
Answering Content and Structure-based

queries on XML documents using relevance

propagation

Karen Sauvagnat, Mohand Boughanem, Claude Chrisment

IRIT/SIG, 118 route de Narbonne,
31062 Toulouse Cedex 4, France

{sauvagna,bougha,chrisment}@irit.fr

Abstract

As XML documents contain both content and structure information, taking advan-
tage of the document structure in the retrieval process can lead to better identify
relevant information units. In this paper, we describe an Information Retrieval (IR)
approach dealing with queries composed of content and structure conditions. The
XFIRM model we propose is designed to be as flexible as possible to process such
queries. It is based on a complete query language, derived from XPath and on a
relevance values propagation method. This paper aims at evaluating functions used
in the propagation process, and particularly the use of distance between nodes as
a parameter. The proposed method is evaluated thanks to the INEX evaluation
initiative. Results show a relative high precision of our proposal.

Key words: XML, Information retrieval, relevance propagation method, content
and structure queries

1 Introduction

Long documents usually contain many subjects. In that case and in an IR con-
text, selecting a whole document as answer unit is not necessary useful for the
user. The user may actually require document parts, which are of higher pre-
cision and finer granularity. Today, with the availability of XML documents,
there is a growing demand of developing techniques that take into account
structured and unstructured (i.e. text) data. XML documents allow the pro-
cessing of information at another granularity level than the whole document.
The challenge in IR context is to identify and retrieve relevant parts of the
document (or documents passages [13]). In other words, the aim is to retrieve

Preprint submitted to Elsevier Science 16 November 2007

the most exhaustive 1 and specific 2 information units [12] answering a given
query.
Many approaches dealing with this challenge can be found in the literature.
They can be divided into two main sub-groups [5]: the data-oriented and the
document-oriented approaches.
The database community was the first to investigate the XML retrieval issue,
using the data-oriented approaches. In these approaches, XML documents are
considered as collections of homogeneous and typed data. Approaches pro-
posed in the literature focus on indexing schemes and query languages. For
exemple, the XQuery language proposed by the W3C [26] extends SQL func-
tionalities on tables (collection of tuples) to support similar operations on
forests (collection of trees), as XML documents can be seen as trees. Unfor-
tunately, most of the proposed approaches typically expect binary answers to
very specific queries. An extension of XQuery with full-text search features is
however expected [27].
The document-oriented approaches, proposed by the IR community, consider
that tags are used to describe the logical structure of documents. Traditional
IR approaches are adapted to address the problem of retrieving document
parts that answer the user information needs.
This paper describes a document-centric approach, that can also perform spe-
cific queries (regarding structure) containing content conditions. The following
section gives a brief view of related work. Then, in section 3, we present the
XFIRM (XML Flexible Information Retrieval Model) model and the associ-
ated query language. Section 4 presents the INEX initiative for XML retrieval
evaluation and describes the results of the experiments carried out on the
INEX collection.

2 Related work: Information Retrieval Approaches for XML Re-

trieval

XML documents can be viewed as text documents containing tags and rela-
tions between tags. Thus, traditional information retrieval models should be
extended to take into account the structure and semantic of these documents.
One of the first approaches proposed for dealing with XML documents was
the ”fetch and browse” approach [3,4], saying that a system should always
retrieve the most specific part of a document answering a query. This defini-
tion assumes that the system first searches whole documents answering the
query in an exhaustive way (the fetch phase) and then extracts the most spe-
cific information units (the browse phase). Most of the Information Retrieval
Systems (IRS) dealing with XML documents allow information units to be di-

1 An element is exhaustive to a query if it contains all the required information
2 An element is specific to a query if all its content concerns the query

2

rectly retrieved, without first processing the whole documents. Let us describe
some of them.
The extended boolean model uses a new non-commutative operator called ”con-
tains”. The first term is an Xpath expression and the second a boolean expres-
sion. This model allows queries to be specified completely in terms of content
and structure [11].
A natural extension of the vector space model separates structural information
from content information. However, this idea is not really used. In fact, the
similarity measure is extended in order to evaluate relations between structure
and content. In this case, each index term should be encapsulated by one or
more nodes. The model can be generalized with the aggregation of relevance
scores in the documents hierarchy [7]. Schlieder and Meuss [23] proposed the
ApproXQL model, which integrates the document structure in the vector space
model similarity measure. The query model is based on tree matching: it al-
lows the expression of queries without perfectly knowing the data structure.
The probabilistic model is applied to XML documents in [12,25,5,9]. The
XIRQL query language [5] extends the Xpath operators with operators for
relevance-oriented search. Other operators allow vague searches on non-textual
content. Documents are then sorted by decreasing probability that their con-
tent is the one specified by the user.
Language models [1,16] and bayesian networks [18] are also adapted for XML
retrieval.
Our proposal is more concerned with the approach described in [9]. In this
approach, Gövert, Fuhr and al. proposed an augmentation method for dealing
with XML documents. Standard term weighting formulas are used to index
so called ”index nodes” of the document. Index nodes are not necessarily leaf
nodes, because this structure is considered to be too fine-grained. However, in-
dex nodes are disjoint. In order to allow nesting of nodes, in case of high-level
index nodes containing other index nodes, only the text that is not contained
within the other index nodes is indexed. For computing the indexing weights
of inner nodes, the weights from the most specific index-nodes are propagated
toward the inner nodes. During propagation, however, the weights are down-
weighted by multiplying them with a so-called augmentation factor. In case
a term at an inner node receives propagated weights from several leaves, the
overall term weight is computed by assuming a probabilistic disjunction of
the leaf term weights. This way, more specific elements are preferred during
retrieval.
Our approach is also based on an augmentation method. However, in our ap-
proach, all leaf nodes are indexed, because we think that even the smallest leaf
node can also contain relevant information (it can be a title or sub-title node
for example). The index process can be performed automatically, without any
human intervention. Moreover, the way the relevance values are propagated in
the document tree is function of the distance that separates nodes in the tree,
whereas in [9] the augmentation factor is a simple constant parameter. Finally,
our approach is able to process structure conditions in a vague way, by doing

3

some relevance propagations in the document tree. Documents that do not
exactly match the query structure conditions can have a non-zero relevance
value, but are lower ranked in the results list. The following section describes
our model.

3 The XFIRM model

3.1 Data representation

A structured document sdi is a tree, composed of simple nodes nij , leaf nodes
lnij and attributes aij.
Structured document: sdi = (treei) = ({nij}, {lnij}, {aij})
This representation is a simplification of Xpath and Xquery data model [28], in
which a node can be a document, an element, text, a namespace, an instruction
or a comment.
In order to easily browse the document tree and to quickly find ancestors-
descendants relationships, the XFIRM model uses the following representation
of nodes and attributes, based on the Xpath Accelerator approach [10]:
Node : nij = (pre, post, parent, attribute)

Leaf node : lnij = (pre, post, parent, {(t1, w
lnij

1), (t2, w
lnij

2), . . . , (tn, w
lnij
n)})

Attribute: aij = (pre, val)

<article>
<fm>

<title> Search engines : how to find a needle in a haystack</title>
<author num= ” 1 ” > J. Dupont </author>
<year> 1998 </year>
</fm>

<body>

<sec >

<st> Introduction </st>
<p> Internet growth. . . </p>

</sec>
<sec >

<st> Search engines </st>
<p> Yahoo! is . . .</p>

<p> Google is a full-text search engine. . . </p>

</sec>
</body>

</article>

Table 1
Example of XML document

4

A node is defined thanks to its pre-order and post-order value (pre and post),
the pre-order value of its parent node (parent), and depending on its type (sim-
ple node or leaf node) by a field indicating the presence or absence of attributes

(attribute) or by the terms it contains ({(t1, w
lnij

1), (t2, w
lnij

2), . . . , (tn, w
lnij
n)})

and their associated weight in the node. A simple node can either contains
other simple nodes, leaf nodes, or both. This last case is not really a prob-
lem, because as each node owns a pre and post order value independently of
its type (simple node or leaf node), the reconstruction of the tree structure
can be easily done. An attribute is defined by the pre-order value of the node
containing it (pre) and by its value (val). Pre-order and post-order values are
assigned to nodes thanks respectively to a pre-fixed and post-fixed traversal
of the document tree, as illustrated in figure 1.

Fig. 1. Tree representation of the XML document in Table 1. Each node is assigned
a pre-order and post-order value.

If we represent nodes in a two-dimensions space based on the pre and post
order coordinates (see figure 2), we can exploit the following properties, given
a node n:

• all ancestors of n are to the upper left of n’s position in the plane
• all its descendants are to the lower right,
• all preceding nodes in document order are to the lower left, and
• the upper right partition of the plane comprises all following nodes (regard-

ing document order)

Xpath Accelerator is well-suited for the navigation in XML documents with
Xpath expressions. In contrast to others path index structures for XML, it
also efficiently supports path expressions that do not start at the document
root. Moreover, this data representation allows the processing of all XML
documents, without necessarily knowing their DTD. This implies the ability
of the model to process heterogeneous collections.
As explained in our previous work [19], all data are stored in a relational
database. The Path Index (PI) allows the reconstruction of the document
structure (thanks to the Xpath Accelerator model): for each node, its type, and
its pre and post-order values are stored. The Term Index (TI) is a traditional

5

Fig. 2. Representation of the XML document in a two-dimension space based on
the pre and post order coordinates

inverted file, i.e. for each term, the index stores the nodes containing it and
its positions in the different nodes. The Element Index (IE) describes the
content of each leaf node, i.e. the total number of terms and also the number
of different terms it contains, and the Attribute Index (AI) gives the values
of attributes. Finally, the Dictionary (DICT) provides for a given tag the
tags that are considered as equivalent. It is useful in case of heterogeneous
collections (i.e. XML documents with different DTD) or in case of documents
containing similar tags, like for example, title and sub-title. This index is built
manually.

3.2 The XFIRM Query language

A query language is associated to the model, allowing the expression of queries
with simple keywords terms and/or with structural conditions [21].

When expressing complex structural conditions, users can use boolean and/or
hierarchical operators to link what we called elementary queries. Elementary
queries are atomic structural conditions, composed of an element name and
a content condition on this element name. Users can also choose the element
they want to be returned, thanks to the te: (target element) operator.
Examples of XFIRM queries:
(i) // p [+weather +forecasting systems] : elementary query which means that
the user wants paragraphs about weather forecasting systems,
(ii) // sec[privacy law] AND sec[copyright] : boolean query indicating that
the user wants an information unit containing a section about privacy law
and a section about copyright,
(iii) // article[security] // te: sec [”facial recognition”] : hierarchical query
meaning that the user wants sections about facial recognition in articles about
security,

6

(iv) // te: article [Petri net] //sec [formal definition] AND sec [algorithm ef-
ficiency] : hierarchical query which indicates that the user wants articles about
Petri net containing a section giving a formal definition and another section
talking about algorithm efficiency,
(v) // te: article [] // sec [search engines] : hierarchical query which means
that the user wants articles containing a section about search engines.
When no target element is specified, the information unit to be returned is
decided by the system, as explained in next section. Queries containing struc-
tural conditions can be considered as trees, as XML documents.
When expressing the eventual content conditions, the user can enter simple
keywords terms, optionally preceded by + or - (which means that the term
should or should not be in the results), and connected with boolean operators.
Phrases are also processed by the XFIRM system.
Concerning the structure, the query syntax allows the formulation of vague
path expressions. For example, the user can ask for ”article[]//sec[]” (he/she
so knows that article nodes have section nodes as descendants), without nec-
essarily asking for a precise path, i.e. article[]/bdy[]/sec[]. Moreover, thanks to
the Dictionary index, the user does not need to express in his/her query all
the equivalent tags of the tag he/she’s looking for. He/she can ask for example
for a section node, without saying he/she is also interested in sec nodes.
User can also express conditions on attribute values, as explained in [21].

The formal syntax of the XFIRM language is described in table 2.

3.3 Query processing

The approach we propose for dealing with queries containing content and
structure conditions is based on relevance weights propagation. As seen in the
previous section, content and structure queries can be of 4 types : elementary
sub-queries, boolean queries, hierarchical queries with or without target ele-
ment. The processing of these 4 types of queries is linked, as we will see in
next section. Hierarchical queries are composed of boolean queries, which are
composed of elementary queries. Consequently, the processing of a hierarchical
query consists in evaluating elementary queries that compose it and to re-form
the query tree thanks to these results.
More precisely, the evaluation iof hierarchical queries in XFIRM is carried out
as follows:

(1) Queries are decomposed into boolean queries and elementary queries.
Let us consider the following hierarchical query Q:

Q = //BQ1//BQ2// . . . //te : BQj// . . . //BQn, (1)

7

query ::= <keywordsQuery> | <elementaryQuery> | <booleanQuery>

|<hierarcicalQuery>— <hierarcicalQueryWithTargetElement>

keywordsQuery ::= <reducedExpression> <expressionRemainder>
reducedExpression ::= <terms> <reducedExpressionRemainder>

| ”(” <terms> ”)” <reducedExpressionRemainder>
reducedExpressionRemainder ::= <reducedExpression> | empty
expressionRemainder ::= <booleanOperator> <P1> | empty
terms ::=<additiveOperator> <keywords>
keywords ::= term<termRemainder> | ”” ” term<termRemainder>” ” ”

<termRemainder>
termRemainder ::=empty | <terms>
booleanOperator ::= ” OR ” | ” AND ” | ” NOT ” | empty

elementaryQuery ::=elementName ”[” <condition> ”]”
condition ::= ”@” attributeName ”=” term | P1 | vide

booleanQuery ::= <elementaryQuery><elementaryQueryRemainder>
elementaryQueryRemainder ::= <booleanOperator> <subQuery> | empty

hierarchicalQuery ::= ”//” <subQuery><hierarchicalQueryRemainder>
hierarchicalQueryRemainder ::=<hierarchicalQuery> | empty

hierarcicalQueryWithTargetElement ::= <hierarchicalQueryRemainder>
<targetElement><hierarchicalQueryRemainder >

targetElement ::= ”// te: ” <subQuery>

Key : empty : terminal expression for the empty set
term : terminal expression for a keyword
elementName : terminal expression representing a tag name
attributeName : terminal expression representing an attribute name
te : terminal expression indicating the presence of a tagart element

Table 2
Grammar of the XFIRM query language

where BQi are boolean queries and te : indicates the target elements.
Each boolean query BQi can then be re-decomposed into elementary
queries EQi,j, eventually linked with boolean operators and of the form:

EQi,j =



























tg n[q]

tg n[]

tg n[a n = v]

(2)

Where tg n is a tag name and q = {(t1, w
q
1), . . . , (tn, w

n
1)} is a set of key-

words with their associated weight in the query, i.e. a content condition,
a n is the attribute name of attribute a, and v is the desired value of a.
An example of query decomposition can be found in paragraph 3.4.

8

(2) Relevance values RSV (q, ln) are then evaluated between leaf nodes ln
and the content conditions q of elementary queries.

(3) Relevance values are propagated through the document tree to answer to
the structure conditions of elementary queries. The relevance value of a
node n having tg n as tag name is evaluated thanks to the Fk (RSVm(q,
lnk), dist(n,lnk)) function, which takes into account the distance that
separates node n from leaf nodes lnk;

(4) Boolean queries are processed using the results sets of elementary queries
and the ⊕OR and ⊕AND operators.

(5) Original queries are evaluated thanks to upwards and downwards prop-
agation of the relevance scores of nodes relevant to boolean queries to
nodes belonging to the target elements set. These propagations are done
using the prop agg(rn, rm, dist(m, n)) function, which takes into account
the relevances values of nodes and the distance that separates them in
the document tree.

3.3.1 Evaluating leaf nodes relevance values

The first step in query processing is to evaluate the relevance value of leaf
nodes ln according to the content conditions of each elementary query (if they
exist). Let q = {(t1, w

q
1), . . . , (tn, wn

1)} be a content condition. Relevance values
are computed thanks to a similarity function called RSVm(q, ln) (Retrieval
Status Value), where m is an IR model. The XFIRM system authorizes the
implementation of many IR models, which will be used to assign a relevance
value to leaf nodes. As shown in [22], a simple adaptation of the tf − idf
measure to XML documents seems to perform better in case of content and
structure queries. So:

RSVm(q, ln) =
n

∑

i=1

wq
i ∗ wln

i (3)

with wq
i = tf q

i ∗ iefi and wln
i = tf ln

i ∗ iefi

And where :
- tfi is the term frequency in the query q or in the leaf node ln
- iefi is the inverse element frequency of term i, i.e. log (N/n+1)+1, where
n is the number of leaf nodes containing i and N is the total number of leaf
nodes. If q is a phrase, n is the number of leaf nodes containing the phrase.
This way, nodes containing phrases are preferred to nodes containing simple
terms (if the query is composed of a phrase and of a list of keywords).

9

3.3.2 Elementary queries EQi,j processing

The result set Ri,j of elementary query EQi,j is a set of pairs (node, relevance)
defined as follows, depending on the form of EQi,j:
(1) If EQi,j = tg n[q],
the relevance values assigned to leaf nodes are propagated upwards in the
document tree until nodes having the asked tag name are found. The result
set of an elementary query tg n[q] is so composed of nodes having tg n as tag
name and their associated relevance values, which are obtained thanks to the
propagation.
Formally,

Ri,j = {(n, rn) / n ∈ construct(tg n)

and rn = Fk(RSVm(q, nfk), dist(n, nfk)) } (4)

Where :
- rn is the relevance weight of node n
- the construct(tg n) function allows the creation of the set of all nodes having
tg n as tag name
- the Fk(RSVm(q, nfk), dist(n, nfk)) function allows the propagation and ag-
gregation of relevance values of leaf nodes nfk,descendants of node n, in order
to form the relevance value of node n. This propagation is function of distance
dist(n, nfk) which separates node n from leaf node nfk in the document tree
(i.e. the number of arcs that are necessary to join n and nfk).
We evaluated several propagation functions, that are described in paragraph
4.2.

(2) If EQi,j = tg n[],

Ri,j = {(n, 0)/n ∈ construct(tg n)} (5)

i.e. the set of nodes having tg n as tag name.

(3) If EQi,j = tg n[a n = v],

Ri,j = {(n, 1) / n ∈ construct(tg n), a ∈ construct(a n) isAttribute of n

and value(a) = v)} (6)

A relevance value of 1 (which is the maximal score that a node answering
directly to content conditions can have) is associated to nodes that verify
conditions on attributes values. We consider these conditions as conditions on

10

data and not on text, and we process attribute values by doing exact match
(in a database sense).

3.3.3 Boolean queries BQi processing

Once each EQi,j has been processed, boolean queries BQi are then evaluated
as explained below. Let Ri be the result set of BQi.
- If boolean query BQi is composed of one elementary query EQi,j then the
result set of BQi is the same than the one of EQi,j

If BQi = EQi,j, then Ri = Ri,j (7)

- If boolean query BQi is composed of elementary queries EQi,j linked by the
Boolean operator AND, the result set of BQi is composed of nodes being the
nearest common ancestors of nodes belonging to the result sets of elementary
sub-queries EQi,j. The associated relevance values are obtained thanks to
propagation functions. Formally,

If BQi = EQi,j AND EQi,k, then Ri = Ri,j ⊕AND Ri,k (8)

with ⊕AND defined as follows:

Definition 1 Let N = {(n, rn)} and M = {(m, rm)} be two sets of pairs (node,
relevance).

N ⊕AND M = {(l, rl)/ l is the nearest common ancestor of m and n,

or l = m (respectively n) if m (resp .n) is ancestor of n

(resp. m), ∀m, n being in the same document

and rl = aggregAND(rn, rm, , dist(l, n), dist(l, m))} (9)

Where aggregAND(rn, rm, dist(l, n), dist(l, m)) = rl defines the way relevance
values rn and rm of nodes n and m are aggregated in order to form a new
relevance rl.

An example of such boolean query processing can be found in paragraph 3.4.
We evaluated several functions for aggregAND(rn, rm, dist(l, n), dist(l, m)), which
are described in paragraph 4.2.
- If boolean query BQi is composed of elementary queries EQi,j linked by the
Boolean operator OR, the result set of BQi is an union of the result sets of
elementary queries EQi,j .

If SQi = ESQi,j OR ESQi,k, then Ri = Ri,j ⊕OR Ri,k (10)

11

with ⊕OR defined as follows:

Definition 2 Let N = {(n, rn)} and M = {(m, rm)} be two sets of pairs (node,
relevance).

N ⊕OR M = {(l, rl) / l = n ∈ N and rl = rn

or l = m ∈ M and rl = rm

or l = n = m and rl = aggregOR(rn, rm)} (11)

3.3.4 Hierarchical query processing

The processing of hierarchical queries //BQ1//BQ2// . . . //BQn consists in
evaluating hierarchical conditions. For this purpose, results sets of boolean
queries are used, and are combined thanks to the ∆ operator defined below:

Definition 3 Let Ri = {(n, rn)} and Ri+1 = {(m, rm)} be two sets of pairs
(node, relevance)

Ri∆Ri+1 = {(n, r′n)} (12)

with r′n =



























rn + prop agg(rn, rm, dist(m, n))

if n ∈ Ri is ancestor of m ∈ Ri+1

rn else

(13)

Where prop agg(rn, rm, dist(m, n)) → r′n allows the aggregation of relevance
weights rm of node m and rn of node n according to the distance that sepa-
rates the 2 nodes, in order to obtain the new relevance weight r′n of node n .
Relevance weights of nodes belonging to Ri are not necessarily augmented, but
nodes are still considered as relevant. This way, document having a structure
that do not match exactly the query structure can have a non-zero relevance
value.

The result set R of a hierarchical query is thus defined as follows:

R = R1∆(R2∆(R3∆ . . .)) (14)

which is equivalent to propagate the scores of the results nodes of boolean
queries BQ2 to BQn upwards in the document tree to results nodes of BQ1,
which constitute the result set sent back to the user.
If the result set of BQi is empty (no relevant node are found), the ∆ operator
is used between Ri−1 and Ri+1. This way, we prevent having an empty result
set for hierarchical queries.

12

3.3.5 Hierarchical query with target element processing

Whereas in case of simple hierarchical queries, nodes scores are propagated
upwards in the document tree, in case of hierarchical query with target ele-
ment, scores can be propagate backwards, due to the presence of the target
element operator, which indicates the type of nodes to send back to users.
We need to define the non-commutative operator ∇ as follows:

Definition 4 Let Ri = {(n, rn)} and Ri+1 = {(m, rm)} be two sets of pairs
(node, relevance)

Ri∇Ri+1 = {(m, r′m)} (15)

with r′m =



























rm + prop agg(rn, rm, dist(m, n))

if m ∈ Ri+1 is descendant of n ∈ Ri

rn else

(16)

Thus, the ∇ operator is used to propagate scores of results nodes of boolean
queries BQ1 to BQi−1 backwards in the document tree to results nodes of
BQi, which constitute the target elements asked by the user.

The result set R of a hierarchical query with target element Q= // BQ1 //
BQ2 //. . . //te : BQj //. . . //BQn is thus defined in 3 steps:

(1) Upwards propagation of scores of nodes belonging to results sets Ri+1...Rn

to nodes belonging to the set of target elements Ri:

SR1 = Ri∆(Ri+1∆(Ri+2∆ . . .)) (17)

(2) Backwards propagation of scores of nodes belonging to results sets R1...Ri−1

to nodes belonging to the set of target elements Ri:

SR2 = (((R1 ▽ R2) ▽ R3) ▽ . . .) ▽ Ri (18)

As for upwards propagation, if Ri is empty (no relevant node for BQi),
the ▽ operator is used between Ri−1 and Ri+1, in order to prevent having
an empty result set SR2.

(3) Union of the 2 results sets created previously:

R = SR1 U SR2 (19)

13

The model we presented for processing content and structure queries allows
the evaluation of the similarity between the query tree and the document tree,
thanks to many propagation in the document tree. The way the different prop-
agation functions are ajusted allow the processing of queries in a more or less
strict way.
For example, let us consider documents of figure 3 and the query //a[content1]
// i[content2] // te: c[content3].

a

b c

d e Content3

Content2

Content1

g

b c

h f Content3

Content2 Content1
f

Document 1 Document 2

Fig. 3. Example of vague processing of document structure

Nodes /a/c of document 1 and /g/c of document 2 will have a non-zero rel-
evance value, even if neither of the two respects all the structure conditions
of the query. Node /a/c of document 1 will be however better ranked in the
result list.
If we now consider the query //b[content1]//te : f [content2]; node g/b/f of
document 2 will be better ranked than node /a/b/e/f of document 1, due to
the distance that separates b and f in document trees.
In the same way, a node having a path that does not respect the order of the
structure conditions of a hierarchical query would have a non-zero relevance
value, but will be ranked lower in the result list than a node having a XPath
respecting this order. For example, node /a/b/d of document 1 will have a
non-zero relevance value for query //a[]//d[]//b[content2].

3.4 Example

Let us take the XFIRM query:
// te: article [search engines] // sec [Internet growth] AND sec [Google],
which means that the user is looking for articles about search engines con-
taining a section about Google and a section about Internet growth.

14

This query can be decomposed in boolean queries and elementary queries as
follows:

BQ1 = article[search engines]
⇒ EQ1,1 = article[search engines]

BQ2 = //sec[Internet growth] AND sec[Google]
⇒ EQ2,1 = sec[Internet growth]

EQ2,2 = sec[Google]

Each elementary query is processed independently. Leaf nodes compute a rele-
vance value and this value is propagated along the document tree until a node
having the asked tag name is found. This process is illustrated in Figure 4.

Article : result of EQ1,1

author

 Sec : result of EQ2,2

Search engines

how… J. Dupont

Internet

growth…
Yahoo … Google… Introduction Search

engines

fm

title year

bdy

1998
p p p st st

 Sec : result of EQ2,1

Fig. 4. Processing of elementary queries EQ1,1 , EQ2,1 and EQ2,2

As BQ1 is composed of one elementary query EQ1,1, the result of BQ1 is the
result of EQ1,1, i.e. the article node. Boolean query BQ2 is processed thanks
to the ⊕AND operator : its result is the nearest common ancestor of the result
node of EQ2,1 and of the result nodes of EQ2,2, i.e. the bdy node. The initial
query is finally evaluated. For this purpose, relevance value of nodes in BQ2

result set are propagated in the document tree until a node belonging to the
BQ1 result set (i.e. the set of target elements) is found. In our example, the
relevance value of the bdy node is propagated upwards to the article node.
Figure 5 illustrates the final propagation.

4 Experiments and results

The aim of the experiments presented here was to evaluate the functions used
during the propagation process, and particularly the use of distance between
nodes as parameter. For this purpose, we conducted some runs for the SCAS
task of the INEX evaluation initiative.

15

Article: result of BQ1

 and final result of initial query

author sec

Search engines :

how… J. Dupont

Internet

growth…
Yahoo … Google… Introduction Search

engines

fm

title year

Bdy : result of BQ2

1998
p p p st st

⊕⊕⊕⊕AND

∇∇∇∇

Fig. 5. Initial query reconstruction

4.1 The SCAS task in the INEX initiative

Evaluating the effectiveness of XML retrieval systems requires a test collection
(XML documents, task/queries, and relevance judgments) where the relevance
assessments are provided according to a relevance criterion that takes into ac-
count the imposed structural aspects [6]. The Initiative for the Evaluation
of XML Retrieval tends to reach this aim. The INEX collection, 21 IEEE
Computer Society journals from 1995-2002, consists of 12 135 documents with
extensive XML-markup.
Participants to INEX SCAS task (Strict Content and Structure Task) have
to perform CAS (Content and Structure) queries, which contain explicit ref-
erences to the XML structure, and restrict the context of interest and/or the
context of certain search concepts. One can found an example of INEX 2003
CAS query below.

<inex topic topic id=”64” query type=”CAS”>
<title> //article[about(./,’hollerith’)] // sec[about(./, ’DEHOMAG’)] </title>
<description> In articles discussing Herman Hollerith find sections that mention
DEHOMAG </description>

<narrative> Relevant sections deal with DEHOMAG (Deutsche Hollerith Maschi-
nen Gesellschaft) in documents that discuss work or life of Herman Hollerith
</narrative>
<keywords> Hollerith, DEHOMAG, Deutsche Hollerith Maschinen Gesellschaft
</keywords>
</inex topic>

Table 3
Example of CAS query

The INEX metric for evaluation is based on the traditional recall and preci-
sion measures. To obtain recall/precision figures, the two dimensions of rel-
evance (exhaustivity and specificity) need to be quantised onto a single rele-
vance value. Quantisation functions for two user standpoints were used: (i) a
”strict” quantisation to evaluate whether a given retrieval approach is able of

16

retrieving highly exhaustive and highly specific document components, (ii) a
”generalised” quantisation has been used in order to credit document compo-
nents according to their degree of relevance.

Some approaches

In 2002, the first INEX workshop classified the different approaches in three
categories: extending well known full-text information retrieval models to han-
dle XML retrieval; extending database management systems to deal with XML
data; and XML- specific, which use native XML databases that usually incor-
porate existing XML standards (such as XPath, XSL or XQuery). Last year,
most of the approaches used IR models to answer the INEX tasks. This shows
the increased interest of the IR community to XML retrieval. Some approaches
used a fetch and browse strategy [20,17], which didn’t give as good results as
expected. The Queensland University of Technology used a filtering method
to find the most specific information units [8]. The vector space model was
adapted in [15], using 6 different index for terms (article index, section index,
paragraph index, abtract index,. . .). Finally language models were used in
[2,14,24]. Best performances were obtained in [24], using one language model
per element. In the following, we present the results of the experiments we
conducted in the INEX collection in order to evaluate several possible imple-
mentations of our model.

4.2 Various propagation functions

For each of the propagation functions, two or three functions are evaluated.
- Fk(RSVm(q, nfk), dist(n, nfk)) (4) is either set to:

→֒ Fk(RSVm(q, nfk), dist(n, nfk))=
∑

k

β ∗ RSV (q, nfk) (20)

→֒ Fk(RSVm(q, nfk), dist(n, nfk))=
∑

k

αdist(n,nfk) ∗ RSV (q, nfk) (21)

- aggregAND(rn, rm, , dist(l, n), dist(l, m)) (9) is either set to :

→֒ aggregAND(rn, rm, dist(l, n) , dist(l, m)) = β ∗ (rn + rm) (22)

→֒ aggregAND(rn, rm, dist(l, n) , dist(l, m)) =
rn

dist(l, n)
+

rm

dist(l, m)
(23)

→֒ aggregAND(rn, rm, dist(l, n) , dist(l, m))

= αdist(l,n) ∗ rn + αdist(l,m) ∗ rm (24)

And finally, prop agg(dist(m, n), rn, rm) (13) is either set to:

17

→֒ prop agg(dist(m, n), rn, rm) =β ∗ rm + rn (25)

→֒ prop agg(dist(m, n), rn, rm) =
rn + rm

dist(n, m)
(26)

→֒ prop agg(dist(m, n), rn, rm) =αdist(m,n) ∗ rm + rn (27)

Where β and α ∈]0 . . . 1] are constant parameters, and dist(x,y) is the distance
which separates node x from node y in the document tree (i.e. the number
of arcs that are necessary to join x and y). Functions 20, 22, 25 use a simple
β parameter for down-weighting relevance weights, like the experiments con-
ducted in Gövert et al. paper [9]. The importance of the distance parameter
is evaluated in functions 21, 24, 27, thanks to the α constant.
At last, for aggregOR, we use a simple sum function:

aggregOR(rn, rm) = rn + rm (28)

4.3 Implementation issues

The transformation of INEX CAS queries to XFIRM queries was fairly easy.
The following table gives some correspondences:

INEX topic XFIRM query

//article [about(.,’clustering + dis-
tributed’) and about(.//sec,’java’)]

// te: article [clustering + distributed] //
sec [java]

//article[about(./sec,’”e- commerce”’) //
abs[about(., ’trust authentication’)]

//article [] AND sec[”e- commerce”] //
te: abs [trust authentication]

//article[(.//yr=’2000’ OR
.//yr=’1999’)AND about(., ”intelli-
gent transportation system”’)// sec
[about(.,’automation +vehicle)]

//article [”intelligent transportation sys-
tem”] // te: sec [automation + vehicle]

Table 4
Transformation of INEX topics into XFIRM queries

When a INEX topic contains a condition on the article publication date (as
its the case in the last query of Table 4, this condition is not translated in
the XFIRM language, because propagation with a very common term (like a
year) is too long. To solve this issue, queries are processed by XFIRM without
this condition, and results are then filtered on the article publication date.
Finally, the Dictionary index is used to find equivalent tags. For example,
according to INEX guidelines, sec (section) nodes are equivalent to ss1, ss2
and ss3.

18

4.4 Runs

We evaluated 36 runs, combining the different propagation functions.

• A first set of runs uses functions (20) (22) (25) : these runs are performed
in order to evaluate the use of a simple constant parameter β for down-
weighting relevance weights. We evaluated several values for β, from 0.5 to
1. In the following, these runs are labeled with ”β = value”.

• A second set of runs uses functions (21) (24) (27) : they are performed in
order to evaluate the impact of the distance parameter (modeled with α)
in the propagation functions. We evaluated several values for α, from 0.5 to
1 3 . These runs are labeled with ”α = value”

• A third set of runs uses functions (21) (23) (26): Runs also use the distance
between nodes as a parameter in the propagation functions, but in a different
way. Values of α go from 0.5 to 1 4 . These runs are labeled with ”mix.α =
value”.

For all cases described behind, we take into account either the title and key-
words fields of topics (runs labeled ”TK ”) or the title only field (runs labeld
with ”T”) or .

4.5 Analysis of the results

For all 36 runs, we processed 30 queries, expressed with the XFIRM language.
The 36 runs resulted in 72 average precisions (for strict and generalized quan-
tization) that are plotted in figures 6, 7.

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0,5 0,6 0,7 0,8 0,9 1

α / β α / β α / β α / β

A
ve

ra
g

e
p

re
ci

si
o

n

β
α
mix

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0,5 0,6 0,7 0,8 0,9 1

α/βα/βα/βα/β

A
ve

ra
g

e
p

re
ci

si
o

n

β
α
mix

Fig. 6. Evolution of average precision against α and β for strict quantization, use
of title field only of topics (left) or title and keywords fields (right)

Associated recall-precision curves of the most significative results for strict

3 We also experimented with values from 0.1 to 0.4, but average precisions were
lower
4 Experiments with values from 0.1 to 0.4 did not give good results

19

0,22

0,225

0,23

0,235

0,24

0,5 0,6 0,7 0,8 0,9 1

α/βα/βα/βα/β

A
ve

ra
g

e
p

re
ci

si
o

n

β
α
mix

0,22

0,225

0,23

0,235

0,24

0,5 0,6 0,7 0,8 0,9 1

α/βα/βα/βα/β

A
ve

ra
g

e
p

re
ci

si
o

n

β
α
mix

Fig. 7. Evolution of average precision against α and β for generalized quantization,
use of title field only of topics (left) or title and keywords fields (right)

Mercude.pos_cas_ti

Xfirm.TK. α =0.9

Xfirm.TK. mix.αααα =0.9

Xfirm.TK. β =0.9

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5
0,

57
0,

64
0,

71
0,

78
0,

85
0,

92
0,

99

Recall

P
re

ci
si

o
n

Mercure2,pos_cas_ti

xfirm.TK.a=0,9

xfirm.TK.mix.a=0,9

xfirm.TK.b=0,9

Fig. 8. Average/precision curves for strict quantization

quantization are plotted in figure 8. They are compared to the best run we
performed last year in the Inex SCAS task with our fetch and browse method:
Mercure2.pos cas ti [20] .

The first point to be noticed is the relatively high precision for all runs compar-
ing to the official INEX results. Table 5 shows our best run if it was integrated
in the official results for strict quantization. Best results were obtained by the
University of Amsterdam, using language models [24]. Most of our runs would
have been ranked between the second and third position, before the Queens-
land University of Technology [17], who processed queries with a fetch and
browse approach.
The propagation method we used increases in a very significant way the results
we obtained with our ”fetch and browse” method (run Mercure2.pos cas ti).
This is not really surprising, because the XFIRM model is able to process all
the content conditions, whereas the run performed with Mercure system only
checked that conditions on the target element were respected.

20

In a general manner, the use of title and keywords fields of INEX topics

rank Avg pre-
cision

Organisation Run ID

1 0.3182 U. of Amsterdam UamsI03-SCAS-MixedScore

2 0.2987 U. of Amsterdam UamsI03-SCAS-ElementScore

0.2920 Xfirm.TK.mix.α=0.9

3 0.2601 Queensland Univ. of Technology CASQuery 1

4 0.2476 University of Twente and CWI LMM-ComponentRetrieval-SCAS

5 0.2458 IBM, Haifa Research lab SCAS-TK-With-Clustering

6 0.2448 Universitt Duisburg-Essen Scas03-way1-alias

7 0.2437 RMIT University RMIT SCAS 1

8 0.2419 RMIT University RMIT SCAS 2

9 0.2405 IBM, Haifa Research lab SCAS-TK-With-No-Clustering

10 0.2352 RMIT University RMIT SCAS 3

.

24 0.1641 IRIT Mercure2.pos cas ti

Table 5
Ranking of official INEX submissions and of our best run for strict quantization.
Please note that most of our runs are also in the ”top ten” for both strict and
generalized quantization.

increases the average precision of almost all runs, even if it decreases the pre-
cision for some particular queries.
Concerning the impact of the distance between nodes in the propagation pro-
cess, it can be noticed that the more weights are down-weighted by the β
constant, the more the average precision decreases. Indeed, the best average
precisions for ”β runs” are obtained for β=1, which is equivalent to simply
sum the leaf nodes weights (figure 6 and 7).
However, down-weighting leaf nodes weights during propagation seems to be
useful when using the distance parameter: runs with α = 1 (and with β = 1)
obtain lower precision than runs with α = 0.9 where distance between nodes
is considered. However, runs evaluated with different values of α show that
the distance parameter should be considered carefully. Indeed, when relevance
values are too down-weighted by the distance, performances decrease.
The sets of functions (21) (23) (26) and (21) (24) (27) taking into account the
distance between nodes during the propagation obtain similar results, with a
slight preference for functions (21) (23) (26).
Finally, it can be noticed that all this runs were re-processed The relevance
propagation method seems to give good results, using all leaf nodes as start

21

point to the propagation. The distance between nodes seems to be a useful
parameter during the propagation, but should be considered carefully. Our
methods have to be explored on other topics/ collections to confirm these
performances and we are currently working on the INEX Heterogeneous Col-
lection Track to achieve this goal. Moreover, the propagation functions used
are now to be evaluated with content only queries. As in this case no struc-
tural constraint is expressed, the way the propagation functions are used is a
crucial issue.

5 Conclusion

We have presented in this paper an approach for XML content and structure-
oriented search that addresses the search issue from IR viewpoint. We have
described the XFIRM model and a relevance values propagation method that
allows the ranking of information units according to their degree of relevance.
This propagation method is based on relevance values computed for each leaf
node and then on propagation functions using the distance between nodes to
aggregate the relevance values. The XFIRM model decomposes each query
into elementary sub-queries to process them and then recomposes the original
query to respect the eventual hierarchical conditions.
This method achieves good results on the INEX topics for the ad-hoc track.
Further experiments should be achieved to confirm results on other topics/
collections and to adapt this method to content only queries.

References

[1] M. Abolhassani, N. Fuhr, Applying the Divergence From Randomness
Approach for Content-Only Search in XML Documents. In: ECIR 04. April
2004, pp. 409-419.

[2] M. Abolhassani , N. Fuhr, S. Malik, HyREX at INEX 03. In Proceedings of
INEX 2003 Workshop, December 2003.

[3] Afrati, N. Foto , Koutras, D. Constantinos : A Hypertext Model Supporting
Query Mechanisms. Proceedings of the European Conference on Hypertext,
INRIA, France, November 1990. pp. 52-66

[4] Y. Chiaramella, P. Mulhem, F. Fourel, A model for multimedia search
information retrieval. Technical report, Basic Research Action FERMI 8134,
University of Glasgow, April 1996.

22

[5] N. Fuhr, K. Grossjohann, XIRQL: A query Language for Information Retrieval
in XML Documents. In Proc. of the 24th annual ACM SIGIR conference on
research and development in Information Retrieval, New Orlans, USA, p. 172-
180. ACM Press, 2001.

[6] N. Fuhr, S. Malik, M. Lalmas, Overview of the Initiative for the Evaluation
of XML Retrieval (INEX) 2003. In Proceedings of INEX 2003 Workshop,
December 2003.

[7] M. Fuller, E. Mackie, R. Sacks-Davis, R. Wilkinson : Structural answers for
a large structured document collection. In Proc. ACM SIGIR, pp. 204-213.
Pittsburgh, 1993.

[8] S. Geva, L-S. Murray, Xpath inverted file for information retrieval. In
Proceedings of INEX 2003 Workshop, December 2003.

[9] N. Gövert, M. Abolhassani, N. Fuhr, K. Grossjohann, Content-oriented XML
retrieval with HyREX. In Proceedings of the first INEX Workshop, December
2002.

[10] T. Grust, Accelerating XPath Location Steps. In M. J. Franklin, B. Moon, and
A. Ailamaki, editors, Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, USA, ACM Press,
2002.

[11] Y. Hayashi, J. Tomita , G. Kikoi, Searching text-rich XML documents with
relevance ranking. In Proc ACM SIGIR 2000 Workshop on XML and IR (pp.
27-35). Athens 2000.

[12] M. Lalmas, Dempster-Shafer Theory of evidence applied to structured
documents: modeling uncertainty. In Proc. ACM-SIGIR, pp. 110-118,
Philadelphia, 1997.

[13] P.-Y. Lambollez , J.-P. Queille , J-F. Voidrot ,C. Chrisment , EXREP : un outil
générique de réécriture pour ĺ extraction d ínformations textuelles , Revue ISI,
Vol. 3(4), 1995, pp 471-487.

[14] J. List, V. Mihazjlovic , A.P. de Vries, G. Ramirez, D. Hiemstra, The TIJAH
XML-IR system at INEX 03. . In Proceedings of INEX 2003 Workshop,
December 2003.

[15] Y. Mass, M. Mandelbrod, Retrieving the most relevant XML component. . In
Proceed-ings of INEX 2003 Workshop, December 2003.

[16] P. Ogilvie, J. Callan, Using Language Models for Flat Text Queries in XML
Retrieval. In Proceedings of INEX 2003 Workshop, pp. 12-18, December 2003.

[17] J. Pehcevski, J. Thom, A-M. Vercoustre, RMIT experiments : XML retrieval
using Lucy/eXist. . In Proceedings of INEX 2003 Workshop, December 2003.

[18] B. Piwowarski, G-E. Faure, P. Gallinari, Bayesian networks and INEX.
In Proceedings in the First Annual Workshop for the Evaluation of XML
Retrieval (INEX), Dec. 2002.

23

[19] K. Sauvagnat , XFIRM, un modèle flexible de Recherche d Ínformation pour le
stockage et l̀ interrogation de documents XML, CORIA’04, Toulouse, France.

[20] K. Sauvagnat, G. Hubert, M. Boughanem, J. Mothe, IRIT at INEX 03. In
Proceedings of INEX 2003 Workshop, December 2003.

[21] K. Sauvagnat, M. Boughanem, Le langage de requête XFIRM pour les
documents XML: De la recherche par simples mots-clés à l’utilisation de la
structure des documents. Inforsid 2004, Biarritz, France.

[22] K. Sauvagnat, M. Boughanem, The impact of leaf nodes relevance values
evaluation in a propagation method for XML retrieval. In: 3rd XML and
Information Retrieval Workshop, SIGIR 2004, Sheffield, England, July 2004.
Ricardo Baeza-Tates, Yoelle Marek, Thomas Roelleke, Arjen P. de Vries, p.
19-22.

[23] T. Schlieder, H. Meuss, Querying and ranking XML documents. Journal of
the American Society for Information Science and Technology, 53(6) : 489-
503, 2002.

[24] B. Sigurbjörnsson, J. Kaamps, M. de Rijke , An element-based approach to
XML retrieval. In Proceedings of INEX 2003 Workshop, December 2003.

[25] J.E. Wolff, H. Flrke, A.B. Cremers , Searching and browsing collections
of structural information. In Proc of IEEE advances in digital libraries,
Washington, 2000.

[26] World Wide Web Consortium (W3C), XQuery 1.0 : an XML query language.
W3C Working Draft, November 2003. http://www.w3.org/TR/xquery/

[27] World Wide Web Consortium (W3C), Xquery and Xpath Full-Text Use Cases.
W3C Working draft, February 2003. http://www.w3.org/TR/2003/WD-
xmlquery-full-text-use-cases-20030214/.

[28] World Wide Web Consortium (W3C, M Fernandez et al.) , XQuery
1.0 and XPath 2.0 Data Model. W3C Working Draft, May 2003.
http://www.w3c.org/TR/xpath-datamodel/

24

