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In the d = 3 case, Chazelle and Preparata [26] gave a method for answering halfspace rangereporting queries in optimal time O(log n + k). The space complexity is O(n log2 n log log n), asnoted by Clarkson and Shor [29]. The preprocessing isO(npolylogn) and uses construction of shallowlevels in arrangements (see Section 1.2). Aggarwal, Hansen, and Leighton [10] subsequently improvedthe space bound to O(n logn) while maintaining optimal query time. However, the preprocessingbecomes more complex, exploiting advanced techniques such as planar separators; a deterministicversion requires near-cubic time, while a Monte Carlo version needs O(n log2 n log log n) time. Inparticular, it remained open whether O(n logn) preprocessing time is attainable. If one is willing tosacri�ce optimality in the query bound, then a simple method [22] involving a tree of planar pointlocation structures solves the problem with O(k log2 n) query time and O(n log n) preprocessing timeand space.For a larger �xed dimension d � 4, Clarkson and Shor [29] used shallow cuttings to achieveO(log n + k) query time with O(nbd=2c+") preprocessing time and space, where " is an arbitrarilysmall positive constant. Matou�sek [43] obtained a certain partition theorem that implies a datastructure with O(n logn) preprocessing time, O(n log log n) space, and O(n1�1=bd=2c polylogn + k)query time. (This method can be specialized to handle the d = 3 case; the query time appears to beO((log n)O(log log n)+k).) Tradeo�s between preprocessing and query time were also described by Ma-tou�sek. These higher-dimensional results were conjectured to be optimal up to n" or polylogarithmicfactors.The �rst result of this paper is to close the existing gap for halfspace range reporting for thecase d = 3. In Section 2, we give a relatively simple, randomized (Las Vegas) method that cananswer queries in O(log n+ k) expected time. This data structure requires O(n log n) space and canbe preprocessed in O(n log n) expected time. The expectation here is with respect to the randomchoices made by the preprocessing; it is assumed that the given query halfspaces are independent ofthese choices. Both time bounds on preprocessing and querying are optimal.Our approach is to consider random samples of various sizes of the dual planes and examine thecanonical triangulations of their (� 0)-levels. With good chances, it turns out that the answer to aquery with output size k can be found in some conict list of the triangulation for a sample of sizeapproximating n=k; the expected size of this list is O(k). The preprocessing of all such conict listsis done by imitating a known algorithm for the (� 0)-level (i.e., convex hull in primal space). Weshould remark that ideas like random sampling, canonical triangulations, and conict lists are hardlynew in this area; what is not apparent is how they can be put together to derive the optimal result.For instance, Clarkson and Shor's halfspace range reporting structure [29] uses already a top-downform of random sampling, which seems inherently suboptimal; we avoid such di�culties by adoptinga bottom-up approach instead.Our result has several important applications. For example, we can now preprocess n points inthe Euclidean plane in O(n log n) expected time, such that \k nearest neighbors" queries can beanswered in O(log n + k) expected time; this and the related circular range reporting problem aretwo of the most basic proximity problems, dating back to the beginning of computational geometry.For another application, we can enumerate the k bichromatic closest pairs of n planar points inO(n log n + k) expected time. See Section 2.3. One less obvious application|the construction oflevels in arrangements|is the second main topic of this paper.
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1.2 Levels in arrangementsGiven a set H of n hyperplanes in d-dimensional space IRd and 0 � k � n, de�ne the regionlevk(H) = fq 2 IRd : at most k hyperplanes of H pass strictly below qg:The (� k)-level in the arrangement of H is the collection of faces in the arrangement that arecontained in levk(H). The related notion of the k-level can be de�ned as the collection of facescontained in the boundary of levk(H). Levels in arrangements are among the most well-studied, yetmost puzzling, geometric structures in both their combinatorial and computational aspects [8, 34,39, 48].Our initial focus is on (� k)-levels. The main combinatorial question here was answered byClarkson and Shor [29], who showed via a beautiful random sampling argument that the (� k)-levelin a �xed dimension d can have at most O(nbd=2ckdd=2e) faces. This bound is tight in the worst case.The computational complexity of (� k)-levels was also essentially resolved for d = 2 and d � 4.Everett, Robert, and van Kreveld [38] gave an O(n logn + nk)-time algorithm in the plane (seealso [12]). Mulmuley [47] gave a randomized algorithm for dimensions four and higher with expectedrunning time O(nbd=2ckdd=2e). These two results are optimal in view of Clarkson and Shor's boundand the trivial 
(n logn) lower bound.The important case d = 3 however remains an open problem, even though a number of algorithmshave been developed. A randomized algorithm of Mulmuley [47] for instance runs in expectedtime O(nk2 log(n=k)), which is just a logarithmic factor away from optimal. Agarwal, de Berg,Matou�sek, and Schwarzkopf [2] proposed a di�erent randomized algorithm with expected runningtime O(n log3 n+nk2), which is optimal for su�ciently large k. In Section 3, we settle the complexityof the three-dimensional case completely by giving a randomized algorithm with an O(n log n+nk2)expected time bound; this is optimal for all values of k. Before, this time bound is known only forthe special case where the input planes are non-redundant, i.e., they all bound the (� 0)-level [9, 47].Our approach deviates from the previous algorithms of Mulmuley and Agarwal et al. in that itdoes not follow the randomized incremental paradigm [29, 48]. Instead, the idea (at a high level)is to choose a random sample of size n=k and use the canonical triangulation of its arrangement todivide the problem into roughly O(n=k) subproblems of average size O(k). These subproblems arecreated from conict lists|computable by halfspace range reporting|and are then solved by bruteforce in O(k3) average time. The analysis of our algorithm is based on a shallow cutting lemma ofMatou�sek.A similar approach can be taken to compute the k-level, although optimality is not yet attainedfor this problem. First of all, the combinatorial problem of determining the worst-case size of the k-level is wide open (the dual is related to the famous k-set problem [8, 11, 34]). Signi�cant developmentoccurred recently in the planar case d = 2 when Dey [31] improved the long-standing upper boundof (roughly) O(npk) to O(nk1=3), but the current best lower bound remains 
(n log k) [37]. Ford = 3, the most recent upper bound is O(nk5=3) [1, 32]. For higher dimensions, the current upperbound is only slightly better than the O(nbd=2ckdd=2e) bound for the larger (� k)-level. There isa case where the exact complexity of the k-level is known: if d = 3 and all input planes are non-redundant, then the k-level has size �(nk) for k � n=2 [29, 41]. The k-level in this case is related tothe order-k Voronoi diagram of n points in the Euclidean plane|a natural extension to one of themost fundamental and useful geometric structures, the Voronoi diagram.3



Some of the algorithmic results obtained by Agarwal et al. [2] on the k-level can be improvedby our techniques. Speci�cally, their expected time bound of O(n log2 n + nk1=3 log2=3 n) for theconstruction of k-levels in the plane can be reduced to O(n logn+nk1=3 log2=3 k). Furthermore, theirO(n log3 n+ nk logn) algorithm for order-k Voronoi diagrams in the plane can be sped up to run inO(n log n+ nk log k) expected time. These results are described in Section 3.3.2 Halfspace Range Reporting in IR32.1 PreliminariesLet H be a given set of n (nonvertical) hyperplanes in IRd. For simplicity, we assume that they are ingeneral position; standard perturbation techniques can be applied to remove this assumption. Thehalfspace range reporting problem by duality [34, 48] is equivalent to the following: preprocess H sothat given a query point q, one can quickly report all hyperplanes of H below q. We will actuallysolve a slightly harder problem: preprocess H so that given a query vertical line ` and a number k,one can quickly report the k lowest hyperplanes along ` (i.e., hyperplanes de�ning the k lowestintersections with `). The connection between halfspace range reporting queries and such \k lowesthyperplanes" queries will be explained later.Given a subset R � H, the (� 0)-level in the arrangement of R (also called the lower envelopeof R) is a convex polyhedron. Computing this polyhedron is equivalent to constructing the convexhull [34, 48, 49] by duality. For d = 3, several O(jRj log jRj)-time algorithms are known, among thesimplest of which are based on the randomized incremental paradigm.Let CT0(R) denote the collection of (closed) full-dimensional simplices in the canonical trian-gulation of the (� 0)-level, as de�ned for instance by Clarkson [28] (also called the bottom-vertextriangulation). The precise de�nition of this triangulation is not important to us except in theproof of the sampling lemma below. The only facts we need is that the triangulation is linear-time constructible and that the simplices in CT0(R) are all vertical cylinders containing the point(0; : : : ; 0;�1).Thus, a vertical line ` hits precisely one simplex � in CT0(R), if one ignores degenerate cases. Ford = 3, this simplex � can be identi�ed in O(log jRj) time after an O(jRj log jRj)-time preprocessing,as the problem projects down to planar point location [34, 49].Given a simplex �, the conict list H� is de�ned as the set of all hyperplanes of H intersecting �.The following two sampling results are needed in the analysis of our data structure. Both follow fromthe general probabilistic technique by Clarkson and Shor [29]. (The �rst is often used in analyses ofrandomized convex hull algorithms.)Lemma 2.1 Let 1 � r � n and consider a random sample R � H of size r.(i) The expected value of the sum P� jH�j over all simplices � 2 CT0(R) is O(rbd=2c � n=r).(ii) For any �xed vertical line `, the expected value of H� for the simplex � 2 CT0(R) hit by ` isO(n=r).
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2.2 The data structure for d = 3We take a common approach called bottom-up sampling by Mulmuley [48]. Choose a random per-mutation h1; : : : ; hn of the set H. De�ne Ri = fh1; : : : ; h2ig for i = 0; 1; : : : ; log n (without loss ofgenerality, say n is a power of 2; logarithms are in base 2). The result is a sequence (\hierarchy") ofrandom samples R0 � R1 � � � � � Rlog n = H;where jRij = 2i. Our basic data structure is simple: it consists of location structures for CT0(Ri),along with the conict list H� for all the simplices � 2 CT0(Ri). For each Ri, the space needed isO(P�2CT0(Ri) jH�j), which has expected value O(n) by Lemma 2.1(i). The total expected space istherefore O(n logn); this bound can be made worst case by standard tricks.We now describe how to build this data structure e�ciently. First the location structures can allbe constructed in time O(Plog ni=1 jRij log jRij) = O(n log n). The nontrivial part is the computation ofthe conict lists. It turns out that this can be done by just modifying a known randomized algorithmfor convex hulls in IR3. We consider here Clarkson and Shor's original method [29], which maintainsglobal conict information incrementally. (Note that online methods based on history [48] are notsuitable for our purposes.)Speci�cally, at the 2i-th step of the method (in the version described by Mulmuley's or Motwaniand Raghavan's text [48, 45]), we not only have all vertices of the (� 0)-level in the arrangementof Ri, but in addition, have for each plane h 2 H a pointer to some vertex lying above h (if oneexists). By a graph search, we can generate all vertices lying above each h. As a result, we have foreach vertex v a list of all planes of H below v. Given a simplex � 2 CT0(Ri) with vertices v1; v2; v3,the conict list H� is just the union of the list of planes of H below the vj's.Clarkson and Shor's method runs in O(n logn) expected time. The extra work done at the2i-th step to produce the conict lists is O(P�2CT0(Ri) jH�j), which has expected value O(n) byLemma 2.1(i). Hence, the whole preprocessing of our data structure can be performed in O(n logn)expected time.We now describe the basic query algorithm. Given vertical line ` and number k as input param-eters, the algorithm is usually able to �nd the k lowest planes of H along ` but occasionally mayreport failure instead. The probability of failure is controlled by a third input parameter � > 0.Algorithm answer-query(`; k; �)1. let i = dlog dn�=kee2. identify the simplex � 2 CT0(Ri) cut by `3. if jH�j > k=�2 then return \failed"4. if fewer than k planes of H� intersect ` \� then return \failed"5. return the k lowest planes of H� along `The algorithm is correct: what is returned in line 5 is precisely the k lowest planes of H along `if failure is not reported in line 4. The running time of answer-query() is O(log n+ k=�2), sinceline 2 takes O(log n) time by planar point location, and lines 4 and 5 take O(k=�2) time if failure isnot reported in line 3. (Line 5 is an instance of what Chazelle referred to as �ltering search [20].)We now bound the failure probability for any �xed choice of `, k, and �. By Lemma 2.1(ii), theexpected value of H� is O(n=jRij) = O(k=�), so by Markov's inequality, the probability that H�5



exceeds k=�2 is O(�). Thus, line 3 reports failure with probability O(�). On the other hand, lettingq denote the k-th lowest intersection of H along `, we see that line 4 reports failure only if q 62 �,or equivalently, q 62 lev0(Ri). This is true only if one of the k planes below q is chosen to be in thesample Ri. As q is independent of Ri, this can happen with probability at most kjRij=n = O(�).We can summarize our result as follows:Theorem 2.2 In O(n log n) expected time, one can preprocess n planes in IR3 into a randomizeddata structure of O(n log n) size, such that there is a procedure with the following behavior. Given any�xed vertical line `, number k, and � > 0, the procedure either reports the k lowest planes along ` orreports failure. The probability of failure is O(�), but the procedure always runs within O(log n+k=�2)time.2.3 ConsequencesIt is desirable to modify the data structure to have a query algorithm that never fails. This modi-�cation can be done in two stages. First we observe that having three independent versions of thebasic data structure can reduce the failure probability to O(�3) in Theorem 2.2:Corollary 2.3 In O(n logn) expected time, one can preprocess n planes in IR3 into a randomizeddata structure of O(n logn) size, such that there is a procedure satisfying the criteria stated in The-orem 2.2 but with failure probability O(�3).Next we apply the basic query algorithm on a sequence of choices for the parameter � in orderto guarantee success.Corollary 2.4 In O(n logn) expected time, one can preprocess n planes in IR3 into a randomizeddata structure of O(n logn) size, such that any \k lowest planes" query can be answered in O(log n+k)expected time.Proof: Let �i = 2�i. Run the procedure of Corollary 2.3 for � = �1; �2; : : : until it succeeds. Let Xidenote the 0-1 random variable with value 1 when the procedure fails for � = �i. The total runningtime is bounded asymptotically by(log n+ k=�21) + Xi>1(log n+ k=�2i )Xi�1;which has expected value O(Pi>1(log n+ k=�2i ) �3i�1) = O(log n+ k): 2We still have to explain how halfspace range reporting queries reduces to \k lowest planes"queries. This can be done by a standard technique of \guessing" the parameter k.Corollary 2.5 In O(n logn) expected time, one can preprocess n points in IR3 into a randomizeddata structure of O(n logn) size, such that a halfspace range reporting query can be answered inO(log n+ k) expected time, where k is the number of points reported.
6



Proof: Recall that a halfspace range reporting query in dual space corresponds to �nding all kplanes below a given point q; the value of k is not known in advance. Let ki = 2i log n and ` be thevertical line at q. This task can be accomplished by searching for the ki-th lowest plane along ` fori = 1; 2; : : : until such a plane lies above q; then we simply examine the ki lowest planes along ` andreport those that are actually below q. The expected running time is asymptotically bounded by(log n+ k1) + Xki�1<k(log n+ ki) = O(log n+ k);because of Corollary 2.4. 2Remarks:1. While the preprocessing and query time are optimal, they are only expected bounds; further-more, the space complexity can be improved. Using advanced tools and a larger preprocessingtime, Appendix A.3 gives a modi�cation of our data structure that is deterministic and usesonly O(n log log n) space.2. It is worthwhile to compare Chazelle, Guibas, and Lee's optimal method [25] with the special-ization of our method in two dimensions. Ours seems easier to implement as convex layers arenot involved.3. Higher-dimensional extensions are possible, although we do not see any signi�cant improve-ments.By a standard lifting map, Corollaries 2.4 and 2.5 imply a new method for \k nearest neighbors"and circular range reporting queries [10, 16, 22, 34, 48, 49, 50] in the Euclidean plane:Corollary 2.6 In O(n log n) expected time, one can preprocess n point sites in IR2 into a randomizeddata structure of O(n log n) size, such that the k closest (or farthest) sites of a given point can befound in O(log n+ k) expected time.Corollary 2.7 In O(n log n) expected time, one can preprocess n point sites in IR2 into a randomizeddata structure of O(n log n) size, such that all k sites inside (or outside) a given circle can be reportedin O(logn+ k) expected time.Another proximity application in the Euclidean plane is an optimal randomized algorithm forenumerating the k bichromatic closest pairs [40]. The author [18] gave a randomized reduction ofthis problem to a reporting problem, which in turn reduces to answering n o�ine halfspace rangereporting queries in IR3, where the total output size is k.Corollary 2.8 Given n-point sets P and Q in IR2, one can enumerate the k closest (or farthest)pairs from P �Q (not necessarily in sorted order) in expected time O(n log n+ k).
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3 (� k)-Levels in IR33.1 PreliminariesLet H be a given set of n hyperplanes in IRd in general position. Our goal in this section is toconstruct the facial structure of the (� k)-level in the arrangement of H. As before, the key conceptis the canonical triangulation. Given a subset R � H, de�ne CT(R) to be the collection of full-dimensional simplices in the canonical triangulation of the faces in the arrangement of R. De�neCTk(R) similarly for the faces of the (� k)-level in the arrangement of R.It is somewhat more involved to compute conict lists for simplices arising from the constructionof (� k)-levels, e.g., the simplices are not necessarily vertical cylinders now. For this reason, wede�ne �� = conv(� [ f(0; : : : ; 0;�1)g), the vertical extension of a simplex �. For d = 3, theextended conict list H�� can be computed in O(log n+ jH�� j) expected time after O(n log n)-timepreprocessing by Corollary 2.5: listing all planes of H below a given point reduces to halfspace rangereporting, and if v1; : : : ; v4 denote the vertices of �, then H�� is just the union of the lists of planesof H below the vj 's.One other important de�nition is the following: a simplex � is relevant if it intersects the regionlevk(H). The sampling lemma below is stated implicitly in the proof of Matou�sek's shallow cuttinglemma [43] (see Appendix A.2) and is needed in the analysis of our algorithm. Matou�sek's proofuses probabilistic arguments of Chazelle and Friedman [24]; see Appendix A.1 for more details.Lemma 3.1 Let 1 � r � n and q = kr=n+ 1. Let f(n) be a regular function, i.e., a nondecreasingfunction satisfying f(2n) = O(f(n)). Consider a random sample R � H of size r. The expected valueof the sum P� f(jH�j) over all relevant simplices � 2 CT(R) is bounded by O(rbd=2cqdd=2ef(n=r)).3.2 The algorithm for d = 3The basic outline of our (� k)-level algorithm is quite simple: we pick a random sample R � H of sizen=k, generate all relevant simplices of CT(R), compute the (� k)-level within each such simplex �,and then combine the solutions.The (� k)-level in the arrangement of H within a relevant simplex � can be constructed by thefollowing procedure:Algorithm solve-subproblem(�), where � is a relevant simplex1. compute conict list H��2. construct the (� k)-level in the arrangement of H��3. clip the resulting faces to �The correctness of the procedure is easy to see (as levk(H) \ � = levk(H��) \ �). Line 1 takesO(log n+ jH��j) expected time, whereas lines 2 and 3 take O(jH�� j3) time by a brute force method:construct the entire arrangement of H�� [35] and extract the desired substructure. Since � isrelevant, we can bound jH�� j by k+ jH�j. Therefore, solve-subproblem(�) runs in expected timeO(log n+ (k + jH�j)3).We now describe how to generate all relevant simplices of CT(R). Observe that any relevantsimplex of CT(R) must belong to CTk(R) (since levk(H) � levk(R)). Assume that CTk(R) is8



available. To generate all relevant simplices of CTk(R), we perform a graph search. Say that twosimplices of CTk(R) are adjacent if they share a common facet. Notice that a simplex can be adjacentto at most four other simplices in CTk(R). Consider the following procedure:Algorithm generate-subproblems(�), where � 2 CTk(R)1. mark �2. solve-subproblem(�)3. for each unmarked simplex �0 adjacent to � do4. let � be the facet shared by � and �05. if � intersects levk(H) then generate-subproblems(�0)The test in line 5 can be easily accomplished from the information obtained from line 2. An initialrelevant simplex �0 2 CTk(R) is easy to �nd (e.g., pick any simplex from CT0(R)). If all simplices areinitially unmarked and generate-subproblems(�0) is called, then all relevant simplices of CTk(R)(and thus of CT(R)) will be marked because the region levk(H) is connected.Combining the solutions is straightforward. We just take all the output from line 2 ofgenerate-subproblems() in this process and \stitch" these substructures together to get the com-plete (� k)-level in the arrangement of H. (The implementation details of stitching are not entirelytrivial though; for example, one needs to match features along common facets between simplices.Standard techniques like radix sorting can do all this in linear time.)Excluding the O(n logn) preprocessing time, the expected time bound for the calls togenerate-subproblems() is O X� (logn+ (k + jH�j)3)! ;where the sum is taken over all relevant simplices � of CT(R). Lemma 3.1 tells us that the expec-tation of the above expression with respect to R for a sample size r = n=k isO((n=k)(log n+ k3)) = O(n logn+ nk2):For the �nal piece of the algorithm, we still have to explain how CTk(R) is obtained in the �rstplace. This can be done by recursively constructing the (� k)-level in the arrangement of R. Thetotal expected running time of our algorithm is then given by the recurrenceTk(n) = Tk(n=k) + O(n logn+ nk2);which solves to Tk(n) = O(n log n+ nk2), assuming (without loss of generality) that k � 2.Theorem 3.2 The (� k)-level in an arrangement of n planes in IR3 can be constructed in O(n log n+nk2) expected time.Remarks:1. Although our algorithm is optimal for worst-case output, the running time is not the bestpossible if the (� k)-level has size smaller than �(nk2). It remains open to devise an optimaloutput-sensitive algorithm [6, 17, 46]. 9



2. Derandomization seems to require modi�cation to our algorithm because the sample size isquite large. Appendix A.2 sketches an optimal deterministic method for (� k)-levels for large k(speci�cally, log k = 
(logn)). This method works in any �xed dimension but uses advancedtools.3. Specialization to d = 2 yields a new algorithm for (� k)-levels in the plane with expectedrunning time O(n logn+ nk).3.3 Application to k-levelsThe algorithm can be modi�ed to construct the k-level in the arrangement of H for d = 3. To getgood results, we need to have available an algorithm for constructing the k-level in subcubic time,say O(f(n)) time (randomized or deterministic).We will make solve-subproblem(�) output the faces of the k-level clipped to �. This can bedone by changing line 2 to construct just the k-level in the arrangement of H�� in O(f(jH��j)) time.In generate-subproblems(�), the test in line 5 can also be performed in O(f(jH��j)) time, sinceit is equivalent to deciding whether � intersects the region beneath the k-level in the arrangementof H��.Thus, ignoring the O(n logn) preprocessing, the expected time to construct the complete k-levelis O X� (log n+ f(k + jH�j))! ;where the sum is taken over all relevant simplices � of CT(R). By Lemma 3.1, the expectation withrespect to R for a sample size r = n=k and a regular function f is O((n=k)(log n+ f(k))).Note that the recursive call to compute CTk(R) is not needed now: by Theorem 3.2, the (� k)-level in the arrangement of R can be constructed in expected time O((n=k) log(n=k) + (n=k)k2).Since f(k) = 
(k2), the overall complexity is O(n log n+ (n=k)f(k)).The same strategy applies to k-levels in dimension d = 2. We therefore have shown:Theorem 3.3 Let H be a class of lines in IR2 or planes in IR3. Suppose that any single level in thearrangement of any set H � H of size n can be computed in O(f(n)) expected time, where f(n) is aregular function. Then the k-level can be constructed in O(n logn+ (n=k)f(k)) expected time.Speci�cally, Agarwal, de Berg, Matou�sek, and Schwarzkopf [2] have obtained the following boundsvia randomized incremental construction: for lines in IR2, f(n) = n4=3 log2=3 n; and for planes in IR3that are tangent to the unit paraboloid, f(n) = n2 logn. The �rst case takes into account Dey's recentcombinatorial bound on the k-level (or more precisely, on the O(log n) consecutive levels below thek-level). The second case occurs in the construction of order-k Voronoi diagrams [13, 34, 48, 49, 50]in the Euclidean plane by the standard lifting map; see Table 1 for some previous algorithms. Forarbitrary planes in IR3, we have f(n) = O(n8=3+") by an algorithm of Agarwal and Matou�sek [6](with the known combinatorial bound [32]). Hence, Theorem 3.3 implies:Corollary 3.4 The k-level in an arrangement of n lines in IR2 can be constructed in expected timeO(n log n+ nk1=3 log2=3 k). 10



year time bound references1982 O(nk2 logn)� Lee [41]1986 O(n3)� Edelsbrunner, O'Rourke, and Seidel [35]1986 O(nkpn logn) Edelsbrunner [33]1987 O(n2 + nk log2 n) Chazelle and Edelsbrunner [23]1987 O(n1+"k) rand. Clarkson [27]1989 O(n log n+ nk2)� Aggarwal, Guibas, Saxe, and Shor [9]1991 O(n log n+ nk2)� rand. Mulmuley [47]1992 O(nk log2 n+ nk2) rand. online Aurenhammer and Schwarzkopf [14]1993 O(n log n+ nk3)� rand. online Boissonnat, Devillers, and Teillaud [15]1995 O(n1+"k) Agarwal and Matou�sek [6]1998 O(n log3 n+ nk logn) rand. Agarwal, de Berg, Matou�sek, and Schwarzkopf [2]now O(n log n+ nk log k) rand. this paperTable 1: History of algorithms for the order-k Voronoi diagram in IR2 (k � n=2). Year refers to dateof journal publication. (Bounds marked � actually apply to all diagrams of order 1 to k.)Corollary 3.5 The order-k Voronoi diagram of n point sites in IR2|i.e., the planar subdivisionwhere two points belong to the same region i� they have the same set of k closest (or farthest)sites|can be constructed in expected time O(n logn+ nk log k).Corollary 3.6 The k-level in an arrangement of n planes in IR3 can be constructed in expected timeO(n log n+ nk5=3+").Remarks:1. Theorem 3.3 can be viewed as an algorithmic version of a combinatorial result of Agarwal,Aronov, Chan, and Sharir [1], who showed basically that if any single level in IR2 or IR3 hasworst-case complexity O(f(n)), then the k-level has compexity O((n=k)f(k)).2. Corollary 3.4 compares favorably with an output-sensitive algorithm of Edelsbrunner andWelzl [36], which runs in time O(n log n + f log2 n) for an f -face output. Only slight im-provements of this algorithm were known: Cole, Sharir, and Yap [30] discussed how to reducethe second term to O((n+ f) log2 k) and the author [17] showed how to reduce the �rst termto O(n log f).3. Corollary 3.5 is currently the best result for the construction of a single order-k Voronoi diagramin the plane. It is optimal for k = O(logn= log log n). If f(n) can be improved to O(n2), thenTheorem 3.3 would imply a randomized algorithm running in optimal O(n log n+nk) expectedtime for any k � n=2.4. It is interesting to note that while in the past, levels in arrangements have been used to solvethe halfspace range reporting problem, we have taken just the reverse approach, using halfspacerange reporting to construct levels. Is there a more direct way to construct levels with the samee�ciency? 11



A AppendixA.1 Proof sketch of Lemma 3.1As Lemma 3.1 is the key in proving the optimality of our randomized (� k)-level algorithm, a proofsketch of the lemma may be appropriate to give the reader an idea why the probabilistic bound holds.As mentioned earlier, the details of the proof are essentially embedded in the paper by Matou�sek [43].We highlight the main points here in somewhat di�erent notation.First the following de�nition is helpful: we say that a simplex � is j-good if it is contained insidethe region levj(H). An immediate observation is that any relevant simplex � is (k + jH�j)-good.It turns out that bounding the number of j-good simplices is easier than bounding the number ofrelevant simplices:The expected number of j-good simplices � 2 CT(R) is O((r=n)dnbd=2cjdd=2e).The reason is this: as can be seen from the de�nition of canonical triangulations, the number of j-good simplices of CT(R) is linear in the number of vertices of CT(R) that are contained in levj(H).We know that levj(H) has O(nbd=2cjdd=2e) vertices, and the probability that a �xed vertex in thearrangement of H appears in the arrangement of R is O((r=n)d).The second step is to observe that the conict size jH�j is usually of the order of n=r. Forinstance, arguments by Clarkson and Shor [29] show that the average conict size is expected to beO(n=r). We will actually need a stronger result by Chazelle and Friedman [24] (see also [7]), statingthat the number of conict sizes of the order of tn=r decreases exponentially with t. Speci�cally, onecan prove the following statement from our earlier bound on j-good simplices:The expected number of j-good simplices � 2 CT(R) with jH�j � (t � 1)n=r isO(2�t(r=n)dnbd=2cjdd=2e).As a consequence, we can then bound a similar quantity for relevant simplices if we just substitutek + tn=r for j:The expected number of relevant simplices � 2 CT(R) with (t� 1)n=r � jH�j � tn=r isO(2�t(r=n)dnbd=2c(k + tn=r)dd=2e).Finally, we can bound the expectation of the sum P� f(jH�j) over all relevant simplices � 2CT(R) asymptotically by1Xt=1 2�t(r=n)dnbd=2c(k + tn=r)dd=2ef(tn=r) = O((r=n)dnbd=2c(k + n=r)dd=2ef(n=r));since f is regular. Notice that the above expression is identical to O(rbd=2cqdd=2ef(n=r)).A.2 A deterministic algorithm for (� k)-levels in IRdIn the second appendix, we briey consider derandomization of our (� k)-level algorithm in anarbitrary �xed dimension. An optimal bound is obtained only when k is su�ciently large. Theapproach employs a deterministic version of Lemma 3.1, derived by Matou�sek [43] using tools suchas the method of conditional probabilities and "-approximations.12



Lemma A.1 (Matou�sek's Shallow Cutting Lemma) Let 1 � r � n and q = kr=n+1. One can coverlevk(H) by a collection of O(rbd=2cqdd=2e) simplices such that jH�j � n=r for each simplex �. Fur-thermore, the simplices have disjoint interiors. They can be constructed in O(n log r) time, providedthat r � n� for a su�ciently small constant � > 0 depending on d.Worst-case e�ciency demands us to use small values of r, so we will construct the (� k)-levelby divide-and-conquer: (i) pick r = minfn=k; n�g and �nd the collection of simplices by the abovelemma; (ii) for each simplex �, compute conict list H�� ; (iii) construct the (� k)-level in thearrangement of H�� by recursion; and (iv) �nally combine the solutions by stitching.Step (ii) requires some explanation. From the discussion of our three-dimensional algorithm,we see that a conict list can be computed by answering a constant number of halfspace rangereporting queries. With known results [43], this requires O(n� + jH��j) time after O(n log n)-timepreprocessing, for a constant � � 1� 1=bd=2c. Notice that if jH�� j exceeds k + jH�j the simplex �is not relevant and need not be considered in step (iii). So, we can ensure that a query runs withintime O(n� + k + n=r).Accounting all the costs, we derive this recurrence for the total running time:Tk(n) = O(n logn) + O(rbd=2cqdd=2e) (n� + Tk(k + n=r)):Assuming that � < (1� �)=bd=2c without loss of generality, we can simplify the above toTk(n) = O(n log n) + O(rbd=2c)Tk(k + n=r):Our base case is when n1�� � k. Here, r = n=k and we solve the subproblems directly byconstructing entire arrangements in Tk(2k) = O(kd) time [35]; the overall time bound isTk(n) = O(n logn+ (n=k)bd=2ckd) = O(n log n+ nbd=2ckdd=2e):If n1�� > k, then r = n� and the recurrence becomesTk(n) = O(n logn) + O(n�bd=2c)Tk(2n1��);which solves to Tk(n) = O (n log n+ nbd=2ckdd=2e)� log nlog k�O(1)! :Theorem A.2 The (� k)-level in an arrangement of n hyperplanes in IRd can be constructed deter-ministically in time O((n log n+ nbd=2ckdd=2e)(log n= log k)O(1)).A similar approach works for k-levels and order-k Voronoi diagrams. We mention that for thelatter problem in two dimensions, the best deterministic result can be achieved with Chazelle andEdelsbrunner's O(n2 log2 n) bound [23] for the base cases:Theorem A.3 The order-k Voronoi diagram of n point sites in IR2 can be constructed determinis-tically in time O((n log n+ nk log2 k)(log n= log k)O(1)).Remarks: 13



1. The use of the shallow cutting lemma to construct levels deterministically has been notedbefore in a paper by Agarwal, Efrat, and Sharir [3]; however, our deterministic bounds appearnew.2. Theorem A.2 is worst-case optimal if k = 
(n") for some constant " > 0. For small k, optimalderandomization for arbitrary dimensions appears di�cult, as can be seen from Chazelle's workon convex hulls [21].A.3 A deterministic data structure for halfspace range reporting in IR3In this �nal appendix, we revisit the halfspace range reporting problem in IR3 and give a deterministicdata structure with space O(n log logn) and worst-case query time O(log n+ k). The space boundimproves the one by Aggarwal, Hansen, and Leighton [10].The approach is based on our randomized method, but to obtain a successful derandomization,we need to replace the (� 0)-levels of the samples (and their canonical triangulations) with suitablestructures. The shallow cuttings serve exactly this purpose, but �rst a slight variant is stated forconvenience:Lemma A.4 Let d = 3. One can cover levk(H) by a collection Tk of O(n=k) simplices such thatjH�j = O(k) for each � 2 Tk. Furthermore, the simplices have disjoint interiors, each containing(0; 0;�1).Proof: Let � be a collection of simplices satisfying Lemma A.1 with r = n=k. Without loss ofgenerality, we may assume that each simplex � 2 � is relevant; thus, each vertex has at mostjH�j+k � 2k planes of H below it. Now, let U be the union of � and de�ne Tk to be a triangulationof U into vertical cylinders. Because a plane in H� must lie below one of the vertices of �, we havejH�j � 6k for each � 2 Tk. 2The chief ingredient to reduce space from O(n logn) to O(n log log n) is bootstrapping with anO(n)-space structure that has query time O(n� + k) for a constant � < 1. Known results on thesimplex range searching [42] imply that � � 2=3 is possible in IR3; the time bound applies to \klowest planes" queries as well [5].De�ne a sequence k1; k2; : : : by the formula ki = jk1=�i�1k, starting with a constant and ending whenthe term reaches n. Evidently, there are O(log log n) terms. Our data structure consists of a hierarchyof triangulations constructed by Lemma A.4: Tk1 ;Tk2 ; : : : In addition, we build a location structurefor Tki and store the linear-space range searching structure for each conict list H� (� 2 Tki). Thestorage requirement is O((n=k)k) = O(n) for each Tki , and O(n log log n) overall.To �nd the k lowest planes of H along a vertical line `, let index i satisfy ki�1 � k < ki anddetermine the simplex � 2 Tki hit by `; by projection, this is a planar point location problem andtakes O(log n) time. As the answer is a subset of the conict list H� (since Tki covers levk(H)), wecan use the range searching structure for H� to answer the query. The total query time isO(log n+ jH�j� + k) = O(log n+ k�i + k) = O(logn+ k):Theorem A.5 Given n planes in IR3, there exists a data structure of O(n log log n) size, such thatany \k lowest planes" query can be answered in O(logn+ k) time deterministically.14
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