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Abstract

This paper surveys estimates of New Keynesian Phillips curve (NKPC) parameters

that have been obtained by fitting fully specified dynamic stochastic general equilibrium

(DSGE) models to U.S. data. We examine various sources of identification in the

context of a simple analytical model. DSGE model-based NKPC estimates tend to

be fragile and sensitive to the model specification, in particular if marginal costs are

treated as unobserved variable. Estimates of the NKPC slope lie between 0 and 4. If

the observations span the labor share, which is in most instances the model-implied

measure of marginal costs, then the slope estimates fall into a much narrower range of

0.005 to 0.135. No consensus has emerged with respect to the importance of lagged

inflation in the Phillips curve.
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1 Introduction

An important building block in modern dynamic stochastic general equilibrium (DSGE)

models is the price setting equation for firms. In models in which the adjustment of nominal

prices is costly, this equation links inflation to current and future expected real marginal

costs and is typically referred to as New Keynesian Phillips curve (NKPC). Its most popular

incarnation can be derived from the assumption that firms face quadratic nominal price

adjustment costs (Rotemberg, 1982) or that firms are unable to re-optimize their prices

with a certain probability in each period (Calvo, 1983). The Calvo model has a particular

appeal because it generates predictions about the frequency of price changes, which can be

measured with microeconomic data (Bils and Klenow, 2004, Klenow and Kryvtsov, 2008).

The slope of the NKPC is important for the propagation of shocks and determines the

output-inflation trade-off faced by policy makers. The Phillips curve relationship can also

be used to forecast inflation.

This article reviews estimates of NKPC parameters that have been obtained by fitting

fully specified dynamic stochastic general equilibrium (DSGE) models to U.S. data. By

now, there exists a long list of empirical papers that estimate DSGE models with essentially

the same NKPC specification. This Phillips curve implies that inflation can be expressed as

the discounted sum of expected future marginal costs, where marginal costs equal the labor

share. We document that the identification of the Phillips curve coefficients is tenuous and

no consensus about its slope and the importance of lagged inflation has emerged from the

empirical studies.

We begin by examining how the NKPC parameters are identified in a DSGE model-

based estimation. This is a difficult question. Many estimates are based on the use of a

likelihood function, which is the model-implied probability distribution of a set of observ-

ables, indexed by a parameter vector. The likelihood function peaks at parameter values

for which the model-implied autovariance function of a vector of macroeconomic time series

matches the sample autocovariance function. Unfortunately, this description is not particu-

larly illuminating. More intuitively, the NKPC parameters are estimated by a regression of

inflation on the sum of discounted future expected marginal costs. The likelihood function

corrects the bias that arises from the endogeneity of the marginal cost regressor. We show

that if one simply uses ordinary least squares to regress inflation on measures of expected

marginal costs the slope coefficient is very close to zero. This finding is quite robust to the

choice of detrending method and marginal cost measure. Hence, much of the variation in
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the estimates reported in the literature is due to the multitude of endogeneity corrections

that arise by fitting different DSGE models that embody essentially the same Phillips curve

specification.

The review of empirical studies distinguishes between papers in which marginal costs

are included in the observations and hence directly used in the estimation and studies that

treat marginal costs as latent variable. In the latter case, NKPC estimates tend are more

sensitive to the specification of the households’ behavior, the conduct of monetary policy,

and the law of motion of the exogenous disturbances. Estimates of the slope of the Phillips

curve lie between 0 and 4. If the list of observables spans the labor share, then the slope

estimates fall into a much narrower range of 0.005 to 0.135. No consensus has emerged

with respect to the importance of lagged inflation in the Phillips curve. We also compare

estimates of the relative movement of inflation and output in response to a monetary policy

shock, which captures an important trade-off for monetary policy makers. We find that the

estimates in the studies that are surveyed in this article range from 0.07 to 1.4. A value of

0.07 (1.4) implies that a one percent increase in output due to a monetary policy shock is

accompanied by a quarter-to-quarter inflation rate of 7 (140) basis points.

The remainder of this paper is organized as follows. We discuss the derivation of the

NKPC as well as our concept of DSGE model-based estimation in Section 2. In Section 3 a

simple DSGE model that can be solved analytically is used to characterize various sources

of NKPC parameter identification. Any particular DSGE model-based estimation might

exploit some or all of these sources of information. Section 4 provides empirical evidence

from least squares regressions of inflation on the discounted sum of future marginal costs as

well as evidence from a vector autoregression (VAR) on the relative movement of output and

inflation in response to a monetary policy shock. We thereby characterize some features of

the data that are important for understanding the DSGE model-based parameter estimates

reviewed in Section 5. Finally, Section 6 concludes.

2 Preliminaries

This section begins with a brief description of the price setting problem that gives rise to

a Phillips curve in New Keynesian DSGE models. We then discuss some of the defining

characteristics of DSGE model-based estimation of NKPC parameters.
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2.1 Price Setting in DSGE Models

New Keynesian DSGE models typically assume that production is carried out by two types

of firms: final good producers and intermediate goods producers. The latter hire labor

and capital services from the households to produce a continuum of intermediate goods.

The final good producers purchase the intermediate goods and bundle them into a single

aggregate good that can be used for consumption or investment. The intermediate goods

are imperfect substitutes and hence each producer faces a downward sloping demand curve.

Price stickiness is introduced by assuming that it is costly to change nominal prices. Rotem-

berg (1982) assumed that the price adjustment costs are quadratic, whereas Calvo (1983)

set forth a model of staggered price setting in which the costs are either zero or infinite

with fixed probabilities, i.e., only a fraction of firms is able to change or, more precisely,

re-optimize prices.

Aggregating the optimal price setting decisions of the firms leads to the following ex-

pression for inflation in the price of the final good, referred to as New Keynesian Phillips

curve:

π̃t = γbπ̃t−1 + γfIEt[π̃t+1] + λM̃Ct + ξ̃t. (1)

Here π̃t represents inflation, M̃Ct is real marginal costs, and ξ̃t is an exogenous disturbance

which is often called a mark-up shock. We use z̃t to denote percentage deviations of a

variable zt from its steady state. The coefficients γb, γf , and λ are functions of model-

specific taste and technology parameters. For instance, in Calvo’s (1983) model of price

stickiness

γb =
ω

1 + βω
, γf =

β

1 + βω
, λ =

(1− ζ)(1− ζβ)
ζ(1 + βω)

,

where β is the households’ discount factor and ζ is the probability that an intermediate

goods producer is unable to re-optimize its price in the current period. In the derivation

of (1) it was assumed that those firms that are unable to re-optimize their prices either adjust

their past price by the steady state inflation rate or by lagged inflation. The parameter ω

represents the fraction of firms that indexes its price to lagged inflation.

Assuming that β = 0.99, the sum of γb and γf is slightly less than one and the coefficient

of lagged inflation lies between zero (no dynamic indexation, ω = 0) and 0.5 (full dynamic

indexation, ω = 1). If ω = 0 and steady state inflation is zero, then 1/(1 − ζ) can be

interpreted as the expected duration between price changes. For instance, ζ = 2/3 implies

that the expected duration of a price set by an intermediate goods producer is 3 quarters,
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which leads to a slope coefficient of λ = 0.167. On the other hand, if ζ = 7/8, which means

that the duration of a price is 8 quarters, then the NKPC is much flatter: λ = 0.018.

Our survey of the empirical literature will focus on coefficient estimates for γb, γf ,

and λ rather than the model-specific preference-and-technology parameters. The slope λ

determines the output-inflation trade-off faced by central banks and affects, for instance, the

relative response of output and inflation in response to an unanticipated monetary policy

shock. A detailed exposition of the role that the NKPC plays in the analysis of monetary

policy is provided in an article by Stephanie Schmitt-Grohe and Martin Uribe in this issue.

The coefficient γb on lagged affects the persistence of inflation and, for instance, the rate at

which inflation effects of shocks to marginal costs die out. This an important parameter, in

particular for central banks that pursue a policy of inflation targeting. If we re-arrange the

terms in (1) such that expected inflation appears on the left-hand-side and all other terms

on the right-hand-side, then the Phillips curve delivers a forecasting equation for inflation.

2.2 DSGE Model Based Estimation

This article focuses on estimates of γb, γf , and λ that are obtained by exploiting the full

structure of a model economy. Thus, we consider approaches in which the researcher not only

solves the decision problems of the firms but also those of the other agents in the economy

and imposes an equilibrium concept. If the economy is subject to exogenous stochastic

shocks, the DSGE model generates a joint probability distribution for time series such as

aggregate output, inflation, and interest rates. Suppose we generically denote the vector of

time t observables by xt and assume that the DSGE model has been solved by log-linear

approximation techniques. Then the equilibrium law of motion takes the form of a vector

autoregressive moving average (VARMA) process of the form (omitting deterministic trend

components)

xt = Φ1xt−1 + . . .Φpxt−p +Rεt + Ψ1Rεt−1 + . . .ΨqRεt−q. (2)

The matrices Φi, Ψj , and R are complicated functions of the Phillips curve parameters γb,

γf , and λ as well as the remaining DSGE model parameters, which we will summarize by

the vector θ. The vector εt stacks the innovations to all exogenous stochastic disturbances

and is often assumed to be normally and independently distributed.

A natural approach of exploiting (2) is likelihood-based estimation. Maximum likelihood

(ML) estimation of optimization-based rational expectations models in macroeconomics
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dates back at least to Sargent (1989) and has been widely applied in the DSGE model

literature (e.g., Altug (1989), Leeper and Sims (1994), and many of the papers reviewed

in Section 5). The likelihood function is defined as the joint density of the observables

conditional on the parameters, which can be derived from (2). Let Xt = {x1, . . . , xt}, then

p(XT |αb, αf , λ, θ) = p(x1|αb, αf , λ, θ)
T∏

t=2

p(xt|Xt−1, αb, αf , λ, θ). (3)

The evaluation of the likelihood function typically requires the use of numerical methods

to solve for the equilibrium dynamics and to integrate out unobserved elements from the

joint distribution of the model variables (see, for instance, An and Schorfheide (2007)). A

numerical optimization routine can then be used to find the maximum of the (log)-likelihood

function. The potential drawback of the ML approach is that identification problems can

make it difficult to find the maximum of the likelihood function and render standard large

sample approximations to the sampling distribution of the ML estimator and likelihood

ratio statistics inaccurate.

A popular alternative to the frequentist ML approach is Bayesian inference. Bayesian

analysis is also based on the likelihood but tends to interpret it as a density of the parameters

given the data. Let p(αb, αf , λ, θ) denote a prior density for the DSGE model parameters.

Bayesian inference is based on the posterior distribution characterized by the density

p(αb, αf , λ, θ|XT ) =
p(XT |αb, αf , λ, θ)p(αb, αf , λ, θ)∫

p(XT |αb, αf , λ, θ)p(αb, αf , λ, θ)d(αb, αf , λ, θ)
. (4)

Notice that the denominator does not depend on the parameters and simply normalizes

the posterior density so that it integrates to one. The controversial ingredient in Bayesian

inference is the prior density as it alters the shape of the posterior, in particular if the

likelihood function does not exhibit much curvature. On the upside, the prior allows the

researcher to incorporate additional information in the time series analysis that can help

sharpen inference. Many of the advantages of Bayesian inference in the context of DSGE

model estimation are discussed in Lubik and Schorfheide (2006) and An and Schorfheide

(2007). The implementation of Bayesian inference typically relies on Markov-chain Monte-

Carlo methods that allow the researcher to generate random draws of the model parameters

from their posterior distribution. These draws can then be transformed – one by one – into

statistics of interest. Sample moments computed from these draws provide good approxi-

mations to the corresponding population moments of the posterior distribution.

Notwithstanding all the desirable statistical properties of likelihood-based estimators,

the mapping of particular features of the data into parameter estimates is not particularly
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transparent. Superficially, the likelihood function peaks at parameter values for which

a weighted discrepancy between DSGE model implied autocovariances of xt and sample

autocovariances is minimized. The goal of the next section is to explore the extent to which

this matching of autocovariances can identify the parameters of the New Keynesian Phillips

curve.

3 Identifying the NKPC Parameters

The identification of DSGE model parameters through likelihood-based methods tends to

be a black box because the relationship between structural parameters and autocovariances

or other reduced-form representations is highly nonlinear. This section takes a look inside

this black box to develop some understanding about particular features of the DSGE model

that contribute to the identifiability of NKPC parameters. Rather than asking whether

there is enough variation in post-war data to reliably estimate the NKPC parameters, for

now we focus on sources of identification in infinite samples. In practice, the estimation of

a particular model might exploit several of these sources of information simultaneously.

Since the Phillips curve provides a relationship between marginal costs and inflation, it

is important for the identification of the NKPC parameters how marginal costs are measured

(Section 3.1). An key feature of likelihood-based inference – as opposed to the single equation

methods reviewed by James Nason and Gregor Smith – is the exploitation of model-implied

restrictions of contemporaneous correlations between variables (Section 3.2) as well as the

use of information from impulse responses (Section 3.3). In many instances, higher-order

autocovariances of inflation and marginal costs are an additional source of information

(Section 3.4).

While the focus of this section is directed toward the identification of the slope λ,

Section 3.5 offers some insights into the identification of γb and γf . For now we assume that

γb = 0. In the context of the Calvo model this assumption implies that the fraction ω of

firms that engage in dynamic indexation is zero. In this case γf = β. Since β in a fully

specified DSGE model is related to the steady state real interest rate, the coefficient γf can

be determined, for instance, by averaging interest rate data and its identification is not a

concern. Under our simplifications the Phillips curve takes the form:

π̃t = βIEt[π̃t+1] + λM̃Ct + ξ̃t. (5)
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Solving this difference equation forward we find that today’s inflation is a function of future

expected marginal costs:

π̃t = λ
∞∑

j=0

βjIEt[M̃Ct+j + ξ̃t+j ]. (6)

3.1 Observed versus Latent Marginal Costs

The identification of λ crucially depends on whether real marginal costs is treated as directly

observable or as a latent variable. If M̃Ct is directly observed and hence is an element of the

vector xt in (2) and (4), then the main obstacle to the identification of λ is the endogeneity

problem caused by the potential correlation between the mark-up shock ξt and marginal

costs. The estimation of future expected marginal costs in (6) poses no real challenge

because IEt[M̃Ct+j ] can be obtained from the reduced form representation associated with

the law of motion (2), which is always identifiable. The downside of including a direct

measure of marginal costs in the set of observables is that measurement errors pertaining to

the marginal cost series can potentially distort the inference about the NKPC parameters.

Yet, identification of λ is more tenuous if marginal costs are not included in the vector xt.

To make the discussion more concrete, imagine an economy in which labor is the only

factor of production and in log-linear terms

Ỹt = Z̃t + H̃t.

Zt is an unobserved total factor productivity process and Ht is hours worked. Marginal

costs are given by

M̃Ct = W̃t − Z̃t,

where Wt are wages. Moreover, suppose that the households instantaneous utility function

is of the form

U(Ct,Ht) =
C

1−1/τ
t

1− 1/τ
− φHt

and µt denotes the marginal utility of consumption. Under these preferences labor supply

is infinitely elastic, the wage has to satisfy Wt = 1/µt, and the marginal utility of consump-

tion is given by µt = C
−1/τ
t . Finally, assume that output is entirely used for household

consumption such that Ct = Yt. Then we obtain the following link between marginal costs

and output:

M̃Ct =
1
τ

(Ỹt − τZ̃t).
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If the vector of observables xt contains output, wages, and hours worked, then the

marginal costs are directly observed because

M̃Ct = l̃sht = W̃t + H̃t − Ỹt.

More generally, in models with Cobb-Douglas technology the vector xt spans marginal costs

as long as one can construct the labor share, l̃sht, from the observables. If, however, the

vector xt only contains observations on output, in addition to inflation and interest rates,

then marginal costs are latent because they depend on the observed output as well as the

unobserved technology process Z̃t and the unknown parameter τ . Rewriting (5) in terms of

inflation and output yields

π̃t = βIEt[π̃t+1] +
λ

τ
Ỹt − Z̃t + ξ̃t.

Two challenges arise. First, the presence of Z̃t exacerbates the endogeneity problem that

arises in the NKPC estimation. Moreover, the coefficient associated with Ỹt in itself does

not identify the original slope parameter λ, since it also depends on the utility function

parameter τ , which needs to be identified from other equilibrium relationships.

In practice, likelihood-based estimation of DSGE models relies on the so-called state-

space representation of the DSGE model, rather than the VARMA representation in (2).

Omitting deterministic trend components, the state-space representation takes the form

xt = Ast, st = B1st−1 +Bεεt, (7)

where xt is the vector of observables, st is a vector of latent variables, and the matrices A,

B1, and Bε are functions of the DSGE model parameters. The likelihood function associated

with (7) can be computed with the Kalman filter. If the information in the vector xt does

not span marginal costs directly, then the Kalman filter constructs an estimate of the latent

marginal costs (and technology Z̃t in our example) based on xt and the parameters λ, and

θ. To the extent that the Kalman filter inference for the latent variables is sensitive to the

assumed law of motion of the unobserved exogenous processes, inference about the slope of

the Phillips curve is also sensitive to these auxiliary assumptions.

3.2 Identifying Information in Contemporaneous Correlations

Fully-specified DSGE models impose strong restrictions on the contemporaneous interac-

tions of macroeconomic variables. We will show in the context of a simple example that

these restrictions enter the likelihood function and potentially provide important identifying
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information that is not used in the single-equation approaches reviewed by James Nason

and Gregor Smith. For the remainder of Section 3 we adopt the convention that all variables

are measured in percentage deviations from a deterministic steady state and omit tildes to

simplify the notation.

Consider the log-linear approximation of the Euler equation associated with the house-

hold’s problem in Section 3.1:

Yt = IEt[Yt+1]− τ(Rt − IEt[πt+1]) + εφ,t. (8)

Rt − IEt[πt+1] is the expected real return from holding a one-period nominal bond. The

parameter τ can be interpreted as the intertemporal substitution elasticity of the household

and εφ,t is an exogenous preference shifter. To complete the model, we characterize monetary

policy by an interest rate feedback rule of the form

Rt = ψπt + εR,t, (9)

where εR,t is a monetary policy shock.

We now substitute the marginal cost expression derived in Section 3.1 into the NKPC

and obtain

πt = βIEt[πt+1] +
λ

τ
(Yt − τZt) + ξt. (10)

Since the unobserved technology shock Zt and the mark-up shock ξt affect the equilibrium

law of motion in a similar manner in this simple model, we set Zt = 0 and let ξt = εξ,t.

Moreover, we define κ = λ/τ and will direct our attention to the estimation of the output

inflation trade-off κ rather than λ. Thus, we are essentially abstracting from the two addi-

tional difficulties that arise if marginal costs are treated as a latent variable. Finally, it is

assumed that the three exogenous shocks εR,t, εφ,t, and εξ,t are independently and identi-

cally distributed zero mean normal random variables with standard deviations σR, σφ, and

σξ, respectively.

The linear rational expectations (LRE) model comprised of (8) to (10) can be solved

with standard methods such as the one described in Sims (2002). To ensure that the LRE

system has a unique stable solution we impose ψ > 1, which implies that the central bank

raises the real interest rate in response to an inflation rate that exceeds its steady state

level. It is shown in Lubik and Schorfheide (2004) that the equilibrium law of motion for

the three observables is of the form
Yt

πt

Rt

 =
1

1 + κτψ


−τ 1 −τψ

−κτ κ 1

1 κψ ψ



εR,t

εφ,t

εξ,t

 . (11)
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Since our model lacks both endogenous and exogenous propagation mechanisms, output,

inflation, and interest rates – the three variables observed by the econometrician – are

serially uncorrelated in equilibrium. Thus, all the information about the slope of the Phillips

curve has to come from the contemporaneous correlations among the three observables.

The single equation approach to the estimation of the NKPC reviewed by James Nason

and Gregor Smith in this issue can be interpreted in two ways. First, one can write the

NKPC as a regression of the form

πt+1 =
1
β
πt −

κ

β
Yt −

1
β
ηt+1 −

1
β
εξ,t = α1πt + α2Yt + residt+1. (12)

Here we replaced the conditional expectation of inflation, IEt[πt+1], by πt+1 and a forecast

error ηt+1 = πt+1 − IEt[πt+1]. The lack of serial correlation in the equilibrium dynamics

implies that least squares estimates of α1 and α2 converge in probability to zero. Hence,

based on a large sample an econometrician concludes that the slope of the Phillips curve

is zero. The estimation of (12) with an instrumental variable estimator that tries to cor-

rect a potential bias due to the correlation between Yt and εξ,t is also doomed because in

equilibrium lagged values of output and inflation are uncorrelated with the regressors.

Alternatively, one can express the Phillips curve as a regression of the form

πt = α1IEt[πt+1] + α2Yt + residt. (13)

However, even if the econometrician realizes that IEt[πt+1] = 0 and excludes the expected

inflation regressor, it is not possible to estimate the slope of the Phillips curve consistently.

The least squares estimator of α2 provides a biased estimate of κ because of the correlation

between output and the mark-up shock which is subsumed in the residual. Instrumental

variable estimation is also uninformative because lagged endogenous variables are uncor-

related with current output. Notice that this failure of single-equation estimation is not

directly apparent from (10). It is a consequence of the auxiliary assumptions about the

other sectors in the economy and the law of motion of the exogenous disturbances. Na-

son and Smith (2008) show that the identification problems associated with single-equation

methods prevail, even if the DSGE model is enriched with serially correlated exogenous

disturbances.

DSGE model-based estimation of the Phillips curve parameters utilizes the information

in the contemporaneous relationship between output, inflation, and interest rates.1 Let
1It is tempting to check identification by comparing the number of structural parameters to the number

of free parameters in the covariance matrix of Yt, πt, and Rt. In the DSGE model described by the law of
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θ = [τ, ψ, σR, σφ, σξ]′ and factorize the joint density of the observables as

p(Yt, πt, Rt|κ, θ) = p(Yt|κ, θ)p(πt|Yt, κ, θ)p(Rt|Yt, πt, θ). (14)

The first term represents the marginal density of output and the third term is generated by

the monetary policy rule. Key for understanding the DSGE model-based estimation of κ is

the second term, that is, the conditional distribution of inflation given output. Since all the

shocks are normally distributed

πt|Yt ∼ N
(
IE[πt|Yt] , var[πt|Yt]

)
and we can focus our attention on the conditional mean and variance.

We begin with the derivation of IE[πt|Yt]. Solving the Phillips curve relationship forward

as in (6) leads to

πt = κYt + εξ,t. (15)

Taking expectations conditional on Yt of the left-hand-side and right-hand-side of (15) yields

IE[πt|Yt] = κYt + IE[εξ,t|Yt].

Using (11) and the formula for the conditional moments of a joint normal distribution2 we

obtain

IE[εξ,t|Yt] = µξ|y(θ)Yt = − 1
τψ

τ2ψ2σ2
ξ

τ2σ2
R + σ2

φ + τ2ψ2σ2
ξ︸ ︷︷ ︸

sh(σ2
y, εξ)

Yt. (16)

The conditional expectation depends on the intertemporal elasticity of substitution, the

policy rule coefficient, and all the shock variances. Here sh(σ2
y, εξ) is the fraction of the

variance of output that is due to the mark-up shock εξ,t. We now turn to the calculation of

the conditional variance of inflation. Notice that var[πt|Yt] = var[εξ,t|Yt]. Thus,

var[πt|Yt] = σ2
ξ|y(κ, θ) = σ2

ξ −
(τψσ2

ξ )2

(1 + κτψ)(τ2σ2
R + σ2

φ + τ2ψ2σ2
ξ )
.

We deduce that

p(πt|Yt, κ, θ) ∝ |σ2
ξ|y(κ, θ)|−1/2 exp

{
− 1

2σ2
ξ|y(κ, θ)

(
πt − [κ+ µξ|y(θ)]Yt

)2
}
, (17)

motion (11) the two parameter counts are equal to six. Unfortunately, having at least as many estimable

reduced-form parameters as structural parameters is neither sufficient for identification, nor does it provide

interesting insights about the sources of identification.
2Suppose that X and Y are jointly normally distributed with means µx and µy , variances vxx and vyy

and covariance vxy , then the conditional mean IE[X|Y = y] = µx + vxyv
−1
yy (y − µy) and the conditional

variance is V AR[X|Y = y] = vxx − v2xy/vyy .
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where ∝ denotes proportionality.

We can draw several important conclusion from (17). First, the term µξ|y given in (16)

corrects for the endogeneity bias that arises in a regression of inflation and marginal costs.

Suppose we set ψ = 1.5, which is Taylor (1993)’s value, assume that τ = 2/3, which makes

the agents slightly more risk-averse than agents with log preferences, and assume that 20%

of the variation in output are due to mark-up or cost-push shocks then (16) implies that a

simple least squares regression of inflation on marginal costs, i.e. output, in our example

model, would under-estimate the slope κ by 0.2. Second, (17) implies that knowledge of

the conditional distribution of inflation given output does not identify the slope of the

Phillips curve. Moreover, the joint distribution of output and inflation is also not sufficient,

because the marginal distribution of output only provides information about the variance of

output σ2
y(κ, θ), which is insufficient to disentangle the values of all the θ elements. We will

show below that κ is, however, identifiable with knowledge of the monetary policy reaction

function.

To summarize, our simple example has a number of startling implications. First, single-

equation estimation based on (12) or (13) is unable to deliver a consistent estimate of κ.

Second, an OLS regression of inflation on the sum of discounted future expected marginal

costs generates a downward-biased estimate of κ. The magnitude of the bias is a function of

central bank behavior, households’ preferences, and more generally the importance of mark-

up shocks for output fluctuations. Third, DSGE model-based estimation is promising, but

might require a fairly informative prior with respect to other model parameters, for instance

those that control the law of motion of the exogenous shocks or the conduct of monetary

policy. We will subsequently elaborate on this last point.

3.3 Identifying Information in Impulse Response Functions

If the DSGE model embodies enough restrictions to identify a structural shock other than

ξt from the observables, then one can potentially infer the Phillips curve slope from the

impulse response function (IRF) associated with this shock. Consider the model analyzed

in Section 3.2. Suppose that the policy rule coefficient ψ is known, which means that the

sequence of monetary policy shocks can be directly obtained from interest rate and inflation

data: εR,t = Rt−ψπt. Recall from (15) that the forward solution of the Phillips curve takes

the form

πt = κYt + εξ,t.



This Version: October 23, 2008 13

We previously showed that the correlation between the mark-up shock εξ,t and the regressor

Yt creates an endogeneity problem that complicates the identification of κ. The monetary

policy shock can serve as an instrumental variable in the identification of κ. By assumption

the monetary policy shock is uncorrelated with εξ,t but correlated with the regressor Yt.

The argument can be formalized as follows. Suppose we factorize the likelihood function

into3

p(yt, πt, Rt|κ, θ) = p(Rt − ψπt|κ, θ)p(Yt|Rt − ψπt, κ, θ)p(πt|Yt, Rt − ψπt, κ, θ). (18)

Rt − ψπt measures the monetary policy shock εR,t and the first term corresponds to its

density. The second factor captures the distribution of output given the monetary policy

shock. The third conditional density represents the Phillips curve. From this factorization

it is apparent that in a linear Gaussian environment the following conditional expectations

(we replace Rt − ψπt by εR,t) are identifiable:

IE[Yt|Rt − ψπt, κ, θ] = α11εR,t

IE[πt|Rt − ψπt, Yt] = α21εR,t + α22Yt,

where the αij ’s are functions of κ and θ. Since

∂Yt

∂εR,t
= α11,

∂πt

∂εR,t
= α21 + α22α11

it follows from (11) that κ is identified by the ratio of the output and inflation response

α21/α11 + α22.

In our simple example the identification of the monetary policy shock depends on the

assumed knowledge of the parameter ψ, which the reader might find unconvincing. More

interestingly, there are a number of papers that estimate DSGE models that are specified

such that monetary policy shocks can be identified from exclusion restrictions. Most no-

tably, Rotemberg and Woodford (1998), Christiano and Eichenbaum (2005), and Boivin

and Giannoni (2006) consider models in which the private sector is unable to respond to

monetary policy shocks contemporaneously.4 In a Gaussian vector autoregressive system

this exclusion restriction is sufficient to identify monetary policy shocks and the associated

impulse response functions independently of the DSGE model parameters.
3The Jacobian associated with the transformation of [Rt − ψπt, Yt, πt]′ into [Rt, Yt, πt]′ is equal to one.
4Rather than conducting likelihood-based inference, all three papers use an estimation method that

exclusively relies on the identification of model parameters from IRF dynamics. The structural parameters

are directly estimated by minimizing the discrepancy between the model-implied impulse responses to a

monetary policy shock and those obtained from estimating a structural VAR.
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3.4 Identifying Information in the Reduced-Form Dynamics

The absence of equilibrium dynamics in (11) is clearly at odds with reality. Aggregate

output, inflation, and interest rates tend to exhibit fairly strong serial correlation. This

serial correlation opens up another avenue for identification as lagged endogenous variables

can serve as instruments to correct endogeneity biases. In fact, it is this serial correlation

that single-equation approaches rely upon.

Suppose that the vector xt contains inflation, a measure of marginal costs as well as

other variables, denoted by zt: xt = [πt,MCt, z
′
t]
′. Moreover, assume that the mark-up

shock ξ̃t is independently distributed and that the DSGE model-implied law of motion for

xt has a VAR(1) representation:

xt = Φ1(λ, θ)xt−1 + ut, where ut = R(λ, θ)εt. (19)

The matrices Φ1 and R are functions of the DSGE model parameters, the vector εt stacks

the innovations to the exogenous driving processes of the model economy, and ut can be

interpreted as reduced-form one-step ahead forecast errors. While the assumption that ξt

is serially uncorrelated is crucial for the subsequent argument, the VAR(1) representation

is not.

Define the selection vectors M1 and M2 such that M ′
1xt = πt and M2xt = MCt. Equa-

tion (15) implies that the slope of the Phillips curve has to solve the following restriction:

M ′
1Φ1xt − λM ′

2(I − βΦ1)−1Φ1xt = 0 for all xt. (20)

Recall that under the assumption that ξt is independently distributed the forward solution

of the Phillips curve takes the form

πt = λ
∞∑

j=0

βjIEt[MCt+j ] + ξt.

Thus, the first term in (20) can be interpreted as the one-step ahead VAR forecast of

inflation. The second term in (20) corresponds to the one-step ahead forecast of the sum of

discounted expected future marginal costs, scaled by the Phillips curve slope. As long as ξt

is serially uncorrelated, the two forecasts have to be identical. Notice that although it might

be impossible to uniquely determine λ and θ conditional on the VAR coefficient matrix Φ1,

Φ1 is always identifiable based on the autocovariances of xt: Φ1 = IE[xt−1x
′
t](IE[xtx

′
t])

−1.

Hence, provided that inflation is serially correlated, the restriction (20) identifies λ.

Sbordone (2002, 2005) and Kurman (2005, 2007) use (20) in conjunction with reduced

form VAR estimates of Φ to obtain estimates of the NKPC parameters. A system-based
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DSGE model estimation with serially uncorrelated mark-up shocks can be interpreted as

simultaneously minimizing the discrepancy between an unrestricted, likelihood-based esti-

mate of Φ1 and the DSGE model-implied restriction function Φ1(λ, θ) and imposing the

condition (20).

3.5 Identification of Backward-Looking Terms

Achieving identification becomes more difficult if we relax the restriction that γb = 0.

Since insightful analytical derivations are fairly complex, we offer a heuristic argument and

point to some empirical evidence. There are three factors that contribute to the persis-

tence of inflation: the backward-looking term γbπ̃t−1, the persistence of marginal costs, and

the persistence of the mark-up shock ξt. Roughly speaking, we can measure inflation and

marginal cost persistence from the data (provided observations on marginal costs are avail-

able). Hence, the challenge is to disentangle the relative contribution of γb and the mark-up

shock to the persistence of inflation. Del Negro and Schorfheide (2006, Figure 8) display

plots of the joint posterior distribution of γb and the autocorrelation of a latent mark-up

shock obtained from the estimation of a DSGE model that is similar to the one developed

by Smets and Wouters (2003). Not surprisingly, there is a strong negative correlation, sug-

gesting that without strong a priori restrictions, it is difficult to measure the magnitude of

γb. One widely used a priori restriction is to assume that the mark-up shock is either absent

or serially uncorrelated.

4 A (Crude) Look at U.S. Data

Before reviewing the DSGE model-based NKPC estimates reported in the literature, we will

take a crude look at U.S. inflation, labor share, and output data. In view of the analysis

presented in Section 3, two potentially important sources of variation in DSGE model-based

estimates are detrending methods for inflation data and marginal cost proxies and endo-

geneity corrections. Thus, in Section 4.1 we construct different measures of steady state

deviations and compare the stochastic properties of the resulting π̃t, M̃Ct, and Ỹt series.

We established that the estimation of the NKPC parameters amounts to a regression of

inflation on future expected marginal costs. This regression, hidden within a complicated

likelihood function, is plagued by an endogeneity problem, which according to the simple

model in Section 3 leads to a negative bias of least squares estimates of the Phillips curve
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slope. It turns out that these least squares estimates are fairly insensitive to data defini-

tions (Section 4.2), which suggests that much of the variation across empirical studies is

attributable to differences in the endogeneity correction.

We also showed that impulse response dynamics provide useful information about the

NKPC coefficients. To the extent that a well-specified DSGE model is comparable in fit to a

more densely parameterized VAR, VAR evidence – reported in Section 4.3 – on the propaga-

tion of a monetary policy shock can be helpful for our understanding of DSGE model-based

estimates of NKPC parameters. Finally, the autocovariance restrictions exploited in the

DSGE model-based estimation tend to nest those used by Sbordone (2002) to construct a

VAR-based minimum distance estimator. Hence, we briefly review these minimum distance

estimates in Section 4.4.

4.1 Measures of Inflation and Marginal Costs

Most authors use the GDP deflator as measure of inflation when estimating New Keynesian

DSGE models. Our subsequent review focuses on estimates obtained with DSGE models

in which marginal costs equal the labor share. These estimates are either obtained by

including the labor share in the vector of observables or by treating marginal costs as latent

variable. In the latter case deviations of aggregate output from a trend or natural level are

implicitly used as a marginal cost proxy. To study the stochastic properties of these series,

we compile a small data set with quarterly U.S. observations. The raw data are obtained

from Haver Analytics (Haver mnemonics are in italics). Real output is obtained by dividing

the nominal series (GDP) by population 16 years and older (LN16N), and deflating using

the chained-price GDP deflator (JGDP). Inflation rates are defined as log differences of the

GDP deflator. The labor share is computed by dividing total compensation of employees

(YCOMP) obtained from the National Income and Product Accounts (NIPA) by nominal

GDP. We take logs of real per capita output and the labor share. Our sample ranges from

1960:Q1 to 2005:Q4.

We will consider three measures of π̃t. First, π̃(mean) is obtained by subtracting the

sample mean computed over the period 1960 to 2005 from the GDP deflator inflation. This

calculation assumes that the target inflation rate has essentially stayed constant in the past

45 years. Second, we compute separate means for the subsamples 1960-69, 1970 to 1982,

and 1983-2005. The break points are broadly consistent with the regime estimates obtained

in Schorfheide (2005). The resulting measure of inflation deviations is denoted by π̃(break)
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and reflects the view that the target inflation rate jumped up in the 1970s because policy

makers perceived an exploitable long-run output inflation trade-off. Finally, we consider

π̃(HP), which can be interpreted as deviations from a drifting target inflation rate.

We plot the inflation rate as well as the three versions of the target inflation in Fig-

ure 1. It is apparent from the figure that views about target inflation significantly affect

the stochastic properties of π̃t. For instance, the first-order autocorrelations (see Table 1)

are 0.88, 0.68, and 0.49 for π̃(mean), π̃(break), and π̃(HP), respectively. The two pan-

els of Figure 2 depict M̃Ct as approximated by output movements or measured by labor

share fluctuations. In models that treat marginal costs as latent variable the most com-

mon marginal cost proxies are given by linearly detrended output, output deviations from

a quadratic trend, and HP-filtered output. Since the potential output series produced by

the Congressional Budget Office (CBO) closely resembles the HP trend, we are not consid-

ering it separately.5 Panel (a) clearly indicates that output deviations from a deterministic

trend tend to be more volatile and persistent than deviations from the HP trend, since the

HP filter removes more of the low frequency variation from the output series. Panel (b)

shows time series for labor share deviations from a constant mean and an HP trend. As

before, deviations from an HP trend tend to be smoother. First-order autocorrelations for

the marginal cost measures are reported in Table 1. They range from 0.7 (HP-filtered labor

share) to 0.97 (linearly detrended output).

4.2 Inflation and Marginal Cost Regressions

Under the assumptions that γb = 0, ξ̃t is serially uncorrelated, β = 0.993, and marginal cost

dynamics are well approximated by an AR(1) process with coefficient ρ̂ one can express the

forward solution of (6) as

π̃t = κ

(
1

1− 0.993ρ̂Y

)
Ỹt + ξt, or π̃t = λ

(
1

1− 0.993ρ̂lsh

)
l̃sht + ξt, (21)

where lsh denotes the labor share. As in Section 3, the parameter κ confounds the slope λ

and the elasticity of marginal costs with respect to output. Least squares regression results

for (21) are summarized in Table 2. We are reporting point estimates of κ and λ in (12)

and R2 statistics in parenthesis for the full sample as well as three subsamples: 1960-70,

1970-1982, 1983-2005.
5In some DSGE models, e.g., Schorfheide (2005), technology evolves according to a unit root process

and the output term that appears in the Phillips curve refers strictly speaking to deviations from a latent

stochastic trend. We do not consider this case in the regressions reported in this Section.
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Since it is not guaranteed that the mean of inflation and marginal cost deviations is zero

in the subsamples, we also include an intercept in the regression. As in other studies, e.g.,

Rudd and Whelan (2007), we find that the slope estimates and the R2 statistics tend to be

small. The largest estimate of κ is 0.03, obtained by regressing demeaned inflation on the

HP-filtered output using the 1960-1969 subsample. If one regresses inflation on the labor

share the largest slope estimate is 0.05, which is obtained by HP-filtering both inflation

and the labor share and restricting the sample to 1970 to 1982. The median slope estimate

reported in the table is 0.002. The R2 values range from nearly zero to 66%. If we assume

that the target inflation rate has shifted in the early 1970 and in 1982 and use the demeaned

labor share as a measure of marginal cost, then λ̂ = .003 and the R2 is 6%. The Durbin-

Watson statistics (not reported in the table) for the OLS regressions indicate that the least

squares residuals have substantial positive serial correlation.

We draw two broad conclusions for the subsequent review of DSGE model-based es-

timates. First, since the least squares estimates range from 0 to 0.03 for κ and 0 to 0.05

for λ, any variation beyond this range is most likely caused by the endogeneity correction.

Second, for the Phillips curve to capture the inflation persistence well, it has to be the case

that either lagged inflation enters the NKPC, that the mark-up shock is fairly persistent,

or that inflation deviations are computed relative to a time-varying target inflation rate.

4.3 VAR-IRF Evidence

We explained in Section 3.3 that if the DSGE model imposes sufficiently many restrictions

to unambiguously identify, say, a monetary policy shock, then the response of output and

marginal costs to this shock provides useful information about the NKPC parameters. To the

extent that we would expect a well-specified DSGE model to generate impulse responses that

are similar to those obtained from a structural VAR analysis, it is informative to examine

prototypical VAR responses to a monetary policy shock and try to determine a range of

NKPC parameterizations that are consistent with these responses.

Under the assumption that lagged inflation does not enter the NKPC and that marginal

costs are proportional to output the impulse responses to a monetary policy shock have to

satisfy
∂πt+h

∂εRt
= κ

∞∑
j=0

βjIEt+h

[
∂yt+h+j

∂εRt

]
.

As in Section 3.2, we use κ to denote the slope of the Phillips curve with respect to output.

The parameter κ absorbs the elasticity of marginal costs with respect to output into the
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definition of the slope. Suppose that the impulse responses are monotonic and the output

response decays approximately exponentially at rate δ in response to a monetary policy

shock. Then
∂πt+h

∂εRt
≈ κ

1− δβ

∂yt+h

∂εRt
.

While there exists a large literature (see Christiano and Eichenbaum (1999) and Stock

and Watson (2001) for surveys) that uses structural VARs to measure the effect of monetary

policy shocks, we focus on a prominent recent study by Christiano, Eichenbaum, and Evans

(2005).

The authors estimate a nine-variable VAR using data on real gross domestic product,

real consumption, the GDP deflator, real investment, the real wage, labor productivity, the

Federal Funds rate, real profits, and the growth rate of M2. Christiano et al. find that a

15 basis points (bp) drop in the Federal Funds Rate (quarterly percentage points) leads to

a 5 bp increase in the quarterly inflation rate after 12 quarters and a 50 bp point increase

of output after 9 quarters.6 Hence, according to the mean impulse responses, κ should be

about 0.1 if we set the decay factor δ to zero and 0.05 if we set δ = 0.5. Suppose now

that we ignore the dependence in the sampling distribution of the impulse response function

estimators and let δ = 0 again. Combining the lower bound of the reported 95% confidence

band of the inflation response with the upper bound of the confidence band for the output

response suggests that κ could be as low as 0.01. Combining the upper bound for the

inflation response with the lower bound for the output response leads to a value of κ = 0.5.

If we consider the labor share instead of the output response, we can obtain an estimate of

λ instead of κ. Along the mean impulse response estimated by Christiano et al., the labor

share appears to drop by about 25 basis points, which for δ = 0 and δ = 0.5 leads to values

of λ = 0.2 and λ = 0.1, respectively.

4.4 Evidence from Inflation and Marginal Cost Dynamics

There are several papers, e.g., Sbordone (2002, 2005) and Kurman (2005, 2007) that exploit

the restriction (20) to construct minimum-distance estimates of the NKPC parameters from

the estimates of an unrestricted VAR that includes inflation and a measure of marginal costs.

Using data from 1951 to 2002 on the labor share and inflation, Sbordone (2005) obtains an

estimate of λ̂ = 0.025 in the purely forward-looking specification, and λ̂ = 0.014 and γ̂b =

0.18 if she allows lagged inflation to enter the NKPC. To the extent that the restriction (20)

6These numbers are approximate, based on Figure 1 in Christiano, Eichenbaum, and Evans (2005).
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is also embodied in a DSGE model likelihood function, the DSGE model-based estimates

of the NKPC parameters should be similar, provided that the same measure of marginal

costs is used, the mark-up shock is assumed to be iid, and the a vector autoregressive

approximation to the law of motion of the estimated DSGE model resembles the unrestricted

VAR estimates.

5 Review of Empirical Results

Broadly speaking, the empirical papers reviewed in this section fall into two categories:

either marginal costs are treated as a latent variable or the set of observables spans the

labor share and hence the model-implied measure of marginal costs. Consider once again

the simple model of Section 3.2 and let us denote the labor share as lsh. Abstracting from

inference about γb and γf , a study that estimates λ in

πt = βIEt[πt+1] +
λ

τ
Yt − Zt + ξt (22)

based on observations of πt and Yt falls in the first category. Identification of λ in (22) is

tenuous because the presence of Zt exacerbates the endogeneity problem and the parameter

τ has to be separately estimable from the observables for λ to be identifiable. On the

upside, the use (22) is more robust to the presence of measurement errors in the labor share

(marginal cost) series. For some of the papers that fall into the first category, we will report

estimates of the output coefficient κ, which corresponds to λ/τ in the example, rather than

λ. A paper that estimates λ in

πt = βIEt[πt+1] + λlsht + ξt, (23)

with observations on πt and lsht belongs to the second category.

Since the literature on estimated DSGE models is growing rapidly, we had to strike

a balance between scope and depth. This survey is limited to models in which the firms’

price setting equations are derived either under quadratic adjustment costs or under the

Calvo mechanism. There is a lot of ongoing research in exploring alternative sources of

nominal rigidities that are not included in the subsequent review, for instance, menu costs

and state dependent pricing models, (Dotsey, King, and Wolman, 1999, Gertler and Leahy,

2006), models with labor market search frictions (Krause and Lubik, 2007, Gertler and

Trigari, 2006), and models with information processing frictions (Sims, 2003, Mankiw and
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Reis, 2007, Mackoviac and Wiederholt, 2007, and Woodford, 2008). Moreover, we focus on

models in which the labor share is the model-implied measure of marginal costs.7

The numerical values reported in Tables 3 to 5 refer to point estimates which are ob-

tained with one of four methods. In addition to papers that use Bayesian8, and maximum

likelihood methods as discussed in Section 2.2, we also consider studies that estimate the

DSGE model parameters by minimizing the discrepancy between impulse responses im-

plied by the DSGE model and those obtained from the estimation of a structural VAR, or

by minimizing the distance between sample moments obtained from U.S. data and DSGE

model-implied population moments. The remainder of this section is organized as follows.

We begin with a review of estimates that are obtained by treating marginal costs as a latent

variable (Section 5.1). We proceed by examining studies in which the authors treat marginal

costs as observable (Section 5.2). Since for monetary policy analysis the relationship be-

tween inflation and output is at least as important as the relationship between inflation

and marginal costs, we examine DSGE model-based estimates of the relative movements

of inflation and output in response to a monetary policy shock in Section 5.3. Finally, we

provide a brief discussion of the role of wage stickiness in Section 5.4.

5.1 Latent Marginal Costs

Table 3 summarizes parameter estimates of a Phillips curve specification in which marginal

costs are replaced by output or a measure of the output gap:

π̃t = γbπ̃t−1 + γfIEt[π̃t+1] + κỸt + ξt, (24)

where ξt represents the latent variables that enter the NKPC in any particular model. These

estimates are obtained by fitting New Keynesian DSGE models to observations of output,

inflation, and interest rates. The models implicitly share the following features: household

preferences are linear in labor and capital is not a factor of production. Estimates for κ

range from values less than 0.001 (Cho and Moreno, 2006) to a value of 4.15 (Canova, 2008).

7Krause, Lopez-Salido, and Lubik (2008) show that in a model with labor market search frictions marginal

costs are also affected by the labor market tightness. However, empirically they find that matching frictions in

the labor market appear to affect the cyclical behavior of marginal costs only slightly in terms of comovement,

persistence, and volatility.
8Bayesian inference combines information contained in the likelihood function with prior information to

form posterior estimates. Since, it is difficult to disentangle the contribution of various sources of information

ex post, we restrict our attention to the posterior estimates without examining the priors that were used to

generate these posteriors.
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While the studies differ with respect sample period as well as the detrending of inflation and

output, our least squares analysis in Section 4.2 suggests that most of the differences in κ̂ are

probably due to the treatment of latent variables. We showed that the likelihood function

corrects for the endogeneity problem that arises in a regression of inflation on future expected

output due to the correlation of the latent variables with expected output. This endogeneity

correction appears to be very sensitive to the assumed correlation among the exogenous

disturbances that enter the Phillips curve, the Euler equation, and the monetary policy

rule. Models in which the shocks that appear in the Euler equation and the Phillips curve

are correlated tend to deliver larger estimates of κ than models in which these disturbances

are uncorrelated.

We now turn to estimates of New Keynesian Phillips curves that are expressed in terms

of marginal costs instead of output:

πt = γbπt−1 + γfIEt[πt+1] + λMCt + ξt. (25)

These estimates are reported in Table 4. Rabanal and Rubio-Ramirez (2005) fit a canonical

New Keynesian DSGE model without capital and habit formation using a data set that

contains in addition to inflation, interest rates, and detrended output also a measure of the

real wage. For specifications in which γb is restricted to be zero, the authors obtain estimates

of λ of about 0.015. If γb is estimated subject to the restriction that γb + γf = 0.99 the

estimate of λ drops to 0.004, whereas the weight on lagged inflation in the Phillips curve is

0.43.

The canonical three equation New Keynesian DSGE model that underlies, for instance,

the analysis in Rabanal and Rubio-Ramirez (2005) lacks persistent dynamics, which makes

it difficult to capture the serial correlation in U.S. data. The lack of persistence can be

overcome in part by using household preferences that exhibit habit formation, that is, the

instantaneous utility is not a function of current consumption. Instead, it is a function of

current consumption relative to some habit stock, which is a function of past consumption.

Habit formation enriches the endogenous propagation mechanism of the model and enhances

the model’s ability to capture the persistence in output and consumption. More importantly

for us, it changes the relationship between (observed) output and (latent) marginal costs.

The marginal utility of consumption, and thereby marginal costs, depends not just on the

current level of output, but also on past and expected future levels as well as the parameters

that determine the degree of habit formation. The estimates of λ reported in the second

section of Table 4 range from 0.004 to 0.437
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Once capital is treated as a variable input, marginal costs and the labor share are not just

a function of the real wage and labor productivity but also of the rental rate of capital. Thus,

the inclusion of capital also changes the decomposition of the labor share into an observable

and an unobservable component. The third section of Table 4 reports NKPC estimates from

six studies, ranging from 0.008 to 0.112. Among these papers, Fernandez-Villaverde and

Rubio-Ramirez (2007) allow the parameters of the monetary policy rule and the parameters

that determine the degree of price and wage stickiness vary over time. This allows the

authors to obtain a time series of the Phillips curve coefficient. If the slope estimates of

the Phillips curve are converted into the probability that a firm is unable to change its

price in a Calvo model (see Section 2.1), then the estimates can be summarized as follows.

Prices stayed constant for an average of 4 quarters in the 1960s and 1970s while inflation

was relatively high and became a bit more rigid after the Volcker disinflation. Based on a

casual inspection of the smoothed time series of the Phillips curve coefficients, λ appeared

be to be on average around 0.06 before 1979 and then dropped to 0.03 subsequently. The

average estimate of γb pre-1979 is about 0.35 and decreases to 0.3 after 1979. This pattern

is broadly consistent with the notion that the NKPC is not structural in the following sense:

if a high target inflation rate makes it very costly for firms not to change their prices – and

hence more attractive to incur the costs of adjusting the prices – we should observe a steeper

Phillips curve relationship.

5.2 Observed Marginal Costs

We now turn to the Bayesian estimation of New Keynesian DSGE models based on a larger

set of observables that spans the labor share and hence marginal costs as they appear

in the Phillips curve. Intuitively, the use of labor share observations should lead to a

sharper identification of λ. Table 5 summarizes empirical estimates from seven studies. Most

estimates are based on a variant of the Smets and Wouters (2003) model, which augments

a DSGE model by Christiano, Eichenbaum, and Evans (2005) by additional shocks to make

it amenable to likelihood-based estimation. Smets and Wouters (2005), Levin, Onatski,

Williams, and Williams (2006), Del Negro, Schorfheide, Smets, and Wouters (2007), Smets

and Wouters (2007), and Justiniano and Primiceri (2008) obtain estimates of λ of 0.01, 0.03,

0.10, 0.02, and 0.01, respectively. The estimates of the coefficient γb on lagged inflation are

0.25, 0.07, 0.43, 0.19, and 0.46, respectively. Compared to the numbers reported in Tables 3

and 4 the variation across studies is much smaller.
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5.3 Impulse Response Dynamics

Much of our previous discussion focused on the marginal cost coefficient in the Phillips curve

relationship. However, from a monetary policy perspective equally important is the output-

inflation trade-off in the estimated DSGE model. This trade-off not only depends on λ but

also on the elasticity of marginal costs with respect to output. Thus, we will examine the

relative movements of output and inflation in response to a monetary policy shock, that is,

an unanticipated deviation from the systematic component of the monetary rule. Of course

these impulse responses do not just depend on the slope of the NKPC, they also depend

on other aspects of the model, such as labor market frictions and wage stickiness and the

behavior of the central bank.

Not all the papers for which we have reported estimates of the NKPC parameters in

Tables 3 to 4 present impulse response functions. Those that do, typically represent them

in graphical form. The subsequent results are based on an inspection of impulse response

plots and summarized in Table 6.9 We report the magnitude of the peak responses of the

interest rate, inflation rate, and the output deviation from steady state. The interest rate

response is measured in annualized percentages, that is an entry of 0.25 implies that the

monetary policy shock raises the interest rate 25 basis points above its steady state level.

The inflation rate is not annualized and represents a quarter-to-quarter difference in the log

price level, scaled by 100 to convert it into percentages. Output deviations are also reported

in percentages. Since the length of a period in a DSGE model is typically assumed to be

one quarter, in the context of the back-on-the-envelope calculation in Section 4.3, the ratio

of the inflation and output response, denoted by ∂π/∂y, would correspond to κ/(1 − δβ),

where δ is the factor at which the output response decays to zero.

We report in Table 6 the number of periods that it takes for the responses to reach their

respective peaks, the ratio of the peak response of inflation and output, and the estimate of

κ̂ in the underlying model. Models without capital and with little endogenous propagation

typically generate monotonic impulse response functions. For the models without capital the

relative responses of inflation and output range from 0.07 to 2.00. Once capital is included

and the model is augmented by additional frictions, this range narrows to 0.08 to 0.17, which

seems consistent with the VAR evidence provided by Christiano, Eichenbaum, and Evans

(2005). Comparing the estimates reported in Del Negro, Schorfheide, Smets, and Wouters

9In a number of studies it turned out to be difficult to determine whether interest rates and inflation

rates are annualized or not. We tried our best to resolve this ambiguity.
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(2007) and Smets and Wouters (2007) it appears that these trade-offs can be obtained with

quite different price Phillips curve slopes λ: 0.002 and 0.10.

5.4 Wage versus Price Rigidity

This article has focused on estimates of the degree of price rigidity in New Keynesian

DSGE models. Many authors believe that inflexible wages are another important source

of nominal rigidities. In fact, the DSGE models that are based on the work of Smets and

Wouters (2003), and Christiano, Eichenbaum, and Evans (2005) incorporate both price and

wage stickiness. Following work by Erceg, Henderson, and Levin (2000), to generate wage

stickiness in DSGE models it is typically assumed that households supply differentiated

labor service which are aggregated by labor packers into homogenous labor services. These

homogeneous labor services are in turn utilized by the intermediate goods producing firms.

Households act as monopolistically competitive suppliers and are subjected to a Calvo (1983)

friction: only a fraction of households is allowed to re-optimize their nominal wage. To clear

the labor market ex post, it is assumed that each household has to satisfy the demand for

its labor service at the posted price.

For a joint estimation of price and wage rigidity to be meaningful, the set of observables

needs to span inflation, labor share, and wages. The joint dynamics of inflation and the

labor share provide information about the price Phillips curve, and the wage series together

with an implicit measure of the marginal dis-utility of work contains information about

the degree of wage stickiness. Del Negro and Schorfheide (2008) estimate a variant of the

Smets and Wouters (2003) under three priors that differ with respect to a priori beliefs

about nominal rigidities. The low rigidities prior assumes that the price and wage Calvo

parameters have a beta-distribution centered at 0.45 with standard deviation of 0.10. The

high rigidities prior is centered at 0.75 with a standard deviation of 0.1. Finally, the agnostic

prior is centered at 0.6 and is more diffuse – its standard deviation is 0.2.

Posterior inference based on these priors can be summarized as follows: both under

the agnostic and the low rigidities prior the posterior estimate of the wage stickiness is

small. The Calvo parameter is around 0.25, which means that the households re-optimize

their wages on average every four months. The estimated price stickiness translates into

a value of λ of about 0.22. Under the high rigidities prior the estimates of both the wage

and the price Calvo parameter turn out to be substantially larger, namely about 0.8. Most

interestingly, the time series fit of all three specifications is very similar, yet the policy
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implications are quite different. The results presented in Del Negro and Schorfheide (2008)

suggest that the macro time series we typically consider are not informative enough to

precisely measure the degree of nominal rigidity. This conclusion is consistent with the

literature survey conducted in this section: the variation of parameter estimates reported

in the literature is substantial. No clear consensus has emerged as of now.

6 Conclusion

While the literature on DSGE model-based estimation of the NKPC is still fairly young,

a wide variety of results have been published in academic journals already. In most of

these studies the Phillips curve estimation is not a goal but rather a by-product of the

empirical analysis. DSGE model-based NKPC estimates tend to be fragile and sensitive to

model specification and data definitions, in particular if marginal costs are treated as latent

variable. If the observations span the labor share, which is the model-implied measure of

marginal costs in the studies that we reviewed, then the slope estimates are more stable.

No consensus has emerged with respect to the importance of lagged inflation in the Phillips

curve. Estimates are sensitive to detrending methods for inflation and assumptions about

the autocovariance structure of the exogenous disturbances in the DSGE model. Thus, from

a policy-maker’s perspective, accounting for parameter and model uncertainty is important

for prediction and decision-making.

We tried to make some progress in understanding the identification of Phillips curve

parameters in estimated DSGE models. Unlike single-estimation approaches, DSGE model-

based estimates are able to extract information about the structural parameters from the

contemporaneous correlations of output, inflation, interest rates, and other variables, as

well as from impulse responses to structural shocks that are identifiable based on exclusion

restrictions hard-wired in model specifications. Unfortunately, the data do not speak loud

and clearly to us and many DSGE models have the implication that if the model is “true”,

it is difficult to identify the NKPC parameters and the output-inflation trade-off with 20 to

40 years of observations.

Identification in the context of simultaneous equations models is well understood. To

identify the slope of a supply curve we need variation in exogenous demand shifters. Iden-

tification in DSGE models is much more complicated. Variation in the data is created

by unobserved shocks that in most cases shift both demand and supply. Our reading of

the early literature on estimated DSGE models is that there was a lot of hope that the
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model-implied cross-coefficient restrictions are so tight that identification is not a concern.

Over time the profession learned that despite tight cross-equation restrictions identification

should not be taken for granted, in particular in New Keynesian DSGE models. While there

is now much ongoing research to develop econometric techniques that try to diagnose iden-

tification problems, it might be time to go back to the drawing board and develop future

DSGE models with parameter identifiability in mind.
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Table 1: Persistence of Marginal Cost and Inflation Measures

Series AR(1)

π̃(mean) 0.88

π̃(break) 0.68

π̃(HP) 0.49

Ỹ (lin trend) 0.97

Ỹ (quad trend) 0.96

Ỹ (HP) 0.85

˜lsh(mean) 0.94

˜lsh(HP) 0.70

Notes: The table reports AR(1) coefficient estimates based on a sample from 1960:Q1 to

2005:Q4.
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Table 2: Inflation and Marginal Cost Regressions

Inflation Marginal Cost Sample Period

Measure M̃Ct 1960-2005 1960-1969 1970-1982 1983-2005

π̃(mean) Ỹ (lin trend) 1E-4 (4E-4) .002 (0.64) -8E-4 (0.02) -.001 (0.08)

Ỹ (quad trend) 8E-4 (0.01) .002 (0.65) -8E-4 (0.01) -.001 (0.05)

Ỹ (HP) .006 (.008) 0.03 (0.35) .009 (0.06) .003 (.008)

l̃sh(mean) 0.01 (0.40) 0.01 (0.66) .007 (0.03) .002 (0.03)

l̃sh(HP) 0.04 (0.03) 0.03 (0.03) 0.03 (0.04) .002 (.001)

π̃(break) Ỹ (lin trend) 5E-4 (0.02)

Ỹ (quad trend) 8E-4 (0.03)

Ỹ (HP) 0.01 (0.07) same as π̃(mean)

l̃sh(mean) .003 (0.06)

l̃sh(HP) 0.02 (0.02)

π̃(HP) Ỹ (lin trend) 2E-4 (.005) 2E-4 (0.03) -4E-4 (.007) .001 (0.11)

Ỹ (quad trend) 2E-4 (.006) 2E-4 (0.03) -4E-4 (.006) .001 (0.11)

Ỹ (HP) .004 (0.02) .007 (0.12) .002 (.005) .007 (0.07)

l̃sh(mean) .002 (0.03) .003 (0.16) 0.01 (0.17) 5E-4 (.002)

l̃sh(HP) 0.03 (0.08) 0.02 (0.07) 0.05 (0.15) 0.01 (0.03)

Notes: We are reporting coefficient estimates α̂1 and R2’s in parenthesis for a regression

of the form π̃t = α0 + α1[M̃Ct/(1 − β̂ρ̂MC)], where β̂ = 0.993, ρ̂MC is the first-order

autocorrelation of the marginal cost measure, and the marginal cost measure is either Ỹt or

l̃sht.
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Table 3: Published NKPC Estimates – Latent Labor Share (Part 1)

Study Sample Period πt−1 IEt[πt+1] Yt Method

No capital, no habit formation, output coefficient in Phillips curve

Canova (2008), Table 1 1955:Q1 - 2002:Q1 0.98 4.150 Bayes

Cho & Moreno (2006), Table 2 1980:Q4 - 2000:Q1 0.44 0.56 0.001 MLE

Cho & Moreno (2006), Table 2 1980:Q4 - 2000:Q1 0.44 0.56 0.001 MLE

Cho & Moreno (2006), Table 2 1980:Q4 - 2000:Q1 0.43 0.57 0.000 MLE

Del Negro & Schorfheide (2004), Table 2 1959:Q3 - 1979:Q2 1.00 0.314 Bayes

Del Negro & Schorfheide (2004), Table 2 1959:Q3 - 1979:Q2 1.00 0.249 Bayes

Linde (2005), Table 5 1960:Q1 - 1997:Q4 0.72 0.28 0.048 MLE

Linde (2005), Table 5 1960:Q1 - 1997:Q4 0.54 0.46 0.048 MLE

Lubik & Schorfheide (2004), Table 3 1960:Q1 - 1979:Q2 .997 0.770 Bayes

Lubik & Schorfheide (2004), Table 3 1960:Q1 - 1979:Q2 .997 0.750 Bayes

Lubik & Schorfheide (2004), Table 3 1982:Q4 - 1997:Q4 .993 0.580 Bayes

Rotemberg & Woodford (1998), Page 321 1980:Q1 - 1995:Q2 0.99 0.024 IRF-MD

Schorfheide (2005), Table 2 1960:Q1 - 1997:Q4 0.99 0.370 Bayes

Schorfheide (2005), Table 2 1960:Q1 - 1997:Q4 1.00 0.360 Bayes

Salemi (2006), Table 2 1965:Q1 - 2001:Q4 0.62 0.00 0.055 MLE

Salemi (2006), Table 2 1965:Q1 - 2001:Q4 0.43 0.57 0.003 MLE

Notes: We are providing point estimates of the New Keynesian Phillips curve

πt = γbπt−1 + γf IEt[πt+1] + κYt + ξt

based on the information provided in the cited studies. Estimation methods: MLE maximum likelihood

estimation; Bayes Bayesian analysis; IRF-MD minimize discrepancy between impulse responses estimated

with a structural VAR and those implied by DSGE model.
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Table 4: Published NKPC Estimates – Latent Labor Share (Part 2)

Study Sample Period πt−1 IEt[πt+1] MCt Method

No capital, no habit formation

Rabanal & Rubio-Ramirez (2005), Table 2 1960:Q1 - 2001:Q4 0.99 0.015 Bayes

Rabanal & Rubio-Ramirez (2005), Table 2 1960:Q1 - 2001:Q4 0.43 0.56 0.004 Bayes

Rabanal & Rubio-Ramirez (2005), Table 2 1960:Q1 - 2001:Q4 0.99 0.016 Bayes

Rabanal & Rubio-Ramirez (2005), Table 2 1960:Q1 - 2001:Q4 0.99 0.017 Bayes

No capital, with habit formation

Andres et al. (2004), Table 1 1980:Q1 - 1999:Q2 0.99 0.014 MLE

Andres et al. (2005), Table 2 1979:Q3 - 2003:Q3 0.50 0.50 0.437 MLE

Boivin & Giannoni (2006), Table 2 1959:Q2 - 1979:Q2 0.50 0.50 0.006 IRF-MD

Boivin & Giannoni (2006), Table 2 1979:Q3 - 2002:Q2 0.50 0.50 0.004 IRF-MD

Gali & Rabanal (2004), Table 4 1948:Q1 - 2002:Q4 0.02 0.97 0.413 Bayes

Lubik & Schorfheide (2005), Table 2 1983:Q1 - 2002:Q4 1.00 0.200 Bayes

Milani (2007), Table 2 1960:Q1 - 2004:Q2 0.99 0.024 Bayes

Models with capital

Bouakez et al. (2005), Table 1 1960:Q1 - 2001:Q2 0.50 0.50 0.015 MLE

Boukaz et al. (2008), Table 4 1964:Q1 - 2002:Q4 1.00 0.223 MD

Christensen and Dib (2008) 1979:Q3 - 2004:Q3 .993 0.092 MLE

Fernandez-Villaverde & Rubio-Ramirez (2007), Table 6.1 1955:Q1 - 2000:Q4 0.13 0.87 0.008 Bayes

Fernandez-Villaverde & Rubio-Ramirez (2007), Table 6.1 1955:Q1 - 1979:Q4 0.26 0.74 0.056 Bayes

Fernandez-Villaverde & Rubio-Ramirez (2007), Table 6.1 1980:Q1 - 2000:Q4 0.13 0.87 0.030 Bayes

Laforte (2007), Table 3 1983:Q1 - 2003:Q1 0.40 0.59 0.112 Bayes

Rabanal (2007), Table 2 1959:Q1 - 2004:Q4 0.50 0.50 0.018 Bayes

Notes: We are providing point estimates of the New Keynesian Phillips curve

πt = γbπt−1 + γf IEt[πt+1] + λMCt + ξt

based on the information provided in the cited studies. Estimation methods: MLE maximum likelihood

estimation; Bayes Bayesian analysis; IRF-MD minimize discrepancy between impulse responses estimated

with a structural VAR and those implied by DSGE model; MD minimize discrepancy between sample

moments and DSGE model implied moments.
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Table 5: Published NKPC Estimates – Observed Labor Share

Study Sample Period πt−1 IEt[πt+1] MCt Method

Avouyi-Dovi & Matheron (2007), Tables 3-4 1955:Q1 - 1979:Q2 0.27 0.73 0.008 IRF-MD

Avouyi-Dovi & Matheron (2007), Tables 3-4 1982:Q3 - 2002:Q4 0.20 0.80 0.010 IRF-MD

Christiano et al. (2005), Table 2 1965:Q3 - 1995:Q3 0.50 0.50 0.135 IRF-MD

Del Negro et al. (2007) , Table 1 1974:Q2 - 2004:Q1 0.43 0.57 0.100 Bayes

Justiniano & Primiceri (2008), Table 1 1954:Q3 - 2004:Q4 0.46 0.54 0.007 Bayes

Justiniano & Primiceri (2008), Table 1 1954:Q3 - 2004:Q4 0.46 0.54 0.005 Bayes

Levin et al. (2005), Table 1 1955:Q1 - 2001:Q4 0.07 0.92 0.033 Bayes

Smets & Wouters (2005), Table 1 1983:Q1 - 2002:Q2 0.25 0.74 0.007 Bayes

Smets & Wouters (2007), Table 1A/B 1966:Q1 - 2004:Q4 0.19 0.82 0.020 Bayes

Notes: We are providing point estimates of the New Keynesian Phillips curve

πt = γbπt−1 + γf IEt[πt+1] + λMCt + ξt

based on the information provided in the cited studies. Estimation methods: Bayes Bayesian analysis; IRF-

MD minimize discrepancy between impulse responses estimated with a structural VAR and those implied

by DSGE model.
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Table 6: Impulse Responses to a Monetary Policy Shock

Study Interest Rate Inflation Output ∂π/∂y

[Annualized %] [Quarterly %] [% Dev. from Trend]

Peak After x Q’s Peak After x Q’s Peak After x Q’s

No capital, no habit formation, marginal costs function of current output deviations

Cho & Moreno (2007), Figure 2 -0.80 0 0.01 9 0.12 9 0.08

Del Negro & Schorfheide (2004), Figure 2 -0.25 0 0.05 0 0.05 0 1.00

Ireland (2004a), Figure 1 -0.20 0 0.20 0 0.60 0 0.33

Ireland (2004b), Figure 1 -1.00 0 0.07 0 0.40 0 0.18

Ireland (2007), Figure 2 -0.40 0 0.10 0 0.30 0 0.33

Lubik & Schorfheide, 2004, Figure 3 -0.70 0 0.12 0 0.16 0 0.75

Lubik & Schorfheide, 2004, Figure 3 -0.60 0 0.17 0 0.16 0 0.76

Lubik & Schorfheide, 2004, Figure 3 -0.60 0 0.20 0 0.16 0 1.25

Rotemberg & Woodford (1998), Figure 1 -0.80 0 0.03 2 0.38 2 0.07

Salemi (2006), Figure 3 -1.00 0 0.020 10 0.40 9 0.05

Salemi (2006), Figure 3 -1.00 0 0.002 8 0.30 8 0.01

No capital, with habit formation, marginal costs are function of current, past, and future output deviations

Andres et al. (2004), Figure 2 -0.30 0 0.17 0 0.40 3 0.43

Andres et al. (2005), Figure 1 -0.50 0 0.15 0 0.08 1 2.00

Andres et al. (2005), Figure 1 -0.70 0 0.06 0 0.40 1 0.15

Boivin & Giannoni (2006), Figure 1 -1.00 0 0.14 6 1.10 4 0.13

Boivin & Giannoni (2006), Figure 1 -1.00 0 0.02 4 0.30 4 0.07

With capital, no direct observations on labor share

Christensen and Dib (2008), Figure 1 -0.48 2 0.14 2 0.50 2 0.28

Laforte (2007), Figure 2 -0.75 0 0.15 0 0.50 2 0.30

Rabanal (2007), Figure 4 -1.00 0 0.10 4 0.50 3 0.20

With capital, with direct observations on labor share

Christiano et al. (2005), Figure 1 -0.60 4 0.05 11 0.60 6 0.08

Del Negro et al. (2007), Figure 3 -1.10 0 0.05 2 0.33 2 0.15

Smets & Wouters (2005), Figure 5 -0.70 4 0.05 3 0.45 5 0.11

Smets & Wouters, (2007) Figure 6 -0.72 0 0.05 2 0.30 3 0.17

Notes: Based on the graphical information provided in the cited studies we determined the peak responses

for interest rates (annualized percentage points), inflation (quarter-to-quarter percentage points), and output

(percentage deviations from trend / steady state) to an unanticipated loosening of monetary policy.
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Figure 1: Inflation and Measures of Trend Inflation
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Notes: Inflation is measured as quarter-to-quarter changes in the log GDP deflator, scaled by

400 to convert it into annualized percentages. The sample ranges from 1960:Q1 to 2005:Q4.
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Figure 2: Measures of Marginal Cost Deviations

(a) Output Deviations from Trend
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(b) Labor Share Deviations from Trend
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