
FAULT TOLERANT METHODS FOR RELIABILITY IN FPGAs

Edward Stott, Pete Sedcole, Peter Y. K. Cheung
Electrical and Electronic Engineering
 Imperial College, London, SW7 2BT

{edward.stott07,pete.sedcole,p.cheung}@ic.ac.uk

ABSTRACT

Reliability and process variability are serious issues for
FPGAs in the future. Fortunately FPGAs have the ability
to reconfigure in the field and at runtime, thus providing
opportunities to overcome some of these issues. This paper
provides the first comprehensive survey of fault detection
methods and fault tolerance schemes specifically for
FPGAs, with the goal of laying a strong foundation for
future research in this field. All methods and schemes are
qualitatively compared and some particularly promising
approaches highlighted.

1 INTRODUCTION

As process technology scaling continues, manufacturing
large defect-free integrated circuits become increasingly
difficult. There is also the added problem of degradations
over time after a device has been successfully deployed in
the field. These reliability issues are particularly acute with
FPGAs. Similar to memories, FPGAs have high density of
transistors and interconnect wires. A recent study [1]
suggested that future FPGAs at and beyond the 45nm
technology node will have such low yield that defect
tolerance scheme will be unavoidable in large FPGAs.
This paper provides the first comprehensive survey on the
issues of reliability, defect detection and fault tolerance
methods in FPGAs over the past 15 years.

FPGAs present interesting opportunities for fault
tolerance due to their ability to be reconfigured. The most
promising systems that have been proposed exploit this
feature very heavily.

A fault tolerant system consists of two main
components; these are fault detection and fault repair.
Section 3 surveys fault detection methods and Section 4
considers fault repair. Causes of faults and application
issues are briefly discussed in Section 2.

2 BACKGROUND

2.1 Causes of degradation
Degradation in VLSI circuits can be attributed to a number
of mechanisms [2]. The hot-carrier effect leads to a build
up of trapped charges in the gate-channel interface region
[3]. This causes a gradual reduction in channel mobility
and increase in threshold voltage in CMOS transistors. The
effect on the circuit is that switching speeds become

slower, leading to delay faults. This is effect is also seen as
a result of Negative-Bias Temperature Instability, which
exhibits a similar build up of trapped charges [4].

Electromigration is a mechanism by which metal ions
migrate over time leading to voids and deposits in
interconnects. Eventually these can cause faults due to the
creation of open and short circuits [5].

Time-Dependent Dielectric Breakdown (TDDB) affects
the gates of transistors, causing an increase in leakage
current and eventually a short circuit. The mechanism here
is the creation of charge traps within the gate dielectrics,
diminishing the potential barrier it forms [6] [7].

All of these degradation mechanisms have the potential
to become more severe with the shrinking of process
geometry. This is due to increasing gate field strength,
higher current density, smaller feature size, thinner gate
dielectrics and increasing variability. In the case of TDDB,
the situation is made complicated by the introduction of
new processes such as high-K dielectrics and metal gates
[8].

2.2 Other types of fault
In addition to degradation, there are two other types of
faults which can affect FPGAs. These are highly relevant
to this study as some of the techniques which have been
developed in response to them can also be applied to faults
caused by degradation.

The first of these is manufacturing defects.
Manufacturing defects can be exhibited as circuit nodes
which are stuck-at 0 or 1 or switch too slowly to meet the
timing specification. Defects also affect the interconnect
network and can cause short or open circuits and stuck
open or closed pass transistors [9]. Test and repair of
manufacturing defects is well established in VLSI.

The second type of fault which is widely discussed in
relation to FPGAs comprises of Single Event Upsets
(SEUs) and Single Event Transients (SETs) caused by
certain types of radiation. This is of particular concern to
aviation, nuclear research and space applications where
devices are exposed to higher levels of radiation. The most
commonly considered failure mode is the flipping of an
SRAM cell in the configuration memory. This causes an
error in the logic function which persists until the
configuration memory is refreshed in a process known as
scrubbing. Whilst this recovery method is not applicable to
permanent faults caused by degradation, ways of detecting
SEU faults are relevant.

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
415

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

2.3 Applications of fault tolerance
All of the fault detection and repair methods surveyed have
individual strengths and weaknesses and which method is
most appropriate depends on the application.

In some cases reliability is critical for safety or mission
success [10]. Fast detection is crucial here so that
erroneous data or state is not acted upon. Another class of
reliable system is one where a physical repair is not
practical. Fault coverage and repair flexibility are
important here.

In the light of variability and reliability concerns
associated with future VLSI process nodes, it may become
economical to use fault tolerance in general purpose, high
volume applications. In this case, it will be important that
the detection and repair method has the lowest possible
overhead on timing performance and area.

3 METHODS OF FAULT DETECTION
The first step of a fault-tolerant scheme is fault detection.
Fault detection has two purposes; firstly, it alerts the
supervising process that action needs to be taken for the
system to remain operational and, secondly, it identifies
which components of the device are defective so that a
solution can be determined. These two functions may be
covered simultaneously, or it may be a multi-stage process
comprising of different strategies.

Fault detection methods can be categorised into three
broad types:
1. Redundant/concurrent error detection uses

additional logic as a means of detecting when a logic
function is not generating the correct output.

2. Off-line test methods cover any testing which is
carried out when the FPGA is not performing its
operational function.

3. Roving test methods perform a progressive scan of
the FPGA structure by swapping blocks of
functionality with a block carrying out a test function.

The different approaches to fault detection are
evaluated against a set of metrics in Table 1.

3.1 Functional redundancy and Concurrent Error
Detection (CED)

Redundancy is widely used as a method of fault detection
in FPGAs, particularly in the form of Triple Modular
Redundancy (TMR) [11] [12] [13] [14]. The main driver
for error detection of this kind is the need to detect and
correct errors due to SEUs and SETs. However, these
methods will detect any error which occurs whilst the
system is operating.

These detection methods work by invoking more than
the minimum amount of logic than is necessary to
implement the logic function. When an error occurs, there
is a disagreement between the multiple parts of the circuit
over which a particular calculation is processed and this is
flagged by some form of error detection function.

The simplest form is modular redundancy. A
functional block is replicated, usually two or three times
and the outputs compared. Any difference indicates that a
fault is present.

Concurrent Error Detection (CED) allows a more
space efficient design than modular redundancy. Data
flows and stores are widened using error coding algorithms
such as parity. Data validation circuitry at the output to
functional blocks can then detect faults which arise.

Redundancy provides a very fast means of error
detection, as a fault is uncovered as soon as a discrepancy
occurs. In addition, this form of error detection has a small
impact on timing performance; just the latency of voting or
parity logic, or similar.

The chief drawback of error detection using
redundancy is the area overhead needed to replicate
functionality, which can be over three times in the case of
TMR [15]. Furthermore it provides a limited resolution for
identification of the faulty component. The fault can only
be pinned down to a particular functional block or, in the
case of TMR, an instance of a functional block. Fault
resolution can be increased to a certain extent by breaking
functional areas down and adding additional error
detection logic.

Modular redundancy detects all faults which become
manifest at the output of a functional block, including
transient errors. In CED, coverage comes at the expense of

Table 1. Comparison Matrix of Fault Detection Methods
Method Speed of

detection
Resource
overhead

Performance overhead Granularity Coverage

Modular
Redundancy

Fast – As soon as
fault is manifest

Very Large –
Triplicate plus

voting logic

Very Small – Latency of
voting logic

Coarse – Limited
to size of module

Good - All manifest errors are
detected.

Concurrent error
detection

Fast – As soon as
fault is manifest

Medium – trade-
off with coverage

Small – Additional
latency of CRC logic

Medium – trade-
off with resource

Medium – Not practical for all
types of functionality.

Off-line BIST Slow – only when
off-line

Very small Small – Slight start-up
delay

Fine – Possible to
detect the exact

error

Very Good – All faults
including dormant.

Roving (Segmented
Interconnect)

Medium – order 1
seconds

Medium – Empty
test block plus test

controller

Large – Clock must be
stopped to swap blocks.

Critical paths may
lengthen

Fine – Possible to
detect the exact

error

Very Good – Multiple Manifest
and latent faults are detected.

416

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

additional area. These methods provide no coverage of
dormant faults, which may be relevant if an FPGA is going
to be reconfigured in the field, either for fault repair or to
alter the functionality.

Redundancy does not have to be restricted to the
circuit-area dimension. It is also possible to detect errors in
a trade-off with latency/data throughput. [16] proposes a
scheme where operations are carried out twice. In the
second operation, operands are encoded in such a way that
they exercise the logic in a different way. The output is
then passed through a suitable decoder and compared to
the original.

Although most of the work on redundancy has been
aimed at detecting and correcting SEUs, there have been
some notable publications which apply the techniques to
fault detection. [17] uses Dual Modular Redundancy
(DMR) to grade the ‘fitness’ of competing configurations
in an evolutionary approach. Parity checking is used in
[18] as part of a fault tolerant scheme which is structured
so that detection is applied to small regular networks,
rather than being bespoke to the function that is
implemented.

Redundant and data-checking detection systems are
generally designed into an FPGA configuration, as they fit
around the specific data and control functions that are
implemented. In [19], a FPGA structure was considered
which has redundancy built in, so that it is transparent to
the user who is designing the configuration.

3.2 Off-line fault detection / Built-In Self-Test
Off-line fault detection is another widely-used technique;
usually as a means of quickly identifying manufacturing
defects in FPGAs. Any scheme which does this without
any external test equipment is known as Built-In Self-Test
(BIST), and is a suitable candidate for fault detection in the
field.

BIST schemes for FPGAs work by having one or more
test configurations which are loaded separately to the
operating configuration. Within the test configuration is a
test pattern generator, an output response analyser and,
between them, the logic and interconnect to be tested,
arranged in paths-under-test. To be fully comprehensive, a
BIST system will have to test not only the logic and
interconnect, but also the configuration network. Many
recent FPGAs feature a self-configuration port which can
make this possible without the need for a large number of
different test configurations, which can take a long time to
load. Specialised features such as carry chains, multipliers
and PLLs also need to be considered.

Compared to traditional built-in and external test
methods for ASICs, FPGAs have the advantage of a
regular structure which does not need a new test
programme to be developed for each design. Also, the
ability to reconfigure an FPGA reduces or removes the
need for dedicated test structures to be built into the

silicon. However, with the ability to reconfigure comes a
vast number of permutations in the way the logic can be
expressed, making optimisation of test patterns important.

The advantage of BIST as a fault detection method is
that it has no impact on the FPGA during normal
operation. The only overhead is the requirement to store
test configurations which are typically small. BIST also
allows complete coverage of the FPGA fabric, including
features which may be hard to test with an on-line test
system, such as PLLs and the clock network.

The major drawback of BIST is that it can only detect
faults during a dedicated test mode when the FPGA is not
otherwise operational. This can be either during system
start-up, as part of a maintenance schedule or in response
to an error detected by some other means.

Published BIST methods have competed for coverage,
test duration and memory overhead. Many focus on testing
just one subset of FPGA structures, e.g. interconnect,
suggesting a multi-phased approach for testing the whole
chip.

Testing of LUTs is a mature field [20] [21] [22] and
recent developments have considered timing performance
as well as stuck-at faults. [23] and [24] have both proposed
methods for analysing the propagation delays of logic
chains. [25] and [26] have considered the optimum test
patterns for exercising delay faults.

Many publications have focussed on testing
interconnect in response to the large amount of
configuration logic and silicon area it consumes [27] [28].
In [29], a BIST system for interconnect is given which
reduces test time through a large degree of self-
configuration. [9] and [30] use a hierarchical approach
which locates stuck-at faults, short circuits and open
circuits with the highest accuracy. Elements of BIST can
be found in roving test systems, where only a small part of
the FPGA is taken off-line for testing at any point in time.
[23] cites both roving and off-line testing as suitable
applications for their delay-test method. [31] proposes an
off-line test which uses a roving sequence to remove the
need for reconfiguration; instead a small self-test area is
always present and is shifted around the array to gain full
coverage.

3.3 Roving fault detection
Roving detection exploits run-time reconfiguration to carry
out BIST techniques on-line, in the field, with a minimum
of area overhead. In roving detection, the FPGA is split
into equal-sized regions. One of these is configured to
perform self-test, while the remaining areas carry out the
design function of the FPGA. Over time, the test region is
swapped with functional regions one at a time so that the
entire array can be tested while the FPGA remains
functional.

Roving test has a lower area overhead than redundancy
methods; the overhead comprising of one self-test region

417

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

and a controller to manage the reconfiguration process.
The method also gives excellent fault coverage and
granularity, comparable to BIST methods.

The speed of detection, while better than off-line
methods that cannot test during normal operation, is not as
good as redundancy techniques. The detection speed
depends on the period of a complete roving cycle; the best
reported implementations of roving test have maximum
detection latency in the order of a second [32].

Roving test impacts performance in two ways. Firstly,
as the test region is moved through the FPGA, connections
between adjacent functional areas are stretched. This
results in longer signal delays and may force a reduction in
the system clock speed, reported to be in the range of 2.5-
15% [32]. Secondly, implementations in current FPGAs
require the functional blocks to be halted as they are
switched. A 250�s pause for each swapping move has been
reported [32].

The dominant work in the field of roving test and repair
has been carried out by Emmert, Stroud and Abramovici
[32] [33]. Called Roving STARs, this system uses two test
areas, one covering entire rows and one covering entire
columns. A roving test method was also proposed in [34]
that uses FPGAs with bussed, rather than segmented,
interconnects. This system had no impact on system clock
performance. However, the connectivity constraints of this
architecture limit the potential applications.

4 METHODS OF FAULT TOLERANCE AND
RECOVERY

Once a fault is detected and located, it must be repaired.
Repair can be considered at a number of different levels:
1. Hardware level repair performs a correction such

that the FPGA remains unchanged for the purposes of
the configuration. The device retains its original
number and arrangement of useable logic clusters and
interconnects.

2. Configuration level repair is achieved using
resources that are unused by the design. The spare
resources can replace faulty ones in the event of a
fault.

3. System level repair works at a higher level. When a
design is highly modular, a fault can be tolerated by
the use of a spare functional block or by providing
degraded performance [35]. Such methods are not
considered in more detail here, as they are not limited
in application to FPGAs.

It should be noted that some fault detection methods
also provides a level of fault tolerance. The voting system
in TMR allows the erroneous output of one module to be
ignored. Also, roving test provides fault tolerance by
stopping the roving process if a fault is detected. If the
fault stays within the test area it will not be used by the
operational part of the FPGA. In both these situations, the
system operates in a reliability degraded state where

another fault would not be tolerated and may not even be
detected. But they do allow the system to carry on
functioning whilst a permanent repair is carried out.

Table 2 shows the classes of fault repair techniques that
have been reported and evaluates them against a range of
metrics.

4.1 Hardware Level Repair
The regular structure of FPGAs makes them suitable
candidates for hardware level repair, using methods similar
to those used for defect tolerance in memory devices. In
the event of a fault, a part of the circuit can be mapped to
another part with no change in function.

Hardware level repair has the advantage of being
transparent to the configuration. This makes repair a
simple process, as the repair controller does not need any
knowledge of the placement and routing of the design.
Another benefit is that the timing performance of the
repaired FPGA can be guaranteed, as any faulty element
will be replaced by a pre-determined alternative.

Hardware level fault tolerance has a drawback in that it
can tolerate just a low number of faults for a given
overhead and there are likely to be certain patterns of faults
which cannot be tolerated.

The most common basis for hardware level repair is
column/row shifting [36] [37]. Multiplexers are introduced
at the ends of lines of cells, allowing a whole row or
column to be bypassed by shifting across to a spare line of
cells at the end of the array. If the FPGA is bus-based, the
shifted cells can connect to the same lines of interconnect.
For segmented interconnect, bypass sections need to be
added to skip the faulty row / column. This method can be
found today in some commercial devices [39]

Adding more bypass connections and multiplexers
allows greater flexibility for tolerating multiple faults and
makes more efficient use of spare resources [38] [39]. In
[40], faults in the configuration logic where considered and
the proposed solution was to split the FPGA up into sub-
arrays which can be configured independently.

4.2 Configuration Level Repair
Configuration level repair exploits two key features in
FPGAs; reconfiguration and the availability of unused
resources. Configuration level repair strategies can be
divided into three subclasses:

4.2.1 Alternative configurations
A straightforward way of achieving fault tolerance is to
pre-compile alternative configurations. The FPGA is split
into tiles, each with its own set of configurations which
have a common functionality and interface to the adjacent
tiles [41] [42] [43]. Fault tolerance is achieved by
replacing a configuration tile with an alternative in which
the faulty resource is not used. This method requires little

418

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

 run-time computation as the placement and routing is
already done.

 This strategy performs relatively poorly in terms of
area efficiency and fault pattern. It is dependent on there
being a configuration available in which any given
resource is set aside as a spare. If only a small amount of
spare resource is available then a large number of
configurations are needed to cover all possible faults.

4.2.2 Incremental mapping, placement and routing
A simple method of tolerating faults in logic clusters exists
if the cluster can be reconfigured to work around the fault
[44]. Cluster reconfiguration is simple to evaluate and
does not have a significant effect on design timing, but
there may be cases where reconfiguration is not possible,
for example if an output register is faulty.

If there are spare clusters, then these can be used to
replace faulty ones. To minimise the impact on timing and
routing in the area around the fault, pebble shifting is used
[45] [46]. In [32] and [33], pebble shifting is used in
combination with cluster reconfiguration. Cluster
reconfiguration is carried out in preference and faulty
clusters can be reused by a different function if the fault
will not be manifest.

It is also important to consider faults in interconnect. In
[47], the design of switch blocks is considered with regard
to the ease of finding an alternative path in the event of a
fault. An incremental router is developed in [48] which
uses both cluster relocation and interconnect faults as
drivers for rerouting. [49] provides a novel method that
uses a small amount of configuration during power-up to
avoid defects in interconnects.

Incremental mapping, placement and routing provide a
high degree of flexibility for dealing with random fault
patterns, especially when cluster reconfiguration and
pebble shifting are used together. However, this comes at

the cost of increased computational effort for the repair
which must be carried out in the field.

In [50], a repair method known as chain shifting is
given. Spare clusters and interconnect are allocated at
design-time in order to reduce the complexity of a repair in
the field and to provide guaranteed timing performance.
This technique, however, reduces flexibility and overhead
efficiency. In [18] a more coarse-grained approach is
taken. Clusters are arranged into networks such that most
faults can be repaired by reconfiguring the network and
leaving the wider placement unchanged.

4.2.3 Evolutionary algorithms
Reconfiguration makes FPGAs well suited to evolutionary
algorithms. [17] proposed a complete system for achieving
fault tolerance, based on a pool of competitive
configurations. Configurations compete for correctness and
those which are faulty are mutated. Synthesis by
evolutionary algorithms was tested in [51] and [52].

 Although this approach allows a large degree of
flexibility with the number and distribution of faults that
can be tolerated, the area and computational overhead
required is very large. There is also no guarantee of how
long a solution will take to evolve or what its timing
performance will be.

5 CONCLUSION
The regularity of FPGA architectures together with their
run-time configurability provides interesting opportunities
for both defect detection and fault tolerance. In particular,
the ability to run-time reconfigure offers the possibility of
detecting and coping with faults due to degradation over
time, something quite unique to the FPGA technology.
This may prove to be a characteristic that allows VLSI to
continue scaling down to 22nm and beyond.

Table 2. Comparison Matrix of Fault Repair Methods
Method Fault Pattern Tolerance Resource Overhead Performance Overhead /

Degradation
Complexity of Repair

Hardware Level Poor – Limited number and
distribution tolerated.

Medium Low overhead and little
degradation

Low – Transparent to
configuration

Multiple
Configurations

Poor – Limited number and
distribution tolerated.

Interconnect tolerance causes
complexity

Low – Uses naturally spare
resources, but requires

ROM for configurations

Low – Each configuration can be
fully optimised

Medium – Selection and
loading of

configurations

Chain Shifting Poor – Limited number and
distribution tolerated. Poor for

interconnect

Medium – A set of
interconnect must be

reserved

Low – Alternative routing is pre-
determined

Low – Alternative
routing already reserved

Pebble Shifting Medium – Relies on nearby
spare PLBs

Low – Uses naturally spare
resources

Medium, rerouting causes
uncertainty

High – Re-routing
necessary

Cluster Reconfig. Poor – Reliant on spare resource
in cluster. Poor tolerance in

interconnect

Low – Uses naturally spare
resources

Low – Changes only local
interconnect, slight uncertainty

Medium – Analysis of
logic, no re-routing

Cluster Reconfig.+
Pebble Shifting

Good – Flexible solutions
possible.

Low – Uses naturally spare
resources

Low – Usually a fast alternative
will be found, medium

uncertainty

High – Analysis of logic
and rerouting

Evolutionary Good – Implementation is
completely flexible

Large – Configuration
grading and storage

Variable – Solution is arrived
through random mutations.

Massive – May take a
long time to repair

419

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

6 REFERENCES

1. N. Campregher et al, “Analysis of yield loss due to random
photolithographic defects in the interconnect structure of FPGAs”,
ACM Int. Workshop on FPGAs, p.138-148, 2005.

2. S. Srinivasan et al, “FLAW: FPGA lifetime awareness”, Design
Automation Conference, p.630-635, 2006.

3. C. Guérin et al, “The Energy-Driven Hot-Carrier Degradation
Modes of nMOSFETs”, IEEE Transactions on Device and
Materials Reliability, v7, n2, June 2007.

4. K. Dieter et al, “Negative bias temperature instability: Road to cross
in deep submicron silicon semiconductor manufacturing”, Journal
of Applied Physics, v94, n1, July 2003.

5. P.J. Clarke et al, “Electromigration - a tutorial introduction”,
International Journal of Electronics, 69:3, p333 – 338, 1990.

6. D. Esseni et al, “On Interface and Oxide Degradation in VLSI
MOSFETs—Part I: Deuterium Effect in CHE Stress Regime”, IEEE
Transactions on Electron Devices, v49, n2, February 2002.

7. D. Esseni et al, “On Interface and Oxide Degradation in VLSI
MOSFETs—Part II: Fowler–Nordheim Stress Regime”, IEEE
Transactions on Electron Devices, v49, n2, February 2002.

8. K.P. Cheung, “Can TDDB continue to serve as reliability test
method for advance gate dielectric?”, Int. Conference on Integrated
Circuit Design and Technology, 2004.

9. I.G. Harris et al, “Testing and diagnosis of interconnect faults in
cluster-based FPGA architectures”, IEEE Transactions on CAD of
Integrated Circuits and Systems, v21, n11, p 1337-43 Nov. 2002.

10. A. Steininger et al, “On the Necessity of On-line-BIST in Safety-
Critical Applications”, Int. Symp. On Fault-Tolerant Computing,
p.208-215, 1999.

11. S. D’Angelo et al, “Fault-tolerant voting mechanism and recovery
scheme for TMR FPGA-based systems”, Int. Symposium on Defect
and Fault Tolerance in VLSI Systems, p 233-40, 1998.

12. S. D’Angelo et al, “Transient and permanent fault diagnosis for
FPGA-based TMR systems”, IEEE Int. Symposium on Defect and
Fault Tolerance in VLSI Systems, p 330-8, 1999.

13. G.A. Mojoli et al, “KITE: A behavioural approach to fault-tolerance
in FPGA-based systems”, International Workshop on Defect and
Fault Tolerance in VLSI Systems, p 327-334, 1996.

14. C. Carmichael, “Triple Module Redundancy Design Techniques for
Virtex FPGAs”, Xilinx Application Note XAPP197, 2006.

15. M. Berg, “Fault tolerance implementation within SRAM based
FPGA designs based upon the increased level of single event upset
susceptibility”, Int. On-Line Testing Symposium, 2006.

16. F. Lima et al, “Designing fault tolerant systems into SRAM-based
FPGAs”, Design Automation Conference, p 650-655, 2003.

17. R.F. DeMara et al, “Autonomous FPGA Fault Handling through
Competitive Runtime Reconfiguration”, NASA/DoD Conference of
Evolution Hardware, 2005.

18. M. Alderighi et al, “A fault-tolerant FPGA-based multi-stage
interconnection network for space applications”, IEEE Int.
Workshop on Electronic Design, Test and Applications, p. 302-6,
2002.

19. S. Durand et al, “FPGA with self-repair capabilities”, Int. Workshop
on Field Programmable Gate Arrays, p.1-6, 1994.

20. C. Stroud et al, “Built-In Self-Test of Logic Blocks in FPGAs”, 14th
VLSI Test Symposium, 1996.

21. S. Lu et al, “Fault detection and fault diagnosis techniques for
lookup table FPGAs”, VLSI Design, v 15, n 1, p 397-406, 2002.

22. A. Alaghi et al, “An optimum ORA BIST for multiple fault FPGA
look-up table testing”, Asian Test Symposium, p 293-298, 2006.

23. C. Stroud et al, “BIST-Based Delay-Fault Testing in FPGAs”,
Journal of Electronic Testing, 19, p549–558, 2003.

24. J. Wong et al, “Self-characterization of Combinatorial Circuit
Delays in FPGAs”, Int. Conf. on Field Programmable Tech., p.17-
23, 2007.

25. P. Girard et al, “High Quality TPG for Delay Faults in Look-Up
Tables of FPGAs”, Int. Workshop on Electronic Design, Test and
Applications, 2004.

26. P. Girard et al, “Defect analysis for delay-fault BIST in FPGAs”,
Int. On-Line Testing Symposium, p 124-8, 2003.

27. J. Liu et al, “BIST-diagnosis of interconnect fault locations in
FPGA's”, Canadian Conference on Electrical and Computer
Engineering, p 207-10, 2003.

28. N. Campregher et al, "BIST based Intercconect Fault Location for
FPGAs", FPL'04, LNCS 3203, p.322-332, 2004.

29. J. Smith et al, “An automated BIST architecture for testing and
diagnosing FPGA interconnect faults”, Journal of Electronic
Testing: Theory and Applications, v 22, n 3, p 239-53, 2006.

30. I. Harris et al, “Diagnosis of interconnect faults in cluster-based
FPGA architectures”, Int. Conf. on Computer Aided Design, p472-5,
2000.

31. A. Doumar et al, “Testing Approach within FPGA-based Fault
Tolerant Systems”, IEEE Asian Test Symp., p.411, 2000.

32. M. Abramovici et al, “Roving STARs: An Integrated Approach to
On-Line Testing, Diagnosis, and Fault Tolerance for FPGAs”,
NASA/DoD Workshop on Evolvable Hardware, p.73, 2001.

33. J.M Emmert et al, “Online Fault Tolerance for FPGA Logic
Blocks”, IEEE Trans. on VLSI Systems, v15, n2, February 2007.

34. N.R. Shnidman et al, “On-Line Fault Detection for Bus-Based Field
Programmable Gate Arrays”, IEEE Transactions on VLSI Systems,
v6, n4, December 1998.

35. Y. Nakamura et al, “Highly fault-tolerant FPGA processor by
degrading strategy”, Pacific Rim International Symposium on
Dependable Computing, p75-8, 2002.

36. J. Kelly et al, “A novel approach to defect tolerant design for SRAM
based FPGAs”, Int. Workshop on FPGAs, 1994.

37. F. Hatori et al, “Introducing redundancy in field programmable gate
arrays”, Custom Integrated Circuits Conference, 1993.

38. J. Kelly et al, “Defect tolerant SRAM based FPGAs”, Int.
Conference on Computer Design, p 479-82, 1994.

39. C. McClintock et al, “Redundancy Circuitry for Logic Circuits”, US
Patent 6,6166,559, Dec., 2000.

40. N.J. Howard et al, “The Yield Enhancement of Field-Programmable
Gate Arrays”, IEEE Trans. on VLSI Systems, v2, n1, March 1994.

41. J. Lach et al, “Enhanced FPGA Reliability Through Efficient Run-
Time Fault Reconfiguration”, Transactions on Reliability, v49, n3,
Spetember 2000.

42. J. Lach et al, “Low overhead fault-tolerant FPGA systems”, IEEE
Transactions on VLSI Systems, v 6, n 2, p 212-21, June 1998.

43. J. Lach et al, “Algorithms for efficient runtime fault recovery on
diverse FPGA architectures”, Int. Symposium on Defect and Fault
Tolerance in VLSI Systems, 1999.

44. V. Lakamraju et al, “Tolerating operational faults in cluster-based
FPGAs”, ACM International Workshop on FPGAs, 2000.

45. J.M. Emmert et al, “Partial reconfiguration of FPGA mapped
designs with applications for fault tolerance and yield
enhancement”, Int. Workshop on Field Programmable Logic and
Applications, LCNS 1304, p.141-150, 1997.

46. J. Narasimhan, “Yield enhancement of programmable ASIC arrays
by reconfiguration of circuit placements”, IEEE Trans. on CAD of
Integrated Circuit Systems, p.976-986 1994.

47. J. Huang et al, “Fault tolerance of switch blocks and switch block
arrays in FPGA”, Trans. on VLSI Systems, v13, n7, p794-807, 2005.

48. J.M. Emmert et al, “A fault tolerant technique for FPGAs”, Journal
of Electronic Testing, v16, n6, p591-606, 2000.

49. N. Campregher et al, "Reconfiguration and Fine-Grained
Redundancy for Fault Tolerance in FPGAs", Int. Conf. on Field
Programmable Logic (FPL), p.455-460, 2006.

50. F. Hanchek et al, “Node-covering based defect and fault tolerance
methods for increased yield in FPGAs”, Int. Conf. on VLSI Design,
1996.

51. A.P. Shanthi et al, “Exploring FPGA structures for evolving fault
tolerant hardware”, NASA/DoD Conference on Evolvable
Hardware, p 174-81, 2003.

52. G.V. Larchev et al, “Evolutionary Based Techniques for Fault
Tolerant Field Programmable Gate Arrays”, Int. Conference on
Space Mission Challenges for Information Technology, 2006.

420

Authorized licensed use limited to: Imperial College London. Downloaded on November 12, 2008 at 04:17 from IEEE Xplore. Restrictions apply.

