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Abstract—Steerable needles composed of a highly flexible
material and with a bevel tip offer greater mobility compared
to rigid needles for minimally invasive medical procedures. In
this paper, we apply sampling-based motion planning technique
to explore motion planning for the steerable bevel-tip needle in
3D environments with obstacles. Based on the Rapidly-exploring
Random Trees (RRTs) method, we develop a motion planner to
quickly build a tree to search the configuration space using anew
exploring strategy, which generates new states using randomly
sampled control space instead of the deterministically sampled
one used in classic RRTs. Notice the fact that feasible pathsmight
not be found for any given entry point and target configuration,
we also address the feasible entry point planning problem tofind
feasible entry points in a specified entry zone for any given target
configuration. To solve this problem, we developed a motion plan-
ning algorithm based on RRTs with backchaining, which grow
backward from the target to explore the configuration space.
Finally, simulation results with a approximated realistic prostate
needle insertion environment demonstrate the performanceof the
proposed motion planner.

I. I NTRODUCTION

Inserting a needle to deliver treatment or to biopsy tissue is
a minimally invasive and inexpensive percutaneous procedure
that can often be performed on an outpatient basis. Achieving
accuracy in the needle tip position is challenging due to lack
of maneuverability, limited visibility, and possible obstructions
between the needle entry point and the target zone. As an
alternative to the traditional rigid symmetric-tip needle, col-
laborators at Johns Hopkins University and the University of
California, Berkeley are developing a new class of highly flex-
ible, bevel-tip needles that offer improved mobility, enabling
them to reach previously inaccessible targets while avoiding
sensitive or impenetrable areas, such as the urethra and the
penile bulb around the prostate as illustrated in Fig. 1 [1],[2].

Motion planning for bevel-tip steerable needle has been
studied in the two-dimensional image plane [3], [4]. Planning
motions for steerable needle in 3-D environment is more
difficult due to the nonholonomic constraint and the underac-
tuation inherent in the bevel-tip design. Motion of the bevel-tip
needle in a 3D workspace is controlled by only two degrees
of freedoms at the needle base: insertion along the needle
axis and rotation about the needle axis. Asymmetric forces
on the needle’s beveled tip cause the needle to bend and
follow a curved path through the tissue, and the needle tip’s
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Fig. 1. An approximation of 3D environment of needle insertion for prostate
using spherical obstacles.

orientation changes during insertion. The rotation not only
changes the needle tip’s orientation about its axis, but also
navigates the direction of the insertion. More flexible rotations
have to be made by the needle in order to generate its path in
the 3D workspace. This makes motion planning for the bevel-
tip steerable needle in 3D environments more complicated.

In this paper, we apply sampling-based motion planning
technique to explore motion planning of the bevel-tip steerable
needle in 3D environments with obstacles. We develop a
new motion planner by inspired by the well-known rapidly-
exploring random trees method (RRTs). In order to make a
trade-off between the complexity and completeness of the
RRT exploration, we propose a new vertex generation strategy
by using a randomly sampled control space instead of the
deterministically sampled one. Considering the requirements
of real clinical tasks, we further address the feasible entry
point planning problem, and solve it by developing a plan-
ner based on RRTs with backchaining. To the best of our
knowledge, this work is the first to apply RRT-based motion
planning techniques in steerable needle motion planning in3D
environments.

II. RELATED WORK

The bevel-tip needle design has been shown to significantly
affect the needle bending forces during insertion [5]. Based
on this observation, Webster et al. [6], [7], [8] experimented
further and showed that steerable bevel-tip needles follow



paths of constant curvature in the direction of the bevel tip.
They also developed a nonholonomic model of steerable bevel-
tip needle motion in stiff tissues based on a generalizationof
the bicycle model and fit model parameters using experiments
with tissue phantoms [7].

Motion planning for steerable needles in a 2D workspace
has been studied, incorporating the effects of tissue defor-
mations and motion uncertainty into planning. Modeling the
bevel-tip needle’s motion in a 2D workspace as a non-
reversible Dubins car, Alterovitz et al. formulated the 2D
steerable needle motion planning problem as a nonlinear opti-
mization problem that uses a simulation of tissue deformation
during needle insertion as a function in the optimization [2]. To
consider motion uncertainty due to needle/tissue interaction,
Alterovitz et al. formulated the motion planning problem asa
Markov Decision Process (MDP) using a discretization of the
space and orientations [3], [4] and using the Stochastic Motion
Roadmap (SMR), a sampling-based approach [9]. Alterovitz
et al. also introduced a motion planner to solve for the optimal
insertion location in 2-D [4], a problem we consider in this
paper for 3D environments.

With the development of volumetric medical imaging tech-
niques, research on steerable needle insertion has been ex-
tended to more complex 3D environments. Kallem et al. [10]
developed a nonlinear controller to stabilize the needle’s3D
motion on a desired 2D plane for use with 2D imaging
modalities and motion planning algorithms. Park et al. [11]
treated the kinematics of the bevel-tip needle as the 3D
extension of the standard unicycle model, and proposed a
diffusion-based motion planning method to numerically com-
pute a path in the obstacle-free stiff tissue. Abolhassani et al.
[12] proposed a method to minimize the needle’s deflection
by controlling the needle’s rotation during the insertion,us-
ing online measurements through force/moment sensing. By
representing the motion of the bevel-tip needle as a screw
motion in a 3D environment, Duindam et al. [13] formulated
3D motion planning of the steerable needle as a dynamical
optimization problem with a discretization of the control space.
We study a similar problem of finding valid needle paths in 3D
environments with obstacles, yet our approach builds a global
roadmap that (probabilistically) explores the entire workspace,
whereas the previous algorithm [13] only considered locally
optimal paths and may fail in more complex environments.

The Rapidly-exploring Random Tree (RRT) has shown
its potential in dealing with motion planning problems for
nonholonomc systems [14][15]. It incrementally grows a tree
toward the target configuration by searching feasible pathsin
the configuration space, and provides an efficient and quick
search in complex environments of high dimensions with dif-
ferent constraints [14], [16], [17], [18]. By alternating between
growing two trees (rooted at the start and goal configuration
respectively) towards random samples and towards each other,
Kuffner et al. developed the bidirectional RRT Connect algo-
rithm to increase the efficiency [19]. Branicky et al. extended
the RRT-based method to solve motion planning problems
in systems with a hybrid configuration space and constraints

[20]. By using hints obtained from obstacles to navigate the
randomly sampled nodes away from obstacles, Rodriguez et
al. developed an obstacle-based RRT method to efficiently
explore the tree in difficult regions in theC-space [21]. These
works developed different exploration strategies for RRTswith
randomly sampledC space and deterministic control space.
Knepper et al. experimentally studied the relationship between
path sampling strategy and mobile robot performance, and
showed that different deterministic samplings of path setsled
to different performances of motion planners for mobile robots
[22]. In this paper, we propose an exploration strategy for the
RRT with both randomly sampledC-space and control space.
To the best of our knowledge, this is the first paper that applies
RRT-based method to the steerable needle motion planning
and develops a unidirectional exploration strategy using a
randomly sampled control space. Bidirectional exploration
with sampled control space will be explored in future work.

III. PROBLEM STATEMENT

To make the problem well defined, we make the following
assumptions:
1). The bevel-tip needle is rigid, and rotating the needle atthe
base will not change its position in the workspace.
2).The needle body follows motion of the needle tip, and the
tip’s orientation exactly follows the base’s orientation.
3). The feasible workspace is stiff and defined as a 3D cuboid.
No deformation of the workspace and obstacles is considered
in this paper.
4). Obstacles are 3D balls with constant radius. Obstacles with
more complicated shapes will be considered in future work.
With the above assumptions, the steerable needle motion
planning problem can be stated as follows.

Problem 1 (Steerable needle motion planning): Given an
initial configuration and a target zone, determine a feasible
path and the corresponding sequence of controls (insertion
depths and rotations at the needle base) so that the needle
tip reaches the target zone from the initial configuration while
avoiding obstacles and staying inside the workspace.
Input: Boundaries of the workspace, parameters of the bevel-
tip needle, locations and radius of the spherical obstacles, an
entry configuration of the needle, a target zone that the needle
is required to reach.
Output: A sequence of discrete controls, with which the needle
steered from the given entry point to reach the target zone, or
a report that no path is found. ♯

Because of the needle’s nonholonomic constraints and the
structure of the environment, there may not exist feasible
paths reaching the target for all given initial configurations.
Moreover, feasible paths for any given initial configuration
may not be found by motion planners developed for Problem 1.
For this reason, we address the feasible entry point planning
problem as follows.

Problem 2 (Feasible entry point planning): Given a speci-
fied target configuration and an initial zone, determine a feasi-
ble entry point in the zone and the corresponding sequence of
controls (insertion depths and rotations at the needle’s base)
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Fig. 2. Model of the bevel-tip needle.

so that the needle tip reaches the specified target from this
entry point while avoiding obstacles and staying inside the
workspace.
Input: Boundaries of the workspace, parameters of the bevel-
tip needle, locations and radius of the spherical obstacles, the
target configuration, the entry zone.
Output: A feasible entry point and the corresponding sequence
of discrete controls, with which the needle reach the target
region, or a report that no path is found. ♯

IV. K INEMATICS OF THE BEVEL-TIP FLEXIBLE NEEDLE

Consider the bevel-tip needle shown in Fig. 2. Referring to
the notations in [23], attach a spatial frameP to the base of
the needle and a body frameO to the geometric center of
the needle’s bevel-tip, respectively. The configuration ofthe
needle tip can be represented homogeneously by the 4 by 4
transformation matrix of the object frame relative to the spatial
frame as

gPO =

[

RPO pPO

0 1

]

∈ SE(3),

whereRPO ∈ SO(3) is the rotation matrix andpPO ∈ T (3)
is the position of frameO relative to frameS.

The motion of the needle is fully determined by two motions
performed at the bevel-tip: insertion with velocityv(t) in the
z direction and rotation with velocityω(t) along thez axis of
the body frameO [7], [13]. It has been experimentally shown
by Webster et al. [8] that the bevel-tip needles will follow
a constantly curved path with curvatureκ = 1

r
when pushed

with zero bevel rotation velocity, i.e.ω = 0. The instantaneous
velocity of the needle tip can be represented in the body frame
O as

V b
PO = [vT

w
T ]

T
= [0 0 v(t) v(t)/r 0 ω(t)]

T
. (1)

When V b
PO is constant, i.e.,v(t) and ω(t) are constant, the

configuration of the needle tip relative to the spatial frame
after being pushed for a time intervalt is

gPO(t) = gPO(0)eV̂ b

P O
t, (2)

wheregPO(0) is the initial configuration of the needle frame

relative to the spatial frame, and

V̂ b
PO =









0 −ω(t) 0 0
ω(t) 0 −v(t)/r 0
0 v(t)/r 0 v(t)
0 0 0 0









. (3)

For constantV b
PO, the needle motion can also be interpreted as

a screw motion with constant axis and pitch [23], [13]. When
the entire insertion of the needle is discretized intoN steps
with correspondingN time segments{I1, · · · , IN}, and the
velocity V b

PO(In) is fixed in each step, the final configuration
of the needle tip can be computed as a product of exponentials

gPO(T ) = gPO(0)eV̂ b

PO
(I1)I1 · · · eV̂ b

PO
(IN )IN . (4)

V. M OTION PLANNING FOR STEERABLE NEEDLE USING

FORWARD RRTS

The configuration of the needle tip can be represented
by its position (x, y, z) and Euler angles(φ, θ, ψ). Since
the insertion task only requires the needle to reach a target
position inside the 3D workspace, the configuration space of
the motion planning is equivalent toR3. Given boundaries of
the workspace ([xmin, xmax], [ymin, ymax], [zmin, zmax]), locations
of the obstacles, the needle’s initial configurationsinit and
target zoneSgoal, a tree can be constructed with the classic
RRT [17].

Algorithm 1: (Forward RRT with deterministic control
space sampling) Initialize a tree T rooted at sinit . For a
randomly sampled collision free statesrand in CS free, we search
T for the nearest neighbor ofsrand, denoted bysnear. By
applying deterministically sampled control inputs tosnear for a
short time incrementδt, we generate a set of all possible new
statesSnew. In Snew, the nearest neighbor ofsrand, denoted by
snew, is found and added toT . Such an exploration is repeated
until T ∩Sgoal 6= ∅ or the number of iteration reaches its limit.

The distance used in the nearest neighbor search can be
defined in different ways by defining different metrics on the
configuration space. To let the RRT grow toward the target
zone fast, we apply a biased distribution of the sampling
states inCS free. The statesrand is sampled mostly uniformly
inside the boundaries of the configuration space, except fora
higher density inSgoal. If srand collides with any obstacle, it
is discarded and new states are sampled until one inCS free is
found.

The path of the bevel-tip needle can only follow curved
paths with a minimum curvatureκ = 1/r, as shown in Fig. 2.
For this reason, configurations that can be reached by the
needle are locally constrained to be inside the volume of a
crateriform region (see Fig. 3) defined locally by

pz ≥

√

2r
√

p2
x + p2

y − p2
x − p2

y (5)

with (px, py, pz) the coordinates of a point in body frameO.
Algorithm 1 requires a deterministic sampling of the control

space, whose resolution greatly affects the performance of
the planning algorithm.[16]. A higher resolution leads to a



BUILD RRT(sinit, Sgoal)
1. T = Tinit(sinit)
2. while T ∩ Sgoal = ∅
3. srand← RANDOM STATE()
4. T ← EXTEND(T , srand)
5. END

EXTEND(T , srand)
1. Sreach← REACHABLE NEIGHBORS(T , srand)
2. snear← NEAREST NEIGHBOR(Sreach, srand)
3. (snew, unew)← NEW STATE(snear, srand,U)
4. T .add vertex(snew)
5. T .add edge(snear, snew, unew)
6. RETURNT

REACHABLE NEIGHBORS(T , srand)
1. For all si ∈ T

2. if srand is reachable fromsi

3. addsi to Sreach

4. RETURNSreach.

NEW STATE(snear, srand,U)
1. Urand← CONTROL SAMPLING(U)
2. FOR allui ∈ Urand

3. snew(i) = snear+ Fqnear(s, ui)δt
4. Snew = ∪isnew(i)
5. snew← NEAREST NEIGHBOR(Snew, srand)
6. unew = ui such thatsi = snew

7. RETURNsnew, unew

TABLE I
RAPIDLY-EXPLORINGRANDOM TREES BASED PLANNER WITH CONTROL

SPACE SAMPLING.

Fig. 3. The crateriform reachable region of local needle motion.

more detailed exploration with more complexity, but a lower
resolution leads to a fast exploration with less information
on the connectivity and structure of the free space. Instead
of using the deterministic discretization of the control space,
we sample a set of control inputs uniformly in the control
space, using CONTROLSAMPLING(), within a predefined
range[vmin, vmax]× [ωmin, ωmax], and apply all sampled control
inputs tosnear for δt to generate the set of possible new states
Snew. By doing so, we not only explore the RRT toward all
possible directions with same probability, but also extendthe
RRT toward the sampled states by various depth with same

probability. With such an exploration strategy, an RRT can be
constructed using the following algorithm.

Algorithm 2: (Forward RRT with random control space
sampling) Initialize the treeT rooted atsinit and randomly
sample a collision free statesrand in CS free. A reachable
neighbor search is applied to find a set of statesSreach, from
which srand can be reached. After findingsnear∈ T , which is
the nearest neighbor ofsrand, we uniformly sample the control
space and apply all sampled control inputs tosnear for δt
to generate a set of possible new statesSnew. The nearest
neighbor ofsrand in Snew is found assnew and added to the
tree. Such exploration is repeated untilT ∩ Sgoal 6= ∅ or the
number of iteration reaches its limit.

The scenario of Algorithm 2 is shown in Table. I. By
growing the RRT with randomly sampled control inputs,
Algorithm 2 probabilistically makes a trade-off between the
complexity and the completeness of the exploration.

VI. ENTRY POINT PLANNING FOR STEERABLE NEEDLE

USING RRTS WITH BACKCHAINING

Configuration of the needle tip following the reversed tra-
jectory for constantV b

PO can be represented as

gPO(t− δt) = gPO(t)e−V̂ b

P O
δt. (6)

A path starting from the goal configuration can be described as
a reverse path starting from the entry point with the negative
control space. Given the target configurationsgoal and the
specified entry zoneSentry, Problem 2 can be solved using
the following algorithm.

Algorithm 3 (RRT with backchaining): Initialize the tree
T rooted atsgoal and randomly sample a collision free state
srand in CS free. For anysrand, a reachable neighborhoodSreach

is computed. After findingsnear ∈ T , which is the nearest
neighbor ofsrand, we uniformly sample the negative control
space−U and apply all sampled control inputs tosnear for
δt to generate a set of possible new statesSnew. The nearest
neighbor ofsrand in Snew is found assnew and added to the
tree. Such exploration is repeated untilT ∩ Sentry 6= ∅ or the
number of iterations reaches its limit.

VII. S IMULATION RESULTS

We implement the proposed RRT based motion planning
method for the steerable needle insertion in a 3D envi-
ronments with obstacles. Since we assume that the nee-
dle is to be inserted from outside of the tissue, we only
consider workspace with positivez-axis. The workspace is
defined to be a cubical region with coordinates(−5, 5) ×
(−5, 5) × (0, 10), and we use six unit-radius spherical ob-
stacles as shown in Fig. 1, which are centered at the
positions (0, 0, 4),(−1.5, 0, 8.5), (−2.9, 0, 7.5), (−2, 0, 5.5),
(−0.3, 1.4, 5.5) and (−0.3,−1.4, 5.5), to approximate obsta-
cles around real prostate, such as the urethra, the penile bulb
and the pubic arch. The maximal number of iterations is
10000. Simulations are run on a laptop with Intel Centrinor

1.66 MHz, 1 GB memory, and Microsoftr Windows XPr

operation system.
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Fig. 4. Algorithm 1: (a) The exploration of the basic RRT; (b)The feasible
path found by the basic RRTs method.
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Fig. 5. Algorithm 2: (a) Exploration of the forward RRTs withcontrol
space sampling; (b) Feasible path found by forward RRTs withcontrol space
sampling.

First, we implement Algorithms 1 and 2 to solve Problem 1
for an insertion task from entry point(0, 0, 0) with orientation
(0, 0, 0) to reach the target zone which is a ball located at
(0, 0, 10) with radius 0.01. The range of the control inputs
are defined by insertion depth in[0.1, 0.5] and rotation angle
in [0, 2π], and the grid size of control space deterministic
sampling is0.1. Totally 10 trials have been done with both
Algorithms 1 and 2. With Algorithm 1,5 trials successfully
found feasible paths within10000 iterations. The average
number of iterations for the RRT to reach the target region
with deterministic control space sampling is1798.5, with the
minimum at148 and the maximum at3500. The average CPU
time used is1851.8 second. Fig. 4(a) shows the exploration
of one of the basic RRTs with 2362 iterations, and Fig. 4(b)
shows the feasible path found with this RRT, which finally
reached the position at(0.021, 0.023, 9.95).

With Algorithm 2, control inputs are uniformly sampled
with insertion depth in[0.1, 0.5] and rotation angle in[0, 2π].
All trials successfully found feasible paths. The average num-
ber of iterations that the RRT with random control space
samplings take to reach the target region is 1339.3, with the
minimum at 142 and the maximum at 3748. The average
CPU time used is621.4 second. Fig. 5(a) shows the feasible
path found by this motion planner, which finally reached the
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Fig. 6. Algorithm 2: Exploration of the forward RRT for a difficult target.
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Fig. 7. Algorithm 3: (a) Exploration of one RRT with backchaining; (b)
Feasible path found by the RRT with backchaining.

position at (−0.006, 0.011, 9.991), and Fig. 5(b) shows the
RRT exploration with Algorithm 2 in the free space.

Second, we consider insertion task in the same environ-
ment, and the target configuration is set to be(−1.5, 0, 9.7).
Since the target is very close to one of the obstacles and
the obstacle is in the middle of the way between the entry
point and the target zone, it is difficult to find a feasible
path for this task. We first formulate it as Problem 1 and
implement Algorithm 2 to solve it. The entry configuration is
with position (0, 0, 0) and orientation([−π

2 ,
π
2 ], [−π

2 ,
π
2 ], 0),

and the target zone is a ball located at(−1.5, 0, 9.7) with
radius 0.001. Totally, 5 trials have been done, but none of
them can find a feasible path in 10000 iterations. Fig. 6 shows
one of the explorations of such RRTs. Then we formulate it
as Problem 2 and implement Algorithm 3 to solve it. The
same target configuration is used and the entry region is the
x−y plane withz = 0. Totally 5 trials have been done, and all

Algorithm 1 2
Number of trials 10 10
Number of successes 5 10
Average Number of iterations 1798.5 1339.3
Average CPU time (s) 1851.8 621.4

TABLE II
PERFORMANCE OFALGORITHMS 1 AND 2 FOR SOLVINGPROBLEM 1.



successfully find feasible entries points and paths. The average
number of iterations that the RRT with backchaining uses to
find a feasible entry point is279.6 with a minimum at112
and a maximum at638, and the average CPU time used is
195.2 second. Fig. 7(a) shows exploration of one of the RRTs
in the free space, and Fig. 7(b) shows the feasible path found
by this with backchaining.

Algorithm 2 3
Number of trials 5 5
Number of successes 0 5
Average Number of iterations 10000 279.2
Average CPU time (s) N/A 195.2

TABLE III
PERFORMANCE OFALGORITHM 2 AND 3 FOR A DIFFICULT TARGET

CONFIGURATION.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a novel RRT-based motion plan-
ning method for bevel-tip steerable needle in 3D environment.
This method used randomly sampled control space instead of
the classic deterministic one to explore a tree in the workspace,
which probabilistically makes a trade-off between exploration
complexity and exploration completeness. We also addressed
feasible entry point planning problem and proposed a method
using RRT with backchaining to solve this problem. This
algorithm provides a quick search toward the entry zone in
C-space with its RRT structure. Although no entry point could
be found within limited iterations for some very difficult
goal configuration, it can easily find feasible entry points and
corresponding paths for most goal configurations because the
entry zone is much less constrained. Finally, we provided
simulations to explore performance of the proposed motion
planners.

In this paper, we only consider motion planning for steerable
needle in stiff 3D environment with spherical obstacles. In
future work, we will explore this problem in deformable
environments with obstacles of more complex shapes. Also,
we will consider insertion tasks whose initial and goal condi-
tions are both specified by a zone in the configuration space.
Moreover, another important factor of the 3D steerable needle
motion planning, uncertainties in sensing and motion, willbe
taken into account in future work too.
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