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Abstract—Steerable needles composed of a highly flexible

material and with a bevel tip offer greater mobility compared 10

to rigid needles for minimally invasive medical procedures In

this paper, we apply sampling-based motion planning techmjue 8

to explore motion planning for the steerable bevel-tip neeld in

3D environments with obstacles. Based on the Rapidly-expliog 6

Random Trees (RRTs) method, we develop a motion planner to
quickly build a tree to search the configuration space using aew 4

exploring strategy, which generates new states using randdy .
sampled control space instead of the deterministically sapied 2

one used in classic RRTs. Notice the fact that feasible patinsight

not be found for any given entry point and target configuration, 04 _

we also address the feasible entry point planning problem téind o
feasible entry points in a specified entry zone for any givenarget 5 0 ®

configuration. To solve this problem, we developed a motionlan-

ning algorithm based on RRTs with backchaining, which grow

backward from the target to explore the configuration space. Fig. 1. An approximation of 3D environment of needle ingertfor prostate
Finally, simulation results with a approximated realistic prostate  using spherical obstacles.

needle insertion environment demonstrate the performancef the

proposed motion planner.

orientation changes during insertion. The rotation notyonl

changes the needle tip’s orientation about its axis, but als

In_sgrting a nee_dle to d(_aliver treqtment or to biopsy tissueﬁavigates the direction of the insertion. More flexible tiotas
a minimally invasive and inexpensive per‘_’“ta”e"‘,‘s pra@d,lﬁave to be made by the needle in order to generate its path in
that can often be performed on an outpatient basis. Acl’gew{he 3D workspace. This makes motion planning for the bevel-

accuracy in the needle tip position is challenging due té Ia‘t"lp steerable needle in 3D environments more complicated.
of maneuverability, limited visibility, and possible ohsttions In this paper, we apply sampling-based motion planning
betweep the needle entry point and the target zone. As t@@hniqueto explore motion planning of the bevel-tip sibbr
alternative to the tradmor!al ngu_j symmetric-tip negddm)l- needle in 3D environments with obstacles. We develop a
Iabc_)rato_rs at Johns Hopkins Un_|verS|ty and the Un!versfty ew motion planner by inspired by the well-known rapidly-
_Callfornla, B_erkeley are developln_g a new class _O_f hlghly-ﬂe exploring random trees method (RRTSs). In order to make a
ible, bevel-tip needl_es that offer |m_proved m0b|||ty, ema@_ .trade-off between the complexity and completeness of the
them to reach previously inaccessible targets while amgidi RT exploration, we propose a new vertex generation syateg
sensitive or impenetrable areas, such as the urethra and eusing a randomly sampled control space instead of the
pe'\r;lne:[_ bulb Iarou_nd t?e pJOStth astlllustrbe:ted in gl'g' hl[ﬂ]lb deterministically sampled one. Considering the requirgsie
otion planning for bevel-ip steerable needie has DEeR g clinical tasks, we further address the feasible yentr
studied in the two-dimensional image plane [3], [4]. Plaugni oint planning problem, and solve it by developing a plan-
motions for steerable needle in 3-D environment is mo%ér based on RRTs with backchaining. To the best of our

difficult due to the nonholonomic constraint and the underaﬁnowledge this work is the first to apply RRT-based motion

tuation |_nherent in the bevel-_t|p design. Motion of the Hete lanning techniques in steerable needle motion plannidpin
needle in a 3D workspace is controlled by only two degre%?wironments

of freedoms at the needle base: insertion along the needle
axis and rotation about the needle axis. Asymmetric forces 1. RELATED WORK

on the needie’s beveled tip cause the needle to bend .a'nel-he bevel-tip needle design has been shown to significantly
follow a curved path through the tissue, and the needle tidigect the needle bending forces during insertion [5]. Base

This work was supported by NIH grant RO1 EB006435 and the ¢ttzthds on this observation, Webster et al. [6]’ [7]’ [8] eXperimﬂht
Organization for Scientific Research. further and showed that steerable bevel-tip needles follow

I. INTRODUCTION



paths of constant curvature in the direction of the bevel tif20]. By using hints obtained from obstacles to navigate the
They also developed a nonholonomic model of steerable beuwgindomly sampled nodes away from obstacles, Rodriguez et
tip needle motion in stiff tissues based on a generalizaifon al. developed an obstacle-based RRT method to efficiently
the bicycle model and fit model parameters using experimestgplore the tree in difficult regions in th&space [21]. These
with tissue phantoms [7]. works developed different exploration strategies for RRiith

Motion planning for steerable needles in a 2D workspacandomly sampled’ space and deterministic control space.
has been studied, incorporating the effects of tissue defé&mnepper et al. experimentally studied the relationshipveen
mations and motion uncertainty into planning. Modeling theath sampling strategy and mobile robot performance, and
bevel-tip needle’s motion in a 2D workspace as a noshowed that different deterministic samplings of path &eds
reversible Dubins car, Alterovitz et al. formulated the 2o different performances of motion planners for mobileatsb
steerable needle motion planning problem as a nonlinear op22]. In this paper, we propose an exploration strategy fier t
mization problem that uses a simulation of tissue deformnatiRRT with both randomly sample@-space and control space.
during needle insertion as a function in the optimizatignT® To the best of our knowledge, this is the first paper that agpli
consider motion uncertainty due to needle/tissue intemact RRT-based method to the steerable needle motion planning
Alterovitz et al. formulated the motion planning problemaas and develops a unidirectional exploration strategy using a
Markov Decision Process (MDP) using a discretization of thrandomly sampled control space. Bidirectional exploratio
space and orientations [3], [4] and using the Stochastiddvot with sampled control space will be explored in future work.
Roadmap (SMR), a sampling-based approach [9]. Alterovitz
et al. also introduced a motion planner to solve for the ogkim
insertion location in 2-D [4], a problem we consider in this To make the problem well defined, we make the following
paper for 3D environments. assumptions:

With the development of volumetric medical imaging techt). The bevel-tip needle is rigid, and rotating the needlhat
nigues, research on steerable needle insertion has beenbase will not change its position in the workspace.
tended to more complex 3D environments. Kallem et al. [1@).The needle body follows motion of the needle tip, and the
developed a nonlinear controller to stabilize the need®s tip's orientation exactly follows the base’s orientation.
motion on a desired 2D plane for use with 2D imaging). The feasible workspace is stiff and defined as a 3D cuboid.
modalities and motion planning algorithms. Park et al. [11jJo deformation of the workspace and obstacles is considered
treated the kinematics of the bevel-tip needle as the 3D this paper.
extension of the standard unicycle model, and proposedd Obstacles are 3D balls with constant radius. Obstadlés w
diffusion-based motion planning method to numerically eonmore complicated shapes will be considered in future work.
pute a path in the obstacle-free stiff tissue. Abolhassaal.e With the above assumptions, the steerable needle motion
[12] proposed a method to minimize the needle’s deflectigtlanning problem can be stated as follows.
by controlling the needle’s rotation during the insertios; Problem 1 (Steerable needle motion planning): Given an
ing online measurements through force/moment sensing. Bitial configuration and a target zone, determine a feasibl
representing the motion of the bevel-tip needle as a screath and the corresponding sequence of controls (insertion
motion in a 3D environment, Duindam et al. [13] formulatedepths and rotations at the needle base) so that the needle
3D motion planning of the steerable needle as a dynamitgl reaches the target zone from the initial configuratiorlevh
optimization problem with a discretization of the contrpése. avoiding obstacles and staying inside the workspace.
We study a similar problem of finding valid needle paths in 3hput Boundaries of the workspace, parameters of the bevel-
environments with obstacles, yet our approach builds aaglotip needle, locations and radius of the spherical obstaales
roadmap that (probabilistically) explores the entire vepéce, entry configuration of the needle, a target zone that thelaeed
whereas the previous algorithm [13] only considered Igcalls required to reach.
optimal paths and may fail in more complex environments.Output A sequence of discrete controls, with which the needle

The Rapidly-exploring Random Tree (RRT) has showsteered from the given entry point to reach the target zone, o
its potential in dealing with motion planning problems for report that no path is found. f
nonholonomc systems [14][15]. It incrementally grows a&tre Because of the needle’s honholonomic constraints and the
toward the target configuration by searching feasible pamthsstructure of the environment, there may not exist feasible
the configuration space, and provides an efficient and quiglths reaching the target for all given initial configuraso
search in complex environments of high dimensions with difMoreover, feasible paths for any given initial configuratio
ferent constraints [14], [16], [17], [18]. By alternatingtiween may not be found by motion planners developed for Problem 1.
growing two trees (rooted at the start and goal configuratiéior this reason, we address the feasible entry point plgnnin
respectively) towards random samples and towards each otlpeoblem as follows.
Kuffner et al. developed the bidirectional RRT Connect algo Problem 2 (Feasible entry point planning): Given a speci-
rithm to increase the efficiency [19]. Branicky et al. extedd fied target configuration and an initial zone, determine aifea
the RRT-based method to solve motion planning problerbte entry point in the zone and the corresponding sequence of
in systems with a hybrid configuration space and constraimdsntrols (insertion depths and rotations at the needlesgpa

IIl. PROBLEM STATEMENT




relative to the spatial frame, and

0 —w(t) 0 0

w(t) 0 —ou(t)/r 0
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For constant’},, the needle motion can also be interpreted as
a screw motion with constant axis and pitch [23], [13]. When
the entire insertion of the needle is discretized infosteps
with correspondingV time segmentq[;,---, Iy}, and the
velocity V3, (I,,) is fixed in each step, the final configuration
of the needle tip can be computed as a product of exponentials

z
P‘<y

Fig. 2. Model of the bevel-tip needle.

gro(T) = gpo(0)e"Fo . Vhotlhly  (a)
so that the needle tip reaches the specified target from thig. MoTION PLANNING FOR STEERABLE NEEDLE USING
entry point while avoiding obstacles and staying inside the FORWARD RRTs
workspace.

. The configuration of the needle tip can be represented
Input Boundaries of the workspace, parameters of the beka; its position (z,y,z) and Euler anglesé,,). Since

tip needle, locations and radius of the spherical obstatiies the insertion task only requires the needle to reach a target

gr?ettczr}flgu_r;tlon,:he ent,:y zgr:E j di Egsition inside the 3D workspace, the configuration space of
utpu easible entry point and the corresponding SEqUeNgg, 1y, qtion planning is equivalent 3. Given boundaries of

T lsree COnil, nh i he neGdle 1626 0 855 werispacelan v, i o, i 2. oGNS
’ ) of the obstacles, the needle’s initial configuratigr, and
target zoneSyea, @ tree can be constructed with the classic
RRT [17].
Consider the bevel-tip needle shown in Fig. 2. Referring to Algorithm 1. (Forward RRT with deterministic control
the notations in [23], attach a spatial framfeto the base of space sampling) Initialize a tree 7 rooted atsini. For a
the needle and a body fran@ to the geometric center of randomly sampled collision free statgngin CSiree, We search
the needle’s bevel-tip, respectively. The configuratiorttaf 7 for the nearest neighbor Ofrang, denoted bysnear By
needle tip can be represented homogeneously by the 4 bRplying deterministically sampled control inputssiarfor a
transformation matrix of the object frame relative to thatigd ~ short time incremenit, we generate a set of all possible new
frame as statesSpew- IN Shews the nearest neighbor afa,g denoted by
Rpo pro snews IS found and added t@. Such an exploration is repeated
gpo = { 0 1 ] € SE(3), until 7N Sgoal # O or the number of iteration reaches its limit.
The distance used in the nearest neighbor search can be
where Rpo € SO(3) is the rotation matrix angro € T'(3)  defined in different ways by defining different metrics on the
is the position of framé) relative to frameS. configuration space. To let the RRT grow toward the target
The motion of the needle is fully determined by two motiongone fast, we apply a biased distribution of the sampling
performed at the bevel-tip: insertion with velocityt) in the states iNCSyee. The statesyang is sampled mostly uniformly
z direction and rotation with velocity(¢) along thez axis of inside the boundaries of the configuration space, excep for
the body frameO [7], [13]. It has been experimentally shownhigher density inSgoai If srand collides with any obstacle, it
by Webster et al. [8] that the bevel-tip needles will follows discarded and new states are sampled until or&Siqe is
a constantly curved path with curvatuke= % when pushed found.
with zero bevel rotation velocity, i.e: = 0. The instantaneous  The path of the bevel-tip needle can only follow curved
velocity of the needle tip can be represented in the bodyérarpaths with a minimum curvature = 1/r, as shown in Fig. 2.
O as For this reason, configurations that can be reached by the
needle are locally constrained to be inside the volume of a
crateriform region (see Fig. 3) defined locally by

When V2, is constant, i.e.p(t) andw(t) are constant, the e
configuration of the needle tip relative to the spatial frame Pz 2 \[2r\/ Pz + Dy — Pz — Dy ®)

after being pushed for a time intervials

IV. KINEMATICS OF THEBEVEL-TIP FLEXIBLE NEEDLE

Vo =" wT" =0 0 w@) o)/ 0 w®)]’. @)

with (pz,py, p.) the coordinates of a point in body frani&
gro(t) = gPO(O)eVﬁot’ 2) Algorithm 1 requires a deterministic sampling of the cohtro
space, whose resolution greatly affects the performance of
wheregpo(0) is the initial configuration of the needle framethe planning algorithm.[16]. A higher resolution leads to a



BUILD_RRT (81, Sqoa) probability. With such an exploration strategy, an RRT can b

1. T = Toit(sinit) constructed using the following algorithm.

2. while 7 N Sgoar = 0 Algorithm 2: (Forward RRT with random control space
3. Srand —— RANDOM_STATE() sampling) Initialize the tree7 rooted atsiny and randomly
g- ENDT*EXTEND(T Srand) sample a collision free stat@ang in CSiee. A reachable

neighbor search is applied to find a set of staigge, from
which s;ang can be reached. After findingnear € 7, Which is

EXTEND(T, Srand) the nearest neighbor 6fang We uniformly sample the control
1. Sreach+— REACHABLE_NEIGHBORS(7, Srand) space and apply all sampled control inputs stRar for 6t

2. snear — NEAREST_NEIGHBOR (Sreach Srand) to generate a set of possible new statgs,. The nearest
3. (snew, unew) — NEW_STATE (snea srand; ) neighbor of srang IN Spew iS found assnpew and added to the

4. T .add_vertex snew) O
5. T.add edge sneas Snews Unen) tree. Such exploration is repeated urfiln Sqoa # 0 or the

6. RETURNT number of iteration reaches its limit.

The scenario of Algorithm 2 is shown in Table. I. By
growing the RRT with randomly sampled control inputs,
REACHABLE_NEIGHBORS(7, srand) Algorithm 2 probabilistically makes a trade-off betweere th

1. Foralls; e T : ;
2 if s.aqis reachable froms; complexity and the completeness of the exploration.

2' RE??JdRS&g’ Sreach VI. ENTRY POINT PLANNING FOR STEERABLE NEEDLE
- reach USING RRTS WITH BACKCHAINING

Configuration of the needle tip following the reversed tra-

NEW_STATE(snear Srand, U ) jectory for constan¥’3, can be represented as

1. Urand — CONTROL_SAMPLING (1) )

2. FOR alluL S Urand t — 6t — t _Vlg()ét 6

. PO =gpol(t)e .

3. Snew(i) = Sneart Foneal(s, ui)0t gro( ) =grolt) ©)

4. Snew = Ui Snew(1) A path starting from the goal configuration can be descritsed a
5. snew — NEAREST_NEIGHBOR(Snew, Srand) a reverse path starting from the entry point with the negativ
6. Unew = U4 SUCh thatSL = Snew t I G th t t f t d th

7. RETURN St tinew control space. Given the target configuratiega an e

ABLE | specified entry zon&enry, Problem 2 can be solved using
RAPIDLY-EXPLORINGRANDOM TREES BASED PLANNER WITH CONTROL the f0||9W|ng algorlthm' L. .
SPACE SAMPLING Algorithm 3 (RRT with backchaining): Initialize the tree

7T rooted atsgoa and randomly sample a collision free state
Srand IN CSiree- FOr anysrang, @ reachable neighborhodthach

is computed. After findingspear € 7, Which is the nearest
neighbor ofsiang, We uniformly sample the negative control
space—U and apply all sampled control inputs tQeqr for

0t to generate a set of possible new statgs,. The nearest
neighbor of s;ang iN Spew IS found asspew and added to the
tree. Such exploration is repeated urfilN Senwy # 0 or the
number of iterations reaches its limit.

Do - o ow e o

VII. SIMULATION RESULTS

We implement the proposed RRT based motion planning
Fig. 3. The crateriform reachable region of local needleiomot method for the steerable needle insertion in a 3D envi-
ronments with obstacles. Since we assume that the nee-
dle is to be inserted from outside of the tissue, we only
more detailed exploration with more complexity, but a loweronsider workspace with positive-axis. The workspace is
resolution leads to a fast exploration with less informmatiodefined to be a cubical region with coordinatess,5) x
on the connectivity and structure of the free space. Inste@d5,5) x (0,10), and we use six unit-radius spherical ob-
of using the deterministic discretization of the controasp, stacles as shown in Fig. 1, which are centered at the
we sample a set of control inputs uniformly in the contrgbositions (0,0,4),(—1.5,0,8.5), (—2.9,0,7.5), (—2,0,5.5),
space, using CONTRQISAMPLING(), within a predefined (—0.3,1.4,5.5) and (—0.3, —1.4,5.5), to approximate obsta-
range[vmin, Umax X [wmin, wmax], and apply all sampled controlcles around real prostate, such as the urethra, the perile bu
inputs tosnear fOr 4t to generate the set of possible new statesd the pubic arch. The maximal number of iterations is
Snew. By doing so, we not only explore the RRT toward allL0000. Simulations are run on a laptop with Intel Centfino
possible directions with same probability, but also extérel 1.66 MHz, 1 GB memory, and Microséft Windows XP®
RRT toward the sampled states by various depth with samperation system.



Fig. 4. Algorithm 1: (a) The exploration of the basic RRT; {f)e feasible
path found by the basic RRTs method.

Fig. 7. Algorithm 3: (a) Exploration of one RRT with backchiaig; (b)

Fig. 5. Algorithm 2: (a) Exploration of the forward RRTs witontrol ~Feasible path found by the RRT with backchaining.
space sampling; (b) Feasible path found by forward RRTs watlitrol space
sampling.

position at(—0.006,0.011,9.991), and Fig. 5(b) shows the
RRT exploration with Algorithm 2 in the free space.

First, we implement Algorithms 1 and 2 to solve Problem 1 Second, we consider insertion task in the same environ-
for an insertion task from entry poir, 0, 0) with orientation ment, and the target configuration is set to(bel.5,0,9.7).
(0,0,0) to reach the target zone which is a ball located @ince the target is very close to one of the obstacles and
(0,0,10) with radius0.01. The range of the control inputsthe obstacle is in the middle of the way between the entry
are defined by insertion depth {A.1,0.5] and rotation angle point and the target zone, it is difficult to find a feasible
in [0,2x], and the grid size of control space deterministipath for this task. We first formulate it as Problem 1 and
sampling is0.1. Totally 10 trials have been done with bothimplement Algorithm 2 to solve it. The entry configuration is
Algorithms 1 and 2. With Algorithm 15 trials successfully with position (0,0,0) and orientation([—3, Z],[—Z, Z],0),
found feasible paths within 0000 iterations. The averageand the target zone is a ball located (at1.5,0,9.7) with
number of iterations for the RRT to reach the target regigadius 0.001. Totally, 5 trials have been done, but none of
with deterministic control space samplingli$98.5, with the them can find a feasible path in 10000 iterations. Fig. 6 shows
minimum at148 and the maximum &500. The average CPU one of the explorations of such RRTs. Then we formulate it
time used is1851.8 second. Fig. 4(a) shows the exploratioms Problem 2 and implement Algorithm 3 to solve it. The
of one of the basic RRTs with 2362 iterations, and Fig. 4(game target configuration is used and the entry region is the
shows the feasible path found with this RRT, which finally—y plane withz = 0. Totally 5 trials have been done, and alll
reached the position &0.021,0.023,9.95).

With Algorithm 2, control inputs are uniformly sampled

with insertion depth iff0.1,0.5] and rotation angle if0, 2x]. ﬁf;g?rmof ks 110 120
All trials successfully found feasible paths. The averagen NuUmber of SUCCESSes 5 10
ber of iterations that the RRT with random control space Average Number of iteration$ 1798.5 | 1339.3
samplings take to reach the target region is 1339.3, with the Average CPU time (s) 1851.8| 621.4
minimum at 142 and the maximum at 3748. The average TABLE Il

CPU time used i$21.4 second. Fig. 5(a) shows the feasible PERFORMANCE OFALGORITHMS1 AND 2 FOR SOLVINGPROBLEM 1.
path found by this motion planner, which finally reached the



successfully find feasible entries points and paths. Theagee [3]
number of iterations that the RRT with backchaining uses to

find a feasible entry point i€79.6 with a minimum at112

and a maximum a638, and the average CPU time used is[4]
195.2 second. Fig. 7(a) shows exploration of one of the RRTs

in the free space, and Fig. 7(b) shows the feasible path found
by this with backchaining. [5]

Algorithm 2 3

Number of trials 5 5 6
Number of successes 0 5 [6]
Average Number of iteration$ 10000 | 279.2

Average CPU time (s) N/A | 195.2 [71

TABLE Il
PERFORMANCE OFALGORITHM 2 AND 3 FOR A DIFFICULT TARGET
CONFIGURATION.

(8]

[9]
VIII. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a novel RRT-based motion pléﬁ(—)]
ning method for bevel-tip steerable needle in 3D environmen
This method used randomly sampled control space instead1sf
the classic deterministic one to explore a tree in the waksp
which probabilistically makes a trade-off between expiora
complexity and exploration completeness. We also addies$&’]
feasible entry point planning problem and proposed a method
using RRT with backchaining to solve this problem. Thigg;
algorithm provides a quick search toward the entry zone in
C-space with its RRT structure. Although no entry point could
be found within limited iterations for some very difficult[i4]
goal configuration, it can easily find feasible entry poirms a
corresponding paths for most goal configurations becatese
entry zone is much less constrained. Finally, we provided
simulations to explore performance of the proposed motidf]
planners.

In this paper, we only consider motion planning for steezabj; 7]
needle in stiff 3D environment with spherical obstacles. In
future work, we will explore this problem in deformable®!
environments with obstacles of more complex shapes. Also,
we will consider insertion tasks whose initial and goal dend(19]
tions are both specified by a zone in the configuration space.
Moreover, another important factor of the 3D steerable leeegbq)
motion planning, uncertainties in sensing and motion, &l

taken into account in future work too. 21]
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