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Abstract

Given n points in three dimensions, we show how to answer halfspace range reporting queries in
O(log n+k) expected time for an output size k. Our data structure can be preprocessed in optimal
O(nlogn) expected time. We apply this result to obtain the first optimal randomized algorithm
for the construction of the (< k)-level in an arrangement of n planes in three dimensions. The
algorithm runs in O(nlogn +nk?) expected time. Our techniques are based on random sampling.
Applications in two dimensions include an improved data structure for “k nearest neighbors”
queries, and an algorithm that constructs the order-k Voronoi diagram in O(nlogn + nklogk)
expected time.
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1 Introduction

1.1 Halfspace range reporting

Let P be a set of n points in d-dimensional space R?. We consider the problem of preprocessing P
so that given any query halfspace vy, one can quickly report all points in P N . A vast literature
in computational geometry has been devoted to this fundamental problem called halfspace range
reporting, a special case of range searching [4, 34, 44, 48, 49]. Here are some of the major known
results.

First, halfspace range reporting in the planar case (d = 2) was solved optimally by Chazelle,
Guibas, and Lee [25]. Their data structure takes linear space and answers a query in O(log n+k) time,
where k is the number of reported points. The preprocessing can be accomplished in O(nlogn) time
using Chazelle’s algorithm for convez layers [19]. Unfortunately, the approach does not generalize to
higher dimensions.
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In the d = 3 case, Chazelle and Preparata [26] gave a method for answering halfspace range
reporting queries in optimal time O(logn + k). The space complexity is O(nlog® nloglogn), as
noted by Clarkson and Shor [29]. The preprocessing is O(n polylog n) and uses construction of shallow
levels in arrangements (see Section 1.2). Aggarwal, Hansen, and Leighton [10] subsequently improved
the space bound to O(nlogn) while maintaining optimal query time. However, the preprocessing
becomes more complex, exploiting advanced techniques such as planar separators; a deterministic
version requires near-cubic time, while a Monte Carlo version needs O(nlog®nloglogn) time. In
particular, it remained open whether O(nlogn) preprocessing time is attainable. If one is willing to
sacrifice optimality in the query bound, then a simple method [22] involving a tree of planar point
location structures solves the problem with O(k log? n) query time and O(nlogn) preprocessing time
and space.

For a larger fixed dimension d > 4, Clarkson and Shor [29] used shallow cuttings to achieve
O(logn + k) query time with O(n!%?/+) preprocessing time and space, where ¢ is an arbitrarily
small positive constant. Matousek [43] obtained a certain partition theorem that implies a data
structure with O(nlogn) preprocessing time, O(nloglogn) space, and O(n'~1/19/2] polylogn + k)
query time. (This method can be specialized to handle the d = 3 case; the query time appears to be
O((logn)CUogloen) 1 k) ) Tradeoffs between preprocessing and query time were also described by Ma-
tousek. These higher-dimensional results were conjectured to be optimal up to n® or polylogarithmic
factors.

The first result of this paper is to close the existing gap for halfspace range reporting for the
case d = 3. In Section 2, we give a relatively simple, randomized (Las Vegas) method that can
answer queries in O(logn + k) expected time. This data structure requires O(nlogn) space and can
be preprocessed in O(nlogn) expected time. The expectation here is with respect to the random
choices made by the preprocessing; it is assumed that the given query halfspaces are independent of
these choices. Both time bounds on preprocessing and querying are optimal.

Our approach is to consider random samples of various sizes of the dual planes and examine the
canonical triangulations of their (< 0)-levels. With good chances, it turns out that the answer to a
query with output size k can be found in some conflict list of the triangulation for a sample of size
approximating n/k; the expected size of this list is O(k). The preprocessing of all such conflict lists
is done by imitating a known algorithm for the (< 0)-level (i.e., convex hull in primal space). We
should remark that ideas like random sampling, canonical triangulations, and conflict lists are hardly
new in this area; what is not apparent is how they can be put together to derive the optimal result.
For instance, Clarkson and Shor’s halfspace range reporting structure [29] uses already a top-down
form of random sampling, which seems inherently suboptimal; we avoid such difficulties by adopting
a bottom-up approach instead.

Our result has several important applications. For example, we can now preprocess n points in
the Euclidean plane in O(nlogn) expected time, such that “k nearest neighbors” queries can be
answered in O(logn + k) expected time; this and the related circular range reporting problem are
two of the most basic proximity problems, dating back to the beginning of computational geometry.
For another application, we can enumerate the k bichromatic closest pairs of n planar points in
O(nlogn + k) expected time. See Section 2.3. One less obvious application—the construction of
levels in arrangements is the second main topic of this paper.



1.2 Levels in arrangements

Given a set H of n hyperplanes in d-dimensional space R? and 0 < k < n, define the region
levi(H) = {q € R?:at most k hyperplanes of H pass strictly below ¢}.

The (< k)-level in the arrangement of H is the collection of faces in the arrangement that are
contained in levy(H). The related notion of the k-level can be defined as the collection of faces
contained in the boundary of levyg(H). Levels in arrangements are among the most well-studied, yet
most puzzling, geometric structures in both their combinatorial and computational aspects [8, 34,
39, 48].

Our initial focus is on (< k)-levels. The main combinatorial question here was answered by
Clarkson and Shor [29], who showed via a beautiful random sampling argument that the (< k)-level
in a fixed dimension d can have at most O(nl%2 k[?/21) faces. This bound is tight in the worst case.
The computational complexity of (< k)-levels was also essentially resolved for d = 2 and d > 4.
Everett, Robert, and van Kreveld [38] gave an O(nlogn + nk)-time algorithm in the plane (see
also [12]). Mulmuley [47] gave a randomized algorithm for dimensions four and higher with expected
running time O(nl%2/k%/21) These two results are optimal in view of Clarkson and Shor’s bound
and the trivial Q(nlogn) lower bound.

The important case d = 3 however remains an open problem, even though a number of algorithms
have been developed. A randomized algorithm of Mulmuley [47] for instance runs in expected
time O(nk?log(n/k)), which is just a logarithmic factor away from optimal. Agarwal, de Berg,
Matousek, and Schwarzkopf [2] proposed a different randomized algorithm with expected running
time O(n log® n+nk?), which is optimal for sufficiently large k. In Section 3, we settle the complexity
of the three-dimensional case completely by giving a randomized algorithm with an O(n logn + nk?)
expected time bound; this is optimal for all values of k. Before, this time bound is known only for
the special case where the input planes are non-redundant, i.e., they all bound the (< 0)-level [9, 47].

Our approach deviates from the previous algorithms of Mulmuley and Agarwal et al. in that it
does not follow the randomized incremental paradigm [29, 48]. Instead, the idea (at a high level)
is to choose a random sample of size n/k and use the canonical triangulation of its arrangement to
divide the problem into roughly O(n/k) subproblems of average size O(k). These subproblems are
created from conflict lists computable by halfspace range reporting and are then solved by brute
force in O(k?) average time. The analysis of our algorithm is based on a shallow cutting lemma of
Matousek.

A similar approach can be taken to compute the k-level, although optimality is not yet attained
for this problem. First of all, the combinatorial problem of determining the worst-case size of the k-
level is wide open (the dual is related to the famous k-set problem [8, 11, 34]). Significant development
occurred recently in the planar case d = 2 when Dey [31] improved the long-standing upper bound
of (roughly) O(nvk) to O(nk'/?), but the current best lower bound remains Q(nlogk) [37]. For
d = 3, the most recent upper bound is O(nk®?) [1, 32]. For higher dimensions, the current upper
bound is only slightly better than the O(nl%/2/E[4/21) bound for the larger (< k)-level. There is
a case where the exact complexity of the k-level is known: if d = 3 and all input planes are non-
redundant, then the k-level has size ©(nk) for k < n/2 [29, 41]. The k-level in this case is related to
the order-k Voronoi diagram of n points in the Fuclidean plane—a natural extension to one of the
most fundamental and useful geometric structures, the Voronoi diagram.



Some of the algorithmic results obtained by Agarwal et al. [2] on the k-level can be improved
by our techniques. Specifically, their expected time bound of O(nlog®n + nk'/? 10g2/3 n) for the
construction of k-levels in the plane can be reduced to O(nlogn+nk'/3 logQ/3 k). Furthermore, their
O(nlog® n 4 nklogn) algorithm for order-k Voronoi diagrams in the plane can be sped up to run in
O(nlogn + nklogk) expected time. These results are described in Section 3.3.

2 Halfspace Range Reporting in R?

2.1 Preliminaries

Let H be a given set of n (nonvertical) hyperplanes in R¢. For simplicity, we assume that they are in
general position; standard perturbation techniques can be applied to remove this assumption. The
halfspace range reporting problem by duality [34, 48] is equivalent to the following: preprocess H so
that given a query point ¢, one can quickly report all hyperplanes of H below ¢q. We will actually
solve a slightly harder problem: preprocess H so that given a query vertical line ¢ and a number k,
one can quickly report the k lowest hyperplanes along ¢ (i.e., hyperplanes defining the &k lowest
intersections with #). The connection between halfspace range reporting queries and such “k lowest
hyperplanes” queries will be explained later.

Given a subset R C H, the (< 0)-level in the arrangement of R (also called the lower envelope
of R) is a convex polyhedron. Computing this polyhedron is equivalent to constructing the convex
hull [34, 48, 49] by duality. For d = 3, several O(|R|log |R|)-time algorithms are known, among the
simplest of which are based on the randomized incremental paradigm.

Let CTy(R) denote the collection of (closed) full-dimensional simplices in the canonical trian-
gulation of the (< 0)-level, as defined for instance by Clarkson [28] (also called the bottom-vertex
triangulation). The precise definition of this triangulation is not important to us except in the
proof of the sampling lemma below. The only facts we need is that the triangulation is linear-
time constructible and that the simplices in CTy(R) are all vertical cylinders containing the point
0,...,0, —00).

Thus, a vertical line £ hits precisely one simplex A in CTy(R), if one ignores degenerate cases. For
d = 3, this simplex A can be identified in O(log |R|) time after an O(|R|log |R|)-time preprocessing,
as the problem projects down to planar point location [34, 49].

Given a simplex A, the conflict list Ha is defined as the set of all hyperplanes of H intersecting A.
The following two sampling results are needed in the analysis of our data structure. Both follow from
the general probabilistic technique by Clarkson and Shor [29]. (The first is often used in analyses of
randomized convex hull algorithms.)

Lemma 2.1 Let 1 <r <n and consider a random sample R C H of size r.
(i) The expected value of the sum Y. |Ha| over all simplices A € CTy(R) is O(rl9? .n/r).

(ii) For any fized vertical line £, the expected value of Ha for the simplex A € CTo(R) hit by £ is
O(n/r).



2.2 The data structure for d = 3

We take a common approach called bottom-up sampling by Mulmuley [48]. Choose a random per-
mutation hq,...,h, of the set H. Define R; = {hy,...,hyi} for i = 0,1,...,logn (without loss of
generality, say n is a power of 2; logarithms are in base 2). The result is a sequence (“hierarchy”) of
random samples

RyCc Ry C--- CR]Ogn:H,

where |R;| = 2°. Our basic data structure is simple: it consists of location structures for CT¢(R;),
along with the conflict list Ha for all the simplices A € CT((R;). For each R;, the space needed is
O(XAccmo(r,) [Hal), which has expected value O(n) by Lemma 2.1(i). The total expected space is
therefore O(nlogn); this bound can be made worst case by standard tricks.

We now describe how to build this data structure efficiently. First the location structures can all
be constructed in time O(Zi(fln \Ri|log|R;|) = O(nlogn). The nontrivial part is the computation of
the conflict lists. It turns out that this can be done by just modifying a known randomized algorithm
for convex hulls in IR®. We consider here Clarkson and Shor’s original method [29], which maintains
global conflict information incrementally. (Note that online methods based on history [48] are not
suitable for our purposes.)

Specifically, at the 2’-th step of the method (in the version described by Mulmuley’s or Motwani
and Raghavan’s text [48, 45]), we not only have all vertices of the (< 0)-level in the arrangement
of R;, but in addition, have for each plane h € H a pointer to some vertex lying above h (if one
exists). By a graph search, we can generate all vertices lying above each h. As a result, we have for
each vertex v a list of all planes of H below v. Given a simplex A € CTy(R;) with vertices vy, vy, v,
the conflict list HA is just the union of the list of planes of H below the v;’s.

Clarkson and Shor’s method runs in O(nlogn) expected time. The extra work done at the
2'-th step to produce the conflict lists is O(X accmo(ry) [Hal), which has expected value O(n) by
Lemma 2.1(i). Hence, the whole preprocessing of our data structure can be performed in O(nlogn)
expected time.

We now describe the basic query algorithm. Given vertical line £ and number k£ as input param-
eters, the algorithm is usually able to find the k£ lowest planes of H along ¢ but occasionally may
report failure instead. The probability of failure is controlled by a third input parameter § > 0.

Algorithm ANSWER-QUERY(/, k, J)

let i = [log [nd/k]]

identify the simplex A € CTy(R;) cut by £

if [Ha| > k/6% then return “failed”

if fewer than k planes of Ha intersect £ N A then return “failed”
return the £ lowest planes of Ha along /¢

AR .

The algorithm is correct: what is returned in line 5 is precisely the k lowest planes of H along /¢
if failure is not reported in line 4. The running time of ANSWER-QUERY() is O(logn + k/§?), since
line 2 takes O(logn) time by planar point location, and lines 4 and 5 take O(k/62) time if failure is
not reported in line 3. (Line 5 is an instance of what Chazelle referred to as filtering search [20].)
We now bound the failure probability for any fixed choice of £, k, and 6. By Lemma 2.1(ii), the
expected value of Ha is O(n/|R;|) = O(k/J), so by Markov’s inequality, the probability that Ha



exceeds k/6% is O(d). Thus, line 3 reports failure with probability O(J). On the other hand, letting

q denote the k-th lowest intersection of H along /, we see that line 4 reports failure only if ¢ € A,

or equivalently, ¢ ¢ levg(R;). This is true only if one of the k planes below ¢ is chosen to be in the

sample R;. As ¢ is independent of R;, this can happen with probability at most k|R;|/n = O(J).
We can summarize our result as follows:

Theorem 2.2 In O(nlogn) expected time, one can preprocess n planes in R? into a randomized
data structure of O(nlogn) size, such that there is a procedure with the following behavior. Given any
fized vertical line £, number k, and § > 0, the procedure either reports the k lowest planes along ¢ or
reports failure. The probability of failure is O(J), but the procedure always runs within O(logn+k/é?)
time.

2.3 Consequences

It is desirable to modify the data structure to have a query algorithm that never fails. This modi-
fication can be done in two stages. First we observe that having three independent versions of the
basic data structure can reduce the failure probability to O(6®) in Theorem 2.2:

Corollary 2.3 In O(nlogn) expected time, one can preprocess n planes in R? into a randomized
data structure of O(nlogn) size, such that there is a procedure satisfying the criteria stated in The-
orem 2.2 but with failure probability O(5%).

Next we apply the basic query algorithm on a sequence of choices for the parameter ¢ in order
to guarantee success.

Corollary 2.4 In O(nlogn) expected time, one can preprocess n planes in R? into a randomized
data structure of O(nlogn) size, such that any “k lowest planes” query can be answered in O(log n+k)
expected time.

Proof: Let §; = 27°. Run the procedure of Corollary 2.3 for § = 61, 0o, ... until it succeeds. Let X;
denote the 0-1 random variable with value 1 when the procedure fails for § = §;. The total running
time is bounded asymptotically by

(logn +k/67) + > (logn+k/67) Xi_1,
i>1

which has expected value O(Y;5;(logn + k/62) 83 ) = O(logn + k). |

We still have to explain how halfspace range reporting queries reduces to “k lowest planes”
queries. This can be done by a standard technique of “guessing” the parameter k.

Corollary 2.5 In O(nlogn) expected time, one can preprocess m points in R? into a randomized
data structure of O(nlogn) size, such that a halfspace range reporting query can be answered in
O(logn + k) expected time, where k is the number of points reported.



Proof: Recall that a halfspace range reporting query in dual space corresponds to finding all k
planes below a given point ¢; the value of k is not known in advance. Let k; = 2¢logn and £ be the
vertical line at ¢q. This task can be accomplished by searching for the k;-th lowest plane along ¢ for
1= 1,2, ... until such a plane lies above ¢; then we simply examine the k; lowest planes along ¢ and
report those that are actually below g. The expected running time is asymptotically bounded by

(logn + ki) + Z (logn +k;) = O(logn + k),
ki—1<k

because of Corollary 2.4. O
Remarks:

1. While the preprocessing and query time are optimal, they are only expected bounds; further-
more, the space complexity can be improved. Using advanced tools and a larger preprocessing
time, Appendix A.3 gives a modification of our data structure that is deterministic and uses
only O(nloglogn) space.

2. It is worthwhile to compare Chazelle, Guibas, and Lee’s optimal method [25] with the special-
ization of our method in two dimensions. Ours seems easier to implement as convex layers are
not involved.

3. Higher-dimensional extensions are possible, although we do not see any significant improve-
ments.

By a standard lifting map, Corollaries 2.4 and 2.5 imply a new method for “k nearest neighbors”
and circular range reporting queries [10, 16, 22, 34, 48, 49, 50] in the Euclidean plane:

Corollary 2.6 In O(nlogn) expected time, one can preprocess n point sites in R? into a randomized
data structure of O(nlogn) size, such that the k closest (or farthest) sites of a given point can be
found in O(logn + k) expected time.

Corollary 2.7 In O(nlogn) expected time, one can preprocess n point sites in R? into a randomized
data structure of O(nlogn) size, such that all k sites inside (or outside) a given circle can be reported
in O(logn + k) ezpected time.

Another proximity application in the Euclidean plane is an optimal randomized algorithm for
enumerating the k bichromatic closest pairs [40]. The author [18] gave a randomized reduction of
this problem to a reporting problem, which in turn reduces to answering n offline halfspace range
reporting queries in IR?, where the total output size is k.

Corollary 2.8 Given n-point sets P and Q in R?, one can enumerate the k closest (or farthest)
pairs from P x @Q (not necessarily in sorted order) in expected time O(nlogn + k).



3 (< k)-Levels in R?

3.1 Preliminaries

Let H be a given set of n hyperplanes in R? in general position. Our goal in this section is to
construct the facial structure of the (< k)-level in the arrangement of H. As before, the key concept
is the canonical triangulation. Given a subset R C H, define CT(R) to be the collection of full-
dimensional simplices in the canonical triangulation of the faces in the arrangement of R. Define
CTk(R) similarly for the faces of the (< k)-level in the arrangement of R.

It is somewhat more involved to compute conflict lists for simplices arising from the construction
of (< k)-levels, e.g., the simplices are not necessarily vertical cylinders now. For this reason, we
define A* = conv(A U {(0,...,0,—00)}), the vertical extension of a simplex A. For d = 3, the
extended conflict list Ha- can be computed in O(logn + |Ha-
preprocessing by Corollary 2.5: listing all planes of H below a given point reduces to halfspace range

) expected time after O(n logn)-time

reporting, and if v, ..., v4 denote the vertices of A, then Ha~ is just the union of the lists of planes
of H below the v;’s.

One other important definition is the following: a simplex A is relevant if it intersects the region
levi(H). The sampling lemma below is stated implicitly in the proof of Matousek’s shallow cutting
lemma [43] (see Appendix A.2) and is needed in the analysis of our algorithm. Matousek’s proof
uses probabilistic arguments of Chazelle and Friedman [24]; see Appendix A.1 for more details.

Lemma 3.1 Let 1 <7 <n and q=kr/n+ 1. Let f(n) be a regular function, i.e., a nondecreasing
function satisfying f(2n) = O(f(n)). Consider a random sample R C H of size r. The expected value
of the sum Y f(|HA|) over all relevant simplices A € CT(R) is bounded by O(rl4/?gl4/2] f(n/r)).

3.2 The algorithm for d =3

The basic outline of our (< k)-level algorithm is quite simple: we pick a random sample R C H of size
n/k, generate all relevant simplices of CT(R), compute the (< k)-level within each such simplex A,
and then combine the solutions.

The (< k)-level in the arrangement of H within a relevant simplex A can be constructed by the
following procedure:

Algorithm SOLVE-SUBPROBLEM(A), where A is a relevant simplex

1. compute conflict list Hax
2. construct the (< k)-level in the arrangement of Ha~
3. clip the resulting faces to A

The correctness of the procedure is easy to see (as levy(H) N A = leviy(Ha~) N A). Line 1 takes
O(logn+ |Ha~|) expected time, whereas lines 2 and 3 take O(|Ha~
construct the entire arrangement of Ha- [35] and extract the desired substructure. Since A is
by k+|Ha|. Therefore, SOLVE-SUBPROBLEM(A) runs in expected time

%) time by a brute force method:

relevant, we can bound |H -
O(logn + (k + |HAl)?).

We now describe how to generate all relevant simplices of CT(R). Observe that any relevant
simplex of CT(R) must belong to CTy(R) (since leviy(H) C levg(R)). Assume that CTg(R) is




available. To generate all relevant simplices of CTy(R), we perform a graph search. Say that two
simplices of CT(R) are adjacent if they share a common facet. Notice that a simplex can be adjacent
to at most four other simplices in CT;(R). Consider the following procedure:

Algorithm GENERATE-SUBPROBLEMS(A), where A € CT(R)
mark A

SOLVE-SUBPROBLEM(A)

for each unmarked simplex A’ adjacent to A do
let ¢ be the facet shared by A and A’
if ¢ intersects levy(H) then GENERATE-SUBPROBLEMS(A)

Crk =

The test in line 5 can be easily accomplished from the information obtained from line 2. An initial
relevant simplex Ay € CT(R) is easy to find (e.g., pick any simplex from CTy(R)). If all simplices are
initially unmarked and GENERATE-SUBPROBLEMS(4 ) is called, then all relevant simplices of CTy(R)
(and thus of CT(R)) will be marked because the region levy(H) is connected.

Combining the solutions is straightforward. We just take all the output from line 2 of
GENERATE-SUBPROBLEMS() in this process and “stitch” these substructures together to get the com-
plete (< k)-level in the arrangement of H. (The implementation details of stitching are not entirely
trivial though; for example, one needs to match features along common facets between simplices.
Standard techniques like radix sorting can do all this in linear time.)

Excluding the O(nlogn) preprocessing time, the expected time bound for the calls to
GENERATE-SUBPROBLEMS() is

O (Z(logn +(k+ HA)?’)) :

A

where the sum is taken over all relevant simplices A of CT(R). Lemma 3.1 tells us that the expec-
tation of the above expression with respect to R for a sample size r = n/k is

O((n/k)(logn + E*)) = O(nlogn + nk?).

For the final piece of the algorithm, we still have to explain how CTg(R) is obtained in the first
place. This can be done by recursively constructing the (< k)-level in the arrangement of R. The
total expected running time of our algorithm is then given by the recurrence

Tp(n) = Ti(n/k) + O(nlogn + nk?),
which solves to Ty (n) = O(nlogn + nk?), assuming (without loss of generality) that k& > 2.

Theorem 3.2 The (< k)-level in an arrangement of n planes in R? can be constructed in O(nlog n+
nk?) expected time.

Remarks:

1. Although our algorithm is optimal for worst-case output, the running time is not the best
possible if the (< k)-level has size smaller than ©(nk?). It remains open to devise an optimal
output-sensitive algorithm [6, 17, 46].



2. Derandomization seems to require modification to our algorithm because the sample size is
quite large. Appendix A.2 sketches an optimal deterministic method for (< k)-levels for large k
(specifically, logk = Q(logn)). This method works in any fixed dimension but uses advanced
tools.

3. Specialization to d = 2 yields a new algorithm for (< k)-levels in the plane with expected
running time O(nlogn + nk).

3.3 Application to k-levels

The algorithm can be modified to construct the k-level in the arrangement of H for d = 3. To get
good results, we need to have available an algorithm for constructing the k-level in subcubic time,
say O(f(n)) time (randomized or deterministic).

We will make SOLVE-SUBPROBLEM(A) output the faces of the k-level clipped to A. This can be
)) time.
)) time, since

done by changing line 2 to construct just the k-level in the arrangement of Ha- in O(f(|Ha~
In GENERATE-SUBPROBLEMS(A), the test in line 5 can also be performed in O(f(|Ha-
it is equivalent to deciding whether ¢ intersects the region beneath the k-level in the arrangement
of HA* .

Thus, ignoring the O(nlogn) preprocessing, the expected time to construct the complete k-level

is
0 (Z(logn +f(k+ |HA))> ,
A
where the sum is taken over all relevant simplices A of CT(R). By Lemma 3.1, the expectation with
respect to R for a sample size 7 = n/k and a regular function f is O((n/k)(logn + f(k))).

Note that the recursive call to compute CTy(R) is not needed now: by Theorem 3.2, the (< k)-
level in the arrangement of R can be constructed in expected time O((n/k)log(n/k) + (n/k)k?).
Since f(k) = Q(k?), the overall complexity is O(nlogn + (n/k)f(k)).

The same strategy applies to k-levels in dimension d = 2. We therefore have shown:

Theorem 3.3 Let H be a class of lines in R? or planes in R3. Suppose that any single level in the
arrangement of any set H C H of size n can be computed in O(f(n)) expected time, where f(n) is a
reqular function. Then the k-level can be constructed in O(nlogn + (n/k)f(k)) expected time.

Specifically, Agarwal, de Berg, Matousek, and Schwarzkopf [2] have obtained the following bounds

2/3 n; and for planes in R?

via randomized incremental construction: for lines in R2, f(n) = n*/3log
that are tangent to the unit paraboloid, f(n) = n?logn. The first case takes into account Dey’s recent
combinatorial bound on the k-level (or more precisely, on the O(logn) consecutive levels below the
k-level). The second case occurs in the construction of order-k Voronoi diagrams [13, 34, 48, 49, 50]
in the Fuclidean plane by the standard lifting map; see Table 1 for some previous algorithms. For
arbitrary planes in R?, we have f(n) = O(n®?3*+) by an algorithm of Agarwal and Matousek [6]

(with the known combinatorial bound [32]). Hence, Theorem 3.3 implies:

Corollary 3.4 The k-level in an arrangement of n lines in IR? can be constructed in expected time
O(nlogn + nk'/31og?3 k).
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1986 | O(nk+/nlogn) Edelsbrunner [33]

1987 | O(n? 4+ nklog®n) Chazelle and Edelsbrunner [23]

1987 | O(n'*%k) rand. Clarkson [27]

1989 | O(nlogn + nk?)* Aggarwal, Guibas, Saxe, and Shor [9]
1991 | O(nlogn + nk?)* rand. Mulmuley [47]

1992 | O(nklog*n + nk?) rand. online | Aurenhammer and Schwarzkopf [14]
1993 | O(nlogn + nk?)* rand. online | Boissonnat, Devillers, and Teillaud [15]
1995 | O(n'*%k) Agarwal and Matousek [6]

1998 | O(nlog® n + nklogn) rand. Agarwal, de Berg, Matousek, and Schwarzkopf [2]
now | O(nlogn + nklogk) rand. this paper

Table 1: History of algorithms for the order-k Voronoi diagram in R? (k < n/2). Year refers to date
of journal publication. (Bounds marked * actually apply to all diagrams of order 1 to k.)

Corollary 3.5 The order-k Voronoi diagram of n point sites in R? i.e., the planar subdivision
where two points belong to the same region iff they have the same set of k closest (or farthest)
sites—can be constructed in expected time O(nlogn + nklogk).

Corollary 3.6 The k-level in an arrangement of n planes in R? can be constructed in expected time
O(nlogn + nk>/3+e).

Remarks:

1. Theorem 3.3 can be viewed as an algorithmic version of a combinatorial result of Agarwal,
Aronov, Chan, and Sharir [1], who showed basically that if any single level in IR? or R? has
worst-case complexity O(f(n)), then the k-level has compexity O((n/k)f(k)).

2. Corollary 3.4 compares favorably with an output-sensitive algorithm of Edelsbrunner and
Welzl [36], which runs in time O(nlogn + flog?n) for an f-face output. Only slight im-
provements of this algorithm were known: Cole, Sharir, and Yap [30] discussed how to reduce
the second term to O((n + f)log? k) and the author [17] showed how to reduce the first term
to O(nlog f).

3. Corollary 3.5 is currently the best result for the construction of a single order-£ Voronoi diagram
in the plane. It is optimal for k = O(logn/loglogn). If f(n) can be improved to O(n?), then
Theorem 3.3 would imply a randomized algorithm running in optimal O(n log n+ nk) expected
time for any k& < n/2.

4. It is interesting to note that while in the past, levels in arrangements have been used to solve
the halfspace range reporting problem, we have taken just the reverse approach, using halfspace
range reporting to construct levels. Is there a more direct way to construct levels with the same
efficiency?
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A Appendix

A.1 Proof sketch of Lemma 3.1

As Lemma 3.1 is the key in proving the optimality of our randomized (< k)-level algorithm, a proof
sketch of the lemma may be appropriate to give the reader an idea why the probabilistic bound holds.
As mentioned earlier, the details of the proof are essentially embedded in the paper by Matousek [43].
We highlight the main points here in somewhat different notation.

First the following definition is helpful: we say that a simplex A is j-good if it is contained inside
the region lev;(H). An immediate observation is that any relevant simplex A is (k 4+ |Hal|)-good.
It turns out that bounding the number of j-good simplices is easier than bounding the number of
relevant simplices:

The expected number of j-good simplices A € CT(R) is O((r/n)%nld/2 j14/21),

The reason is this: as can be seen from the definition of canonical triangulations, the number of j-
good simplices of CT(R) is linear in the number of vertices of CT(R) that are contained in lev;(H).
We know that lev;(H) has O(nl%/2]j14/21) vertices, and the probability that a fixed vertex in the
arrangement of H appears in the arrangement of R is O((r/n)9).

The second step is to observe that the conflict size |Ha| is usually of the order of n/r. For
instance, arguments by Clarkson and Shor [29] show that the average conflict size is expected to be
O(n/r). We will actually need a stronger result by Chazelle and Friedman [24] (see also [7]), stating
that the number of conflict sizes of the order of tn/r decreases exponentially with ¢. Specifically, one
can prove the following statement from our earlier bound on j-good simplices:

The expected number of j-good simplices A € CT(R) with |[HaA| > (t — 1)n/r is
o(gft(r/n) [d/2] fd/ﬂ)

As a consequence, we can then bound a similar quantity for relevant simplices if we just substitute
k + tn/r for j:

The expected number of relevant simplices A € CT(R) with (t —1)n/r < |Ha| < tn/r is
027t (r/n)*nl4/? (k + tn/r)l4/2]).

Finally, we can bound the expectation of the sum > A f(|Hal|) over all relevant simplices A €
CT(R) asymptotically by
S 2 o n) Wl (k4 tn )12 f(tn/r) = O((r/n)* Y2 (k + n/r)I92 f(n/r)),
t=1

since f is regular. Notice that the above expression is identical to O(r %2 ql4/21 f (n/r)).

A.2 A deterministic algorithm for (< k)-levels in R*

In the second appendix, we briefly consider derandomization of our (< k)-level algorithm in an
arbitrary fixed dimension. An optimal bound is obtained only when k is sufficiently large. The
approach employs a deterministic version of Lemma 3.1, derived by Matousek [43] using tools such
as the method of conditional probabilities and e-approzimations.

12



Lemma A.1 (Matousek’s Shallow Cutting Lemma) Let 1 <r <n and ¢ = kr/n+1. One can cover
levi(H) by a collection of O(r /21 ql4/21) simplices such that |HA| < n/r for each simplex A. Fur-
thermore, the simplices have disjoint interiors. They can be constructed in O(nlogr) time, provided
that r < n® for a sufficiently small constant o > 0 depending on d.

Worst-case efficiency demands us to use small values of r, so we will construct the (< k)-level
by divide-and-conquer: (i) pick r = min{n/k, n®} and find the collection of simplices by the above
lemma; (ii) for each simplex A, compute conflict list Ha-; (iii) construct the (< k)-level in the
arrangement of Ha- by recursion; and (iv) finally combine the solutions by stitching.

Step (ii) requires some explanation. From the discussion of our three-dimensional algorithm,
we see that a conflict list can be computed by answering a constant number of halfspace range

reporting queries. With known results [43], this requires O(n® 4+ |Ha+|) time after O(n logn)-time
preprocessing, for a constant 5~ 1 — 1/|d/2]. Notice that if | Ha+| exceeds k + |Ha| the simplex A
is not relevant and need not be considered in step (iii). So, we can ensure that a query runs within
time O(n® + & +n/r).

Accounting all the costs, we derive this recurrence for the total running time:

Ti(n) = O(nlogn) + O(rl#2gld2ly (nf L Ty (k + n/r)).
Assuming that « < (1 — 3)/|d/2| without loss of generality, we can simplify the above to
Ti(n) = O(nlogn) + O 42Ty (k +n/r).

Our base case is when n'~® < k. Here, r = n/k and we solve the subproblems directly by
constructing entire arrangements in Tx(2k) = O(k?) time [35]; the overall time bound is

Ty(n) = O(nlogn + (n/k)? k%) = O(nlogn + nl4/2[4/21),
If n'=® > k, then r = n® and the recurrence becomes
Ti(n) = O(nlogn) + O(n®l42y Ty (2n'~%),
which solves to | o)
Ty(n) = O ((nlogn—i—nLd/ZJk[dm) (%) ) .

Theorem A.2 The (< k)-level in an arrangement of n hyperplanes in R can be constructed deter-
ministically in time O((nlogn + nl#2E14/21)(log n/ log k)°M).

A similar approach works for k-levels and order-k Voronoi diagrams. We mention that for the
latter problem in two dimensions, the best deterministic result can be achieved with Chazelle and
Edelsbrunner’s O(n?log? n) bound [23] for the base cases:

Theorem A.3 The order-k Voronoi diagram of n point sites in R? can be constructed determinis-
tically in time O((nlogn + nk log2 k)(logn/log k)O(l)).

Remarks:
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1. The use of the shallow cutting lemma to construct levels deterministically has been noted
before in a paper by Agarwal, Efrat, and Sharir [3]; however, our deterministic bounds appear
new.

2. Theorem A.2 is worst-case optimal if k& = Q(n®) for some constant ¢ > 0. For small k, optimal
derandomization for arbitrary dimensions appears difficult, as can be seen from Chazelle’s work
on convex hulls [21].

A.3 A deterministic data structure for halfspace range reporting in R®

In this final appendix, we revisit the halfspace range reporting problem in R? and give a deterministic
data structure with space O(nloglogn) and worst-case query time O(logn + k). The space bound
improves the one by Aggarwal, Hansen, and Leighton [10].

The approach is based on our randomized method, but to obtain a successful derandomization,
we need to replace the (< 0)-levels of the samples (and their canonical triangulations) with suitable
structures. The shallow cuttings serve exactly this purpose, but first a slight variant is stated for
convenience:

Lemma A.4 Let d = 3. One can cover levy(H) by a collection Ty, of O(n/k) simplices such that
|Ha| = O(k) for each A € Ti. Furthermore, the simplices have disjoint interiors, each containing
(07 Oa 700)

Proof: Let = be a collection of simplices satisfying Lemma A.1 with r = n/k. Without loss of
generality, we may assume that each simplex A € E is relevant; thus, each vertex has at most
|Ha|+k < 2k planes of H below it. Now, let U be the union of Z and define 7 to be a triangulation
of U into vertical cylinders. Because a plane in Ha must lie below one of the vertices of A, we have
|Ha| < 6k for each A € T. 0

The chief ingredient to reduce space from O(nlogn) to O(nloglogn) is bootstrapping with an
O(n)-space structure that has query time O(n® + k) for a constant 3 < 1. Known results on the
simplex range searching [42] imply that 8 =~ 2/3 is possible in R?; the time bound applies to “k
lowest planes” queries as well [5].

Define a sequence k1, ks, . .. by the formula k; = {k;ﬁﬂ , starting with a constant and ending when
the term reaches n. Evidently, there are O(loglog n) terms. Our data structure consists of a hierarchy
of triangulations constructed by Lemma A.4: Ty, 7k,,... In addition, we build a location structure
for Tk, and store the linear-space range searching structure for each conflict list Ha (A € Tg,). The
storage requirement is O((n/k)k) = O(n) for each T,, and O(nloglogn) overall.

To find the k lowest planes of H along a vertical line ¢, let index ¢ satisfy k; 1 < k < k; and
determine the simplex A € 7T, hit by /; by projection, this is a planar point location problem and
takes O(logn) time. As the answer is a subset of the conflict list Ha (since T, covers levi(H)), we
can use the range searching structure for Ha to answer the query. The total query time is

O(logn + |[HAl® + k) = O(logn—I—kf—l—k) = O(logn + k).

Theorem A.5 Given n planes in R?, there exists a data structure of O(nloglogn) size, such that
any “k lowest planes” query can be answered in O(logn + k) time deterministically.
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Consequences on halfspace range reporting, k nearest neighbors, and circular range reporting can

be immediately derived, as in Corollaries 2.5, 2.6, and 2.7.

Remarks:

1. The preprocessing time is prohibitively large (though polynomial), so our randomized method

is still more practical.

2. It remains an open problem to bring down the space complexity to linear while maintaining

optimal query time. (Note that if the same k is used in all queries and is given in advance,
then our approach achieves linear space.)
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