroneous classification 
is very high. In this case, cancer diagnosis, for instance, 
misdiagnosing the cancer or its symptoms as benign has a 
very high cost. In such circumstances, it may be preferable to 
refer the decision to a higher authority or expert rather than 
risk a potentially false decision. 

TABLE 1: CLASSIFICATION OF BREAST CANCER 
BPN KN 

 0 1 2  0 1 2 
0 145 1 2 0 131 8 9 
1 1 88 13 1 4 86 12 

RProp B+K+R Combination 
 0 1 2  0 1 2 

0 136 1 11 0 147 0 1 
1 2 95 5 1 0 99 3 

 
 

 



 
As shown in this table, BPN classifier shows the maximum 
accuracy in classification of records belonging to class 0 
(benign). RProp classifier shows maximum accuracy in 
classification of records belonging to class 1 (malignant). As 
evident from the result set, the combination classifier is the 
most accurate overall. Fig.  1, 2 and 3 show the structure of 
the BPN, KN and Rprop respectively. The following table 
compares the accuracy of the methods: 

In Table 2 above for the breast cancer data set, the overall 
accuracy of BPN classifier is 93.2%, 86.8% for KN and 
92% for RProp. The overall accuracy of the combination 
classifier is 98.40%, which is the best overall accuracy by 
far.  
 

B. Example 2 – Thyroid disorders 
The thyroid disorders dataset consists of 215 records, each 
consisting of 5 attributes. The input data can be classified 
into three classes – normal activity, hypothyroid activity and 
hyperthyroid activity denoted as 0, 1 and 2 respectively. 138 
records, consisting of 96 normal cases, 22 hypothyroid cases 
and 20 hyperthyroid cases, were used for training. 77 
datasets  (54 normal, 15 hypothyroid and 8 hyperthyroid) 
were used for testing the network. 
Table 3 shows the test results of this dataset in the form of a 
confusion matrix. The class denoted by 3 corresponds to 
indecision in this case. 
 

As shown in this table, RProp classifier shows the maximum 
accuracy in classification of records belonging to class 0. 
BPN classifier shows maximum accuracy in classification of 
records belonging to class 1, and KN for those of class 2. As 
evident from the result set, the combination classifier has the 
greatest overall accuracy. In particular, it classifies far fewer 
cases wrongly than the other schemes. When it does not 
classify a case correctly, it classifies it as uncertain in most 

TABLE 2: ACCURACY - BREAST CANCER DATA 
Test BPN 

(%) 
KN 
(%) 

RProp 
(%) 

B+K+R 
(%) 

1 94.0 86.00 90.00 96.00 
2 96.0 96.00 90.00 100.00 
3 92.0 84.00  94.00 98.00 
4 94.0  88.00  94.00 98.00 
5 90.0  80.00  92.00 98.00 

Overall 93.2  86.80  92.00 98.40 
 
 

 

 
 

Fig. 1: Back Propagation Network for the Breast Cancer example 
 

 

 
 

Fig. 2: Kohonen Learning Network for the Breast Cancer example 
 

 

 
 

Fig. 3: Resilient Back Propagation Network for the Breast Cancer example 
 

 

TABLE 3: CLASSIFICATION OF THYROID DISORDER 
BPN KN 

 0 1 2 3  0 1 2 3 
0 33 2 8 11 0 46 2 2 4 
1 0 12 0 3 1 1 11 1 2 
2 0 0 2 6 2 0 0 7 1 

RPN B+K+R Combination 
 0 1 2 3  0 1 2 3 
0 53 0 0 1 0 52 0 0 2 
1 7 3 0 5 1 1 8 0 6 
2 1 0 6 1 2 0 0 7 1 

 
 



cases. This is, of course, far safer than a misclassification. 
Fig.  4, 5 and 6 show the structure of the BPN, KN and Rprop 
respectively. 
 

Table 4 compares the overall accuracy of the approaches. As 
can be seen accuracies of BPN, KN and RProp classifiers are 
a poor 61.03%, 83.12% and 80.52% respectively. The 
combination classifier, however, has an overall accuracy is 
87.01%. The superiority of the combination classifier is even 
more evident as the size of the dataset under consideration 
increases.  
Fig. 7 shows the percentage accuracy of each classifier for the 
two examples considered in this section. Clearly, the 
combination classifier is the most accurate and reliable. 
 

 
6. CONCLUSION 

 
We have described a method for classifying medical data by 
combining multiple classifiers. We have demonstrated the 
combination of evidences from three different classifiers 
using the Dempster-Shafer theory. Class differentiation 
quality is used for the computation of uncertainties. The 
combination approach has shown the best classification 
accuracy across two domains: breast cancer classification 
(benign, malignant) and thyroid disorder classification 
(normal, hypothyroid, hyperthyroid). The combination 
approach remained robust in the presence of fairly different 
classifier performances. This approach to classification is 
attractive for medical applications because of its ability to 
handle varying classifier performances robustly and the 
ability to classify samples as uncertain in the presence of 
classifier uncertainty. Future work could include comparisons 
with other classification mechanisms like Bayesian logic, 

TABLE 4: ACCURACY – THYROID DISORDER DATA 
Test BPN 

(%) 
KN 
(%) 

RProp 
(%) 

B+K+R 
(%) 

1 66.67 93.33 80.00 86.67 
2 66.67 93.33 80.00 86.67 
3 73.33 80.00 73.33 86.67 
4 60.00 66.67 73.33 93.33 
5 41.18 70.59 82.35 76.47 

Overall 61.03 83.12 80.52 87.01 
 
 

 

 
 

Fig. 4: Back Propagation Network for the Thyroid disorder example 
 

 

 
 

Fig. 5: Kohonen Learning Network for the Thyroid disorder example 
 

 
 

 
Fig.  7: Percentage accuracy of each classifier 

 
 

 

 
 

Fig. 6: Resilient Back Propagation Network for the Thyroid disorder 
example 

 
 



fuzzy logic, transferable belief model and so on. In addition, 
research can be conducted to identify the optimum 
combination of classifiers giving the most robust and reliable 
performance. With adaptations, the technique used in this 
paper can be applied to classifiers other than the neural 
network and compared with our approach. 
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