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0  Recent changes and bug fixes 

See the file pamlHistory.txt for recent changes and bug fixes. 

The examples/ folder in the package contain example data sets and results.  Not all of 
them are described in this documentation.  See the readme files in those folders. 

1  Introduction 

PAML is a package of programs for phylogenetic analyses of DNA or protein 
sequences using maximum likelihood (ML). The PAML web page 
(http://abacus.gene.ucl.ac.uk/software/paml.html) explains what the programs can 
and cannot do, how to download and compile the programs, and how to report bugs. 
Those will not be duplicated in this documentation.  There is now also an FAQ page at 
http://abacus.gene.ucl.ac.uk/software/pamlFAQs.html.   

The program baseml is for analyzing nucleotide sequences. The program codeml is 
formed by merging two old programs: codonml, which implements the codon 
substitution model of Goldman and Yang (1994) for protein-coding DNA sequences, 
and aaml, which implements models for amino acid sequences. These two are now 
distinguished by a variable named seqtype in the control file codeml.ctl, that is, 1 for 
codon sequences and 2 for amino acid sequences.  In this document I use codonml and 
aaml to mean codeml with seqtype = 1 and 2, respectively. The programs baseml, 
codonml, and aaml use similar algorithms to fit models, the difference being that the 
unit of evolution in the substitution model, referred to as a "site" in the sequence, is a 
nucleotide, a codon, or an amino acid for the three programs, respectively. Markov 
process models are used to describe substitutions between nucleotides, codons or 
amino acids, with substitution rates assumed to be either constant or variable among 
sites. A discrete-gamma model (Yang, 1994c) is used in baseml, codonml and aaml to 
accommodate rate variation among sites, by which rates for sites come from several 
(say, four or eight) categories used to approximate the continuous gamma 
distribution. When rates are variable at sites, the auto-discrete-gamma model (Yang, 
1995) accounts for correlation of rates between adjacent sites.  

The program basemlg implements the continuous gamma model of Yang (1993). It is 
slow and unfeasible for data of >6 or 7 species. The discrete-gamma model in baseml is 
recommended.  

General assumptions of the models (programs) are  

• Substitutions occur independently in different lineages; 
• Substitutions occur independently among sites (except for the auto-discrete-

gamma model which account for correlated substitution rates at neighboring 
sites); 

http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/pamlFAQs.html
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• The process of substitution is described by a time-homogeneous Markov 
process. Further restrictions may be placed on the structure of the rate matrix of 
the process and lead to different substitution models; 

The process of substitution is stationary. In other words, the frequencies of 
nucleotides (baseml), codons (codonml), or amino acids (aaml) have remained constant 
over the time period covered by the data. 

The existence of a molecular clock (rate constancy among lineages) is not necessary 
but can be imposed. Variation (and dependence) of rates at sites is allowed by the 
discrete-gamma (or auto-discrete-gamma) models implemented in baseml, codonml 
and aaml.  

The sequences must be aligned. If there are alignment gaps, they will either be 
removed from all sequences before analysis, with appropriate adjustment to the 
sequence length (if cleandata = 1), or treated as ambiguity characters (if cleandata 
= 0).  

Other small programs in the package include evolver for simulating sequence data 
sets, pamp for parsimony-based analysis (Yang and Kumar 1996), and yn00 for 
estimating synonymous and nonsynonymous substitution rates in pairwise 
comparisons using the method of Yang and Nielsen (2000).   

This document is now mainly an explanation of the control variables in the control 
files for individual programs.  Topics that seem too complicated to explain there are 
dealt with in a section in the Chapter ”Models and Methods”. 

2  Getting started 

Windows 95/98NT/2000/XP and UNIX (including Mac OS X) 
In the good old days, we type commands on a command line.  Nowadays most people 
know dragging and double-clicking or scrolling only.  PAML programs do not have a 
graphics or menu based interface, and so you have to know some basic techniques of 
the good old days.  Here is the basics for getting you started. 

(1) download and unpack the archive into a folder, say /paml/ (or ~/paml/ on 
UNIX).  You should remember the name of the folder.   

(2) Start a command box.  You do this by choosing "Start - Programs" and look for 
a command called "MS-DOS prompt" or "Command Prompt".  It is usually in 
the group “Accessories”.   On UNIX, you will be in a shell window as soon as 
you log on by telnet.   

(3) Change directory to the paml folder.  For example you type one of the 
following. 
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cd paml   
cd ~/paml 
cd \paml 

(4) Run a program.  Next you type a command, for example, codeml, and hit the 
“Enter” key. 

                    codeml 

This makes codeml to read the default control file codeml.ctl and do the 
analysis according to it.  Now you can print out a copy of codeml.ctl, and open 
your favouriate text editor to view the relevant sequence data and tree files.   

Next you can prepare your own sequence data files and tree files.  PAML data files are 
plain text files.  If you use MS Word to prepare them, make sure you same them as 
“Text with line breaks” or “Text without line breaks”.  Most likely only one of those 
two formats works. 

A few commonly used DOS and UNIX commands 

DOS/Window
s 

UNIX  Function 

cd, chdir cd, chdir, 
pwd 

Sets and displays current directory (folder) 

copy cp, cat Copies files 
del rm Deletes files 
dir ls Lists files  
exit exit Exits from the command processor 
find  fgrep Searches for a string in files 
help man Gets help 
md mkdir Makes a new directory 
more more, less Displays file contents by screenfuls 
path set PATH Sets search path for commands 
print  lpr Prints files 
rd, rmdir rmdir, rm -r  Removes directories 
ren mv Renames a file 
time, date date Displays or sets time and date 
type cat Displays the contents of a file 
xcopy cp Copies files and subdirectories 
ftp ftp Starts an ftp session 
telnet telnet Starts a telnet session 
   Ctrl-Z, 

followed by 
bg 

Puts a foreground job into the background 

   fg Brings a job to the foreground 
   nice,  renice Be nice to others by running your jobs at a 

lower priority 
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MACs 
You double-click on the executable such as codeml.  The compiled executables should 
ask you for the name of the control file.  The default name is codeml.ctl.  My 
experience of MACs was several years old and was not a very good one. 

3  Files in the Package 

The following files are included in the package:  

Source codes:  

baseml.c: various models for nucleotide sequences 
codeml.c: models for codon (seqtype = 1) and amino acid (seqtype = 2) 
sequences 
pamp.c: parsimony analyses of nucleotide or amino acid sequences 
mcmctree.c: Markov chain Monte Carlo algorithm for Bayes estimation of 
phylogenies 
evolver.c:  simulation of sequence data and comparison of trees 
basemlg.c: Nucleotide-based model with (continuous) gamma rates among 
sites 
yn00.c: Estimation of dN and dS by the method of Yang and Nielsen (2000) 
treesub.c: a few functions 
treespace.c: a few more functions 
tools.c: my toolkit 
tools.h: header file 
eigen.c: routines for calculating eigen values and vectors 

Compiling commands 

Makefile: make file 
paml.cc: batch file for compiling PAML using the cc compiler 
paml.gcc: batch file for compiling PAML using the GNU gcc compiler 
paml.acc: batch file for compilation PAML using the SUN acc compiler 

Control files:  

baseml.ctl: control file for running baseml and basemlg; 
codeml.ctl: control file for codeml (i.e., codonml and aaml) 
pamp.ctl: control file for pamp 
yn00.ctl: control file yn00 
mcmctree.ctl: control file for mcmctree 

Data files for codeml (see the files for details):  

grantham.dat: amino acid distance matrix (Grantham 1974) 
miyata.dat: amino acid distance matrix (Miyata et al. 1980) 
dayhoff.dat: Empirical amino acid substitution matrix of Dayhoff et al. (1978) 
jones.dat: Empirical amino acid substitution matrix of Jones et al. (1992) 



7 

wag.dat: Empirical amino acid substitution matrix of Whelan and Goldman (in 
press) 
mtREV24.dat: Empirical amino acid substitution matrix of Adachi and 
Hasegawa (1996b) 
mtmam.dat: Empirical amino acid substitution matrix for mitochondrial 
proteins of mammals 

Data files for evolver (see those small files for details):  

MCbase.dat: data file for simulating nucleotide sequences 
MCcodon.dat: data file for simulating codon sequences 
MCaa.dat: data file for simulating amino acid sequences 

Example tree files:  

4s.trees: tree structure file for 4-sequence data 
5s.trees: tree structure file for 5-sequence data 

Documentations:  

paml.readme: readme file 
paml.html: paml web page, serving also as part of the manual (html file) 
pamlDOC.pdf: this document 

Example data sets:  

Several example data sets are included. They were used in our papers to test new 
methods, and are included in the package for error-checking.  

brown.nuc: the 895-bp mtDNA data of Brown et al. (1982), used in Yang et al. 
(1994) and Yang (1994c) to test models of variable rates among sites. 

mtprim9.nuc: mitochondrial segment consisting 888 aligned sites from 9 
primate species (Hayasaka et al. 1988), used by Yang (1994c) to test the 
discrete-gamma model and Yang (1995) to test the auto-discrete-gamma 
models.  

abglobin.nuc: the concatenated alpha and beta globin genes, example data for 
condonml  

exampleTipDate.phy (phylip format), exampleTipDate.trees: data set of 
17 dengo viral strains sequenced at different dates from Andrew Rambaut’s 
TipDate program.  This is used for testing the TipDate models of Rambaut 
(2000).  Run baseml by specifying clock = 3.  The results are included in 
the file exampleTipDate.rst. 

HIVenvSweden.paup (paup* format), HIVenvSweden.trees, 
HIVenvSweden.ctl: 13 HIV env genes used by Yang et al. (2000) in 
developing models of variable selective pressures among sites (the Nssites 
models).  (Use command: codemlsites HIVenvSweden.ctl) 

hummt25.nuc: 25 human D-loop sequences used in Yang and Kumar (1995).  
Run baseml by specifying fix_alpha = 0, or run pamp. 

lysozymeSmall.nuc, lysozymeSmall.trees, lysozyme.ctl: primate lysozyme 
genes of Messier and Stewart 1997, used by Yang (1998) in developing tests 
of positive selection along lineages. This is the "small data set" analyzed in 
that paper.  See the control file lysozyme.ctl for details for specifying the 
different models.  Run the analysis by         codeml lysozyme.ctl  
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stewart.aa, stewart.trees: lysozyme sequences of six mammals (Stewart et 
al. 1987), used by Yang et al. (1995) to test methods for reconstructing 
ancestral amino acid sequences.  

abglobin.aa: the concatenated alpha- and beta-globins, translated from 
abglobin.nuc  

 

Which files are needed? 

You may copy the executables to a directory containing your data files. Please note 
that the program codeml may need some of the data files in the package such as 
grantham.dat, dayhoff.dat, jones.dat, wag.dat, mtREV24.dat, or mtmam.dat. 
You should probably copy these files together. Other programs do not need such data 
files apart from the sequence and tree files you specify in the control file.  

Note also that the programs produce result files. Some other files with names rub, 
lnf, rst, or rates may also be created. You should not use these names for your files.  

4  Using Programs in the Package 

Sequence data format 
Have a look at the example data files in the package (*.nuc, *.aa, and *.paup).  As long 
as you get your data file into one of the formats, PAML programs should be able to 
read it.  PAML now has limited support for the NEXUS file format used by PAUP and 
MacClade.  Only the sequence data or trees are read, and command blocks are all 
ignored.  PAML does not deal with comment blocks in the sequence data block, so try 
to avoid them. 

Below is an example of the PHYLIP format (Felsenstein, 1993).  The first line contains 
the number of species and the sequence length (possibly followed by option 
characters). With codonml (codeml with seqtype = 1), the sequence length in the 
sequence file refers to the number of nucleotides rather than the number of codons. 
The only options allowed in the sequence file are I, S, C and G. The sequences may be 
in either interleaved format (option I, example data file abglobin.nuc), or sequential 
format (option S, example data file brown.nuc). The default option is S. (Option G is 
used for combined analysis of multiple gene data and is explained below.) The 
following is an example data set in the sequential format. It has 4 sequences each of 60 
nucleotides.  

   4 60 
sequence 1 
AAGCTTCACCGGCGCAGTCATTCTCATAAT 
CGCCCACGGACTTACATCCTCATTACTATT 
sequence 2 
AAGCTTCACCGGCGCAATTATCCTCATAAT 
CGCCCACGGACTTACATCCTCATTATTATT 
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sequence 3 
AAGCTTCACCGGCGCAGTTGTTCTTATAAT 
TGCCCACGGACTTACATCATCATTATTATT 
sequence 4 
AAGCTTCACCGGCGCAACCACCCTCATGAT 
TGCCCATGGACTCACATCCTCCCTACTGTT 

 

Species names. Do not use special symbols like , : # ( ) in a species name as they may 
confuse the programs. The maximum number of characters in a species name 
(LSPNAME) is specifed at the beginning of the main programs baseml.c and 
codeml.c. The default value is 30. In PHYLIP, exactly 10 characters are used for a 
species name.  To make this discrepancy less a problem, PAML considers two 
consecutive spaces as the end of a species name, so that the species name does not 
have to have exactly 30 (or 10) characters. To make this rule work, you should not 
have two consecutive spaces within a species name. For example the above data set 
can have the following format too.  

  
  4 60 
sequence 1  AAGCTTCACCGGCGCAGTCATTCTCATAAT 
CGCCCACGGACTTACATCCTCATTACTATT 
sequence 2  AAGCTTCACCGGCGCAATTATCCTCATAAT 
CGCCCACGGACTTACATCCTCATTATTATT 
sequence 3  AAGCTTCACC GGCGCAGTTG TTCTTATAAT 
TGCCCACGGACTTACATCATCATTATTATT 
sequence 4  AAGCTTCACCGGCGCAACCACCCTCATGAT 
TGCCCATGGACTCACATCCTCCCTACTGTT 

 

Another thing you can do is to patch a few spaces after the species name in your 
PHYLIP data file, which will then be readable by both PHYLIP and PAML.   

In a sequence, three special characters ".", "-", and "?" may be used: a dot means the 
same character as in the first sequence, a dash means an alignment gap, and a 
question mark means an undetermined site. Sites at which at least one sequence 
involves a "-" or "?" are excluded from all sequences before analysis, with the sequence 
length adjusted. For codon sequences, the whole codon is removed. Characters T, C, 
A, G, U, t, c, a, g, u are recognized as nucleotides (for baseml, basemlg and codonml), 
while the standard one-letter codes (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, 
Y, V or their lowercase equivalents) are used for amino acids. Other alphabetic 
characters cause errors. Non-alphabetic symbols such as ><!"£$%^0123456789 are 
simply ignored and can be freely used as landmarks. Lines do not have to be equally 
long and you can put the whole sequence on one line.  

Notes may be placed at the end of the sequence file and will be ignored by the 
programs.  

Option G: This option is for combined analyses of heterogeneous data sets such as 
data of multiple genes or data of the three codon positions. The sequences must be 
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concatenated and the option is used to specify which gene or codon position each site 
is from.  

There are three formats with this option. The first is illustrated by an excerpt of a 
sequence file listed below. The example data of Brown et al. (1982) are an 895-bp 
segment from the mitochondrial genome, which codes for parts of two proteins (ND4 
and ND5) at the two ends and three tRNAs in the middle. Sites in the sequence fall 
naturally into 4 classes: the three codon positions and the tRNA coding region. The 
first line of the file contains the option character G. The second line begins with a G at 
the first column, followed by the number of site classes. The following lines contain 
the site marks, one for each site in the sequence (or each codon in the case of 
codonml). The site mark specifies which class each site is from. If there are g classes, 
the marks should be 1, 2, ..., g, and if g > 9, the marks need to be separated by spaces. 
The total number of marks must be equal to the total number of sites in each sequence. 

 5 895 G 
G 4 
3 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
1231231231231231231231231231231231231 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444444444444444444444444444444444444444444444 
444444444444444444 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
123123123123123123123123123123123123123123123123123123123123 
12312312312312312312312312312312312312312312312312312312312 
Human 
AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGACTTACATCCTCATTACTATT 
CTGCCTAGCAAACTCAAACTACGAACGCACTCACAGTCGCATCATAATC........ 
Chimpanzee 
......... 

 

The second format is useful if the data are concatenated sequences of multiple genes, 
shown below for an example data set. This sequence has 1000 nucleotides from 4 
genes, obtained from concatenating four genes with 100, 200, 300, and 400 nucleotides 
from genes 1, 2, 3, and 4, respectively. The "lengths" for the genes must be on the line 
that starts with G, i.e., on the second line of the sequence file. (This requirement allows 
the program to determine which of the two formats is being used.) The sum of the 
lengths for the genes should be equal to the number of nucleotides, amino acids, or 
codons in the combined sequence for baseml (or basemlg), aaml, and codonml, 
respectively.  

5 1000 G 
G 4 100 200 300 400 
Sequence 1 
TCGATAGATAGGTTTTAGGGGGGGGGGTAAAAAAAAA....... 
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The third format applies to protein-coding DNA sequences only (for baseml). You use 
option characters GC on the first line instead of G alone. The program will then treat 
the three codon positions differently in the nucleotide-based analysis. It is assumed 
that the sequence length is an exact multiple of three.  

 
  5  855  GC 
human      GTG CTG TCT CCT ... 

Tree file and representations of tree topology 
A tree structure file is used when runmode = 0 or 1. The file name is specified in the 
appropriate control file. Two methods for representing a tree topology are used in 
PAML.  

Parenthesis notation: The first is the familiar parenthesis representation, that is used 
in virtually every phylogenetic software. The species can be represented using either 
their names or their indexes corresponding to the order of their occurrences in the 
sequence data file.  If species names are used, they have to match exactly those in the 
sequence data file (including spaces or strange characters). Branch lengths are 
allowed. The following is a possible tree structure file for a data set of four species 
(human, chimpanzee, gorilla, and orangutan, occurring in this order in the data file). 
The first tree is a star tree, while the next four trees are the same.  

    4 5 // 4 species, 5 trees 
(1,2,3,4) // the star tree 
((1,2),3,4) // species 1 and 2 are clustered together 
((1,2),3,4) // Commas are needed with more than 9 species 
((human,chimpanzee),gorilla,orangutan); 
((human:.1,chimpanzee:.2):.05,gorilla:.3,orangutan:.5); 

If the tree has branch lengths, some programs may ask you whether you want to use 
those branch lengths as fixed and estimate other parameters in the substitution model 
only. You will then have three options: ignore the branch lengths, use them as initial 
values, and fix them and estimate other parameters.  

Whether you should use rooted or unrooted trees depends on the model, and in 
particular on whether a molecular clock is assumed. Without the clock (clock = 0), 
unrooted trees should be used, such as ((1,2),3,4) or (1,2,(3,4)).  With the clock 
assumption, the trees should be rooted and these two trees are different and both are 
different from (((1,2),3),4).  In PAML, a rooted tree has a bifurcation at the root, while 
an unrooted tree has a trifurcation of multifurcation at the root. 

Branch labels:  Sometimes (such as the local clock models specified by clock = 2 in 
baseml and codeml and codon models with different ωs for branches), we need to 
label the branches.  Branch labels are specified in the same way as branch lengths 
except that the symbol preceding the branch label is # or $ rather than : which 
indicates a branch length.  The branch labels are consecutive integers starting from 0, 
which is the default label and does not have to be specified.  For example, the 
following tree 
((Hsa_Human, Hla_gibbon) #1, ((Cgu/Can_colobus, Pne_langur), Mmu_rhesus), 
(Ssc_squirrelM, Cja_marmoset));  



12 

is from the tree file lysozyme.trees, with branch labels for fitting models of 
different dN/dS ratios (ω) for branches.  The internal branch ancestral to human and 
gibbon has the ratio ω1 while all other branches have the background ratio ω0.  This 
fits the model in table 1C for the small data set of lysozyme genes in Yang (1998).  I 
have found it convenient to create the tree file with labels and read the tree in using 
Rod page’s TreeView to check that the tree is right.  However, TreeView recognizes 
labels for internal branches (nodes) only and do not allow the user to add labels.  If 
you don’t specify the labels in the tree structure, the program will ask for input from 
the keyboard.  For large trees, this may be hard to use.  Another program that you can 
use to create branch or node labels is Andrew Rambaut’s TreeEdit, available for the 
Mac. 

If the model requires labeling branches but the tree does not has any branch labels, the 
program will ask for input from the keyboard.  See the explanations of the variable 
model for the program codonml. 

Representation of tree topology by branches:  A second way of representing the tree 
topology used in PAML is by enumerating its branches. This is mainly used in the 
result files for outputting the estimated branch lengths. For example, the tree ((12)34) 
is specified by its 5 branches:  

     5 6, 6 1, 6 2, 5 3, 5 4 

The nodes in a tree are marked with consecutive natural numbers, with 1, 2, ..., s 
representing the s known sequences, in the same order as in the data. A number larger 
than s means an interior node, at which the sequence is unknown.  In case some 
sequences in the data are ancestral to some others, this method is convenient. To use 
this format in the tree structure file, give the number of branches, and then the 
branches as specified by the end nodes. For example, the tree in the following 
5s.trees file has 4 branches, with taxon 5 to be the common ancestor of taxa 1, 2, 3, 
and 4:  

5 1 
4     5 1     5 2     5 3     5 4 

baseml 
The default control file for baseml is baseml.ctl, and an example is shown below. 
Note that spaces are required on both sides of the equal sign, and blank lines or lines 
beginning with "*" are treated as comments. Options not used can be deleted from the 
control file.  

      seqfile = brown.nuc * sequence data file name 
      outfile = mlb * main result file 
     treefile = brown.trees * tree structure file name 
 
        noisy = 3   * 0,1,2,3: how much rubbish on the screen 
      verbose = 0   * 1: detailed output, 0: concise output 
      runmode = 0   * 0: user tree;  1: semi-automatic;  2: automatic 
                    * 3: StepwiseAddition; (4,5):PerturbationNNI  
 
        model = 4  * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV, 7:UNREST 
        Mgene = 0   * 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff 
 

http://taxonomy.zoology.gla.ac.uk/rod/rod.html
http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html
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    fix_kappa = 0  * 0: estimate kappa; 1: fix kappa at value below 
        kappa = 2.5   * initial or fixed kappa 
 
    fix_alpha = 1  * 0: estimate alpha; 1: fix alpha at value below 
        alpha = 0.  * initial or fixed alpha, 0:infinity (constant rate) 
       Malpha = 0   * 1: different alpha's for genes, 0: one alpha 
        ncatG = 5   * # of categories in the dG, AdG, or nparK models of rates 
 
      fix_rho = 1   * 0: estimate rho; 1: fix rho at value below  
          rho = 0.  * initial or fixed rho,   0:no correlation 
        nparK = 0   * rate-class models. 1:rK, 2:rK&fK, 3:rK&MK(1/K), 4:rK&MK  
 
        clock = 0   * 0:no clock, 1:clock; 2:local clock; 3:TipDate 
        nhomo = 0   * 0 & 1: homogeneous, 2: kappa for branches, 3: N1, 4: N2 
        getSE = 0   * 0: don't want them, 1: want S.E.s of estimates 
 RateAncestor = 0   * (0,1,2): rates (alpha>0) or ancestral states 
 
   Small_Diff = 9e-6 
*   cleandata = 1   * remove sites with ambiguity data (1:yes, 0:no)? 
*       ndata = 1 
       method = 0   * 0: simultaneous; 1: one branch at a time 

 

The control variables are described below.  

seqfile, outfile, and treefile specifies the names of the sequence data file, main 
result file, and the tree structure file, respectively.  

noisy controls how much output you want on the screen. If the model being fitted 
involves much computation, you can choose a large number for noisy to avoid 
loneliness. verbose controls how much output in the result file.  

runmode = 0 means evaluation of the tree topologies specified in the tree structure file, 
and runmode = 1 or 2 means heuristic tree search by the star-decomposition algorithm. 
With runmode = 2, the algorithm starts from the star tree, while if runmode = 1, the 
program will read a multifurcating tree from the tree structure file and try to estimate 
the best bifurcating tree compatible with it. runmode = 3 means stepwise addition. 
runmode = 4 means NNI perturbation with the starting tree obtained by a parsimony 
algorithm, while runmode = 5 means NNI perturbation with the starting tree read 
from the tree structure file. The tree search options do not work well, and so use 
runmode = 0 as much as you can.  For relatively small data set, the stepwise addition 
algorithm seems usable. 

model specifies the model of nucleotide substitution.  Models 0, 1, …, 7 represent 
models JC69, K80, F81, F84, HKY85, TN93, REV, and UNREST, respectively.  Check Yang (1994 JME 
39:105-111) for notation.  Two more models are implemented recently.  model = 8 are special cases 
of the REV model, while model = 9 are special cases of the unrestricted model.  The 
format is shown in the following examples and should be self-explanatory.  Basically 
you include extra information on the same line that specifies model when model = 8 
or 9.  The number in the brackets [] are the number of free rate parameters.  For 
example, this should be 5 for REV and 11 for UNREST.  Following that number are 
equal number of parenthesis pairs ().  The rate parameters in the output file will 
follow this order here.  The pairs that are not mentioned here will have the rate 1.  
When model = 8, you specify TC or CT, but not both.  When model = 9, TC and CT are 
different.  See the following examples and Yang (1994a) for notation. 
      model = 8   [2  (CT) (AG)]     /* TN93 */ 
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      model = 8   [2  (TA AT TG CA CG) (AG)]         /* TN93 */ 
      model = 9   [1 (TC CT AG GA)]  /* K80 */ 
      model = 9   [0]  /* JC69 */ 
      model = 9   [11  (TA) (TG) (CT) (CA) (CG) (AT) (AC) (AG) (GT) (GC) (GA)]  
/*UNREST*/ 

 

Mgene is used in combination with option G in the sequence data file, for combined 
analysis of data from multiple genes or the three codon positions. More details are 
given later in the Models and Methods section.  Choose 0 if option G is not used in the 
data file.  

fix_kappa specifies whether κ in K80, F84, or HKY85 is given at a fixed value or is to 
be estimated by iteration from the data. If fix_kappa = 1, the value of another 
variable, kappa, is the given value, and otherwise the value of kappa is used as the 
initial estimate for iteration. The variables fix_kappa and kappa have no effect with 
JC69 or F81 which does not involve such a parameter, or with TN93 and REV which 
have two and five rate parameters respectively, when all of them are estimated from 
the data.  

fix_alpha and alpha work in a similar way, where alpha refers to the shape 
parameter α of the gamma distribution for variable substitution rates across sites 
(Yang 1994c). The model of a single rate for all sites is specified as fix_alpha = 1 and 
alpha = 0 (0 means infinity), while the (discrete-) gamma model is specified by a 
positive value for alpha, and ncatG is then the number of categories for the discrete-
gamma model (baseml).  

fix_rho and rho work in a similar way and concern independence or correlation of 
rates at adjacent sites, where ρ (rho) is the correlation parameter of the auto-discrete-
gamma model (Yang 1995). The model of independent rates for sites is specified as 
fix_rho = 1 and rho = 0; choosing alpha = 0 further means a constant rate for all 
sites. The auto-discrete-gamma model is specified by positive values for both alpha 
and rho. The model of a constant rate for sites is a special case of the (discrete) gamma 
model with α = ∞ (alpha = 0), and the model of independent rates for sites is a special 
case of the auto-discrete-gamma model with ρ = 0 (rho = 0).  

nparK specifies nonparametric models for variable and Markov-dependent rates 
across sites: nparK = 1 or 2 means several (ncatG) categories of independent rates for 
sites, while nparK = 3 or 4 means the rates are Markov-dependent at adjacent sites; 
nparK = 1 and 3 have the restriction that each rate category has equal probability 
while nparK = 2 and 4 do not have this restriction (Yang, 1995). The variable nparK 
takes precedence over alpha or rho. 

clock specifies models concerning rate constancy among lineages. clock = 0 means 
no clock.  clock = 1 means the global clock. clock = 2 implements local clock models 
(Yoder and Yang 2000), which assumes that branches in the phylogeny conform with 
the clock assumption and has the default rate (r0 = 1) except for several pre-defined 
branches which have different rates. Rates for branches are specified using branch 
marks in the tree file.  If you choose noisy = 9, the program will ask for a reference 
(calibration) node and date and calculate dates for other nodes.  clock = 3 implements 
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Rambaut (2000)'s TipDate models.  Evolution conforms to a global clock but sequences 
in the data are determined at different dates.  The dates are specified at the end of the 
sequence names, based on Andrew's format.  This model has one extra parameter (the 
mutation rate) than the global clock model (clock = 1).  

nhomo is for baseml only, and concerns the frequency parameters in the F81, F84, 
HKY85, TN93, or REV models.  The option nhomo = 1 fits a homogeneous model, but 
estimates the frequency parameters (πT, πC and πA; πG is not a free parameter as the 
frequencies sum to 1) by maximum likelihood iteration. Normally (nhomo = 0) these 
are estimated by the averages of the observed frequencies. In both cases, you should 
count 3 free parameters for the base frequencies.  The options nhomo = 3 or 4, in 
combination with F84 or HKY85, fit nonhomogeneous models of Yang and Roberts 
(1995).  Substitutions are assumed to follow the pattern of F84 or HKY85, but with 
different frequency parameters assigned for different branches in the tree, to allow for 
unequal base frequencies in different sequences. The position of the root then makes a 
difference to the likelihood, and rooted trees are used. Because of the parameter 
richness, the model may only be used with small data sets when base frequencies are 
drastically different in different sequences. Choose fix_kappa = 1, which means one 
common κ is assumed for all branches. The option nhomo = 4 assigns one set of 
frequency parameters for each node, which are the parameters for the rate matrix 
along the branch leading to the node or are the initial distribution if the node is the 
root of the tree. In the output, estimates of the frequency parameters are shown in the 
order of nodes n + 1, n + 2, ...., where n is the number of sequences. 

nhomo = 2 uses one transition/transversion rate ratio (κ) for each branch in the tree for 
the K80, F84, and HKY85 models (Yang 1994b; Yang and Yoder 1999).  

getSE tells whether we want estimates of the standard errors of estimated parameters. 
These are crude estimates, calculated by the curvature method, i.e., by inverting the 
matrix of second derivatives of the log-likelihood with respect to parameters. The 
second derivatives are calculated by the difference method, and are not always 
reliable. Even if this approximation is reliable, tests relying on the SE's should be 
taken with caution, as such tests rely on the normal approximation to the maximum 
likelihood estimates. The likelihood ratio test should always be preferred. The option 
is not available and choose getSE = 0 when tree-search is performed.  

RateAncestor = 1 also works with runmode = 0 only.  For models of variable rates 
across sites, the program will calculate rates for sites along the sequence (output in the 
file rates) and performs marginal ancestral reconstruction (output in rst).  For models 
of one rate for all sites, RateAncestor = 1 does both marginal and joint ancestral 
sequence reconstruction. The program lists results site by site.  You can also use the 
variable verbose to control the amount of output. If you choose verbose = 0, the 
program will list the best nucleotide at each node for the variable sites only and 
results for constant sites are suppressed. If verbose = 1, the program will list all sites 
for the best nucleotide at each node. If verbose = 2, the program also lists the full 
posterior probability distribution for each site at each ancestral node (for marginal 
reconstruction).  



16 

For nucleotide based (baseml) analysis of protein coding DNA sequences (option GC 
in the sequence data file), I have added the calculation of posterior probabilities of 
ancestral amino acids. In this analysis, branch lengths and other parameters are 
estimated under a nucleotide substitution model, but the reconstructed nucleotide 
triplets are examined to infer the most likely amino acid encoded by the triplet. 
Posterior probabilities for stop codons are small and reset to zero to scale the posterior 
probabilities for amino acids. To use this option, you need add the control variable 
icode in the control file baseml.ctl. This is not listed in the above. The variable icode 
can take a value out of 0, 1, ..., 10, corresponding to the 11 genetic codes included in 
paml (See the control file codeml.ctl for the definition of different genetic codes). A 
nucleotide substitution model that is very close to a codon-substitution model can be 
specified as follows. You add the option characters GC at the end of the first line in the 
data file and choose model = 4 (HKY85) and Mgene = 4. The model then assumes 
different substitution rates, different base frequencies, and different 
transition/transversion rate ratio (kappa) for the three codon positions. Ancestral 
reconstruction from such a nucleotide substitution should be very similar to codon-
based reconstruction. (Thanks to Belinda Change for many useful suggestions.) 

Small_Diff is a small value used in the difference approximation of derivatives. 

cleandata  = 1 means sites involving ambiguity characters or alignment gaps are 
removed from all sequences.  This leads to faster calculation.  cleaddata = 0 (default) 
uses those sites. 

method :  This variable controls the iteration algorithm for estimating branch lengths 
under a model of no clock.  method = 0 implements the old algorithm in PAML, 
which updates all parameters including branch lengths simultaneously.  method  = 1 
specifies an algorithm newly implemented in PAML, which updates branch lengths 
one by one.  method = 1 does not work under the clock models (clock = 1, 2, 3).  

ndata: specifies the number of separate data sets in the file.  This variable is useful for 
simulation.  You can use evolver to generate 200 replicate data sets, and then set 
ndata = 200 to use baseml to analyze them.   

Output: The output should be self-explanatory. Descriptive statistics are always listed. 
The observed site patterns and their frequencies are listed, together with the 
proportions of constant patterns. Nucleotide frequencies for each species (and for each 
gene in case of multiple gene data) are counted and listed.  lmax = ln(Lmax) is the 
upper limit of the log likelihood and may be compared with the likelihood for the best 
(or true) tree under the substitution model to test the model's goodness of fit to data 
(Goldman, 1993a).  You can ignore it if you don’t know what it means. 

With getSE = 1, the S.E.s are calculated as the square roots of the large sample 
variances and listed exactly below the parameter estimates. Zeros on this line mean 
errors, either caused by divergence of the algorithm or zero branch lengths. The S.Es 
of the common parameters measure the reliability of the estimates. For example, (κ − 
1)/SE(κ), when κ is estimated under K80, can be compared with a normal distribution 
to see whether there is real difference between K80 and JC69. The test can be more 
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reliably performed by comparing the log-likelihood values under the two models, 
using the likelihood ratio test. It has to be stressed that the S.E.’s of the estimated 
branch lengths should not be misinterpreted as an evaluation of the reliability of the 
estimated tree topology (e.g., Yang, 1994b, Goldman and Yang, 1994).  

If the tree file has more than one tree, the programs baseml and codeml will 
calculate the bootstrap proportions using the RELL method (Kishino and Hasegawa 
1989), as well as the method of Shimodaira and Hasegawa (1999) with a correction for 
multiple comparison.  The bootstrap resampling accounts for possible data partitions 
(option G in the sequence data file).  I did not bother to deal with ties, so if you 
include the same tree in the tree file more than once, you need to adjust the 
proportions for those trees yourself. The program rell, included in earlier versions, 
is now removed.  

basemlg 
basemlg uses the same control file baseml.ctl, as baseml.  Tree-search or the 
assumption of a molecular clock are not allowed and so choose runmode = 0 and 
clock = 0. Substitution models available for basemlg are JC69, F81, K80, F84 and 
HKY85, and a continuous gamma is always assumed for rates at sites. The variables 
ncatG, given_rho, rho, nhomo have no effect.  The S.E.'s of parameter estimates are 
always printed out because they are calculated during the iteration, and so getSE has 
no effect.  

Because of the intensive computation required by basemlg, the discrete-gamma model 
implemented in baseml is recommended for data analysis. If you choose to use 
basemlg, you should run baseml first, and then run basemlg. This allows baseml to 
collect initial values into a file named in.basemlg, for use by basemlg. Note that 
basemlg implements only a subset of models in baseml.  

codeml (codonml and aaml) 
Since the codon based analysis and the amino acid based analysis use different 
models, and some of the control variables have different meanings, it may be a good 
idea to use different control files for codon and amino acid sequences. The default 
control file for codeml is codeml.ctl, as shown below.  

      seqfile = stewart.aa * sequence data file name 
      outfile = mlc * main result file name 
     treefile = stewart.trees * tree structure file name 
 
        noisy = 9  * 0,1,2,3,9: how much rubbish on the screen 
      verbose = 0  * 1: detailed output, 0: concise output 
      runmode = 0  * 0: user tree;  1: semi-automatic;  2: automatic 
                   * 3: StepwiseAddition; (4,5):PerturbationNNI; -2: pairwise 
 
      seqtype = 2  * 1:codons; 2:AAs; 3:codons-->AAs 
    CodonFreq = 2  * 0:1/61 each, 1:F1X4, 2:F3X4, 3:codon table 
       aaDist = 0  * 0:equal, +:geometric; -:linear, 1-6:G1974,Miyata,c,p,v,a 
   aaRatefile = wag.dat * only used for aa seqs with model=empirical(_F) 
                          * dayhoff.dat, jones.dat, wag.dat, mtmam.dat, or your own 
 
        model = 2 
                   * models for codons: 
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                       * 0:one, 1:b, 2:2 or more dN/dS ratios for branches 
                   * models for AAs or codon-translated AAs: 
                       * 0:poisson, 1:proportional,2:Empirical,3:Empirical+F 
                       * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189) 
 
      NSsites = 0  * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs; 
                   * 5:gamma;6:2gamma;7:beta;8:beta&w;9:beta&gamma; 
                   * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1; 
                   * 13:3normal>0 
 
        icode = 0  * 0:universal code; 1:mammalian mt; 2-10:see below 
        Mgene = 0  * 0:rates, 1:separate;  
 
    fix_kappa = 0  * 1: kappa fixed, 0: kappa to be estimated 
        kappa = 2  * initial or fixed kappa 
    fix_omega = 0  * 1: omega or omega_1 fixed, 0: estimate  
        omega = .4 * initial or fixed omega, for codons or codon-based AAs 
 
    fix_alpha = 1  * 0: estimate gamma shape parameter; 1: fix it at alpha 
        alpha = 0. * initial or fixed alpha, 0:infinity (constant rate) 
       Malpha = 0  * different alphas for genes 
        ncatG = 3  * # of categories in dG of NSsites models 
 
      fix_rho = 1  * 0: estimate rho; 1: fix it at rho 
          rho = 0. * initial or fixed rho,   0:no correlation 
 
        clock = 0   * 0:no clock, 1:clock; 2:local clock; 3:TipDate 
        getSE = 0  * 0: don't want them, 1: want S.E.s of estimates 
 RateAncestor = 0  * (0,1,2): rates (alpha>0) or ancestral states (1 or 2) 
 
   Small_Diff = .5e-6 
*   cleandata = 0  * remove sites with ambiguity data (1:yes, 0:no)? 
*       ndata = 10 
       method = 0   * 0: simultaneous; 1: one branch at a time 

 

The variables seqfile, outfile, treefile, noisy, Mgene, fix_alpha, alpha, Malpha, 
fix_rho, rho, clock, getSE, RateAncestor, Small_Diff, cleandata, ndata, and 
method  are used in the same way as in baseml.ctl and are described in the previous 
section.  The variable seqtype specifies the type of sequences in the data; seqtype = 1 
means codon sequences (the program is then codonml); 2 means amino acid sequences 
(the program is then aaml); and 3 means codon sequences which are to be translated 
into proteins for analysis.  

Codon sequences (seqtype = 1) 

CodonFreq specifies the equilibrium codon frequencies in codon substitution model. 
These frequencies can be assumed to be equal (1/61 each for the standard genetic 
code, CodonFreq = 0), calculated from the average nucleotide frequencies (CodonFreq 
= 1), from the average nucleotide frequencies at the three codon positions (CodonFreq 
= 2), or used as free parameters (CodonFreq = 3).  The number of parameters involved 
in those models of codon frequencies is 0, 3, 9, and 60 (under the universal code), for 
CodonFreq = 0, 1, 2, and 3 respectively. 

aaDist specifies whether equal amino acid distances are assumed (= 0) or Grantham's 
matrix is used (= 1) (Yang et al. 1998).  

runmode = -2 performs ML estimation of dS and dN in pairwise comparisons.  The 
program will collect estimates of dS and dN into the files 2ML.dS and 2ML.dN.  Since 
many users seem interested in looking at dN/dS ratios among lineages, examination of 
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the tree shapes indicated by branch lengths calculated from the two rates may be 
interesting although the analysis is ad hoc.  If your species names have no more than 10 
characters, you can use the output distance matrices as input to Phylip programs such 
as neighbor without change.  Otherwise you need to edit the files to cut the names 
short.  

The variable model concerns assumptions about the dN/dS rate ratios (or the ω 
parameters) among branches (Yang 1998; Yang and Nielsen 1998).  model = 0 means 
one dN/dS ratio for all lineages (branches), 1 means one ratio for each branch (the free-
ratio model), and 2 means an arbitrary number of ratios (such as the 2-ratios or 3-
ratios models). When model = 2, you may specify the ω ratios for branches using 
branch labels (see the section on tree structure file).  This option seems rather easy to 
use.  Otherwise, the program will ask the user to input a branch mark for the dN/dS 
ratio assumed for each branch. This should be an integral number between 0 to k - 1 if 
k different dN/dS ratios (ω0 - ωk - 1) are assumed for the branches of the tree. This 
process may be frustrating if the tree is not very small.  I run the program first to let it 
output the tree topology using the branch representation on the screen.  I then prepare 
the branch labels in a file, say, in. Finally I run the program using redirection so that it 
will read the input from the prepared file  

 codeml < in 

Redirection is not permitted on a MAC, but you can prepare the branch labels in a file 
and then copy and paste them into the session running the program. Furthermore, 
under this model, the variable fix_omega fixes the lastdN/dS ratio (ωk - 1) at the value of 
omega specified in the file. This option can be used to test, for example, whether the 
ratio for a specific lineage is significantly different from one.  It should, however, be 
noted that it is not proper to use the option model = 1 to estimate dN/dS ratios for all 
branches to find out which ratios are greater than one, and then to use model = 2 to 
test whether that difference is significant. This way the hypothesis is derived from the 
data and is tested using the same data.  As a result, you tend to get significant results 
too often.  Check the example data file lysozymeSmall.nuc and the control file 
lysozyme.ctl and try to reproduce results published in Yang (1998). 

Nssites specifies models that allow the dN/dS ratio (ω) to vary among sites (Nielsen 
and Yang 1998; Yang et al. 2000).  Nssites = m corresponds to model Mm in Yang et 
al. (2000).  The variable ncatG is used to specify the number of categories in the ω 
distribution under some models.  The values of ncatG used to perform our analyses 
are 3 for M3 (discrete), 5 for M4 (freq), 10 for the continuous distributions (M5: 
gamma, M6: 2gamma, M7: beta, M8:beta&w, M9:beta&gamma, M10: beta&gamma+1, 
M11:beta&normal>1, and M12:0&2normal>1, M13:3normal>0).  This means M8 will 
have 11 site classes (10 from the beta distribution plus 1 additional class).  The 
posterior probabilities for site classes as well as the expected ω values for sites are 
listed in the file rst, which may be useful to pinpoint sites under positive selection, if 
they exist.  To make it easy to run several Nssites models in one go, I compiled the 
executable codemlsites, which asks you how many and which models to run at the 
start of the program.  The number of categories used will then match those used in 
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Yang et al. (2000).  The HIV env data set used in Yang et al. (2000: table 12) is included 
in the package.  Try 

 codemlsites HIVenvSweden.ctl 

and duplicate our analysis of the 4 models, M0, 1, 2, 3, by 

 4    0 1 2 3 

As noted in that paper, some of the models are hard to use, in particular, M12 and 
M13.  Recommended models are 0 (one-ratio), 1 (neutral), 2 (selection), 3 (discrete), 7 
(beta), and 8 (beta&ω).  Some of the models like M2 and M8 are noted to be prone to 
the problem of multiple local optima. You are advised to run the program at least 
twice, once with a starting omega value <1 and a second time with a value > 1, and 
use the results corresponding to the highest likelihood.    

The continuous neutral and selection models of Nielsen and Yang (1998) are not 
implemented in the program.   

icode specifies the genetic code.  About a dozen genetic code tables are implemented.  
These are 0 for the universal code; 1 for the mammalian mitochondrial code; 3 for 
mold mt., 4 for invertebrate mt.; 5 for ciliate nuclear code; 6 for echinoderm mt.; 7 for 
euplotid mt.; 8 for alternative yeast nuclear; 9 for ascidian mt.; and 10 for blepharisma 
nuclear.  icode = 0 to 10 correspond to transl_table 1 to 11 in GenBank.  

RateAncestor:  For codon sequences, ancestral reconstruction is not implemented for 
the models of variable dN/dS ratios among sites. The output under codon-based 
models usually shows the encoded amino acid for each codon. The output under 
"Prob of best character at each node, listed by site" has two posterior probabilities for 
each node at each codon (amino acid) site. The first is for the best codon. The second, 
in parentheses, is for the most likely amino acid under the codon substitution model. 
This is a sum of posterior probabilities across synonymous codons.  In theory it is 
possible although rare for the most likely amino acid not to match the most likely 
codon. 

Output for codon sequences (seqtype = 1): The codon frequencies in each sequence 
are counted and listed in a genetic code table, together with their sums across species.  
Each table contains six or fewer species.  For data of multiple genes (option G in the 
sequence file), codon frequencies in each gene (summed over species) are also listed. 
The nucleotide distributions at the three codon positions are also listed. The method of 
Nei and Gojobori (1986) is used to calculate the number of synonymous substitutions 
per synonymous site (dS) and the number of nonsynonymous substitutions per 
nonsynonymous site (dN) and their ratio (dN/dS). These are used to construct initial 
estimates of branch lengths for the likelihood analysis but are not MLEs themselves. 
Note that the estimates of these quantities for the a- and b-globin genes shown in 
Table 2 of Goldman and Yang (1994), calculated using the MEGA package (Kumar et 
al., 1993), are not accurate.   
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Results of ancestral reconstructions (RateAncestor = 1) are collected in the file rst.  
Under models of variable dN/dS ratios among sites (NSsites models), the posterior 
probabilities for site classes as well as positively selected sites are listed in rst.  

Amino acid sequences (seqtype = 2) 

model specifies the model of amino acid substitution: 0 for the Poisson model 
assuming equal rates for any amino acid substitutions (Bishop and Friday, 1987); 1 for 
the proportional model in which the rate of change to an amino acid is proportional to 
the frequency of that amino acid. Model = 2 specifies a class of empirical models, and 
the empirical amino acid substitution rate matrix is given in the file specified by 
aaRatefile. Files included in the package are for the empirical models of Dayhoff et 
al. (1978) (dayhoff.dat), Jones et al. 1992 (jones.dat) (see Kishino et al., 1990 for 
the construction), and Whelan and Goldman (wag.dat). The file mtmam.dat has a 
matrix for mitochondrial proteins estimated by maximum likelihood from a data set of 
20 mammals. The mtREV24 model of the MOLPHY package is also provided (the file 
mtREV24.dat). These two are similar, and the difference is that the former is derived 
from proteins from mammals only while the latter came from more-diverse species 
including chicken, fish, frog, and lamprey. Due to differences in the implementation, 
you may see small differences in log-likelihood values and branch lengths between 
aaml and protml in the MOLPHY package. Such differences are normal and you 
should use the same program to compare different trees. Under the mtREV24 model, 
the two programs should give almost identical results.  

If you want to specify your own substitution rate matrix, have a look at one of those 
files, which has notes about the file structure. Other options for amino acid 
substitution models should be ignored.  To summarize, the variables model, aaDist, 
CodonFreq, NSsites, and icode are used for codon sequences (seqtype = 1), 
while model, alpha,  and aaRatefile are used for amino acid sequences.  

model = 7 (AAClasses), which is implemented for both codon and amino acid 
sequences, allow you to have several types of amino acid substitutions and let the 
program estimate their different rates.  The model was implemented in Yang et al. 
(1998).  The number of substitution types and which pair of amino acid changes 
belong which type is specified in a file called OmegaAA.dat.  You can use the model 
to fit different dN/dS (ω) ratios for “conserved” and “charged” amino acid 
substitutions.  The folder examples/mtCDNA contain  example files for this model; 
check the readme file in that folder. 

runmode also works in the same way as in baseml.ctl.  Specifying runmode = -2 will 
forces the program to calculate the ML distances in pairwise comparisons. You can 
change the following variables in the control file codeml.ctl: aaRatefile, model, 
and alpha.  

If you do pairwise ML comparison (runmode = -2) and the data contain ambiguity 
characters or alignment gaps, the program will remove all sites which have such 
characters from all sequences before the pairwise comparison if cleandata = 1. This 
is known as "complete deletion". It will remove alignment gaps and ambiguity 
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characters in each pairwise comparsion ("pairwise" deletion) if cleandata = 0. (In a 
likelihood analysis of multiple sequences on a phylogeny, alignment gaps are treated 
as ambiguity characters if cleandata = 0, and both alignment gaps and ambiguity 
characters are deleted if cleandata = 1.  Note that removing alignment gaps and 
treating them as ambiguity characters both underestimate sequence divergences. 
Ambiguity characters in the data (cleandata = 0) make the likelihood calculation 
slower. 

Output for amino acid sequences (seqtype = 2):  The output file is self-explanatory 
and very similar to the result files for the nucleotide- and codon-based analyses.  The 
empirical models of amino acid substitution (specified by dayhoff.dat, jones.dat, 
wag.dat, mtmam.dat, or mtREV24.dat) do not involve any parameters in the 
substitution rate matrix.  When RateAncestor = 1, results for ancestral 
reconstruction are in the file rst. Calculated substitution rates for sites under models 
of variable rates for sites are in rates.   

evolver 
The program evolver simulates nucleotide, codon, and amino acid sequences with 
user-specified tree topology and branch lengths.  The user specifies the substitution 
model and parameters.  The program generates multiple data sets in one file in either 
PAML (output mc.paml) or PAUP* (output mc.paup) format. If you choose the 
PAUP* format, the program will look for files with the following names: paupstart 
(which the program copies to the start of the data file), paupblock (which the 
program copies to the end of each simulated data set), and paupend (which the 
program incorporates at the end of the file.  This makes it possible to use PAUP* to 
analyze all data sets in one run.  Parameters for simulation are specified in three files: 
MCbase.dat, MCcodon.dat, and MCaa.dat for simulating nucleotide, codon, and 
amino acid sequences, respectively.  Run the default options while watching out for 
screen output.  Then have a look at the appropriate .dat files.  As an example, the 
MCbase.dat file is reproduced below, with some notes.  Note that the first block of 
the file has the inputs for evolver, while the rest is notes.  The tree length is the 
expected number of substitutions per site along all branches in the phylogeny, 
calculated as the sum of the branch lengths.  This variable was introduced when I was 
doing simulations to evaluate the effect of sequence divergence while keeping the 
shape of the tree fixed.  evolver will scale the tree so that the branch lengths sum up to 
the specified tree length.  If you use –1 for the tree length, the program will use the 
branch lengths given in the tree.  In the example, the sum of branch lengths is 1.12, 
and so using either 1.12 or –1 for the tree length has the same effect.  Also note that the 
base frequencies have to be in a fixed order; this is the same for the amino acid and 
codon frequencies in MCaa.dat and MCcodon.dat. 

0 
234567 
4 200 2 
-1 
((1:.1, 2:.2):.12, 3:.3, 4:.4);   
6 
1 2 3 4 5 
.5 4 
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0.25 0.25 0.25 0.25 
 T    C    A    G (fixed order) 
 
================================================== 
The rest of this data file are notes, ignored by the program evolver. 
evolver simulates nucleotide sequences under the REV+Gamma model 
and its simpler forms. 
The variables in this file are defined below: 
 
================================================== 
<format,0=paml,1=paup> 
<random number seed> 
<# seqs>  <# nucleotide sites>  <# replicates> 
<tree length, use -1 if tree has absolute branch lengths> 
<tree with relative branch lengthes> 
<model: 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85, 5:TN93, 6:REV> 
<kappa or rate parameters in model> 
<alpha>  <#categories for discrete gamma> 
<base frequencies> 
================================================== 

 

The simulation options (5, 6, 7) of evolver can be run using a command line format.  
So here are all the possible ways of running evolver: 
 evolver  
 evolver 5 MyMCbaseFile 
 evolver 6 MyMCcodonFile 
 evolver 7 MyMCaaFile 

This evolver program evolved from the old boring program listtree and still has the 
options for listing all trees for a specified small number of species, and for generating 
random trees from a model of cladogenesis, the birth-death process with species 
sampling (Yang and Rannala, 1997).  It also has an option for calculating the partition 
distance between tree topologies. 

Simulation algorithm used in evolver.  Evolver simulates data sets by 
“evolving” sequences along the tree.  First, a sequence is generated for the root using 
the equilibrium nucleotide, amino acid, or codon frequencies specified by the model 
and/or the data file (MCbase.dat, MCcodon.dat, and MCaa.dat, respectively).  
Then each site evolves along the branches of the tree according to the branch lengths, 
parameters in the substitution model etc.  When the sites in the sequence evolve 
according to the same process, the transition probability matrix is calculated only once 
for all sites for each branch.  For so called site-class models (such as the gamma, and 
the NSsites codon models), different sites might have different transition probability 
matrices.  Given the character at the start of the branch, the character at the end of the 
branch is sampled from a multinomial distribution specified by the transition 
probabilities from the source character.  Check any book on Monte Carlo simulation 
for procedures of sampling from a multinomial distribution, and see, e.g., Yang 
(1996c; 1997) for more details of simulations on phylogenies.  Sequences at the 
ancestral nodes are generated during the simulation but not included in the output.  If 
you want those ancestral sequences, you can search for the following line in the 
routine Simulate() in the file evolver.c, and change the value from 0 to 1.   

   int verbose=0; 
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Recompile the evolver program.  The program will then output the ancestral 
sequences in a file named ancestral.seq. 

yn00 
The program yn00 implements the method of Yang and Nielsen (2000) for estimating 
synonymous and nonsynonymous substitution rates between two sequences (dS and 
dN).  The method of Nei and Gojobori (1986) is also included.  The ad hoc method 
implemented in the program accounts for the transition/transversion rate bias and 
codon usage bias, and is an approximation to the ML method accounting for the 
transition/transversion rate ratio and assuming the F3x4 codon frequency model. We 
recommend that you use the ML method (runmode= -2, CodonFreq = 2 in 
codeml.ctl) as much as possible even for pairwise sequence comparison.  

      seqfile = abglobin.nuc * sequence data file name 
      outfile = yn           * main result file 
      verbose = 0      * 1: detailed output (list sequences), 0: concise output 
 
        icode = 0  * 0:universal code; 1:mammalian mt; 2-10:see below 
    weighting = 0  * weighting pathways between codons (0/1)? 
   commonf3x4 = 0  * use one set of codon freqs for all pairs (0/1)?  

 
The control file yn00.ctl, an example of which is shown above, specifies the 
sequence data file name (seqfile), output file name (outfile), and the genetic code 
(icode).  Sites (codons) involving alignment gaps or ambiguity nucleotides in any 
sequence are removed from all sequences.  The variable weighting decides whether 
equal weighting or unequal weighting will be used when counting differences 
between codons. The two approaches will be different for divergent sequences, and 
unequal weighting is much slower computationally.  The transition/transversion rate 
ratio κ is estimated for all sequences in the data file and used in subsequent pairwise 
comparisons.  I hope to add an option to allow κ to be estimated for each pair.  
commonf3x4 specifies whether codon frequencies (based on the F3x4 model of 
codonml) should be estimated for each pair or for all sequences in the data.  Besides 
the main result file, the program also generates three distance matrices: 2YN.dS for 
synonymous rates, 2YN.dN for nonsynonymous rates, 2YN.t for the combined codon 
rate (t is measured as the number of nucleotide substitutions per codon).  It should be 
possible to use those files directly with distance programs such as NEIGHBOR in 
Felesenstein's PHYLIP package.   

mcmctree 
The program mcmctree performs Bayesian estimation of phylogenies (Rannala and 
Yang, 1996; Yang and Rannala, 1997).  The birth-death process with species sampling 
is used to specify the prior distribution of phylogenies ("labeled histories", which are 
rooted tree topologies with the interior nodes ordered according their associated 
speciaiton times), and the posterior probabilities of the labeled histories are compared 
to select the maximum posterior probability tree. The program implementing the 
method of Rannala and Yang (1996) is not distributed as the algorithm involves 
extensive computation. Instead, mcmctree implements a refined method (Yang and 
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Rannala 1997), which uses Markov chain Monte Carlo to select candidate labeled 
histories, and Monte Carlo integration to integrate over the distribution of the 
ancestral speciation times. 

The default control file name is mcmctree.ctl, and a sample copy is shown below. 
  seqfile = mtprim9.nuc * sequence data file name 
  outfile = mcmctree.out * main result file name 
 treefile = 9s.trees * tree structure file name 
   LHfile = Lhs * LH file name. read (MCMC=0) or overwritten (MCMC=1) 
     MCMC = 0 *0: read LHs from LHfile, 1: use MCMC to generate Lhs 
     beta = 0.15 * prob{change labeled history}, used only if MCMC=1 
   delta0 = 1 * small number for MCMC, used only if MCMC=1 
   delta1 = .2 * smaller number for comparing candidate LHs 
 
    model = 2 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85 
 
    kappa = 2. * given kappa and omega in GY94. 
    alpha = 0 * given alpha, 0:infinity 
    ncatG = 8 * # of categories in the dG or AdG models of rates 
 
 hierarch = 0 * 1:hierarchical; 0:empirical Bayes analysis 
    birth = 6.7 * lineage birth rate 
    death = 2.5 * lineage death rate 
   sample = .06 * sampling proportion 
   mutate = .24 * mutation rate (# of mutations from root to present) 

 
The variables seqfile, outfile, treefile, model, kappa, alpha, and ncatG are 
defined as in baseml.ctl for program baseml. The program first collects a set of 
candidate labeled histories. If MCMC = 0, the candidate labelled histories are read from 
the file LHfile, while if MCMC = 1, they are generated from the Markov chain Monte 
Carlo, with the Monte Carlo integration over ancestral speciation times evaluated at a 
low accuracy level (controled by delta0). The program then calculates the (relative) 
posterior probabilities of these candidate labelled histories, with the Monte Carlo 
integration evaluated at a higher accuracy level (controlled by delta1). The Markov 
chain moves with probability beta to another labelled history of the same tree 
topology, or to a labelled history of a different tree topology through a nearest 
neighbor interchange. hierarch controls whether an empirical Bayes analysis or a 
hierarchical Bayes analysis is to be performed. birth, death, and sample are 
parameters of the prior distribution specified by the birth-death process with species 
sampling. 

5  Models and Methods 

This section provides some background information about the analysis that the 
programs in the paml package perform. 

Nucleotide substitution models 
Markov process models of nucleotide substitution implemented in PAML include 
JC69 (Jukes and Cantor, 1969), K80 (Kimura, 1980), F81 (Felsenstein, 1981), F84 
(Felsenstein, DNAML program since 1984, PHYLIP Version 2.6), HKY85 (Hasegawa et 
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al., 1985), Tamura and Nei (1993), and REV (Yang, 1994a). The rate matrices of these 
models are given below 

JC69 : Q = 
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with πY = πT + πC and πR = πA + πG. 

HKY85: Q = 
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REV (GTR):  Q = 
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The element qij (i ≠ j) represents the rate of substitution from nucleotide i to j, with the 
diagonals qii specified by the mathematical requirement that each row of Q sums to 
zero.  The nucleotides are ordered T, C, A, G.  The transition probability matrix over 
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time t is then given as P(t) = {pij(t)} = exp(Qt), where pij(t) is the probability that 
nucleotide i will become nucleotide j after time t. The sequence data does not permit 
separation of rate (Q) and time (t), and so Q specifies relative rates only.  In the 
programs, Q is multiplied by a constant so that the average rate of substitution is 1 
when the process is in equilibrium. This scaling means that time t, or the branch 
length in a tree, is measured by the expected number of nucleotide substitutions per 
site.  Q thus represents the pattern of substitution, while the amount of evolution is 
reflected in time or the branch length. The frequency parameters πT, πC, πA, πG (with the 
sum to be 1) give the equilibrium distribution of the process for the F81, F84, HKY85, 
TN93 and REV models; the equilibrium distribution under the JC69 and K80 models 
has equal frequencies (1/4) for the four nucleotides. Parameters a, b, c, d, e in REV, κ in 
F84 or HKY85, and κ1 and κ2 in TN93 may be termed rate ratio parameters. So the 
JC69, K80, F81, F84, HKY85, TN93 and REV models contain 0, 1, 0, 1, 1, 2, 5 rate ratio 
parameters respectively, and 0, 0, 3, 3, 3, 3, 3 frequency parameters respectively. 
Normally the frequency parameters are estimated using the averages of the observed 
frequencies, which should be very close to the true maximum likelihood estimates if 
the assumptions of homogeneity and stationarity are acceptable.  

Parameter κ in the K80 and HKY85 models is equivalent to α/β in the notation of 
Kimura (1980) and Hasegawa et al. (1985).  The present notation is more convenient in 
a maximum likelihood analysis as the ratio is assumed to be constant for different 
branches of the tree. F84 is the model implemented in J. Felsenstein's DNAML 
program. The rate matrix for this model was given by Hasegawa and Kishino (1989), 
Kishino and Hasegawa (1989), Yang (1994b, 1994c) and Tateno et al. (1994).  Thorne et 
al. (1992) described the transition probability matrix, and Yang (1994c) and Tateno et 
al. (1994) derived formulae for estimating sequence distances under the model.  REV is 
the general time-reversible process model (also known as GTR; Yang, 1994a; see also 
Tavare, 1986; Zharkikh, 1994).  It is used in baseml only.  It seems sufficiently general 
to enable accurate estimation of the substitution pattern from real data. See Gillespie 
(1986), Tavare (1986), Rodriguez et al. (1990), Yang (1994a), and Zharkikh (1994) for 
reviews of substitution models.  

Unfortunately there are a few different definitions of the “transition/transversion rate 
ratio”.  The worst is the ratio of the observed numbers of transitional and 
transversional differences between two sequences, without correcting for multiple 
hits, also known as P/Q in Kimura’s (1980) notation (see, e.g., Wakeley 1994).  The 
measure used in baseml is κ as specified in the above formulas for K80 or HKY95.  In 
Kimura’s (1980) notation, κ = α/β.  A third measure (R) is the ratio averaged over base 
frequencies; this is the ratio of the expected number of transitions to the expected 
number of transversions if one observes the substitution process over time.  In 
Kimura’s (2000) notation, R = α/(2β).  PHYLIP and PAUP* use R and name it the 
“transition/transversion rate ratio”, while referred to κ as the 
“transition/transversion rate parameter”.  For a general substitution model Q = {qij}, κ 
and R are related by the formula 

 R = (πTqTC+ πCqCT+πAqAG+πGqGA)/(πTqTA + πTqTG + πCqCA + πCqCG + πAqAT + πAqAC + πGqGT + 
πGqGC). 
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Special examples are listed in the following table.  

Model Average transition/transversion rate ratio (R) 

JC69 ½ 
K80 κ/2 
F81 (πTπC + πAπG)/(πYπR) 
F84 [πTπC(1 + κ/πY) + πAπG(1 + κ/πR)] / (πYπR) 
HKY85 (πTπC + πAπG)κ/(πYπR) 
TN93 (πTπCκ1 + πAπGκ2)/(πYπR) 
REV (GTR) (πTπCa + πAπG)/(πTπAb + πTπGc + πCπAd + πCπGe) 

 

The case of no transition-transversion bias is represented by κ = 1 and R = ½ under 
K80; κ = 1 and R = (πTπC + πAπG)/(πYπR) under HKY85; and κ = 0 and R = (πTπC + 
πAπG)/(πYπR) under F84. 

Codon substitution models 
The model of Goldman and Yang (1994) specifies the probability of substitution 
between the sense codons, by using the matrix of amino acid distances of Grantham 
(1974). The model does not seem to fit real data well, however, and the user is advised 
to use the following simpler version, which is equivalent to use equal distances for 
any pair of amino acids. The substitution rate from codon i to codon j is given as 
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The equilibrium frequency of codon j (πj) can be considered a free parameter, but can 
also be calculated from the nucleotide frequencies at the three codon positions (control 
variable CodonFreq).  Under this model, the relationship holds that ω = dN/dS, the 
ratio of nonsynonymous/synonymous substitution rates. This model forms the basis 
for more sophisticated models implemented in codeml, such as those that allow the ω 
ratio to vary among branches in the phylogeny (Yang 1998; Yang and Nielsen 1998) 
implemented through the variable model, and those that allow the ω ratio to vary 
among sites (among codons or amino acids in the protein), implemented through the 
variable Nssites. 

Amino acid substitution models 
“Empirical” models based on the Dayhoff substitution matrix (model = 2) or its 
updated version of Jones et al. (1992) are constructed using the same strategy. The 
transition probability matrix over a very short time period such as one PAM, i.e., 
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P(0.01), is used to approximate the matrix of instantaneous rates (Q). The empirical 
matrices of Dayhoff et al. (1978) and Jones et al. (1992) were made to satisfy the 
reversibility condition, that is, 

 πiqij = πjqji 

for any i and j, so that my implementations may be slightly different from that of 
Kishino et al. (1990). These models assume a fixed pattern of amino acid substitution. 
The package also include an empirical model for globular proteins, the WAG model of 
Whelan and Goldman (in press) which is given by the file wag.dat, and  two similar 
empirical models for mitochondrial proteins. The first of these is given by the file 
mtREV24.dat and is the mtREV24 model of Adachi and Hasegawa (1996a, b) 
estimated from a diverse range of species including mammals, chicken, frog, fish, and 
lamprey. The matrix was estimated by maximum likelihood from real data. The 
second is given by the file mtmam.dat and is estimated from 20 mammalian species 
using maximum likelihood under the REV model with variable rates among sites 
(Yang et al. 1998). You can check those files for more details, or if you want to supply 
your own empirical matrix. 

"Mechanistic" models of amino acid substitution requires consideration of both the 
mutational distance between the amino acids as determined by the locations of their 
encoding codons in the genetic code table, and the effects that the potential change 
may have on the structure and function of the protein, which may be related to the 
physical, chemical and structural differences between amino acids. It seems natural 
that such a model should be formulated at the level of codons. The program aaml 
implements a few such models, specified by the variable aaDist. 

Models of variable substitution rates across site (see Yang 1996b for review) are 
implemented for both nucleotide (baseml) and amino acid (aaml) sequences.  
Although the option variables such as fix_alpha and alpha are also available for 
codon models (codonml) , the gamma model for codons is unrealistic as it applies the 
same gamma rate to both synonymous and nonsynonymous substitutions, with their 
rate ratio held constant among sites.  You are recommended to use the Nssites 
models instead, which assume homogeneous synonymous rates but variable 
nonsynonymous rates. 

Models for combined analyses of heterogeneous data (multiple 
genes or codon positions) 

For nucleotides (baseml) 

Several models are described by Yang (1996a) and implemented in programs baseml 
and codeml (codonml and aaml) for analyzing heterogeneous data sets (such as 
those of multiple genes or different codon positions). The implementation and 
description below refer to the case of multiple genes, but in the case of nucleotide-
based models (baseml), the method can be used to analysed data of different codon 
positions. These models account for different aspects of heterogeneity among the 
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different data sets and are useful for testing hypotheses concerning the similarities 
and differences in the evolutionary process of different data sets.  

The simplest model which assumes complete homogeneity among genes can be fitted 
by concatenating different genes into one sequence without using the option G (and 
by specifying Mgene = 0 in the control file). The most general model is equavilent to a 
separate analysis. This can be done by fitting the same model to each data set (each 
gene), but can also be done by specifying Mgene = 1 with the option G in the 
combined data file. The sum of the log-likelihood values over different genes is then 
the log likelihood of the most general model considered here. Models accounting for 
some aspects of the heterogeneity of multiple genes are fitted by specifying Mgene in 
combination with the option G in the sequence data file. Mgene = 0 means a model 
that asumes different substitution rates but the same pattern of nucleotide substitution 
for different genes. Mgene = 2 means different frequency parameters for different 
genes but the same rate ratio parameters (κ in the K80, F84, HKY85 models or the rate 
parameters in the TN93 and REV models). Mgene = 3 means different rate ratio 
parameters and the same frequency parameters. Mgene = 4 means both different rate 
ratio parameters and different frequency parameters for different genes. Parameters 
and assumptions made in these models are summarized in the following table, with 
the HKY85 model used as an example. When substitution rates are assumed to vary 
from site to site, the control variable Malpha specifies whether one gamma 
distribution will be applied across all sites (Malpha = 0) or a different gamma 
distribution is used for each gene (or codon position).  

Sequence file  Control file  Parameters across genes 
No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same k and p, but different cs (proportional branch 

lengths) 
Option G  Mgene = 2  the same k, but different ps and cs 
Option G  Mgene = 3  the same p, but different ks and cs 
Option G  Mgene = 4  different k , ps, and cs 
Option G  Mgene = 1  different k, ps, and different (unproportional) branch 

lengths 
 

The different cs for different genes mean that branch lengths estimated for different 
genes are proportional. Parameters π represent the equilibrium nucleotide frequencies, 
which are estimated using the observed frequencies (nhomo = 0). The 
transition/transversion rate ratio κ in HKY85 can be replaced by the two or five rate 
ratio parameters under the TN93 or REV models, respectively. The likelihood ratio test 
can be used to compare these models, using an approach called the analysis of 
deviance, which is very similar to the more familiar analysis of variance.  
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For codons and amino acids (codeml) 

For codons (see Yang 1996 JME; Yang and Swanson 2002) 

Sequence file  Control file Parameters across genes 

No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same (k, w) and p, but different cs 

(proportional branch lengths) 
Option G  Mgene = 2  the same (k, w), but different ps and cs 
Option G  Mgene = 3  the same p , but different (k, w) and cs 
Option G  Mgene = 4  different (k, w), ps, and cs 
Option G  Mgene = 1  separate analysis 

 

For amino acids (see Yang 1996 JME for nucleotides) 

Sequence file  Control file Parameters across genes 

No G  Mgene = 0  everything equal 
Option G  Mgene = 0  the same p, but different cs (proportional 

branch lengths) 
Option G  Mgene = 2  different ps and cs 
Option G  Mgene = 1  separate analysis 

 

Global and local clocks, and dated sequences 
PAML (baseml and codeml) implements three ML models regarding rate constancy 
among lineages.  clock = 0 means no clock and each branch has an independent rate.  
For a binary tree with n species (sequences), this model has (2n – 3) parameters 
(branch lengths).  clock = 1 means the global clock, and all branches have the same 
rate.  This model has (n – 1) parameters corresponding to the (n – 1) internal nodes in 
the binary tree.  So a test of the molecular clock assumption, which compares those 
two models, should have d.f. = n – 2. 

Between those two extremes are the local clock models, specified by clock = 2 (Yoder 
and Yang 2000), which assume that branches in the phylogeny conform with the clock 
assumption and has the default rate (r0 = 1) except for several pre-defined branches, 
which have different rates.  Rates for branches are specified using branch labels in the 
tree file, and, if they are not, can be inputted from the keyboard.  For example, the tree 
(((1,2) #1, 3), 4) specifies rate r1 for the branch ancestral to species 1 and 2 while all 
other branches have the default rate r0, which does not have to be specified.  The user 
need to specify which branch has which rate, and the program estimates the unknown 
rates (such as r1 in the above example; r0 = 1 is the default rate).  You need to be 
careful when specifying rates for branches to make sure that all rates can be estimated 
by the model; if you specify too many rate parameters, especially for branches around 
the root, it may not be possible to estimate all of them and you will have a problem 
with identifiability.  The number of parameters for a binary tree in the local clock 
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model is (n – 1) plus the number of extra rate parameters for branches.  In the above 
tree of 4 species, you have only one extra rate parameter r1, and so the local clock 
model has (n – 1) + 1 = n = 4 parameters.  The no-clock model has 5 parameters while 
the global clock has 3 parameters for that tree. 

The option clock = 3 implements Andrew Rambaut's TipDate models (Rambaut 2000; 
see also the TipDate program web page at 
<http://evolve.zps.ox.ac.uk/software/TipDate/main.html>).  For viral sequences 
determined in different years, a global molecular clock can be fitted to the data with 
the dates of sequence determination used in the likelihood calculation.  I have used 
Andrew's format, which specifies the dates at the end of the sequence names; see 
exampleTipDate.phy, which is the example file in Rambaut's package.  This model 
has one extra parameter (the mutation rate) than the global clock model (clock = 1).  
Thanks to Andrew for help with the implementation.  

Reconstruction of ancestral sequences 
Nucleotides or amino acids of extinct ancestors can be reconstructed using 
information of the present-day sequences. Parsimony reconstructs ancestral character 
states by the criterion that the number of changes along the tree at the site is 
minimized. Algorithms based on this criterion were developed by Fitch (1971) and 
Hartigan (1973), and are implemented in the program pamp.  The likelihood approach 
uses branch lengths and the substitution pattern for ancestral reconstruction. It was 
developed by Yang et al. (1995) and is implemented in baseml for nucleotide 
sequences and in aaml (codeml.c with seqtype = 2) for amino acid sequences. 
Results are collected in the file rst. 

Marginal reconstruction: This approach compares the probabilities of different 
character assignments to an interior node at a site and select the character that has the 
highest posterior probability (eq. 4 in Yang et al. 1995). The algorithm implemented in 
paml works under both the model of a constant rate for all sites and the gamma model 
of rates at sites.  If verbose = 1, the output will include the full probability distribution 
at each node at each site.  

Joint reconstruction: This approach considers the assignment of a set of characters to 
all interior nodes at a site as a reconstruction and select the reconstruction that has the 
highest posterior probability (eq. 2 in Yang et al. 1995).  The implementation in paml 
now is based on the algorithm of Pupko et al. (2000), which gives the best 
reconstruction at each site and its posterior probability.  The algorithm works under 
the model of a constant rate for sites only and does not work for the gamma model.  (It 
works under models for multiple genes or data partitions as well.  My old algorithm 
looks at alternatives (sub-optimal reconstructions) although it is inefficient and may 
miss important reconstructions.  I have taken that algorithm out, as well as the old 
option (RateAncestor = 2) of allowing the user to specify the reconstruction to be 
evaluated.  If you need those options, let me know. 

The marginal and joint approaches use slightly different criteria, and none is better 
than the other.  They are expected to produce very similar results; that is, the most 

http://evolve.zps.ox.ac.uk/software/TipDate/main.html
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probable joint reconstruction for a site should almost always consist of characters that 
are also the best in the marginal reconstruction.  Differences may arise when the 
competing reconstructions have similar probabilities.  Since the marginal 
reconstruction works with models of variable rates among sites, it is recommended for 
data analysis.  

Analysing large data sets and iteration algorithms for parameter 
estimation 
The maximum likelihood method estimates parameters by maximizing the likelihood 
function.  This is multi-dimensional optimisation problem that has to be solved 
numerically (except for the simplest possible case; see Yang 2000).  PAML implements 
two iteration algorithms.  The first one (method = 0) is a general-purpose 
minimization algorithm that deals with upper and lower bounds for parameters but 
not general equality or inequality constraints.  The algorithm requires first derivatives, 
which are calculated using the difference approximation, and accumulates 
information about the curvature (second derivatives) during the iteration using the 
BFGS updating scheme.  At each iteration step, it calculates a search direction, and 
does a one-dimensional search along that direction to determine how far to go.  At the 
new point, the process is repeated, until there is no improvement in the log-likelihood 
value, and changes to the parameters are very small.  The algorithm updates all 
parameters including branch lengths simultaneously. 

Another algorithm (method = 1) works if an independent rate is assumed for each 
branch (clock = 0) (Yang submitted).  This algorithm cycles through two phases.  
Phase I estimates branch lengths with substitution parameters (such as the 
transition/transversion rate ratio κ and the gamma shape parameter α) fixed.  Phase II 
estimates substitution parameters using the BFGS algorithm, mentioned above, with 
branch lengths fixed.  The procedure is repeated until the algorithm converges.  In 
phase I of the algorithm, branch lengths are optimized one at a time.  The advantage 
of the algorithm is that when the likelihood is calculated for different values of one 
single branch length, as is required when that branch length only is optimised, much 
of likelihood calculations on the phylogeny is the same and can be avoided by storing 
intermediate results in the computer memory.  A cycle is completed after all branch 
lengths are optimized.  As estimates of branch lengths are correlated, several cycles 
are needed to achieve convergence of all branch lengths in the tree, that is, to complete 
phase I of the algorithm. 

If branch lengths are the only parameters to be estimated, that is, if substitution 
parameters are fixed, the second algorithm (method = 1) is much more efficient.  Thus 
to perform heuristic tree search using stepwise addition, for example, you are advised 
to fix substitution parameters (such as κ and α).  The second algorithm is also more 
efficient if the data contain many sequences so that the tree has many branch lengths.  

Tip: To get good initial values for large data sets of protein coding DNA sequences, 
you can use baseml.  Add the options characters “GC” at the end of the first line in the 
sequence data file.  Then run the data with baseml.  In the result file generated by 
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baseml (say mlb), look for “branch lengths for codon models” and copy the tree with 
branch lengths into the tree file.  Then run codeml and choose “1: initial values” when 
asked about what to do with the branch lengths in the tree. 

 

Tree search algorithms 
One heuristic tree search algorithm implemented in baseml, codonml and aaml is a 
divisive algorithm, called "star-decomposition" by Adachi and Hasegawa (1996a). The 
algorithm starts from either the star tree (runmode = 2) or a multifurcating tree read 
from the tree structure file (runmode = 1). The algorithm joins two taxa to achieve the 
greatest increase in log-likelihood over the star-like tree. This will reduce the number 
of OTUs by one. The process is repeated to reduce the number of OTUs by one at each 
stage, until no multifurcation exists in the tree. This algorithm works either with or 
without the clock assumption.  The stepwise addition algorithm is implemented with 
the option runmode = 3. Options runmode = 4 or 5 are used for nearest neighbor 
interchanges , with the intial tree determined with  stepwise addition under the 
parsimony criterion (runmode = 4) or read from the tree structure file (runmode = 5). 
The results are self-explanatory.  

Besides the fact that ML calculations are slow, my implementations of these 
algorithms are crude.  If the data set is small (say, with <20 or 30 species), the stepwise 
addition algorithm (runmode = 3) appears usable.  Choose clock = 0, and method = 
1 to use the algorithm that updates one branch at a time, and fix substitution 
parameters in the model (such as κ and α) so that only branch lengths are optimized.  
Parameters κ and α can be fixed in the tree search using fix_kappa and fix_alpha 
in the control files.  Other parameters (such as substitution rates for genes or codon 
positions or site partitions) cannot be fixed this way; they can instead be specified in 
the file of initial values (in.baseml or in.codeml).  Suppose you use a candidate 
tree to estimate branch lengths and substitution parameters with runmode = 0.  You 
can then move the substitution parameters (but not the branch lengths) into the file of 
initial values.  You then change the following variables for tree search: runmode = 3, 
method = 1.  The program will use the substitution parameters as fixed in the tree 
search, and optimizes branch lengths only.  It is important that the substitution 
parameters are in the right order in the file; so copy-and-paste from paml output is 
probably the safest.  It is also important that you do not change the parameter 
specifications in the control file; the control file should indicate that you want to 
estimate the substitution parameters, but when the program detects the file of initial 
values, fixed parameter values are used instead. 

Simulation 
Computer simulation is a widely used approach to evaluating estimation procedures.  
In molecular phylogenetics, there are two major methods for simulating sequence 
data.  The first approach samples data at different sites (nucleotide, amino acid, or 
codon sites) from the multinomial distribution.  Under most models of sequence 
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evolution, data at different sites are independently and identically distributed.  This 
approach thus calculates the probability of observing each site pattern, and then 
sample from sites according to those site pattern probabilities.  The number of 
categories in the multinomial distribution, that is, the number of distinct site patterns, 
is the number of character states raised to the power of the number of sequences.  To 
simulate nucleotide sequences on a tree of 5 species, the multinomial will have 45 = 
1024 categories, and to simulate a pair of codon sequences under the universal code 
(with 61 sense codons), the multinomial will have 612 = 3721 categories.  This 
approach is faster for simulating data sets on small trees but impractical on large trees 
as the number of categories may be too large. 

A second approach is to generates an ancestral sequence for the root of the tree, and 
then “evolve” the sequence along the tree according to the specified substitution 
model and using the specified branch lengths and substitution parameters.  The 
evolver program implements this approach.  The ancestral sequence is generated 
according to the equilibrium distribution of the characters, that is, by sampling 
characters repeatedly according to the equilibrium distribution.  The program then 
evolves the sequence along branches of the tree, according to the transition 
probabilities calculated for each branch.  For site-heterogeneous models, the 
substitution pattern may be different from site to site and the different sites may have 
different transition probabilities.   See, for example, Huelsenbeck (1995) and Yang 
(1996c), for more details.   

Tips: 

1. For analyzing multiple simulated data sets, it is advisable that you copy the tree 
topology from the Mcbase.dat or Mcaa.dat file into the tree file for baseml or codeml.  
Then when you run baseml or codeml, the program will ask you what to do about the 
branch lengths in the tree topology and you choose “using them as initial values”.  
This should speed up the iteration since the true parameter values should be good 
initial values.  

2. A good test of the simulation as well as the analysis program is to use a small tree to 
simulate a large data set of very long sequences (say 1 million nucleotides or amino 
acids) and then use baseml or codeml to analyse the data to see whether you get 
estimates very close to the true values.  As ML is consistent, it should return the 
correct values with infinitely long sequences. 

3. Programs baseml and codeml output one line of results for each data set in a file 
named rst1.  The output typically includes the log likelihood, the estimated 
substitution parameters but not branch lengths.  If you can modify the source codes, 
you can go into baseml.c or codeml.c and search for frst1, and add or remove output.  
However, this may require familiarity with the program, especially about how the 
variables are arranged during the iteration. 
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6  Technical Notes 

This section contains some technical notes for running PAML programs.  Also see the 
FAQs. 

The rub file recording the progress of iteration 
If you use a large value for the variable noisy (say >2), the programs baseml and 
codeml will log output to the screen, indicating the progress of the iteration process, 
i.e., the minimization of the negative log-likelihood. They will also print in the rub 
file, the size (norm) of the gradient or search direction (h), the negative log likelihood, 
and the current values of parameters for each round of iteration. A healthy iteration is 
indicated by the decrease of both h and the negative log likelihood, and h is 
particularly sensitive. If you run a complicated model hard to converge or analyzing a 
large data set with hundreds or thousands of sequences, you may switch on the 
output. You can check this file to see whether the algorithm has converged. A typical 
symptom of failure of the algorithm is that estimates of parameters are at the preset 
boundaries, with values like 2.00000, 5.00000. When method = 1, the output in the 
rub file lists the log likelihood and parameter estimates only.  

How to specify initial values 
You may change values of parameters in the control file such as kappa, alpha, omega, 
etc. to start the iteration from different initial values. Initial values for the second and 
later trees are determined by the program, and so you do not have much control in 
this way.  

You can collect initial values into a file called in.baseml if you are running baseml or 
in.codeml if you are running codeml. When this file exists, the program will read 
initial values from it. This may be useful if the iteration is somehow aborted, and then 
you can collect current values of parameters from the file rub into this file of initial 
values, so that the new iteration can have a better start and may converge faster. The 
file of initial values may also be useful if you experience problems with convergence.  
If you have already obtained parameter estimates before and do not want the program 
to re-estimate them and only want to do some analysis base on those estimates such as 
reconstructing ancestral sequences, insert -1 before the initial values.  

The rub file records the iteration process and has one line for each round of iteration. 
Each line lists the current parameter values after the symbol x; you can copy those 
numbers into the file of initial values, and if you like, change one or a few of the 
parameter values too.  

Fine-tuning the iteration algorithm 
The iteration algorithm uses the difference approximation to calculate derivatives. 
This method changes the variable (x) slightly, say by a small number e, and see how 
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the function value changes. One such formula is df/dx = [f(x + e) − f(x)]/e. The small 
number e should be small to allow accurate approximation but should not be too small 
to avoid rounding errors. You can change this value by adding a line in the control 
files baseml.ctl or codeml.ctl  

Small_Diff = 1e-6 

The iteration is rather sensitive to the value of this variable, and reasonable values are 
between 1e-5 and 1e-7. This variable also affects the calculation of the SE's for 
parameters, which are much more difficult to approximate than the first derivatives. If 
the calculated SE's are sensitive to slight change in this variable, they are not reliable.  

If you compile the source codes, you can also change the lower and upper bounds for 
parameters. I have not put these variables into the control files (See below). 

Adjustable variables in the source codes 
This section is relevant only if you compile the source codes yourself.  The maximum 
values of certain variables are listed as constants in uppercase at the beginning of the 
main programs (baseml.c, basemlg.c, codeml.c). These values can be raised 
without increasing the memory requirement by too much. 

 NS: maximum number of sequences (species) 
 LSPNAME: maximum number of characters in a species name 
 NGENE: maximum number of "genes" in data of multiple genes (option G) 
 NCATG: maximum number of rate categories in the (auto-) discrete-gamma model 
(baseml.c, codeml.c) 

 
You can change the value of LSPNAME.  Other variables that may be changed include 
the bounds for parameters, specified at the beginning of the function testx or 
SetxBound in the main programs (baseml.c and codeml.c). For example, these 
variables are defined in the function SetxBound in codeml.c: 

 double tb[]={.0001,9}, rgeneb[]={0.1,99}, rateb[]={1e-4,999}; 
 double alphab[]={0.005,99}, rhob[]={0.01,0.99}, omegab[]={.001,99}; 

 
The pairs of variables specify lower and upper bounds for variables (tb for branch 
lengths, rgeneb for relative rates of genes used in multiple gene analysis, alphab for 
the gamma shape parameter, rhob for the correlation parameter in the auto-discrete-
gamma model, and omegab for the dN/dS ratio in codon based analysis. 

PowerMAC memory allocation problem 
When your data set is large, you may see a message like "oom ", which stands for "out 
of memory". If you think your data set should be manageable by the 
program/computer, you can change the memory that is allowed by the operating 
system for the program to use. If you select the file name and choose "File-Get 
information", you should see a pop up window. You can increase numbers in this 
window.  
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MS Windows version window auto-close 
Run the Windows version from a DOS/Windows command box by typing the 
program names such as baseml.  Do not run the programs by double clicking on the 
file names from Windows 95/98/2000/NT Explorer.  Otherwise, the window will 
close automatically when the programs finish or abort and you won't have the chance 
to see any error messages.  
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