
1

Phylogenetic Analysis by

Maximum Likelihood (PAML)

Version 3.12, March 2002

Ziheng Yang

© Copyright 1993 –2001 by Ziheng Yang. The software package is provided "as is" without
warranty of any kind. In no event shall the author be held responsible for any damage resulting

from the use of this software, including but not limited to the frustration that you may
experience in using the package. The program package, including source codes, example data
sets, executables, and this documentation, is distributed free of charge for academic use only.
Permission is granted to copy and use programs in the package provided no fee is charged for

it and provided that this copyright notice is not removed.

Suggested citation:

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum
likelihood CABIOS 13:555-556

(http://abacus.gene.ucl.ac.uk/software/paml.html).

The author can be reached at
Ziheng Yang

Department of Biology
University College London

Gower Street, London WC1E 6BT
Email: z.yang@ucl.ac.uk

Phone: +44 (20) 7679 4379
Fax: +44 (20) 7679 7096

http://abacus.gene.ucl.ac.uk/
http://abacus.gene.ucl.ac.uk/
http://abacus.gene.ucl.ac.uk/
http://www.ucl.ac.uk/biology/
http://www.ucl.ac.uk/
mailto:z.yang@ucl.ac.uk

2

Table of Contents

0 Recent changes and bug fixes ..3
1 Introduction..3
2 Getting started..4

Windows 95/98NT/2000/XP and UNIX (including Mac OS X)4
MACs 6

3 Files in the Package ...6
Which files are needed?..8

4 Using Programs in the Package...8
Sequence data format...8
Tree file and representations of tree topology..11
baseml...12
basemlg ..17
codeml (codonml and aaml) ..17

Codon sequences (seqtype = 1) ...18
Amino acid sequences (seqtype = 2)..21

evolver..22
yn00 24
mcmctree ..24

5 Models and Methods...25
Nucleotide substitution models..25
Codon substitution models ...28
Amino acid substitution models ..28
Models for combined analyses of heterogeneous data (multiple genes

or codon positions) ..29
For nucleotides (baseml)...29
For codons and amino acids (codeml)..31

Global and local clocks, and dated sequences..31
Reconstruction of ancestral sequences ..32
Analysing large data sets and iteration algorithms for parameter

estimation..33
Tree search algorithms...34
Simulation..34

6 Technical Notes..36
The rub file recording the progress of iteration ...36
How to specify initial values...36
Fine-tuning the iteration algorithm ...36
Adjustable variables in the source codes ..37
PowerMAC memory allocation problem..37
MS Windows version window auto-close ..38

7 Acknowledgments...38
8 References ...38

3

0 Recent changes and bug fixes

See the file pamlHistory.txt for recent changes and bug fixes.

The examples/ folder in the package contain example data sets and results. Not all of
them are described in this documentation. See the readme files in those folders.

1 Introduction

PAML is a package of programs for phylogenetic analyses of DNA or protein
sequences using maximum likelihood (ML). The PAML web page
(http://abacus.gene.ucl.ac.uk/software/paml.html) explains what the programs can
and cannot do, how to download and compile the programs, and how to report bugs.
Those will not be duplicated in this documentation. There is now also an FAQ page at
http://abacus.gene.ucl.ac.uk/software/pamlFAQs.html.

The program baseml is for analyzing nucleotide sequences. The program codeml is
formed by merging two old programs: codonml, which implements the codon
substitution model of Goldman and Yang (1994) for protein-coding DNA sequences,
and aaml, which implements models for amino acid sequences. These two are now
distinguished by a variable named seqtype in the control file codeml.ctl, that is, 1 for
codon sequences and 2 for amino acid sequences. In this document I use codonml and
aaml to mean codeml with seqtype = 1 and 2, respectively. The programs baseml,
codonml, and aaml use similar algorithms to fit models, the difference being that the
unit of evolution in the substitution model, referred to as a "site" in the sequence, is a
nucleotide, a codon, or an amino acid for the three programs, respectively. Markov
process models are used to describe substitutions between nucleotides, codons or
amino acids, with substitution rates assumed to be either constant or variable among
sites. A discrete-gamma model (Yang, 1994c) is used in baseml, codonml and aaml to
accommodate rate variation among sites, by which rates for sites come from several
(say, four or eight) categories used to approximate the continuous gamma
distribution. When rates are variable at sites, the auto-discrete-gamma model (Yang,
1995) accounts for correlation of rates between adjacent sites.

The program basemlg implements the continuous gamma model of Yang (1993). It is
slow and unfeasible for data of >6 or 7 species. The discrete-gamma model in baseml is
recommended.

General assumptions of the models (programs) are

• Substitutions occur independently in different lineages;
• Substitutions occur independently among sites (except for the auto-discrete-

gamma model which account for correlated substitution rates at neighboring
sites);

http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/pamlFAQs.html

4

• The process of substitution is described by a time-homogeneous Markov
process. Further restrictions may be placed on the structure of the rate matrix of
the process and lead to different substitution models;

The process of substitution is stationary. In other words, the frequencies of
nucleotides (baseml), codons (codonml), or amino acids (aaml) have remained constant
over the time period covered by the data.

The existence of a molecular clock (rate constancy among lineages) is not necessary
but can be imposed. Variation (and dependence) of rates at sites is allowed by the
discrete-gamma (or auto-discrete-gamma) models implemented in baseml, codonml
and aaml.

The sequences must be aligned. If there are alignment gaps, they will either be
removed from all sequences before analysis, with appropriate adjustment to the
sequence length (if cleandata = 1), or treated as ambiguity characters (if cleandata
= 0).

Other small programs in the package include evolver for simulating sequence data
sets, pamp for parsimony-based analysis (Yang and Kumar 1996), and yn00 for
estimating synonymous and nonsynonymous substitution rates in pairwise
comparisons using the method of Yang and Nielsen (2000).

This document is now mainly an explanation of the control variables in the control
files for individual programs. Topics that seem too complicated to explain there are
dealt with in a section in the Chapter ”Models and Methods”.

2 Getting started

Windows 95/98NT/2000/XP and UNIX (including Mac OS X)
In the good old days, we type commands on a command line. Nowadays most people
know dragging and double-clicking or scrolling only. PAML programs do not have a
graphics or menu based interface, and so you have to know some basic techniques of
the good old days. Here is the basics for getting you started.

(1) download and unpack the archive into a folder, say /paml/ (or ~/paml/ on
UNIX). You should remember the name of the folder.

(2) Start a command box. You do this by choosing "Start - Programs" and look for
a command called "MS-DOS prompt" or "Command Prompt". It is usually in
the group “Accessories”. On UNIX, you will be in a shell window as soon as
you log on by telnet.

(3) Change directory to the paml folder. For example you type one of the
following.

5

cd paml
cd ~/paml
cd \paml

(4) Run a program. Next you type a command, for example, codeml, and hit the
“Enter” key.

 codeml

This makes codeml to read the default control file codeml.ctl and do the
analysis according to it. Now you can print out a copy of codeml.ctl, and open
your favouriate text editor to view the relevant sequence data and tree files.

Next you can prepare your own sequence data files and tree files. PAML data files are
plain text files. If you use MS Word to prepare them, make sure you same them as
“Text with line breaks” or “Text without line breaks”. Most likely only one of those
two formats works.

A few commonly used DOS and UNIX commands

DOS/Window
s

UNIX Function

cd, chdir cd, chdir,
pwd

Sets and displays current directory (folder)

copy cp, cat Copies files
del rm Deletes files
dir ls Lists files
exit exit Exits from the command processor
find fgrep Searches for a string in files
help man Gets help
md mkdir Makes a new directory
more more, less Displays file contents by screenfuls
path set PATH Sets search path for commands
print lpr Prints files
rd, rmdir rmdir, rm -r Removes directories
ren mv Renames a file
time, date date Displays or sets time and date
type cat Displays the contents of a file
xcopy cp Copies files and subdirectories
ftp ftp Starts an ftp session
telnet telnet Starts a telnet session
 Ctrl-Z,

followed by
bg

Puts a foreground job into the background

 fg Brings a job to the foreground
 nice, renice Be nice to others by running your jobs at a

lower priority

6

MACs
You double-click on the executable such as codeml. The compiled executables should
ask you for the name of the control file. The default name is codeml.ctl. My
experience of MACs was several years old and was not a very good one.

3 Files in the Package

The following files are included in the package:

Source codes:

baseml.c: various models for nucleotide sequences
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2)
sequences
pamp.c: parsimony analyses of nucleotide or amino acid sequences
mcmctree.c: Markov chain Monte Carlo algorithm for Bayes estimation of
phylogenies
evolver.c: simulation of sequence data and comparison of trees
basemlg.c: Nucleotide-based model with (continuous) gamma rates among
sites
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000)
treesub.c: a few functions
treespace.c: a few more functions
tools.c: my toolkit
tools.h: header file
eigen.c: routines for calculating eigen values and vectors

Compiling commands

Makefile: make file
paml.cc: batch file for compiling PAML using the cc compiler
paml.gcc: batch file for compiling PAML using the GNU gcc compiler
paml.acc: batch file for compilation PAML using the SUN acc compiler

Control files:

baseml.ctl: control file for running baseml and basemlg;
codeml.ctl: control file for codeml (i.e., codonml and aaml)
pamp.ctl: control file for pamp
yn00.ctl: control file yn00
mcmctree.ctl: control file for mcmctree

Data files for codeml (see the files for details):

grantham.dat: amino acid distance matrix (Grantham 1974)
miyata.dat: amino acid distance matrix (Miyata et al. 1980)
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al. (1978)
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992)

7

wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in
press)
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and
Hasegawa (1996b)
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial
proteins of mammals

Data files for evolver (see those small files for details):

MCbase.dat: data file for simulating nucleotide sequences
MCcodon.dat: data file for simulating codon sequences
MCaa.dat: data file for simulating amino acid sequences

Example tree files:

4s.trees: tree structure file for 4-sequence data
5s.trees: tree structure file for 5-sequence data

Documentations:

paml.readme: readme file
paml.html: paml web page, serving also as part of the manual (html file)
pamlDOC.pdf: this document

Example data sets:

Several example data sets are included. They were used in our papers to test new
methods, and are included in the package for error-checking.

brown.nuc: the 895-bp mtDNA data of Brown et al. (1982), used in Yang et al.
(1994) and Yang (1994c) to test models of variable rates among sites.

mtprim9.nuc: mitochondrial segment consisting 888 aligned sites from 9
primate species (Hayasaka et al. 1988), used by Yang (1994c) to test the
discrete-gamma model and Yang (1995) to test the auto-discrete-gamma
models.

abglobin.nuc: the concatenated alpha and beta globin genes, example data for
condonml

exampleTipDate.phy (phylip format), exampleTipDate.trees: data set of
17 dengo viral strains sequenced at different dates from Andrew Rambaut’s
TipDate program. This is used for testing the TipDate models of Rambaut
(2000). Run baseml by specifying clock = 3. The results are included in
the file exampleTipDate.rst.

HIVenvSweden.paup (paup* format), HIVenvSweden.trees,
HIVenvSweden.ctl: 13 HIV env genes used by Yang et al. (2000) in
developing models of variable selective pressures among sites (the Nssites
models). (Use command: codemlsites HIVenvSweden.ctl)

hummt25.nuc: 25 human D-loop sequences used in Yang and Kumar (1995).
Run baseml by specifying fix_alpha = 0, or run pamp.

lysozymeSmall.nuc, lysozymeSmall.trees, lysozyme.ctl: primate lysozyme
genes of Messier and Stewart 1997, used by Yang (1998) in developing tests
of positive selection along lineages. This is the "small data set" analyzed in
that paper. See the control file lysozyme.ctl for details for specifying the
different models. Run the analysis by codeml lysozyme.ctl

8

stewart.aa, stewart.trees: lysozyme sequences of six mammals (Stewart et
al. 1987), used by Yang et al. (1995) to test methods for reconstructing
ancestral amino acid sequences.

abglobin.aa: the concatenated alpha- and beta-globins, translated from
abglobin.nuc

Which files are needed?

You may copy the executables to a directory containing your data files. Please note
that the program codeml may need some of the data files in the package such as
grantham.dat, dayhoff.dat, jones.dat, wag.dat, mtREV24.dat, or mtmam.dat.
You should probably copy these files together. Other programs do not need such data
files apart from the sequence and tree files you specify in the control file.

Note also that the programs produce result files. Some other files with names rub,
lnf, rst, or rates may also be created. You should not use these names for your files.

4 Using Programs in the Package

Sequence data format
Have a look at the example data files in the package (*.nuc, *.aa, and *.paup). As long
as you get your data file into one of the formats, PAML programs should be able to
read it. PAML now has limited support for the NEXUS file format used by PAUP and
MacClade. Only the sequence data or trees are read, and command blocks are all
ignored. PAML does not deal with comment blocks in the sequence data block, so try
to avoid them.

Below is an example of the PHYLIP format (Felsenstein, 1993). The first line contains
the number of species and the sequence length (possibly followed by option
characters). With codonml (codeml with seqtype = 1), the sequence length in the
sequence file refers to the number of nucleotides rather than the number of codons.
The only options allowed in the sequence file are I, S, C and G. The sequences may be
in either interleaved format (option I, example data file abglobin.nuc), or sequential
format (option S, example data file brown.nuc). The default option is S. (Option G is
used for combined analysis of multiple gene data and is explained below.) The
following is an example data set in the sequential format. It has 4 sequences each of 60
nucleotides.

 4 60
sequence 1
AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2
AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT

9

sequence 3
AAGCTTCACCGGCGCAGTTGTTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4
AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Species names. Do not use special symbols like , : # () in a species name as they may
confuse the programs. The maximum number of characters in a species name
(LSPNAME) is specifed at the beginning of the main programs baseml.c and
codeml.c. The default value is 30. In PHYLIP, exactly 10 characters are used for a
species name. To make this discrepancy less a problem, PAML considers two
consecutive spaces as the end of a species name, so that the species name does not
have to have exactly 30 (or 10) characters. To make this rule work, you should not
have two consecutive spaces within a species name. For example the above data set
can have the following format too.

 4 60
sequence 1 AAGCTTCACCGGCGCAGTCATTCTCATAAT
CGCCCACGGACTTACATCCTCATTACTATT
sequence 2 AAGCTTCACCGGCGCAATTATCCTCATAAT
CGCCCACGGACTTACATCCTCATTATTATT
sequence 3 AAGCTTCACC GGCGCAGTTG TTCTTATAAT
TGCCCACGGACTTACATCATCATTATTATT
sequence 4 AAGCTTCACCGGCGCAACCACCCTCATGAT
TGCCCATGGACTCACATCCTCCCTACTGTT

Another thing you can do is to patch a few spaces after the species name in your
PHYLIP data file, which will then be readable by both PHYLIP and PAML.

In a sequence, three special characters ".", "-", and "?" may be used: a dot means the
same character as in the first sequence, a dash means an alignment gap, and a
question mark means an undetermined site. Sites at which at least one sequence
involves a "-" or "?" are excluded from all sequences before analysis, with the sequence
length adjusted. For codon sequences, the whole codon is removed. Characters T, C,
A, G, U, t, c, a, g, u are recognized as nucleotides (for baseml, basemlg and codonml),
while the standard one-letter codes (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W,
Y, V or their lowercase equivalents) are used for amino acids. Other alphabetic
characters cause errors. Non-alphabetic symbols such as ><!"£$%^0123456789 are
simply ignored and can be freely used as landmarks. Lines do not have to be equally
long and you can put the whole sequence on one line.

Notes may be placed at the end of the sequence file and will be ignored by the
programs.

Option G: This option is for combined analyses of heterogeneous data sets such as
data of multiple genes or data of the three codon positions. The sequences must be

10

concatenated and the option is used to specify which gene or codon position each site
is from.

There are three formats with this option. The first is illustrated by an excerpt of a
sequence file listed below. The example data of Brown et al. (1982) are an 895-bp
segment from the mitochondrial genome, which codes for parts of two proteins (ND4
and ND5) at the two ends and three tRNAs in the middle. Sites in the sequence fall
naturally into 4 classes: the three codon positions and the tRNA coding region. The
first line of the file contains the option character G. The second line begins with a G at
the first column, followed by the number of site classes. The following lines contain
the site marks, one for each site in the sequence (or each codon in the case of
codonml). The site mark specifies which class each site is from. If there are g classes,
the marks should be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces.
The total number of marks must be equal to the total number of sites in each sequence.

 5 895 G
G 4
3
123
123
123
123
123
123
123
1231231231231231231231231231231231231
44
44
44
444444444444444444
123
123
123
12312312312312312312312312312312312312312312312312312312312
Human
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........
Chimpanzee
.........

The second format is useful if the data are concatenated sequences of multiple genes,
shown below for an example data set. This sequence has 1000 nucleotides from 4
genes, obtained from concatenating four genes with 100, 200, 300, and 400 nucleotides
from genes 1, 2, 3, and 4, respectively. The "lengths" for the genes must be on the line
that starts with G, i.e., on the second line of the sequence file. (This requirement allows
the program to determine which of the two formats is being used.) The sum of the
lengths for the genes should be equal to the number of nucleotides, amino acids, or
codons in the combined sequence for baseml (or basemlg), aaml, and codonml,
respectively.

5 1000 G
G 4 100 200 300 400
Sequence 1
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA.......

11

The third format applies to protein-coding DNA sequences only (for baseml). You use
option characters GC on the first line instead of G alone. The program will then treat
the three codon positions differently in the nucleotide-based analysis. It is assumed
that the sequence length is an exact multiple of three.

 5 855 GC
human GTG CTG TCT CCT ...

Tree file and representations of tree topology
A tree structure file is used when runmode = 0 or 1. The file name is specified in the
appropriate control file. Two methods for representing a tree topology are used in
PAML.

Parenthesis notation: The first is the familiar parenthesis representation, that is used
in virtually every phylogenetic software. The species can be represented using either
their names or their indexes corresponding to the order of their occurrences in the
sequence data file. If species names are used, they have to match exactly those in the
sequence data file (including spaces or strange characters). Branch lengths are
allowed. The following is a possible tree structure file for a data set of four species
(human, chimpanzee, gorilla, and orangutan, occurring in this order in the data file).
The first tree is a star tree, while the next four trees are the same.

 4 5 // 4 species, 5 trees
(1,2,3,4) // the star tree
((1,2),3,4) // species 1 and 2 are clustered together
((1,2),3,4) // Commas are needed with more than 9 species
((human,chimpanzee),gorilla,orangutan);
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5);

If the tree has branch lengths, some programs may ask you whether you want to use
those branch lengths as fixed and estimate other parameters in the substitution model
only. You will then have three options: ignore the branch lengths, use them as initial
values, and fix them and estimate other parameters.

Whether you should use rooted or unrooted trees depends on the model, and in
particular on whether a molecular clock is assumed. Without the clock (clock = 0),
unrooted trees should be used, such as ((1,2),3,4) or (1,2,(3,4)). With the clock
assumption, the trees should be rooted and these two trees are different and both are
different from (((1,2),3),4). In PAML, a rooted tree has a bifurcation at the root, while
an unrooted tree has a trifurcation of multifurcation at the root.

Branch labels: Sometimes (such as the local clock models specified by clock = 2 in
baseml and codeml and codon models with different ωs for branches), we need to
label the branches. Branch labels are specified in the same way as branch lengths
except that the symbol preceding the branch label is # or $ rather than : which
indicates a branch length. The branch labels are consecutive integers starting from 0,
which is the default label and does not have to be specified. For example, the
following tree
((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus),
(Ssc_squirrelM, Cja_marmoset));

12

is from the tree file lysozyme.trees, with branch labels for fitting models of
different dN/dS ratios (ω) for branches. The internal branch ancestral to human and
gibbon has the ratio ω1 while all other branches have the background ratio ω0. This
fits the model in table 1C for the small data set of lysozyme genes in Yang (1998). I
have found it convenient to create the tree file with labels and read the tree in using
Rod page’s TreeView to check that the tree is right. However, TreeView recognizes
labels for internal branches (nodes) only and do not allow the user to add labels. If
you don’t specify the labels in the tree structure, the program will ask for input from
the keyboard. For large trees, this may be hard to use. Another program that you can
use to create branch or node labels is Andrew Rambaut’s TreeEdit, available for the
Mac.

If the model requires labeling branches but the tree does not has any branch labels, the
program will ask for input from the keyboard. See the explanations of the variable
model for the program codonml.

Representation of tree topology by branches: A second way of representing the tree
topology used in PAML is by enumerating its branches. This is mainly used in the
result files for outputting the estimated branch lengths. For example, the tree ((12)34)
is specified by its 5 branches:

 5 6, 6 1, 6 2, 5 3, 5 4

The nodes in a tree are marked with consecutive natural numbers, with 1, 2, ..., s
representing the s known sequences, in the same order as in the data. A number larger
than s means an interior node, at which the sequence is unknown. In case some
sequences in the data are ancestral to some others, this method is convenient. To use
this format in the tree structure file, give the number of branches, and then the
branches as specified by the end nodes. For example, the tree in the following
5s.trees file has 4 branches, with taxon 5 to be the common ancestor of taxa 1, 2, 3,
and 4:

5 1
4 5 1 5 2 5 3 5 4

baseml
The default control file for baseml is baseml.ctl, and an example is shown below.
Note that spaces are required on both sides of the equal sign, and blank lines or lines
beginning with "*" are treated as comments. Options not used can be deleted from the
control file.

 seqfile = brown.nuc * sequence data file name
 outfile = mlb * main result file
 treefile = brown.trees * tree structure file name

 noisy = 3 * 0,1,2,3: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI

 model = 4 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV, 7:UNREST
 Mgene = 0 * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html

13

 fix_kappa = 0 * 0: estimate kappa; 1: fix kappa at value below
 kappa = 2.5 * initial or fixed kappa

 fix_alpha = 1 * 0: estimate alpha; 1: fix alpha at value below
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * 1: different alpha's for genes, 0: one alpha
 ncatG = 5 * # of categories in the dG, AdG, or nparK models of rates

 fix_rho = 1 * 0: estimate rho; 1: fix rho at value below
 rho = 0. * initial or fixed rho, 0:no correlation
 nparK = 0 * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK

 clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
 nhomo = 0 * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2
 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states

 Small_Diff = 9e-6
* cleandata = 1 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 1
 method = 0 * 0: simultaneous; 1: one branch at a time

The control variables are described below.

seqfile, outfile, and treefile specifies the names of the sequence data file, main
result file, and the tree structure file, respectively.

noisy controls how much output you want on the screen. If the model being fitted
involves much computation, you can choose a large number for noisy to avoid
loneliness. verbose controls how much output in the result file.

runmode = 0 means evaluation of the tree topologies specified in the tree structure file,
and runmode = 1 or 2 means heuristic tree search by the star-decomposition algorithm.
With runmode = 2, the algorithm starts from the star tree, while if runmode = 1, the
program will read a multifurcating tree from the tree structure file and try to estimate
the best bifurcating tree compatible with it. runmode = 3 means stepwise addition.
runmode = 4 means NNI perturbation with the starting tree obtained by a parsimony
algorithm, while runmode = 5 means NNI perturbation with the starting tree read
from the tree structure file. The tree search options do not work well, and so use
runmode = 0 as much as you can. For relatively small data set, the stepwise addition
algorithm seems usable.

model specifies the model of nucleotide substitution. Models 0, 1, …, 7 represent
models JC69, K80, F81, F84, HKY85, TN93, REV, and UNREST, respectively. Check Yang (1994 JME
39:105-111) for notation. Two more models are implemented recently. model = 8 are special cases
of the REV model, while model = 9 are special cases of the unrestricted model. The
format is shown in the following examples and should be self-explanatory. Basically
you include extra information on the same line that specifies model when model = 8
or 9. The number in the brackets [] are the number of free rate parameters. For
example, this should be 5 for REV and 11 for UNREST. Following that number are
equal number of parenthesis pairs (). The rate parameters in the output file will
follow this order here. The pairs that are not mentioned here will have the rate 1.
When model = 8, you specify TC or CT, but not both. When model = 9, TC and CT are
different. See the following examples and Yang (1994a) for notation.
 model = 8 [2 (CT) (AG)] /* TN93 */

14

 model = 8 [2 (TA AT TG CA CG) (AG)] /* TN93 */
 model = 9 [1 (TC CT AG GA)] /* K80 */
 model = 9 [0] /* JC69 */
 model = 9 [11 (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA)]
/*UNREST*/

Mgene is used in combination with option G in the sequence data file, for combined
analysis of data from multiple genes or the three codon positions. More details are
given later in the Models and Methods section. Choose 0 if option G is not used in the
data file.

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to
be estimated by iteration from the data. If fix_kappa = 1, the value of another
variable, kappa, is the given value, and otherwise the value of kappa is used as the
initial estimate for iteration. The variables fix_kappa and kappa have no effect with
JC69 or F81 which does not involve such a parameter, or with TN93 and REV which
have two and five rate parameters respectively, when all of them are estimated from
the data.

fix_alpha and alpha work in a similar way, where alpha refers to the shape
parameter α of the gamma distribution for variable substitution rates across sites
(Yang 1994c). The model of a single rate for all sites is specified as fix_alpha = 1 and
alpha = 0 (0 means infinity), while the (discrete-) gamma model is specified by a
positive value for alpha, and ncatG is then the number of categories for the discrete-
gamma model (baseml).

fix_rho and rho work in a similar way and concern independence or correlation of
rates at adjacent sites, where ρ (rho) is the correlation parameter of the auto-discrete-
gamma model (Yang 1995). The model of independent rates for sites is specified as
fix_rho = 1 and rho = 0; choosing alpha = 0 further means a constant rate for all
sites. The auto-discrete-gamma model is specified by positive values for both alpha
and rho. The model of a constant rate for sites is a special case of the (discrete) gamma
model with α = ∞ (alpha = 0), and the model of independent rates for sites is a special
case of the auto-discrete-gamma model with ρ = 0 (rho = 0).

nparK specifies nonparametric models for variable and Markov-dependent rates
across sites: nparK = 1 or 2 means several (ncatG) categories of independent rates for
sites, while nparK = 3 or 4 means the rates are Markov-dependent at adjacent sites;
nparK = 1 and 3 have the restriction that each rate category has equal probability
while nparK = 2 and 4 do not have this restriction (Yang, 1995). The variable nparK
takes precedence over alpha or rho.

clock specifies models concerning rate constancy among lineages. clock = 0 means
no clock. clock = 1 means the global clock. clock = 2 implements local clock models
(Yoder and Yang 2000), which assumes that branches in the phylogeny conform with
the clock assumption and has the default rate (r0 = 1) except for several pre-defined
branches which have different rates. Rates for branches are specified using branch
marks in the tree file. If you choose noisy = 9, the program will ask for a reference
(calibration) node and date and calculate dates for other nodes. clock = 3 implements

15

Rambaut (2000)'s TipDate models. Evolution conforms to a global clock but sequences
in the data are determined at different dates. The dates are specified at the end of the
sequence names, based on Andrew's format. This model has one extra parameter (the
mutation rate) than the global clock model (clock = 1).

nhomo is for baseml only, and concerns the frequency parameters in the F81, F84,
HKY85, TN93, or REV models. The option nhomo = 1 fits a homogeneous model, but
estimates the frequency parameters (πT, πC and πA; πG is not a free parameter as the
frequencies sum to 1) by maximum likelihood iteration. Normally (nhomo = 0) these
are estimated by the averages of the observed frequencies. In both cases, you should
count 3 free parameters for the base frequencies. The options nhomo = 3 or 4, in
combination with F84 or HKY85, fit nonhomogeneous models of Yang and Roberts
(1995). Substitutions are assumed to follow the pattern of F84 or HKY85, but with
different frequency parameters assigned for different branches in the tree, to allow for
unequal base frequencies in different sequences. The position of the root then makes a
difference to the likelihood, and rooted trees are used. Because of the parameter
richness, the model may only be used with small data sets when base frequencies are
drastically different in different sequences. Choose fix_kappa = 1, which means one
common κ is assumed for all branches. The option nhomo = 4 assigns one set of
frequency parameters for each node, which are the parameters for the rate matrix
along the branch leading to the node or are the initial distribution if the node is the
root of the tree. In the output, estimates of the frequency parameters are shown in the
order of nodes n + 1, n + 2,, where n is the number of sequences.

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the tree for
the K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).

getSE tells whether we want estimates of the standard errors of estimated parameters.
These are crude estimates, calculated by the curvature method, i.e., by inverting the
matrix of second derivatives of the log-likelihood with respect to parameters. The
second derivatives are calculated by the difference method, and are not always
reliable. Even if this approximation is reliable, tests relying on the SE's should be
taken with caution, as such tests rely on the normal approximation to the maximum
likelihood estimates. The likelihood ratio test should always be preferred. The option
is not available and choose getSE = 0 when tree-search is performed.

RateAncestor = 1 also works with runmode = 0 only. For models of variable rates
across sites, the program will calculate rates for sites along the sequence (output in the
file rates) and performs marginal ancestral reconstruction (output in rst). For models
of one rate for all sites, RateAncestor = 1 does both marginal and joint ancestral
sequence reconstruction. The program lists results site by site. You can also use the
variable verbose to control the amount of output. If you choose verbose = 0, the
program will list the best nucleotide at each node for the variable sites only and
results for constant sites are suppressed. If verbose = 1, the program will list all sites
for the best nucleotide at each node. If verbose = 2, the program also lists the full
posterior probability distribution for each site at each ancestral node (for marginal
reconstruction).

16

For nucleotide based (baseml) analysis of protein coding DNA sequences (option GC
in the sequence data file), I have added the calculation of posterior probabilities of
ancestral amino acids. In this analysis, branch lengths and other parameters are
estimated under a nucleotide substitution model, but the reconstructed nucleotide
triplets are examined to infer the most likely amino acid encoded by the triplet.
Posterior probabilities for stop codons are small and reset to zero to scale the posterior
probabilities for amino acids. To use this option, you need add the control variable
icode in the control file baseml.ctl. This is not listed in the above. The variable icode
can take a value out of 0, 1, ..., 10, corresponding to the 11 genetic codes included in
paml (See the control file codeml.ctl for the definition of different genetic codes). A
nucleotide substitution model that is very close to a codon-substitution model can be
specified as follows. You add the option characters GC at the end of the first line in the
data file and choose model = 4 (HKY85) and Mgene = 4. The model then assumes
different substitution rates, different base frequencies, and different
transition/transversion rate ratio (kappa) for the three codon positions. Ancestral
reconstruction from such a nucleotide substitution should be very similar to codon-
based reconstruction. (Thanks to Belinda Change for many useful suggestions.)

Small_Diff is a small value used in the difference approximation of derivatives.

cleandata = 1 means sites involving ambiguity characters or alignment gaps are
removed from all sequences. This leads to faster calculation. cleaddata = 0 (default)
uses those sites.

method : This variable controls the iteration algorithm for estimating branch lengths
under a model of no clock. method = 0 implements the old algorithm in PAML,
which updates all parameters including branch lengths simultaneously. method = 1
specifies an algorithm newly implemented in PAML, which updates branch lengths
one by one. method = 1 does not work under the clock models (clock = 1, 2, 3).

ndata: specifies the number of separate data sets in the file. This variable is useful for
simulation. You can use evolver to generate 200 replicate data sets, and then set
ndata = 200 to use baseml to analyze them.

Output: The output should be self-explanatory. Descriptive statistics are always listed.
The observed site patterns and their frequencies are listed, together with the
proportions of constant patterns. Nucleotide frequencies for each species (and for each
gene in case of multiple gene data) are counted and listed. lmax = ln(Lmax) is the
upper limit of the log likelihood and may be compared with the likelihood for the best
(or true) tree under the substitution model to test the model's goodness of fit to data
(Goldman, 1993a). You can ignore it if you don’t know what it means.

With getSE = 1, the S.E.s are calculated as the square roots of the large sample
variances and listed exactly below the parameter estimates. Zeros on this line mean
errors, either caused by divergence of the algorithm or zero branch lengths. The S.Es
of the common parameters measure the reliability of the estimates. For example, (κ −
1)/SE(κ), when κ is estimated under K80, can be compared with a normal distribution
to see whether there is real difference between K80 and JC69. The test can be more

17

reliably performed by comparing the log-likelihood values under the two models,
using the likelihood ratio test. It has to be stressed that the S.E.’s of the estimated
branch lengths should not be misinterpreted as an evaluation of the reliability of the
estimated tree topology (e.g., Yang, 1994b, Goldman and Yang, 1994).

If the tree file has more than one tree, the programs baseml and codeml will
calculate the bootstrap proportions using the RELL method (Kishino and Hasegawa
1989), as well as the method of Shimodaira and Hasegawa (1999) with a correction for
multiple comparison. The bootstrap resampling accounts for possible data partitions
(option G in the sequence data file). I did not bother to deal with ties, so if you
include the same tree in the tree file more than once, you need to adjust the
proportions for those trees yourself. The program rell, included in earlier versions,
is now removed.

basemlg
basemlg uses the same control file baseml.ctl, as baseml. Tree-search or the
assumption of a molecular clock are not allowed and so choose runmode = 0 and
clock = 0. Substitution models available for basemlg are JC69, F81, K80, F84 and
HKY85, and a continuous gamma is always assumed for rates at sites. The variables
ncatG, given_rho, rho, nhomo have no effect. The S.E.'s of parameter estimates are
always printed out because they are calculated during the iteration, and so getSE has
no effect.

Because of the intensive computation required by basemlg, the discrete-gamma model
implemented in baseml is recommended for data analysis. If you choose to use
basemlg, you should run baseml first, and then run basemlg. This allows baseml to
collect initial values into a file named in.basemlg, for use by basemlg. Note that
basemlg implements only a subset of models in baseml.

codeml (codonml and aaml)
Since the codon based analysis and the amino acid based analysis use different
models, and some of the control variables have different meanings, it may be a good
idea to use different control files for codon and amino acid sequences. The default
control file for codeml is codeml.ctl, as shown below.

 seqfile = stewart.aa * sequence data file name
 outfile = mlc * main result file name
 treefile = stewart.trees * tree structure file name

 noisy = 9 * 0,1,2,3,9: how much rubbish on the screen
 verbose = 0 * 1: detailed output, 0: concise output
 runmode = 0 * 0: user tree; 1: semi-automatic; 2: automatic
 * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise

 seqtype = 2 * 1:codons; 2:AAs; 3:codons-->AAs
 CodonFreq = 2 * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table
 aaDist = 0 * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a
 aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F)
 * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own

 model = 2
 * models for codons:

18

 * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
 * models for AAs or codon-translated AAs:
 * 0:poisson, 1:proportional,2:Empirical,3:Empirical+F
 * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)

 NSsites = 0 * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
 * 5:gamma;6:2gamma;7:beta;8:beta&w;9:betaγ
 * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
 * 13:3normal>0

 icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
 Mgene = 0 * 0:rates, 1:separate;

 fix_kappa = 0 * 1: kappa fixed, 0: kappa to be estimated
 kappa = 2 * initial or fixed kappa
 fix_omega = 0 * 1: omega or omega_1 fixed, 0: estimate
 omega = .4 * initial or fixed omega, for codons or codon-based AAs

 fix_alpha = 1 * 0: estimate gamma shape parameter; 1: fix it at alpha
 alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
 Malpha = 0 * different alphas for genes
 ncatG = 3 * # of categories in dG of NSsites models

 fix_rho = 1 * 0: estimate rho; 1: fix it at rho
 rho = 0. * initial or fixed rho, 0:no correlation

 clock = 0 * 0:no clock, 1:clock; 2:local clock; 3:TipDate
 getSE = 0 * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 0 * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

 Small_Diff = .5e-6
* cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
* ndata = 10
 method = 0 * 0: simultaneous; 1: one branch at a time

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, Malpha,
fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, cleandata, ndata, and
method are used in the same way as in baseml.ctl and are described in the previous
section. The variable seqtype specifies the type of sequences in the data; seqtype = 1
means codon sequences (the program is then codonml); 2 means amino acid sequences
(the program is then aaml); and 3 means codon sequences which are to be translated
into proteins for analysis.

Codon sequences (seqtype = 1)

CodonFreq specifies the equilibrium codon frequencies in codon substitution model.
These frequencies can be assumed to be equal (1/61 each for the standard genetic
code, CodonFreq = 0), calculated from the average nucleotide frequencies (CodonFreq
= 1), from the average nucleotide frequencies at the three codon positions (CodonFreq
= 2), or used as free parameters (CodonFreq = 3). The number of parameters involved
in those models of codon frequencies is 0, 3, 9, and 60 (under the universal code), for
CodonFreq = 0, 1, 2, and 3 respectively.

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's
matrix is used (= 1) (Yang et al. 1998).

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons. The
program will collect estimates of dS and dN into the files 2ML.dS and 2ML.dN. Since
many users seem interested in looking at dN/dS ratios among lineages, examination of

19

the tree shapes indicated by branch lengths calculated from the two rates may be
interesting although the analysis is ad hoc. If your species names have no more than 10
characters, you can use the output distance matrices as input to Phylip programs such
as neighbor without change. Otherwise you need to edit the files to cut the names
short.

The variable model concerns assumptions about the dN/dS rate ratios (or the ω
parameters) among branches (Yang 1998; Yang and Nielsen 1998). model = 0 means
one dN/dS ratio for all lineages (branches), 1 means one ratio for each branch (the free-
ratio model), and 2 means an arbitrary number of ratios (such as the 2-ratios or 3-
ratios models). When model = 2, you may specify the ω ratios for branches using
branch labels (see the section on tree structure file). This option seems rather easy to
use. Otherwise, the program will ask the user to input a branch mark for the dN/dS
ratio assumed for each branch. This should be an integral number between 0 to k - 1 if
k different dN/dS ratios (ω0 - ωk - 1) are assumed for the branches of the tree. This
process may be frustrating if the tree is not very small. I run the program first to let it
output the tree topology using the branch representation on the screen. I then prepare
the branch labels in a file, say, in. Finally I run the program using redirection so that it
will read the input from the prepared file

 codeml < in

Redirection is not permitted on a MAC, but you can prepare the branch labels in a file
and then copy and paste them into the session running the program. Furthermore,
under this model, the variable fix_omega fixes the lastdN/dS ratio (ωk - 1) at the value of
omega specified in the file. This option can be used to test, for example, whether the
ratio for a specific lineage is significantly different from one. It should, however, be
noted that it is not proper to use the option model = 1 to estimate dN/dS ratios for all
branches to find out which ratios are greater than one, and then to use model = 2 to
test whether that difference is significant. This way the hypothesis is derived from the
data and is tested using the same data. As a result, you tend to get significant results
too often. Check the example data file lysozymeSmall.nuc and the control file
lysozyme.ctl and try to reproduce results published in Yang (1998).

Nssites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen
and Yang 1998; Yang et al. 2000). Nssites = m corresponds to model Mm in Yang et
al. (2000). The variable ncatG is used to specify the number of categories in the ω
distribution under some models. The values of ncatG used to perform our analyses
are 3 for M3 (discrete), 5 for M4 (freq), 10 for the continuous distributions (M5:
gamma, M6: 2gamma, M7: beta, M8:beta&w, M9:beta&gamma, M10: beta&gamma+1,
M11:beta&normal>1, and M12:0&2normal>1, M13:3normal>0). This means M8 will
have 11 site classes (10 from the beta distribution plus 1 additional class). The
posterior probabilities for site classes as well as the expected ω values for sites are
listed in the file rst, which may be useful to pinpoint sites under positive selection, if
they exist. To make it easy to run several Nssites models in one go, I compiled the
executable codemlsites, which asks you how many and which models to run at the
start of the program. The number of categories used will then match those used in

20

Yang et al. (2000). The HIV env data set used in Yang et al. (2000: table 12) is included
in the package. Try

 codemlsites HIVenvSweden.ctl

and duplicate our analysis of the 4 models, M0, 1, 2, 3, by

 4 0 1 2 3

As noted in that paper, some of the models are hard to use, in particular, M12 and
M13. Recommended models are 0 (one-ratio), 1 (neutral), 2 (selection), 3 (discrete), 7
(beta), and 8 (beta&ω). Some of the models like M2 and M8 are noted to be prone to
the problem of multiple local optima. You are advised to run the program at least
twice, once with a starting omega value <1 and a second time with a value > 1, and
use the results corresponding to the highest likelihood.

The continuous neutral and selection models of Nielsen and Yang (1998) are not
implemented in the program.

icode specifies the genetic code. About a dozen genetic code tables are implemented.
These are 0 for the universal code; 1 for the mammalian mitochondrial code; 3 for
mold mt., 4 for invertebrate mt.; 5 for ciliate nuclear code; 6 for echinoderm mt.; 7 for
euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and 10 for blepharisma
nuclear. icode = 0 to 10 correspond to transl_table 1 to 11 in GenBank.

RateAncestor: For codon sequences, ancestral reconstruction is not implemented for
the models of variable dN/dS ratios among sites. The output under codon-based
models usually shows the encoded amino acid for each codon. The output under
"Prob of best character at each node, listed by site" has two posterior probabilities for
each node at each codon (amino acid) site. The first is for the best codon. The second,
in parentheses, is for the most likely amino acid under the codon substitution model.
This is a sum of posterior probabilities across synonymous codons. In theory it is
possible although rare for the most likely amino acid not to match the most likely
codon.

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence
are counted and listed in a genetic code table, together with their sums across species.
Each table contains six or fewer species. For data of multiple genes (option G in the
sequence file), codon frequencies in each gene (summed over species) are also listed.
The nucleotide distributions at the three codon positions are also listed. The method of
Nei and Gojobori (1986) is used to calculate the number of synonymous substitutions
per synonymous site (dS) and the number of nonsynonymous substitutions per
nonsynonymous site (dN) and their ratio (dN/dS). These are used to construct initial
estimates of branch lengths for the likelihood analysis but are not MLEs themselves.
Note that the estimates of these quantities for the a- and b-globin genes shown in
Table 2 of Goldman and Yang (1994), calculated using the MEGA package (Kumar et
al., 1993), are not accurate.

21

Results of ancestral reconstructions (RateAncestor = 1) are collected in the file rst.
Under models of variable dN/dS ratios among sites (NSsites models), the posterior
probabilities for site classes as well as positively selected sites are listed in rst.

Amino acid sequences (seqtype = 2)

model specifies the model of amino acid substitution: 0 for the Poisson model
assuming equal rates for any amino acid substitutions (Bishop and Friday, 1987); 1 for
the proportional model in which the rate of change to an amino acid is proportional to
the frequency of that amino acid. Model = 2 specifies a class of empirical models, and
the empirical amino acid substitution rate matrix is given in the file specified by
aaRatefile. Files included in the package are for the empirical models of Dayhoff et
al. (1978) (dayhoff.dat), Jones et al. 1992 (jones.dat) (see Kishino et al., 1990 for
the construction), and Whelan and Goldman (wag.dat). The file mtmam.dat has a
matrix for mitochondrial proteins estimated by maximum likelihood from a data set of
20 mammals. The mtREV24 model of the MOLPHY package is also provided (the file
mtREV24.dat). These two are similar, and the difference is that the former is derived
from proteins from mammals only while the latter came from more-diverse species
including chicken, fish, frog, and lamprey. Due to differences in the implementation,
you may see small differences in log-likelihood values and branch lengths between
aaml and protml in the MOLPHY package. Such differences are normal and you
should use the same program to compare different trees. Under the mtREV24 model,
the two programs should give almost identical results.

If you want to specify your own substitution rate matrix, have a look at one of those
files, which has notes about the file structure. Other options for amino acid
substitution models should be ignored. To summarize, the variables model, aaDist,
CodonFreq, NSsites, and icode are used for codon sequences (seqtype = 1),
while model, alpha, and aaRatefile are used for amino acid sequences.

model = 7 (AAClasses), which is implemented for both codon and amino acid
sequences, allow you to have several types of amino acid substitutions and let the
program estimate their different rates. The model was implemented in Yang et al.
(1998). The number of substitution types and which pair of amino acid changes
belong which type is specified in a file called OmegaAA.dat. You can use the model
to fit different dN/dS (ω) ratios for “conserved” and “charged” amino acid
substitutions. The folder examples/mtCDNA contain example files for this model;
check the readme file in that folder.

runmode also works in the same way as in baseml.ctl. Specifying runmode = -2 will
forces the program to calculate the ML distances in pairwise comparisons. You can
change the following variables in the control file codeml.ctl: aaRatefile, model,
and alpha.

If you do pairwise ML comparison (runmode = -2) and the data contain ambiguity
characters or alignment gaps, the program will remove all sites which have such
characters from all sequences before the pairwise comparison if cleandata = 1. This
is known as "complete deletion". It will remove alignment gaps and ambiguity

22

characters in each pairwise comparsion ("pairwise" deletion) if cleandata = 0. (In a
likelihood analysis of multiple sequences on a phylogeny, alignment gaps are treated
as ambiguity characters if cleandata = 0, and both alignment gaps and ambiguity
characters are deleted if cleandata = 1. Note that removing alignment gaps and
treating them as ambiguity characters both underestimate sequence divergences.
Ambiguity characters in the data (cleandata = 0) make the likelihood calculation
slower.

Output for amino acid sequences (seqtype = 2): The output file is self-explanatory
and very similar to the result files for the nucleotide- and codon-based analyses. The
empirical models of amino acid substitution (specified by dayhoff.dat, jones.dat,
wag.dat, mtmam.dat, or mtREV24.dat) do not involve any parameters in the
substitution rate matrix. When RateAncestor = 1, results for ancestral
reconstruction are in the file rst. Calculated substitution rates for sites under models
of variable rates for sites are in rates.

evolver
The program evolver simulates nucleotide, codon, and amino acid sequences with
user-specified tree topology and branch lengths. The user specifies the substitution
model and parameters. The program generates multiple data sets in one file in either
PAML (output mc.paml) or PAUP* (output mc.paup) format. If you choose the
PAUP* format, the program will look for files with the following names: paupstart
(which the program copies to the start of the data file), paupblock (which the
program copies to the end of each simulated data set), and paupend (which the
program incorporates at the end of the file. This makes it possible to use PAUP* to
analyze all data sets in one run. Parameters for simulation are specified in three files:
MCbase.dat, MCcodon.dat, and MCaa.dat for simulating nucleotide, codon, and
amino acid sequences, respectively. Run the default options while watching out for
screen output. Then have a look at the appropriate .dat files. As an example, the
MCbase.dat file is reproduced below, with some notes. Note that the first block of
the file has the inputs for evolver, while the rest is notes. The tree length is the
expected number of substitutions per site along all branches in the phylogeny,
calculated as the sum of the branch lengths. This variable was introduced when I was
doing simulations to evaluate the effect of sequence divergence while keeping the
shape of the tree fixed. evolver will scale the tree so that the branch lengths sum up to
the specified tree length. If you use –1 for the tree length, the program will use the
branch lengths given in the tree. In the example, the sum of branch lengths is 1.12,
and so using either 1.12 or –1 for the tree length has the same effect. Also note that the
base frequencies have to be in a fixed order; this is the same for the amino acid and
codon frequencies in MCaa.dat and MCcodon.dat.

0
234567
4 200 2
-1
((1:.1, 2:.2):.12, 3:.3, 4:.4);
6
1 2 3 4 5
.5 4

23

0.25 0.25 0.25 0.25
 T C A G (fixed order)

==
The rest of this data file are notes, ignored by the program evolver.
evolver simulates nucleotide sequences under the REV+Gamma model
and its simpler forms.
The variables in this file are defined below:

==
<format,0=paml,1=paup>
<random number seed>
<# seqs> <# nucleotide sites> <# replicates>
<tree length, use -1 if tree has absolute branch lengths>
<tree with relative branch lengthes>
<model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV>
<kappa or rate parameters in model>
<alpha> <#categories for discrete gamma>
<base frequencies>
==

The simulation options (5, 6, 7) of evolver can be run using a command line format.
So here are all the possible ways of running evolver:
 evolver
 evolver 5 MyMCbaseFile
 evolver 6 MyMCcodonFile
 evolver 7 MyMCaaFile

This evolver program evolved from the old boring program listtree and still has the
options for listing all trees for a specified small number of species, and for generating
random trees from a model of cladogenesis, the birth-death process with species
sampling (Yang and Rannala, 1997). It also has an option for calculating the partition
distance between tree topologies.

Simulation algorithm used in evolver. Evolver simulates data sets by
“evolving” sequences along the tree. First, a sequence is generated for the root using
the equilibrium nucleotide, amino acid, or codon frequencies specified by the model
and/or the data file (MCbase.dat, MCcodon.dat, and MCaa.dat, respectively).
Then each site evolves along the branches of the tree according to the branch lengths,
parameters in the substitution model etc. When the sites in the sequence evolve
according to the same process, the transition probability matrix is calculated only once
for all sites for each branch. For so called site-class models (such as the gamma, and
the NSsites codon models), different sites might have different transition probability
matrices. Given the character at the start of the branch, the character at the end of the
branch is sampled from a multinomial distribution specified by the transition
probabilities from the source character. Check any book on Monte Carlo simulation
for procedures of sampling from a multinomial distribution, and see, e.g., Yang
(1996c; 1997) for more details of simulations on phylogenies. Sequences at the
ancestral nodes are generated during the simulation but not included in the output. If
you want those ancestral sequences, you can search for the following line in the
routine Simulate() in the file evolver.c, and change the value from 0 to 1.

 int verbose=0;

24

Recompile the evolver program. The program will then output the ancestral
sequences in a file named ancestral.seq.

yn00
The program yn00 implements the method of Yang and Nielsen (2000) for estimating
synonymous and nonsynonymous substitution rates between two sequences (dS and
dN). The method of Nei and Gojobori (1986) is also included. The ad hoc method
implemented in the program accounts for the transition/transversion rate bias and
codon usage bias, and is an approximation to the ML method accounting for the
transition/transversion rate ratio and assuming the F3x4 codon frequency model. We
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in
codeml.ctl) as much as possible even for pairwise sequence comparison.

 seqfile = abglobin.nuc * sequence data file name
 outfile = yn * main result file
 verbose = 0 * 1: detailed output (list sequences), 0: concise output

 icode = 0 * 0:universal code; 1:mammalian mt; 2-10:see below
 weighting = 0 * weighting pathways between codons (0/1)?
 commonf3x4 = 0 * use one set of codon freqs for all pairs (0/1)?

The control file yn00.ctl, an example of which is shown above, specifies the
sequence data file name (seqfile), output file name (outfile), and the genetic code
(icode). Sites (codons) involving alignment gaps or ambiguity nucleotides in any
sequence are removed from all sequences. The variable weighting decides whether
equal weighting or unequal weighting will be used when counting differences
between codons. The two approaches will be different for divergent sequences, and
unequal weighting is much slower computationally. The transition/transversion rate
ratio κ is estimated for all sequences in the data file and used in subsequent pairwise
comparisons. I hope to add an option to allow κ to be estimated for each pair.
commonf3x4 specifies whether codon frequencies (based on the F3x4 model of
codonml) should be estimated for each pair or for all sequences in the data. Besides
the main result file, the program also generates three distance matrices: 2YN.dS for
synonymous rates, 2YN.dN for nonsynonymous rates, 2YN.t for the combined codon
rate (t is measured as the number of nucleotide substitutions per codon). It should be
possible to use those files directly with distance programs such as NEIGHBOR in
Felesenstein's PHYLIP package.

mcmctree
The program mcmctree performs Bayesian estimation of phylogenies (Rannala and
Yang, 1996; Yang and Rannala, 1997). The birth-death process with species sampling
is used to specify the prior distribution of phylogenies ("labeled histories", which are
rooted tree topologies with the interior nodes ordered according their associated
speciaiton times), and the posterior probabilities of the labeled histories are compared
to select the maximum posterior probability tree. The program implementing the
method of Rannala and Yang (1996) is not distributed as the algorithm involves
extensive computation. Instead, mcmctree implements a refined method (Yang and

25

Rannala 1997), which uses Markov chain Monte Carlo to select candidate labeled
histories, and Monte Carlo integration to integrate over the distribution of the
ancestral speciation times.

The default control file name is mcmctree.ctl, and a sample copy is shown below.
 seqfile = mtprim9.nuc * sequence data file name
 outfile = mcmctree.out * main result file name
 treefile = 9s.trees * tree structure file name
 LHfile = Lhs * LH file name. read (MCMC=0) or overwritten (MCMC=1)
 MCMC = 0 *0: read LHs from LHfile, 1: use MCMC to generate Lhs
 beta = 0.15 * prob{change labeled history}, used only if MCMC=1
 delta0 = 1 * small number for MCMC, used only if MCMC=1
 delta1 = .2 * smaller number for comparing candidate LHs

 model = 2 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85

 kappa = 2. * given kappa and omega in GY94.
 alpha = 0 * given alpha, 0:infinity
 ncatG = 8 * # of categories in the dG or AdG models of rates

 hierarch = 0 * 1:hierarchical; 0:empirical Bayes analysis
 birth = 6.7 * lineage birth rate
 death = 2.5 * lineage death rate
 sample = .06 * sampling proportion
 mutate = .24 * mutation rate (# of mutations from root to present)

The variables seqfile, outfile, treefile, model, kappa, alpha, and ncatG are
defined as in baseml.ctl for program baseml. The program first collects a set of
candidate labeled histories. If MCMC = 0, the candidate labelled histories are read from
the file LHfile, while if MCMC = 1, they are generated from the Markov chain Monte
Carlo, with the Monte Carlo integration over ancestral speciation times evaluated at a
low accuracy level (controled by delta0). The program then calculates the (relative)
posterior probabilities of these candidate labelled histories, with the Monte Carlo
integration evaluated at a higher accuracy level (controlled by delta1). The Markov
chain moves with probability beta to another labelled history of the same tree
topology, or to a labelled history of a different tree topology through a nearest
neighbor interchange. hierarch controls whether an empirical Bayes analysis or a
hierarchical Bayes analysis is to be performed. birth, death, and sample are
parameters of the prior distribution specified by the birth-death process with species
sampling.

5 Models and Methods

This section provides some background information about the analysis that the
programs in the paml package perform.

Nucleotide substitution models
Markov process models of nucleotide substitution implemented in PAML include
JC69 (Jukes and Cantor, 1969), K80 (Kimura, 1980), F81 (Felsenstein, 1981), F84
(Felsenstein, DNAML program since 1984, PHYLIP Version 2.6), HKY85 (Hasegawa et

26

al., 1985), Tamura and Nei (1993), and REV (Yang, 1994a). The rate matrices of these
models are given below

JC69 : Q =

.111
1.11
11.1
111.

K80 : Q =

.11
.11

11.
11.

κ
κ

κ
κ

F81 : Q =

.
.

.
.

ACT

GCT

GAT

GAC

πππ
πππ
πππ
πππ

F84: Q =

+
+

+
+

.)/1(
)/1(.

.)/1(
)/1(.

ARCT

GRCT

GATY

GACY

ππκππ
ππκππ

ππππκ
ππππκ

with πY = πT + πC and πR = πA + πG.

HKY85: Q =

.
.

.
.

ACT

GCT

GAT

GAC

κπππ
κπππ
ππκπ
ππκπ

TN93: Q =

.
.

.
.

2

2

1

1

ACT

GCT

GAT

GAC

πκππ
πκππ

πππκ
πππκ

REV (GTR): Q =

.
.

.
.

ACT

GCT

GAT

GAC

ec
db

eda
cba

πππ
πππ
πππ
πππ

UNREST Q =

.
.

.
.

GAGCGT

AGACAT

CGCACT

TGTATC

qqq
qqq
qqq
qqq

 =

.
.

.
.

lkj
ihg
fed
cba

The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the
diagonals qii specified by the mathematical requirement that each row of Q sums to
zero. The nucleotides are ordered T, C, A, G. The transition probability matrix over

27

time t is then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the probability that
nucleotide i will become nucleotide j after time t. The sequence data does not permit
separation of rate (Q) and time (t), and so Q specifies relative rates only. In the
programs, Q is multiplied by a constant so that the average rate of substitution is 1
when the process is in equilibrium. This scaling means that time t, or the branch
length in a tree, is measured by the expected number of nucleotide substitutions per
site. Q thus represents the pattern of substitution, while the amount of evolution is
reflected in time or the branch length. The frequency parameters πT, πC, πA, πG (with the
sum to be 1) give the equilibrium distribution of the process for the F81, F84, HKY85,
TN93 and REV models; the equilibrium distribution under the JC69 and K80 models
has equal frequencies (1/4) for the four nucleotides. Parameters a, b, c, d, e in REV, κ in
F84 or HKY85, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the
JC69, K80, F81, F84, HKY85, TN93 and REV models contain 0, 1, 0, 1, 1, 2, 5 rate ratio
parameters respectively, and 0, 0, 3, 3, 3, 3, 3 frequency parameters respectively.
Normally the frequency parameters are estimated using the averages of the observed
frequencies, which should be very close to the true maximum likelihood estimates if
the assumptions of homogeneity and stationarity are acceptable.

Parameter κ in the K80 and HKY85 models is equivalent to α/β in the notation of
Kimura (1980) and Hasegawa et al. (1985). The present notation is more convenient in
a maximum likelihood analysis as the ratio is assumed to be constant for different
branches of the tree. F84 is the model implemented in J. Felsenstein's DNAML
program. The rate matrix for this model was given by Hasegawa and Kishino (1989),
Kishino and Hasegawa (1989), Yang (1994b, 1994c) and Tateno et al. (1994). Thorne et
al. (1992) described the transition probability matrix, and Yang (1994c) and Tateno et
al. (1994) derived formulae for estimating sequence distances under the model. REV is
the general time-reversible process model (also known as GTR; Yang, 1994a; see also
Tavare, 1986; Zharkikh, 1994). It is used in baseml only. It seems sufficiently general
to enable accurate estimation of the substitution pattern from real data. See Gillespie
(1986), Tavare (1986), Rodriguez et al. (1990), Yang (1994a), and Zharkikh (1994) for
reviews of substitution models.

Unfortunately there are a few different definitions of the “transition/transversion rate
ratio”. The worst is the ratio of the observed numbers of transitional and
transversional differences between two sequences, without correcting for multiple
hits, also known as P/Q in Kimura’s (1980) notation (see, e.g., Wakeley 1994). The
measure used in baseml is κ as specified in the above formulas for K80 or HKY95. In
Kimura’s (1980) notation, κ = α/β. A third measure (R) is the ratio averaged over base
frequencies; this is the ratio of the expected number of transitions to the expected
number of transversions if one observes the substitution process over time. In
Kimura’s (2000) notation, R = α/(2β). PHYLIP and PAUP* use R and name it the
“transition/transversion rate ratio”, while referred to κ as the
“transition/transversion rate parameter”. For a general substitution model Q = {qij}, κ
and R are related by the formula

 R = (πTqTC+ πCqCT+πAqAG+πGqGA)/(πTqTA + πTqTG + πCqCA + πCqCG + πAqAT + πAqAC + πGqGT +
πGqGC).

28

Special examples are listed in the following table.

Model Average transition/transversion rate ratio (R)

JC69 ½
K80 κ/2
F81 (πTπC + πAπG)/(πYπR)
F84 [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR)
HKY85 (πTπC + πAπG)κ/(πYπR)
TN93 (πTπCκ1 + πAπGκ2)/(πYπR)
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe)

The case of no transition-transversion bias is represented by κ = 1 and R = ½ under
K80; κ = 1 and R = (πTπC + πAπG)/(πYπR) under HKY85; and κ = 0 and R = (πTπC +
πAπG)/(πYπR) under F84.

Codon substitution models
The model of Goldman and Yang (1994) specifies the probability of substitution
between the sense codons, by using the matrix of amino acid distances of Grantham
(1974). The model does not seem to fit real data well, however, and the user is advised
to use the following simpler version, which is equivalent to use equal distances for
any pair of amino acids. The substitution rate from codon i to codon j is given as

=

,transition ousnonsynonym for,
on,transversi ousnonsynonym for,

,transition synonymous for,
on,transversi synonymous for,

position, onethan more at differ codons two the if ,0

j

j

j

j

ijq

ωκπ
ωπ
κπ
π

The equilibrium frequency of codon j (πj) can be considered a free parameter, but can
also be calculated from the nucleotide frequencies at the three codon positions (control
variable CodonFreq). Under this model, the relationship holds that ω = dN/dS, the
ratio of nonsynonymous/synonymous substitution rates. This model forms the basis
for more sophisticated models implemented in codeml, such as those that allow the ω
ratio to vary among branches in the phylogeny (Yang 1998; Yang and Nielsen 1998)
implemented through the variable model, and those that allow the ω ratio to vary
among sites (among codons or amino acids in the protein), implemented through the
variable Nssites.

Amino acid substitution models
“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its
updated version of Jones et al. (1992) are constructed using the same strategy. The
transition probability matrix over a very short time period such as one PAM, i.e.,

29

P(0.01), is used to approximate the matrix of instantaneous rates (Q). The empirical
matrices of Dayhoff et al. (1978) and Jones et al. (1992) were made to satisfy the
reversibility condition, that is,

 πiqij = πjqji

for any i and j, so that my implementations may be slightly different from that of
Kishino et al. (1990). These models assume a fixed pattern of amino acid substitution.
The package also include an empirical model for globular proteins, the WAG model of
Whelan and Goldman (in press) which is given by the file wag.dat, and two similar
empirical models for mitochondrial proteins. The first of these is given by the file
mtREV24.dat and is the mtREV24 model of Adachi and Hasegawa (1996a, b)
estimated from a diverse range of species including mammals, chicken, frog, fish, and
lamprey. The matrix was estimated by maximum likelihood from real data. The
second is given by the file mtmam.dat and is estimated from 20 mammalian species
using maximum likelihood under the REV model with variable rates among sites
(Yang et al. 1998). You can check those files for more details, or if you want to supply
your own empirical matrix.

"Mechanistic" models of amino acid substitution requires consideration of both the
mutational distance between the amino acids as determined by the locations of their
encoding codons in the genetic code table, and the effects that the potential change
may have on the structure and function of the protein, which may be related to the
physical, chemical and structural differences between amino acids. It seems natural
that such a model should be formulated at the level of codons. The program aaml
implements a few such models, specified by the variable aaDist.

Models of variable substitution rates across site (see Yang 1996b for review) are
implemented for both nucleotide (baseml) and amino acid (aaml) sequences.
Although the option variables such as fix_alpha and alpha are also available for
codon models (codonml) , the gamma model for codons is unrealistic as it applies the
same gamma rate to both synonymous and nonsynonymous substitutions, with their
rate ratio held constant among sites. You are recommended to use the Nssites
models instead, which assume homogeneous synonymous rates but variable
nonsynonymous rates.

Models for combined analyses of heterogeneous data (multiple
genes or codon positions)

For nucleotides (baseml)

Several models are described by Yang (1996a) and implemented in programs baseml
and codeml (codonml and aaml) for analyzing heterogeneous data sets (such as
those of multiple genes or different codon positions). The implementation and
description below refer to the case of multiple genes, but in the case of nucleotide-
based models (baseml), the method can be used to analysed data of different codon
positions. These models account for different aspects of heterogeneity among the

30

different data sets and are useful for testing hypotheses concerning the similarities
and differences in the evolutionary process of different data sets.

The simplest model which assumes complete homogeneity among genes can be fitted
by concatenating different genes into one sequence without using the option G (and
by specifying Mgene = 0 in the control file). The most general model is equavilent to a
separate analysis. This can be done by fitting the same model to each data set (each
gene), but can also be done by specifying Mgene = 1 with the option G in the
combined data file. The sum of the log-likelihood values over different genes is then
the log likelihood of the most general model considered here. Models accounting for
some aspects of the heterogeneity of multiple genes are fitted by specifying Mgene in
combination with the option G in the sequence data file. Mgene = 0 means a model
that asumes different substitution rates but the same pattern of nucleotide substitution
for different genes. Mgene = 2 means different frequency parameters for different
genes but the same rate ratio parameters (κ in the K80, F84, HKY85 models or the rate
parameters in the TN93 and REV models). Mgene = 3 means different rate ratio
parameters and the same frequency parameters. Mgene = 4 means both different rate
ratio parameters and different frequency parameters for different genes. Parameters
and assumptions made in these models are summarized in the following table, with
the HKY85 model used as an example. When substitution rates are assumed to vary
from site to site, the control variable Malpha specifies whether one gamma
distribution will be applied across all sites (Malpha = 0) or a different gamma
distribution is used for each gene (or codon position).

Sequence file Control file Parameters across genes
No G Mgene = 0 everything equal
Option G Mgene = 0 the same k and p, but different cs (proportional branch

lengths)
Option G Mgene = 2 the same k, but different ps and cs
Option G Mgene = 3 the same p, but different ks and cs
Option G Mgene = 4 different k , ps, and cs
Option G Mgene = 1 different k, ps, and different (unproportional) branch

lengths

The different cs for different genes mean that branch lengths estimated for different
genes are proportional. Parameters π represent the equilibrium nucleotide frequencies,
which are estimated using the observed frequencies (nhomo = 0). The
transition/transversion rate ratio κ in HKY85 can be replaced by the two or five rate
ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test
can be used to compare these models, using an approach called the analysis of
deviance, which is very similar to the more familiar analysis of variance.

31

For codons and amino acids (codeml)

For codons (see Yang 1996 JME; Yang and Swanson 2002)

Sequence file Control file Parameters across genes

No G Mgene = 0 everything equal
Option G Mgene = 0 the same (k, w) and p, but different cs

(proportional branch lengths)
Option G Mgene = 2 the same (k, w), but different ps and cs
Option G Mgene = 3 the same p , but different (k, w) and cs
Option G Mgene = 4 different (k, w), ps, and cs
Option G Mgene = 1 separate analysis

For amino acids (see Yang 1996 JME for nucleotides)

Sequence file Control file Parameters across genes

No G Mgene = 0 everything equal
Option G Mgene = 0 the same p, but different cs (proportional

branch lengths)
Option G Mgene = 2 different ps and cs
Option G Mgene = 1 separate analysis

Global and local clocks, and dated sequences
PAML (baseml and codeml) implements three ML models regarding rate constancy
among lineages. clock = 0 means no clock and each branch has an independent rate.
For a binary tree with n species (sequences), this model has (2n – 3) parameters
(branch lengths). clock = 1 means the global clock, and all branches have the same
rate. This model has (n – 1) parameters corresponding to the (n – 1) internal nodes in
the binary tree. So a test of the molecular clock assumption, which compares those
two models, should have d.f. = n – 2.

Between those two extremes are the local clock models, specified by clock = 2 (Yoder
and Yang 2000), which assume that branches in the phylogeny conform with the clock
assumption and has the default rate (r0 = 1) except for several pre-defined branches,
which have different rates. Rates for branches are specified using branch labels in the
tree file, and, if they are not, can be inputted from the keyboard. For example, the tree
(((1,2) #1, 3), 4) specifies rate r1 for the branch ancestral to species 1 and 2 while all
other branches have the default rate r0, which does not have to be specified. The user
need to specify which branch has which rate, and the program estimates the unknown
rates (such as r1 in the above example; r0 = 1 is the default rate). You need to be
careful when specifying rates for branches to make sure that all rates can be estimated
by the model; if you specify too many rate parameters, especially for branches around
the root, it may not be possible to estimate all of them and you will have a problem
with identifiability. The number of parameters for a binary tree in the local clock

32

model is (n – 1) plus the number of extra rate parameters for branches. In the above
tree of 4 species, you have only one extra rate parameter r1, and so the local clock
model has (n – 1) + 1 = n = 4 parameters. The no-clock model has 5 parameters while
the global clock has 3 parameters for that tree.

The option clock = 3 implements Andrew Rambaut's TipDate models (Rambaut 2000;
see also the TipDate program web page at
<http://evolve.zps.ox.ac.uk/software/TipDate/main.html>). For viral sequences
determined in different years, a global molecular clock can be fitted to the data with
the dates of sequence determination used in the likelihood calculation. I have used
Andrew's format, which specifies the dates at the end of the sequence names; see
exampleTipDate.phy, which is the example file in Rambaut's package. This model
has one extra parameter (the mutation rate) than the global clock model (clock = 1).
Thanks to Andrew for help with the implementation.

Reconstruction of ancestral sequences
Nucleotides or amino acids of extinct ancestors can be reconstructed using
information of the present-day sequences. Parsimony reconstructs ancestral character
states by the criterion that the number of changes along the tree at the site is
minimized. Algorithms based on this criterion were developed by Fitch (1971) and
Hartigan (1973), and are implemented in the program pamp. The likelihood approach
uses branch lengths and the substitution pattern for ancestral reconstruction. It was
developed by Yang et al. (1995) and is implemented in baseml for nucleotide
sequences and in aaml (codeml.c with seqtype = 2) for amino acid sequences.
Results are collected in the file rst.

Marginal reconstruction: This approach compares the probabilities of different
character assignments to an interior node at a site and select the character that has the
highest posterior probability (eq. 4 in Yang et al. 1995). The algorithm implemented in
paml works under both the model of a constant rate for all sites and the gamma model
of rates at sites. If verbose = 1, the output will include the full probability distribution
at each node at each site.

Joint reconstruction: This approach considers the assignment of a set of characters to
all interior nodes at a site as a reconstruction and select the reconstruction that has the
highest posterior probability (eq. 2 in Yang et al. 1995). The implementation in paml
now is based on the algorithm of Pupko et al. (2000), which gives the best
reconstruction at each site and its posterior probability. The algorithm works under
the model of a constant rate for sites only and does not work for the gamma model. (It
works under models for multiple genes or data partitions as well. My old algorithm
looks at alternatives (sub-optimal reconstructions) although it is inefficient and may
miss important reconstructions. I have taken that algorithm out, as well as the old
option (RateAncestor = 2) of allowing the user to specify the reconstruction to be
evaluated. If you need those options, let me know.

The marginal and joint approaches use slightly different criteria, and none is better
than the other. They are expected to produce very similar results; that is, the most

http://evolve.zps.ox.ac.uk/software/TipDate/main.html

33

probable joint reconstruction for a site should almost always consist of characters that
are also the best in the marginal reconstruction. Differences may arise when the
competing reconstructions have similar probabilities. Since the marginal
reconstruction works with models of variable rates among sites, it is recommended for
data analysis.

Analysing large data sets and iteration algorithms for parameter
estimation
The maximum likelihood method estimates parameters by maximizing the likelihood
function. This is multi-dimensional optimisation problem that has to be solved
numerically (except for the simplest possible case; see Yang 2000). PAML implements
two iteration algorithms. The first one (method = 0) is a general-purpose
minimization algorithm that deals with upper and lower bounds for parameters but
not general equality or inequality constraints. The algorithm requires first derivatives,
which are calculated using the difference approximation, and accumulates
information about the curvature (second derivatives) during the iteration using the
BFGS updating scheme. At each iteration step, it calculates a search direction, and
does a one-dimensional search along that direction to determine how far to go. At the
new point, the process is repeated, until there is no improvement in the log-likelihood
value, and changes to the parameters are very small. The algorithm updates all
parameters including branch lengths simultaneously.

Another algorithm (method = 1) works if an independent rate is assumed for each
branch (clock = 0) (Yang submitted). This algorithm cycles through two phases.
Phase I estimates branch lengths with substitution parameters (such as the
transition/transversion rate ratio κ and the gamma shape parameter α) fixed. Phase II
estimates substitution parameters using the BFGS algorithm, mentioned above, with
branch lengths fixed. The procedure is repeated until the algorithm converges. In
phase I of the algorithm, branch lengths are optimized one at a time. The advantage
of the algorithm is that when the likelihood is calculated for different values of one
single branch length, as is required when that branch length only is optimised, much
of likelihood calculations on the phylogeny is the same and can be avoided by storing
intermediate results in the computer memory. A cycle is completed after all branch
lengths are optimized. As estimates of branch lengths are correlated, several cycles
are needed to achieve convergence of all branch lengths in the tree, that is, to complete
phase I of the algorithm.

If branch lengths are the only parameters to be estimated, that is, if substitution
parameters are fixed, the second algorithm (method = 1) is much more efficient. Thus
to perform heuristic tree search using stepwise addition, for example, you are advised
to fix substitution parameters (such as κ and α). The second algorithm is also more
efficient if the data contain many sequences so that the tree has many branch lengths.

Tip: To get good initial values for large data sets of protein coding DNA sequences,
you can use baseml. Add the options characters “GC” at the end of the first line in the
sequence data file. Then run the data with baseml. In the result file generated by

34

baseml (say mlb), look for “branch lengths for codon models” and copy the tree with
branch lengths into the tree file. Then run codeml and choose “1: initial values” when
asked about what to do with the branch lengths in the tree.

Tree search algorithms
One heuristic tree search algorithm implemented in baseml, codonml and aaml is a
divisive algorithm, called "star-decomposition" by Adachi and Hasegawa (1996a). The
algorithm starts from either the star tree (runmode = 2) or a multifurcating tree read
from the tree structure file (runmode = 1). The algorithm joins two taxa to achieve the
greatest increase in log-likelihood over the star-like tree. This will reduce the number
of OTUs by one. The process is repeated to reduce the number of OTUs by one at each
stage, until no multifurcation exists in the tree. This algorithm works either with or
without the clock assumption. The stepwise addition algorithm is implemented with
the option runmode = 3. Options runmode = 4 or 5 are used for nearest neighbor
interchanges , with the intial tree determined with stepwise addition under the
parsimony criterion (runmode = 4) or read from the tree structure file (runmode = 5).
The results are self-explanatory.

Besides the fact that ML calculations are slow, my implementations of these
algorithms are crude. If the data set is small (say, with <20 or 30 species), the stepwise
addition algorithm (runmode = 3) appears usable. Choose clock = 0, and method =
1 to use the algorithm that updates one branch at a time, and fix substitution
parameters in the model (such as κ and α) so that only branch lengths are optimized.
Parameters κ and α can be fixed in the tree search using fix_kappa and fix_alpha
in the control files. Other parameters (such as substitution rates for genes or codon
positions or site partitions) cannot be fixed this way; they can instead be specified in
the file of initial values (in.baseml or in.codeml). Suppose you use a candidate
tree to estimate branch lengths and substitution parameters with runmode = 0. You
can then move the substitution parameters (but not the branch lengths) into the file of
initial values. You then change the following variables for tree search: runmode = 3,
method = 1. The program will use the substitution parameters as fixed in the tree
search, and optimizes branch lengths only. It is important that the substitution
parameters are in the right order in the file; so copy-and-paste from paml output is
probably the safest. It is also important that you do not change the parameter
specifications in the control file; the control file should indicate that you want to
estimate the substitution parameters, but when the program detects the file of initial
values, fixed parameter values are used instead.

Simulation
Computer simulation is a widely used approach to evaluating estimation procedures.
In molecular phylogenetics, there are two major methods for simulating sequence
data. The first approach samples data at different sites (nucleotide, amino acid, or
codon sites) from the multinomial distribution. Under most models of sequence

35

evolution, data at different sites are independently and identically distributed. This
approach thus calculates the probability of observing each site pattern, and then
sample from sites according to those site pattern probabilities. The number of
categories in the multinomial distribution, that is, the number of distinct site patterns,
is the number of character states raised to the power of the number of sequences. To
simulate nucleotide sequences on a tree of 5 species, the multinomial will have 45 =
1024 categories, and to simulate a pair of codon sequences under the universal code
(with 61 sense codons), the multinomial will have 612 = 3721 categories. This
approach is faster for simulating data sets on small trees but impractical on large trees
as the number of categories may be too large.

A second approach is to generates an ancestral sequence for the root of the tree, and
then “evolve” the sequence along the tree according to the specified substitution
model and using the specified branch lengths and substitution parameters. The
evolver program implements this approach. The ancestral sequence is generated
according to the equilibrium distribution of the characters, that is, by sampling
characters repeatedly according to the equilibrium distribution. The program then
evolves the sequence along branches of the tree, according to the transition
probabilities calculated for each branch. For site-heterogeneous models, the
substitution pattern may be different from site to site and the different sites may have
different transition probabilities. See, for example, Huelsenbeck (1995) and Yang
(1996c), for more details.

Tips:

1. For analyzing multiple simulated data sets, it is advisable that you copy the tree
topology from the Mcbase.dat or Mcaa.dat file into the tree file for baseml or codeml.
Then when you run baseml or codeml, the program will ask you what to do about the
branch lengths in the tree topology and you choose “using them as initial values”.
This should speed up the iteration since the true parameter values should be good
initial values.

2. A good test of the simulation as well as the analysis program is to use a small tree to
simulate a large data set of very long sequences (say 1 million nucleotides or amino
acids) and then use baseml or codeml to analyse the data to see whether you get
estimates very close to the true values. As ML is consistent, it should return the
correct values with infinitely long sequences.

3. Programs baseml and codeml output one line of results for each data set in a file
named rst1. The output typically includes the log likelihood, the estimated
substitution parameters but not branch lengths. If you can modify the source codes,
you can go into baseml.c or codeml.c and search for frst1, and add or remove output.
However, this may require familiarity with the program, especially about how the
variables are arranged during the iteration.

36

6 Technical Notes

This section contains some technical notes for running PAML programs. Also see the
FAQs.

The rub file recording the progress of iteration
If you use a large value for the variable noisy (say >2), the programs baseml and
codeml will log output to the screen, indicating the progress of the iteration process,
i.e., the minimization of the negative log-likelihood. They will also print in the rub
file, the size (norm) of the gradient or search direction (h), the negative log likelihood,
and the current values of parameters for each round of iteration. A healthy iteration is
indicated by the decrease of both h and the negative log likelihood, and h is
particularly sensitive. If you run a complicated model hard to converge or analyzing a
large data set with hundreds or thousands of sequences, you may switch on the
output. You can check this file to see whether the algorithm has converged. A typical
symptom of failure of the algorithm is that estimates of parameters are at the preset
boundaries, with values like 2.00000, 5.00000. When method = 1, the output in the
rub file lists the log likelihood and parameter estimates only.

How to specify initial values
You may change values of parameters in the control file such as kappa, alpha, omega,
etc. to start the iteration from different initial values. Initial values for the second and
later trees are determined by the program, and so you do not have much control in
this way.

You can collect initial values into a file called in.baseml if you are running baseml or
in.codeml if you are running codeml. When this file exists, the program will read
initial values from it. This may be useful if the iteration is somehow aborted, and then
you can collect current values of parameters from the file rub into this file of initial
values, so that the new iteration can have a better start and may converge faster. The
file of initial values may also be useful if you experience problems with convergence.
If you have already obtained parameter estimates before and do not want the program
to re-estimate them and only want to do some analysis base on those estimates such as
reconstructing ancestral sequences, insert -1 before the initial values.

The rub file records the iteration process and has one line for each round of iteration.
Each line lists the current parameter values after the symbol x; you can copy those
numbers into the file of initial values, and if you like, change one or a few of the
parameter values too.

Fine-tuning the iteration algorithm
The iteration algorithm uses the difference approximation to calculate derivatives.
This method changes the variable (x) slightly, say by a small number e, and see how

37

the function value changes. One such formula is df/dx = [f(x + e) − f(x)]/e. The small
number e should be small to allow accurate approximation but should not be too small
to avoid rounding errors. You can change this value by adding a line in the control
files baseml.ctl or codeml.ctl

Small_Diff = 1e-6

The iteration is rather sensitive to the value of this variable, and reasonable values are
between 1e-5 and 1e-7. This variable also affects the calculation of the SE's for
parameters, which are much more difficult to approximate than the first derivatives. If
the calculated SE's are sensitive to slight change in this variable, they are not reliable.

If you compile the source codes, you can also change the lower and upper bounds for
parameters. I have not put these variables into the control files (See below).

Adjustable variables in the source codes
This section is relevant only if you compile the source codes yourself. The maximum
values of certain variables are listed as constants in uppercase at the beginning of the
main programs (baseml.c, basemlg.c, codeml.c). These values can be raised
without increasing the memory requirement by too much.

 NS: maximum number of sequences (species)
 LSPNAME: maximum number of characters in a species name
 NGENE: maximum number of "genes" in data of multiple genes (option G)
 NCATG: maximum number of rate categories in the (auto-) discrete-gamma model
(baseml.c, codeml.c)

You can change the value of LSPNAME. Other variables that may be changed include
the bounds for parameters, specified at the beginning of the function testx or
SetxBound in the main programs (baseml.c and codeml.c). For example, these
variables are defined in the function SetxBound in codeml.c:

 double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999};
 double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99};

The pairs of variables specify lower and upper bounds for variables (tb for branch
lengths, rgeneb for relative rates of genes used in multiple gene analysis, alphab for
the gamma shape parameter, rhob for the correlation parameter in the auto-discrete-
gamma model, and omegab for the dN/dS ratio in codon based analysis.

PowerMAC memory allocation problem
When your data set is large, you may see a message like "oom ", which stands for "out
of memory". If you think your data set should be manageable by the
program/computer, you can change the memory that is allowed by the operating
system for the program to use. If you select the file name and choose "File-Get
information", you should see a pop up window. You can increase numbers in this
window.

38

MS Windows version window auto-close
Run the Windows version from a DOS/Windows command box by typing the
program names such as baseml. Do not run the programs by double clicking on the
file names from Windows 95/98/2000/NT Explorer. Otherwise, the window will
close automatically when the programs finish or abort and you won't have the chance
to see any error messages.

7 Acknowledgments

I thank Nick Goldman, Adrian Friday, and Sudhir Kumar for many useful comments
on different versions of the program package. I thank Tianlin Wang for the eigen
routine used in the package. I also thank a number of users for reporting bugs and/or
suggesting changes, especially Liz Bailes, Thomas Buckley, Belinda Chang, Adrian
Friday, Nicolas Galtier, Nick Goldman, John Heulsenbeck, Sudhir Kumar, Robert D.
Reed, Fransisco Rodriguez-Trelles, John Heulsenbeck, John Mercer, and Xuhua Xia.

8 References

Adachi, J., and M. Hasegawa. 1996a. MOLPHY Version 2.3: Programs for molecular phylogenetics
based on maximum likelihood. Computer science monographs, 28:1-150. Institute of Statistical
Mathematics, Tokyo.

Adachi, J., and M. Hasegawa. 1996b. Model of amino acid substitution in proteins encoded by
mitochondrial DNA. Journal of Molecular Evolution 42:459-468.

Brown, W. M., E. M. Prager, A. Wang, and A. C. Wilson. 1982. Mitochondrial DNA sequences
of primates, tempo and mode of evolution. Journal of Molecular Evolution 18:225-239.

Dayhoff, M. O., R. M. Schwartz, and B. C. Orcutt. 1978. A model of evolutionary change in
proteins. In Atlas of Protein Sequence and Structure, Vol 5, Suppl. 3 (ed M. O. Dayhoff),
National Biomedical Research Foundation, Washington D.C., pp. 345-352.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution 17:368-376.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap.
Evolution 39:783-791.

Felsenstein, J. 1993. Phylogenetic Inference Package (PHYLIP), Version 3.5. University of
Washington, Seattle.

Goldman, N. 1993a. Statistical tests of models of DNA substitution. Journal of Molecular
Evolution 36:182-198.

Goldman, N. 1993b. Simple diagnostic statistical tests of models for DNA substitution. Journal of
Molecular Evolution 37:650-661.

Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-
coding DNA sequences. Molecular Biology and Evolution 11:725-736.

Grantham, R. 1974. Amino acid difference formula to help explain protein evolution. Science
185:862-864.

Hartigan, J. A. 1973. Minimum evolution fits to a given tree. Biometrics 29: 53-65.

39

Hasegawa, M., and H. Kishino. 1989. Confidence limits on the maximum likelihood estimation
of the hominoid tree from mitochondrial DNA sequences. Evolution 43:672-677.

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the human-ape splitting by a molecular
clock of mitochondrial DNA. Journal of Molecular Evolution 22:160-174.

Hayasaka, K., T. Gojobori, and S. Horai. 1988. Molecular phylogeny and evolution of primate
mitochondrial DNA. Molecular Biology and Evolution 5:626-644.

Huelsenbeck, J. P. 1995. The performance of phylogenetic methods in simulation. Systematic
Biology 44:17-48.

Jones, D.T., W. R. Taylor, and J. M. Thornton. 1992. The rapid generation of mutation data
matrices from protein sequences. Computer Application in Biosciences 8:275-282.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions
through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-
120.

Kishino, H., and M. Hasegawa. 1989. Evaluation of maximum likelihood estimate of the
evolutionary tree topologies from DNA sequence data, and the branching order in
Hominoidea. Journal of Molecular Evolution 29:170-179.

Kishino, H., T. Miyata, and M. Hasegawa. 1990. Maximum likelihood inference of protein
phylogeny and the origin of chloroplasts. Journal of Molecular Evolution 31:151-160.

Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis. The
Pennsylvania State University, University Park, PA 16802.

Messier W. and C.-B. Stewart. 1997. Episodic adaptive evolution of primate lysozymes. Nature
385:151-154.

Nei, M., and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and
nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418-426.

Nielsen, R., and Z. Yang. 1998. Likelihood models for detecting positively selected amino acid
sites and applications to the HIV-1 envelope gene. Genetics 148:929-936.

Pupko, T., I. Pe, et al. 2000. A fast algorithm for joint reconstruction of ancestral amino acid
sequences. Molecular Biology and Evolution 17: 890-896.

Rambaut, A. (2000) Estimating the rate of molecular evolution: incorporating non-
comptemporaneous sequences into maximum likelihood phylogenetics. Bioinformatics
16:395-399.

Rannala, B. and Z. Yang. 1996. Probability distributions of molecular evolutionary trees: a new
method of phylogenetic inference. Journal of Molecular Evolution 43:304-311.

Rodriguez, F., J. F. Oliver, A. Marin, and J. R. Medina. 1990. The general stochastic model of
nucleotide substituions. Journal of Theoretical Biology 142:485-501.

Stewart, C.-B., J. W. Schilling, and A. C. Wilson. 1987. Adaptive evolution in the stomach
lysozymes of foregut fermenters. Nature 330:401-404.

Swanson, W. J., Z. Yang, M. F. Wolfner and C. F. Aquadro. 2001. Positive Darwinian selection
in the evolution of mammalian female reproductive proteins. Proceedings of the National
Academy of Sciences of U.S.A. 98:2509-2514.

Swofford, D. L. 1993. Phylogenetic Analysis Using Parsimony (PAUP), Version 3.2. University of
Illinois, Champaign.

Swofford, D. L., G. J. Olsen, P. J. Waddel, and D. M. Hillis. 1996. Phylogeny Inference. Pp. 411-
501 in D. M. Hillis, C. Moritz, and B. K. Mable eds. Molecular Systematics, 2nd ed. Sinauer
Associates, Sunderland, Massachusetts.

Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the
control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and
Evolution 10:512-526.

Tavare, S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences.
In Lectures in Mathematics in the Life Sciences, Vol. 17, pp. 57-86.

40

Thorne, J. L., H. Kishino, and J. Felsenstein. 1991. An evolutionary model for maximum
likelihood alignment of DNA sequences. Journal of Molecular Evolution 33:114-124. (Erratum:
Journal of Molecular Evolution 34:91 [1992].)

Thorne, J. L., H. Kishino, and J. Felsenstein. 1992. Inching toward reliability: An improved
likelihood model of sequence evolution. Journal of Molecular Evolution 34:3-16.

Wakeley, J. 1993. Substitution rate variation among sites in hypervariable region 1 of human
mitochondrial DNA. Journal of Molecular Evolution 37:613-623.

Wakeley, J. 1996. The excess of transitions among nucleotide substitutions: new methods of
estimating transition bias underscore its significance. Trends in Ecology and Evolution11:158-
163.

Whelan, S. and N. Goldman, in press. A general empirical model of protein evolution derived
from multiple protein families using a maximum likelihood approach. Molecular Biology and
Evolution

Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Molecular Biology and Evolution 10:1396-1401.

Yang, Z. 1994a. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution
39:105-111.

Yang, Z. 1994b. Statistical properties of the maximum likelihood method of phylogenetic
estimation and comparison with distance matrix methods. Systematic Biology 43:329-342.

Yang, Z. 1994c. Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics
139:993-1005.

Yang, Z. 1996a. Maximum likelihood models for combined analyses of multiple sequence data.
Journal of Molecular Evolution 42:587-596.

Yang, Z. 1996b. Among-site rate variation and its impact on phylogenetic analyses. Trends in
Ecology and Evolution 11:367-372.

Yang, Z. 1996c. Phylogenetic analysis using parsimony and likelihood methods. Journal of
Molecular Evolution 42:294-307.

Yang, Z. 1997. How often do wrong models produce better phylogenies? Molecular Biology and
Evolution 14:105-108.

Yang, Z. 1998. Likelihood ratio tests for detecting positive selection and application to primate
lysozyme evolution. Molecular Biology and Evolution 15:568-573

Yang, Z. 2000. Complexity of the simplest phylogenetic estimation problem. Proceedings of the
Royal Society B: Biological Sciences 267:109-116.

Yang, Z. 2000. Maximum likelihood estimation on large phylogenies and analysis of adaptive
evolution in human influenza virus A. Journal of Molecular Evolution 51: 423-432.

Yang, Z. 2001. Adaptive molecular evolution, Chapter 12 (pp. 327-350) in Handbook of statistical
genetics, eds. D. Balding, M. Bishop, and C. Cannings. Wiley, New York.

Yang, Z., and B. Bielawski. 2000. Statistical methods for detecting molecular adaptation. TREE
15:496-503.

Yang, Z., and S. Kumar. 1996. New parsimony-based methods for estimating the pattern of
nucleotide substitution and the variation of substitution rates among sites and comparison
with likelihood methods. Molecular Biology and Evolution 13:650-659.

Yang, Z., and R. Nielsen. 1998. Synonymous and nonsynonymous rate variation in nuclear
genes of mammals. Journal of Molecular Evolution 46:409-418.

Yang, Z., and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: Markov
chain Monte Carlo methods. Molecular Biology and Evolution 14:717-724.

Yang, Z., and D. Roberts. 1995. On the use of nucleic acid sequences to infer early branchings in
the tree of life. Molecular Biology and Evolution 12:451-458.

41

Yang, Z., and W. J. Swanson. 2002. Codon-substitution models to detect adaptive evolution that
account for heterogeneous selective pressures among site classes. Mol. Biol. Evol. 19:49-57.

Yang, Z., and T. Wang. 1995. Mixed model analysis of DNA sequence evolution. Biometrics
51:552-561.

Yang, Z., and A. D. Yoder. 1999. Estimation of the transition/transversion rate bias and species
sampling. Journal of Molecular Evolution 48:274-283.

Yang, Z., N. Goldman, and A. E. Friday. 1994. Comparison of models for nucleotide
substitution used in maximum likelihood phylogenetic estimation. Molecular Biology and
Evolution 11:316-324.

Yang, Z., N. Goldman, and A. E. Friday. 1995. Maximum likelihood trees from DNA sequences:
a peculiar statistical estimation problem. Systematic Biology 44:384-399.

Yang, Z., S. Kumar, and M. Nei. 1995. A new method of inference of ancestral nucleotide and
amino acid sequences. Genetics141:1641-1650.

Yang, Z. and R. Nielsen. 2000. Estimating synonymous and nonsynonymous substitution rates
under realistic evolutionary models. Molecular Biology and Evolution 17: 32-43.

Yang, Z., N. Nielsen, and M. Hasegawa. 1998. Models of amino acid substitution and
applications to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-
1611.

Yang, Z., N. Nielsen, N. Goldman, and A.-M. Pedersen. 2000. Codon-substitution models for
heterogeneous selection pressure at amino acid sites. Genetics 155:431-449.

Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular
clocks. Molecular Biology and Evolution 17: 1081-1090.

Zharkikh, A. 1994. Estimation of evolutionary distances between nucleotide sequences. Journal
of Molecular Evolution 39:315-329.

	0 Recent changes and bug fixes
	1 Introduction
	2 Getting started
	Windows 95/98NT/2000/XP and UNIX (including Mac OS X)
	MACs

	3 Files in the Package
	
	Which files are needed?

	4 Using Programs in the Package
	Sequence data format
	Tree file and representations of tree topology
	baseml
	basemlg
	codeml (codonml and aaml)
	Codon sequences (seqtype = 1)
	Amino acid sequences (seqtype = 2)

	evolver
	yn00
	mcmctree

	5 Models and Methods
	Nucleotide substitution models
	Codon substitution models
	Amino acid substitution models
	Models for combined analyses of heterogeneous data (multiple genes or codon positions)
	For nucleotides (baseml)
	For codons and amino acids (codeml)

	Global and local clocks, and dated sequences
	Reconstruction of ancestral sequences
	Analysing large data sets and iteration algorithms for parameter estimation
	Tree search algorithms
	Simulation

	6 Technical Notes
	The rub file recording the progress of iteration
	How to specify initial values
	Fine-tuning the iteration algorithm
	Adjustable variables in the source codes
	PowerMAC memory allocation problem
	MS Windows version window auto-close

	7 Acknowledgments
	8 References

