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ABSTRACT 

Reliability and process variability are serious issues for 
FPGAs in the future.  Fortunately FPGAs have the ability 
to reconfigure in the field and at runtime, thus providing 
opportunities to overcome some of these issues. This paper 
provides the first comprehensive survey of fault detection 
methods and fault tolerance schemes specifically for 
FPGAs, with the goal of laying a strong foundation for 
future research in this field.  All methods and schemes are 
qualitatively compared and some particularly promising 
approaches highlighted. 

1 INTRODUCTION 

As process technology scaling continues, manufacturing 
large defect-free integrated circuits become increasingly 
difficult.  There is also the added problem of degradations 
over time after a device has been successfully deployed in 
the field. These reliability issues are particularly acute with 
FPGAs.  Similar to memories, FPGAs have high density of 
transistors and interconnect wires.  A recent study [1] 
suggested that future FPGAs at and beyond the 45nm 
technology node will have such low yield that defect 
tolerance scheme will be unavoidable in large FPGAs.  
This paper provides the first comprehensive survey on the 
issues of reliability, defect detection and fault tolerance 
methods in FPGAs over the past 15 years. 

FPGAs present interesting opportunities for fault 
tolerance due to their ability to be reconfigured. The most 
promising systems that have been proposed exploit this 
feature very heavily. 

A fault tolerant system consists of two main 
components; these are fault detection and fault repair. 
Section 3 surveys fault detection methods and Section 4 
considers fault repair. Causes of faults and application 
issues are briefly discussed in Section 2. 

2 BACKGROUND 

2.1 Causes of degradation  
Degradation in VLSI circuits can be attributed to a number 
of mechanisms [2]. The hot-carrier effect leads to a build 
up of trapped charges in the gate-channel interface region 
[3]. This causes a gradual reduction in channel mobility 
and increase in threshold voltage in CMOS transistors. The 
effect on the circuit is that switching speeds become 

slower, leading to delay faults. This is effect is also seen as 
a result of Negative-Bias Temperature Instability, which 
exhibits a similar build up of trapped charges [4]. 

Electromigration is a mechanism by which metal ions 
migrate over time leading to voids and deposits in 
interconnects. Eventually these can cause faults due to the 
creation of open and short circuits [5]. 

Time-Dependent Dielectric Breakdown (TDDB) affects 
the gates of transistors, causing an increase in leakage 
current and eventually a short circuit. The mechanism here 
is the creation of charge traps within the gate dielectrics, 
diminishing the potential barrier it forms [6] [7]. 

All of these degradation mechanisms have the potential 
to become more severe with the shrinking of process 
geometry. This is due to increasing gate field strength, 
higher current density, smaller feature size, thinner gate 
dielectrics and increasing variability. In the case of TDDB, 
the situation is made complicated by the introduction of 
new processes such as high-K dielectrics and metal gates 
[8]. 

2.2 Other types of fault 
In addition to degradation, there are two other types of 
faults which can affect FPGAs. These are highly relevant 
to this study as some of the techniques which have been 
developed in response to them can also be applied to faults 
caused by degradation. 

The first of these is manufacturing defects. 
Manufacturing defects can be exhibited as circuit nodes 
which are stuck-at 0 or 1 or switch too slowly to meet the 
timing specification. Defects also affect the interconnect 
network and can cause short or open circuits and stuck 
open or closed pass transistors [9]. Test and repair of 
manufacturing defects is well established in VLSI. 

The second type of fault which is widely discussed in 
relation to FPGAs comprises of Single Event Upsets 
(SEUs) and Single Event Transients (SETs) caused by 
certain types of radiation. This is of particular concern to 
aviation, nuclear research and space applications where 
devices are exposed to higher levels of radiation. The most 
commonly considered failure mode is the flipping of an 
SRAM cell in the configuration memory. This causes an 
error in the logic function which persists until the 
configuration memory is refreshed in a process known as 
scrubbing. Whilst this recovery method is not applicable to 
permanent faults caused by degradation, ways of detecting 
SEU faults are relevant. 
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2.3 Applications of fault tolerance 
All of the fault detection and repair methods surveyed have 
individual strengths and weaknesses and which method is 
most appropriate depends on the application. 

In some cases reliability is critical for safety or mission 
success [10]. Fast detection is crucial here so that 
erroneous data or state is not acted upon. Another class of 
reliable system is one where a physical repair is not 
practical. Fault coverage and repair flexibility are 
important here. 

In the light of variability and reliability concerns 
associated with future VLSI process nodes, it may become 
economical to use fault tolerance in general purpose, high 
volume applications. In this case, it will be important that 
the detection and repair method has the lowest possible 
overhead on timing performance and area.  

3 METHODS OF FAULT DETECTION 
The first step of a fault-tolerant scheme is fault detection. 
Fault detection has two purposes; firstly, it alerts the 
supervising process that action needs to be taken for the 
system to remain operational and, secondly, it identifies 
which components of the device are defective so that a 
solution can be determined. These two functions may be 
covered simultaneously, or it may be a multi-stage process 
comprising of different strategies. 

Fault detection methods can be categorised into three 
broad types: 
1. Redundant/concurrent error detection uses 

additional logic as a means of detecting when a logic 
function is not generating the correct output. 

2. Off-line test methods cover any testing which is 
carried out when the FPGA is not performing its 
operational function.  

3. Roving test methods perform a progressive scan of 
the FPGA structure by swapping blocks of 
functionality with a block carrying out a test function. 

The different approaches to fault detection are 
evaluated against a set of metrics in Table 1. 

3.1 Functional redundancy and Concurrent Error 
Detection (CED) 

Redundancy is widely used as a method of fault detection 
in FPGAs, particularly in the form of Triple Modular 
Redundancy (TMR) [11] [12] [13] [14]. The main driver 
for error detection of this kind is the need to detect and 
correct errors due to SEUs and SETs. However, these 
methods will detect any error which occurs whilst the 
system is operating. 

These detection methods work by invoking more than 
the minimum amount of logic than is necessary to 
implement the logic function. When an error occurs, there 
is a disagreement between the multiple parts of the circuit 
over which a particular calculation is processed and this is 
flagged by some form of error detection function. 

The simplest form is modular redundancy. A 
functional block is replicated, usually two or three times 
and the outputs compared. Any difference indicates that a 
fault is present.  

Concurrent Error Detection (CED) allows a more 
space efficient design than modular redundancy. Data 
flows and stores are widened using error coding algorithms 
such as parity. Data validation circuitry at the output to 
functional blocks can then detect faults which arise. 

Redundancy provides a very fast means of error 
detection, as a fault is uncovered as soon as a discrepancy 
occurs. In addition, this form of error detection has a small 
impact on timing performance; just the latency of voting or 
parity logic, or similar. 

The chief drawback of error detection using 
redundancy is the area overhead needed to replicate 
functionality, which can be over three times in the case of 
TMR [15]. Furthermore it provides a limited resolution for 
identification of the faulty component. The fault can only 
be pinned down to a particular functional block or, in the 
case of TMR, an instance of a functional block. Fault 
resolution can be increased to a certain extent by breaking 
functional areas down and adding additional error 
detection logic. 

Modular redundancy detects all faults which become 
manifest at the output of a functional block, including 
transient errors. In CED, coverage comes at the expense of 

Table 1. Comparison Matrix of Fault Detection Methods 
Method Speed of 

detection 
Resource 
overhead 

Performance overhead Granularity Coverage 

Modular 
Redundancy 

Fast – As soon as 
fault is manifest 

Very Large – 
Triplicate  plus 

voting logic 

Very Small – Latency of 
voting logic 

Coarse – Limited 
to size of module 

Good - All manifest errors are 
detected. 

Concurrent error 
detection 

Fast – As soon as 
fault is manifest 

Medium – trade-
off with coverage 

Small – Additional 
latency of CRC  logic 

Medium – trade-
off with resource 

Medium – Not practical for all 
types of functionality. 

Off-line BIST Slow – only when 
off-line 

Very small Small – Slight start-up 
delay 

Fine – Possible to 
detect the exact 

error 

Very Good –  All faults 
including dormant. 

Roving (Segmented 
Interconnect) 

Medium – order 1 
seconds 

Medium – Empty 
test block plus test 

controller 

Large – Clock must be 
stopped to swap blocks. 

Critical paths may 
lengthen 

Fine – Possible to 
detect the exact 

error 

Very Good – Multiple Manifest 
and latent faults are detected. 
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additional area. These methods provide no coverage of 
dormant faults, which may be relevant if an FPGA is going 
to be reconfigured in the field, either for fault repair or to 
alter the functionality. 

Redundancy does not have to be restricted to the 
circuit-area dimension. It is also possible to detect errors in 
a trade-off with latency/data throughput. [16] proposes a 
scheme where operations are carried out twice. In the 
second operation, operands are encoded in such a way that 
they exercise the logic in a different way. The output is 
then passed through a suitable decoder and compared to 
the original. 

Although most of the work on redundancy has been 
aimed at detecting and correcting SEUs, there have been 
some notable publications which apply the techniques to 
fault detection. [17] uses Dual Modular Redundancy 
(DMR) to grade the ‘fitness’ of competing configurations 
in an evolutionary approach. Parity checking is used in 
[18] as part of a fault tolerant scheme which is structured 
so that detection is applied to small regular networks, 
rather than being bespoke to the function that is 
implemented. 

Redundant and data-checking detection systems are 
generally designed into an FPGA configuration, as they fit 
around the specific data and control functions that are 
implemented. In [19], a FPGA structure was considered 
which has redundancy built in, so that it is transparent to 
the user who is designing the configuration. 

3.2 Off-line fault detection / Built-In Self-Test 
Off-line fault detection is another widely-used technique; 
usually as a means of quickly identifying manufacturing 
defects in FPGAs. Any scheme which does this without 
any external test equipment is known as Built-In Self-Test 
(BIST), and is a suitable candidate for fault detection in the 
field. 

BIST schemes for FPGAs work by having one or more 
test configurations which are loaded separately to the 
operating configuration. Within the test configuration is a 
test pattern generator, an output response analyser and, 
between them, the logic and interconnect to be tested, 
arranged in paths-under-test. To be fully comprehensive, a 
BIST system will have to test not only the logic and 
interconnect, but also the configuration network. Many 
recent FPGAs feature a self-configuration port which can 
make this possible without the need for a large number of 
different test configurations, which can take a long time to 
load. Specialised features such as carry chains, multipliers 
and PLLs also need to be considered. 

Compared to traditional built-in and external test 
methods for ASICs, FPGAs have the advantage of a 
regular structure which does not need a new test 
programme to be developed for each design. Also, the 
ability to reconfigure an FPGA reduces or removes the 
need for dedicated test structures to be built into the 

silicon. However, with the ability to reconfigure comes a 
vast number of permutations in the way the logic can be 
expressed, making optimisation of test patterns important. 

The advantage of BIST as a fault detection method is 
that it has no impact on the FPGA during normal 
operation. The only overhead is the requirement to store 
test configurations which are typically small. BIST also 
allows complete coverage of the FPGA fabric, including 
features which may be hard to test with an on-line test 
system, such as PLLs and the clock network. 

The major drawback of BIST is that it can only detect 
faults during a dedicated test mode when the FPGA is not 
otherwise operational. This can be either during system 
start-up, as part of a maintenance schedule or in response 
to an error detected by some other means. 

Published BIST methods have competed for coverage, 
test duration and memory overhead. Many focus on testing 
just one subset of FPGA structures, e.g. interconnect, 
suggesting a multi-phased approach for testing the whole 
chip.  

Testing of LUTs is a mature field [20] [21] [22] and 
recent developments have considered timing performance 
as well as stuck-at faults. [23] and [24] have both proposed 
methods for analysing the propagation delays of logic 
chains. [25] and [26] have considered the optimum test 
patterns for exercising delay faults. 

Many publications have focussed on testing 
interconnect in response to the large amount of 
configuration logic and silicon area it consumes [27] [28]. 
In [29], a BIST system for interconnect is given which 
reduces test time through a large degree of self-
configuration. [9] and [30] use a hierarchical approach 
which locates stuck-at faults, short circuits and open 
circuits with the highest accuracy. Elements of BIST can 
be found in roving test systems, where only a small part of 
the FPGA is taken off-line for testing at any point in time. 
[23] cites both roving and off-line testing as suitable 
applications for their delay-test method. [31] proposes an 
off-line test which uses a roving sequence to remove the 
need for reconfiguration; instead a small self-test area is 
always present and is shifted around the array to gain full 
coverage.  

3.3 Roving fault detection 
Roving detection exploits run-time reconfiguration to carry 
out BIST techniques on-line, in the field, with a minimum 
of area overhead. In roving detection, the FPGA is split 
into equal-sized regions. One of these is configured to 
perform self-test, while the remaining areas carry out the 
design function of the FPGA. Over time, the test region is 
swapped with functional regions one at a time so that the 
entire array can be tested while the FPGA remains 
functional. 

Roving test has a lower area overhead than redundancy 
methods; the overhead comprising of one self-test region 
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and a controller to manage the reconfiguration process. 
The method also gives excellent fault coverage and 
granularity, comparable to BIST methods. 

The speed of detection, while better than off-line 
methods that cannot test during normal operation, is not as 
good as redundancy techniques. The detection speed 
depends on the period of a complete roving cycle; the best 
reported implementations of roving test have maximum 
detection latency in the order of a second [32]. 

Roving test impacts performance in two ways. Firstly, 
as the test region is moved through the FPGA, connections 
between adjacent functional areas are stretched. This 
results in longer signal delays and may force a reduction in 
the system clock speed, reported to be in the range of 2.5-
15% [32]. Secondly, implementations in current FPGAs 
require the functional blocks to be halted as they are 
switched. A 250�s pause for each swapping move has been 
reported [32]. 

The dominant work in the field of roving test and repair 
has been carried out by Emmert, Stroud and Abramovici 
[32] [33]. Called Roving STARs, this system uses two test 
areas, one covering entire rows and one covering entire 
columns. A roving test method was also proposed in [34] 
that uses FPGAs with bussed, rather than segmented, 
interconnects. This system had no impact on system clock 
performance. However, the connectivity constraints of this 
architecture limit the potential applications. 

4 METHODS OF FAULT TOLERANCE AND 
RECOVERY 

Once a fault is detected and located, it must be repaired. 
Repair can be considered at a number of different levels: 
1. Hardware level repair performs a correction such 

that the FPGA remains unchanged for the purposes of 
the configuration. The device retains its original 
number and arrangement of useable logic clusters and 
interconnects. 

2. Configuration level repair is achieved using 
resources that are unused by the design. The spare 
resources can replace faulty ones in the event of a 
fault.  

3. System level repair works at a higher level. When a 
design is highly modular, a fault can be tolerated by 
the use of a spare functional block or by providing 
degraded performance [35]. Such methods are not 
considered in more detail here, as they are not limited 
in application to FPGAs. 

It should be noted that some fault detection methods 
also provides a level of fault tolerance. The voting system 
in TMR allows the erroneous output of one module to be 
ignored. Also, roving test provides fault tolerance by 
stopping the roving process if a fault is detected. If the 
fault stays within the test area it will not be used by the 
operational part of the FPGA. In both these situations, the 
system operates in a reliability degraded state where 

another fault would not be tolerated and may not even be 
detected. But they do allow the system to carry on 
functioning whilst a permanent repair is carried out. 

Table 2 shows the classes of fault repair techniques that 
have been reported and evaluates them against a range of 
metrics. 

4.1 Hardware Level Repair 
The regular structure of FPGAs makes them suitable 
candidates for hardware level repair, using methods similar 
to those used for defect tolerance in memory devices. In 
the event of a fault, a part of the circuit can be mapped to 
another part with no change in function.  

Hardware level repair has the advantage of being 
transparent to the configuration. This makes repair a 
simple process, as the repair controller does not need any 
knowledge of the placement and routing of the design. 
Another benefit is that the timing performance of the 
repaired FPGA can be guaranteed, as any faulty element 
will be replaced by a pre-determined alternative. 

Hardware level fault tolerance has a drawback in that it 
can tolerate just a low number of faults for a given 
overhead and there are likely to be certain patterns of faults 
which cannot be tolerated. 

The most common basis for hardware level repair is 
column/row shifting [36] [37]. Multiplexers are introduced 
at the ends of lines of cells, allowing a whole row or 
column to be bypassed by shifting across to a spare line of 
cells at the end of the array. If the FPGA is bus-based, the 
shifted cells can connect to the same lines of interconnect. 
For segmented interconnect, bypass sections need to be 
added to skip the faulty row / column. This method can be 
found today in some commercial devices [39] 

Adding more bypass connections and multiplexers 
allows greater flexibility for tolerating multiple faults and 
makes more efficient use of spare resources [38] [39]. In 
[40], faults in the configuration logic where considered and 
the proposed solution was to split the FPGA up into sub-
arrays which can be configured independently. 

4.2 Configuration Level Repair 
Configuration level repair exploits two key features in 
FPGAs; reconfiguration and the availability of unused 
resources. Configuration level repair strategies can be 
divided into three subclasses: 

4.2.1 Alternative configurations 
A straightforward way of achieving fault tolerance is to 
pre-compile alternative configurations. The FPGA is split 
into tiles, each with its own set of configurations which 
have a common functionality and interface to the adjacent 
tiles [41] [42] [43]. Fault tolerance is achieved by 
replacing a configuration tile with an alternative in which 
the faulty resource is not used. This method requires little  
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 run-time computation as the placement and routing is 
already done. 

 This strategy performs relatively poorly in terms of 
area efficiency and fault pattern. It is dependent on there 
being a configuration available in which any given 
resource is set aside as a spare. If only a small amount of 
spare resource is available then a large number of 
configurations are needed to cover all possible faults.  

4.2.2 Incremental mapping, placement and routing 
A simple method of tolerating faults in logic clusters exists 
if the cluster can be reconfigured to work around the fault 
[44]. Cluster reconfiguration is simple to evaluate and 
does not have a significant effect on design timing, but 
there may be cases where reconfiguration is not possible, 
for example if an output register is faulty. 

If there are spare clusters, then these can be used to 
replace faulty ones. To minimise the impact on timing and 
routing in the area around the fault, pebble shifting is used 
[45] [46]. In [32] and [33], pebble shifting is used in 
combination with cluster reconfiguration. Cluster 
reconfiguration is carried out in preference and faulty 
clusters can be reused by a different function if the fault 
will not be manifest. 

It is also important to consider faults in interconnect. In 
[47], the design of switch blocks is considered with regard 
to the ease of finding an alternative path in the event of a 
fault. An incremental router is developed in [48] which 
uses both cluster relocation and interconnect faults as 
drivers for rerouting. [49] provides a novel method that 
uses a small amount of configuration during power-up to 
avoid defects in interconnects. 

Incremental mapping, placement and routing provide a 
high degree of flexibility for dealing with random fault 
patterns, especially when cluster reconfiguration and 
pebble shifting are used together. However, this comes at 

the cost of increased computational effort for the repair 
which must be carried out in the field. 

In [50], a repair method known as chain shifting is 
given. Spare clusters and interconnect are allocated at 
design-time in order to reduce the complexity of a repair in 
the field and to provide guaranteed timing performance. 
This technique, however, reduces flexibility and overhead 
efficiency. In [18] a more coarse-grained approach is 
taken. Clusters are arranged into networks such that most 
faults can be repaired by reconfiguring the network and 
leaving the wider placement unchanged. 

4.2.3 Evolutionary algorithms 
Reconfiguration makes FPGAs well suited to evolutionary 
algorithms. [17] proposed a complete system for achieving 
fault tolerance, based on a pool of competitive 
configurations. Configurations compete for correctness and 
those which are faulty are mutated. Synthesis by 
evolutionary algorithms was tested in [51] and [52]. 

 Although this approach allows a large degree of 
flexibility with the number and distribution of faults that 
can be tolerated, the area and computational overhead 
required is very large. There is also no guarantee of how 
long a solution will take to evolve or what its timing 
performance will be. 

5 CONCLUSION 
The regularity of FPGA architectures together with their 
run-time configurability provides interesting opportunities 
for both defect detection and fault tolerance.  In particular, 
the ability to run-time reconfigure offers the possibility of 
detecting and coping with faults due to degradation over 
time, something quite unique to the FPGA technology.  
This may prove to be a characteristic that allows VLSI to 
continue scaling down to 22nm and beyond. 

Table 2. Comparison Matrix of Fault Repair Methods 
Method Fault Pattern Tolerance Resource Overhead Performance Overhead / 

Degradation 
Complexity of Repair 

Hardware Level Poor – Limited number and 
distribution tolerated. 

Medium Low overhead and little 
degradation  

Low – Transparent to 
configuration 

Multiple 
Configurations 

Poor – Limited number and 
distribution tolerated. 

Interconnect tolerance causes 
complexity 

Low – Uses naturally spare 
resources, but requires 

ROM for configurations 

Low – Each configuration can be 
fully optimised 

Medium – Selection and 
loading of 

configurations 

Chain Shifting Poor – Limited number and 
distribution tolerated. Poor for 

interconnect 

Medium – A set of 
interconnect must be 

reserved 

Low – Alternative routing is pre-
determined 

Low – Alternative 
routing already reserved 

Pebble Shifting Medium – Relies on nearby 
spare PLBs 

Low – Uses naturally spare 
resources 

Medium, rerouting causes 
uncertainty 

High – Re-routing 
necessary 

Cluster Reconfig. Poor – Reliant on spare resource 
in cluster. Poor tolerance in 

interconnect 

Low – Uses naturally spare 
resources 

Low – Changes only local 
interconnect, slight uncertainty 

Medium – Analysis of 
logic, no re-routing 

Cluster Reconfig.+ 
Pebble Shifting 

Good – Flexible solutions 
possible. 

Low – Uses naturally spare 
resources 

Low – Usually a fast alternative 
will be found, medium 

uncertainty 

High – Analysis of logic 
and rerouting 

Evolutionary Good – Implementation is 
completely flexible 

Large – Configuration 
grading and storage 

Variable – Solution is arrived 
through random mutations. 

Massive – May take a 
long time to repair 
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