
Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006
“©2006 Springer Verlag. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from Springer Verlag.”

1

IEC61499 Execution Model Semantics

Kleanthis Thramboulidis, George Doukas

Electrical & Computer Engineering
University of Patras

26500, Patras, Greece
{thrambo,gdoukas}@ece.upatras.gr

 Abstract-- The International Electro-technical Commission
(IEC) has adopted the function block (FB) concept to define the
IEC 61499 standard for the development of the next generation
distributed control applications. However, even though many
researchers are working last years to exploit this standard in
factory automation a lot of issues are still open. Except from the
open issues in the design phase a lot of execution semantics are
still undefined making the development of execution
environments a difficult task. In this paper the semantics of the
execution of the IEC 61499 Function Block model are examined,
possible alternatives are investigated and existing
implementations are discussed.

Index terms—IEC 61499, Function Block, Factory Automation,
IEC61499 execution environment, execution model semantics,
distributed control applications.

I. INTRODUCTION
 The Function Block (FB) is a well-known and widely used
by control engineers construct. It was first introduced by the
IEC1131 standard on programming languages for
programmable logic controllers, and was later extended by
the IEC’s 61499 standard [1] to share many of the well
defined and already widely acknowledged benefits of object
technology. The IEC61499 describes a methodology that
utilizes the FB as the main building block and defines the way
that FBs can be used to define robust, re-usable software
components that constitute complex distributed control
systems (DCSs). Complete control applications, can be
defined by one or more FB Networks (FBNs) that specify
event and data flow among function block or subapplication
instances. The event flow determines the scheduling and
execution of the operations specified by each function block’s
algorithm(s).
 The standard mentions that “standards, components and
systems complying with this part of IEC 61499 may utilize
alternative means for scheduling of execution.” From this
statement it is clear that some issues have been intentionally
open to be defined later by developers. However, in our
attempt during last years to develop prototype
implementations of execution environments [2][3][4][5] we
have confronted a lot of open issues that can result in
implementations that will give quite different behaviour for
the same FBN. This problem is also recognized by other

research groups working towards the implementation of
IEC61499 execution environments [6][7][8][9]. This means
that a lot of execution semantics have to be further defined by
the standard to avoid the existence of many different
execution platforms with different behaviours.
 In this paper, the execution semantics of the function block
model as presented in the IEC61499 are examined. Open
issues are highlighted and discussed and alternative solutions
are proposed to address these problems. The execution
semantics of the FB instance are first examined, followed by
an in depth discussion of the FBN execution semantics.
Alternatives are discussed and already existing
implementations of these alternatives in today’s execution
environments are presented.
 The remainder of the paper is organized as follows. In the
next section a brief introduction to the FB model is given. In
section 3, the execution semantics of the FB instance are
examined. The execution semantics of FB network are
examined in section 4. Section 5 deals with the
implementation of the interface of the FBN to the mechanical
process, and finally the paper is concluded in the last section.

II. THE IEC 61499 FUNCTION BLOCK MODEL
 The FB, the basic construct of IEC61499, consists of a
head and a body, as shown in figure 1(a). The head is
connected to the event flows and the body to the data flows,
while the functionality of the function block is provided by
means of algorithms, which process inputs and internal data
and generate output data. The sequencing of algorithm
invocations is defined in the FB type specification using a
variant of statecharts called Execution Control Chart (ECC).
An ECC consists of EC states, EC transitions and EC actions,
as shown in fig. 1(b). An EC state may have zero or more
associated EC actions, except from the initial state that shall
have no associated EC actions. An EC action may have an
associated algorithm and an event that will be issued after the
execution of the algorithm. EC transitions are directed links
that represent the transition of the FB instance from one state
to another. An EC transition has an associated Boolean
expression that may contain event inputs, data inputs, and
internal variables. As soon as this expression becomes true
the EC transition fires.
 FB instances are interconnected to form FBNs, as shown in
fig. 2. A FBN may be executed on a single device but it is
usually executed on a network of interconnected devices. A

Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006

 2

device may contain zero or more resources, where a resource
is considered [1] to be “a functional unit, contained in a
device which has independent control of its operation and
may be created, configured, parameterized, started-up,
deleted, etc., without affecting other resources within a
device.” The use of the term “resource” taken into account the
resource model that is given in [1] is too restrictive and
misleading if we consider the meaning of the term in
computer engineering according to which a resource is a more
general concept that abstractly describes a run-time entity that
offers one or more services. Except from the fact that the use
of the “IEC61499 resource” is restrictive and misleading,
specific arguments for its use are not given. Even more,
questions are still open on the semantics and usability of the
resource concept and on its realization with real-world
artifacts. A special kind of resource may be used to act as
container of FB instances, as is the case in the RTAI-AXE
execution environment, but this is an implementation issue
that should not be defined by a standard that claims that
defines an implementation independent specification. This is
the reason for not dealing with the IEC61499 resource in the
rest of this paper.

(a) Function Block type

(b) Execution Control Chart

Fig. 1. Graphical representation of Function Block type.

Fig. 2. The control application as a network of interconnected FB

instances.

III. FB INSTANCE EXECUTION SEMANTICS
 Two main kinds of FB types are proposed by the standard,
the basic FB type and the composite FB type. The basic
function block type utilizes the ECC to control the execution
of its algorithms. The composite function block type is
composed of a network of interconnected FB instances and
has no ECC, so its execution semantics are quite different
from those of the basic FB type. The following subsections
address these two kinds of FB type and the event processing
policy.

A. Basic Function Block execution semantics

 According to [1] the execution of algorithms in basic FB
instance is “coordinated by the execution control portion (FB
head) of the FB instance in response to events to its event
inputs.” A brief description of the timing characteristics of
this process is presented in fig. 3. t2 is the time that the event
arrives at the event input of the FB instance and the ECC
starts its execution. It is assumed that at a previous time t1,
the required by the FB instance data, to process this event
were made available. At t3 the execution control function
notifies the scheduling function to schedule an algorithm for
execution. At t4 the execution begins and at t5 the algorithm
derives the output data that are associated with the WITH
qualifier to the output event of the corresponding EC action
(see fig.1). At t6 the scheduling function is notified that the
algorithm execution has ended. The scheduling function
invokes at t7 the execution control function, which signals at
t8 the event that is defined by the corresponding EC action.
 The standard assumes the existence of a scheduling
function to the associated 61499 resource. However, this
assumption except from the fact that implies a big overhead
for devices with resource constraints such as IEC-compliant
sensors and actuators where a scheduler is not required, it is
not actually required, even for devices with no restrictions on
resources, since the thread that executes the ECC can also
execute the algorithms of the corresponding EC actions. This
thread can be either the thread of the FB instance in the case
of an active FB instance (FB instance with its own thread of
execution) or the thread of the FB container [4] in which the
FB instance was injected, as explained in the next section.
 In the case of assigning the same thread for the execution
of the ECC and algorithms, that is the case of our execution
environments[3][4][5], it is clear that the ECC cannot react
during the execution of algorithms to the events that occur at
the FB instance’s event inputs. However, this is not possible
even for the case of having two threads, one for the ECC and
one for algorithms as is the case with the standard, since
according to [1] “all operations performed from an
occurrence of transition t1 to an occurrence of t2 (see fig. 4)
shall be implemented as a critical region with a lock on the
function block instance.”

Fig. 3. Execution model of Basic Function Block [1]

Fig. 4. ECC operation state machine [1].

 To further examine this problem, the operation state
machine of the ECC presented in fig.4 is used. S0 represents

S1 S2S0
t1

t2

t3

t4

Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006

 3

the idle state, S1 represents the state of evaluating transitions
and S2 the state of performing the actions. Based on this state
machine the following two scenarios are considered:
1. the event has to be consumed by the FB instance before

the occurrence of the next event to its event inputs. That
is, the transition t2 should occur before the arrival of the
next event,

2. the event may occur when the FB instance is in states S1
or S2.

 To satisfy the requirement of the first scenario the FBN
should be scheduled in such a way that the execution of the
FB instance will be terminated before its deadline that should
be before the appearance of the next event. For the second
scenario, if the loss of the event is permitted by the nature of
the application, the event is simply ignored, either wise the
event is stored so as to be consumed immediately after the
transition t2 to the S0 state. All the above alternatives can be
supported by the execution environment given the appropriate
notation at the design level. For example the control engineer
should define, at design time, for each event the following
properties: ‘event loss permitted’ and ‘event consumption
before next event’. The latter property will be utilized during
schedulability analysis of the FBN to define the deadline of
the corresponding FB instance that has to be met by the
scheduler.
 The solution proposed above and implemented in the
context of RTAI and RTSJ-AXE execution environments can
also implement the proposed by the standard behavior, if
there is a need for such a behavior. After the execution of the
ECC the corresponding thread should issue a yield command
to the operating system that will result to the rescheduling of
this thread, which of course in this time will execute the
algorithms of the associated EC actions. If a different priority
for the algorithm execution is required the proper update of
the thread’s priority is required before the yield operation.
 A different approach is proposed in [8] where two threads
are used for the execution of FB instance: a) the “event
executing” thread, which handles incoming events and
execute the ECC, and b) the “algorithm executing” thread,
which executes the activated algorithms. This approach was
adopted, according to the authors, to allow the acceptance of
events by the FB instances during algorithm execution.
However, this doesn’t really make any sense if we consider
the constraint imposed by the FB model according to which
the new incoming event(s) should not trigger an ECC
transition before the currently executing FB algorithm/action
finishes. The only advantage of this approach i.e., the ability
to execute FB algorithms and ECC with deferent priorities
can be also obtained in the case of one thread as it was
already stated.

B. Composite Function Block execution semantics
 As defined in [1] the composite FB type has event input and
output, as well as data input and output variables. The WITH
qualifier is also supported by the composite FB type. This
definition means that the composite FB type could not be
considered only as a design time artefact but an
implementation-time construct should be defined for the
proper implementation of the composite FB instance. This

construct may have its own thread of execution if the FB
instance is defined at design time as active, or it can be
executed by the thread of the FB container (a concept
described in the next section) in which the FB instance will be
assigned, if defined as passive. Since there is no ECC for the
composite FB type the ECC of the receiver constituent
component FB instance will be executed. The remaining
execution semantics of the composite FB instance will be the
same as those of the FB network diagram execution
semantics, which will be examined in the next section.

C. Event processing policy
 The standard does not define the event-processing policy
not even the clear-event policy, while an unreliable transition
evaluation order is defined. To avoid the unpredictable
behaviour of the FB-network diagram, the event-processing
policy should be defined at the design phase so as the control
engineer is aware of the corresponding execution semantics
of its design. We consider three alternatives that can be
supported by FB-based run-time environments for the
processing of input events.
a) events are processed on a first come order. This is

implemented by a traditional FIFO event queue.
b) events are processed on a priority based order. This can

also be implemented by priority queues.
c) All pending input events are candidates for processing at

the time the thread of the FB inserts the running state.
 The standard defines that the evaluation order of transitions
is defined by the order in which they are declared in the
textual FB specification. However, this results in a non
deterministic execution, since the control engineer is working
with the graphical notation during the ECC construction and
editing time and there is no way to define the transition
declaration order in textual specification. To address this
problem we propose the use of the “evaluation-order priority”
property for the transition. This priority has to be defined at
the design level. A default priority that leads to a non
deterministic evaluation order is also supported.
 Regarding the clear event policy an event is considered to
be consumed by the system whether this event is used or not
in a transition expression of the corresponding state. The
event is considered to be consumed in both cases either the
transition fires or not. An exception will be supported for the
events that are marked as ‘persistent’ in the design time. A
persistent-event is cleared only when a transition has been
fired by this event.
 The assumption adopted by UML2.0 according to which an
event may fire more than one transitions according to a guard
condition is adopted. If all possibilities are not covered by the
guard conditions and no transition is enabled, the event is
simply cleared except from the case of a persistence event.

IV. FB NETWORK EXECUTION SEMANTICS
 In this section an attempt is made to examine alternative
means for implementing FBNs with more focus on scheduling
the execution of the operations specified by algorithms of
function blocks that constitute applications defined by FBNs.

A. Allocating FB instances to threads

Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006

 4

 One of the primary open issues for the implementation of
the FBN is the allocation of FB instances to threads or
processes. The following possible alternatives are considered
for the allocation of FB instances to execution threads:
a) All passive FB instances of the FBN are assigned to one
thread of execution
 This sequential single-threaded approach that is proposed
by some research groups [10][11] seems to be inefficient for
complex FB networks, as is also depicted in [6][9], and
should be avoided.
b) One thread per each FB
 This approach, which is simple and straight-forward for
devices that have to execute a small number of FB instances,
was successfully adopted in the RTSJ-AXE package where
the ECC class is defined to extend the RealtimeThread of the
real time Java specification. An instance of the ECC class is
assigned to each FB instance. However, as the number of FB
instances of the FBN increases this approach may introduce a
significant overhead since each thread has a cost in terms of
device resources.
c) One thread may execute a subset of the FB instances of the
FBN
 This approach seems to be the most efficient and flexible
for large FBNs and since it was successfully adopted in the
RTAI-AXE and CCM-AXE packages is studied in more
detail in the rest of this section.

B. Allocating a subset of the FBN to a thread
 Two possible alternatives are considered in the allocation
process of FB instances to system threads: a) allocation is
done with the constraint that each FB instance is allowed to
be executed by only one thread, b) more than one threads are
allowed to execute (in different time instances) the same FB
instance.
 According to the first scenario the execution of a specific
FB instance or a set of FB instances is assigned to a single
specific thread. This scenario was first presented in [2] where
a first implementation was also discussed by introducing the
concept of FBC, which is a single-threaded active object. FB
instances are injected into FB containers which handle the
execution of those FB instances. The FBC accept input events
and dispatch them to its injected FB instances enforcing their
execution, i.e., the execution of ECC and corresponding
algorithms. Generated output events are also handled by the
FBC and are either routed to FBC’s queue if the target FB
instance belong to the same FBC, or to the Event Connection
Manager (ECM) of the device [2]. This approach does not
impose synchronization issues on the access of FBs. Each
FBC is independent in both aspects of execution and
(re)configuration and can communicate with other FBCs
through simple communication mechanisms (ECM, DCM)
responding to events without imposing complicated
synchronization. This scenario was adopted for the prototype
implementation of the RTAI Archimedes execution
environment [4]. A quite similar implementation approach is
proposed in [6] even though the concept of FBC is not
explicitly used. However, the decision to implement the
IEC61499 resource as a single thread process makes the

resource quit similar to our FBC concept and the approach
similar to the one described above.
 An approach for allocating FB instances to threads with the
possibility of an FB instance to be executed by more than one
threads is discussed in [16]. According to this a thread is
statically assigned to an event-source and is allowed to
execute the FB instances along the propagation path (event
path) of the event into the FBN to the corresponding output
event-sink (output IPP). To get a better utilization of threads
and eventually OS resources than the one obtained in [16] a
thread pool can be considered and a demand-led policy can be
adopted in thread assignment without any static allocation of
FB instances to the thread-pool threads. It should be
mentioned that in both cases, FB instances should be
considered as shared resources and should be protected from
concurrent access by multiple threads, since they are not be
reentrant. Mechanism of the OS such as priority inheritance
and priority ceiling may be exploited in the case of hard real-
time applications to resolve problems such as priority
inversion that may occur when multiple threads are allowed
to access the same FB instance. Moreover, dynamic priority
schedulers may be needed, especially in the thread-pool case,
as threads may need to alter their priority as they execute
different FBs.

C. FB instance to thread allocation heuristics
 The assignment of FB instances to FBCs or threads is not a
trivial task for complex FBNs since multiple aspects and
contradicting parameters such as OS resource economy and
runtime efficiency should be taken into account. The
following allocation heuristics can be used in this process.
• FB instances that are sequentially connected in the FBN

without the need to be executed concurrently are allocated
in the same FBC, as is the case for FBIs B and C in fig.
5a, A and B in fig.5b, and A, B, C, D and E in fig.6.

• For the case of event-path (EP) merging that is shown in
fig. 5a two alternatives are possible. The FBIs of one
event-path (A, B and C or D, B and C) are allocated in
one FBC and the remaining FBIs of the other event path
(D and A respectively) are allocated to another FBC.
Alternatively the common FBIs of the event paths, i.e., B
and C, are allocated to one FBC, and the remaining FBIs
of each event-path are allocated to one FBC. An
analogous process is followed for the case of event-path
splitting. Table II presents the possible allocation
scenarios, where the notation {A,B,C} denotes that the FB
instances A, B and C are allocated to the same FBC or
thread.

Fig. 5. FB instance allocation scenarios for event-path merging and splitting.

• More alternatives are possible for the case of event-path

Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006

 5

merging shown in fig. 6. FBIs of one EP can be allocated
to one FBC, as for example {A, B, C, D and E} or {F, G,
C, H and J} with the remaining FBIs of the other EP either
allocated to one FBC as for example {F, G, H and J} or to
other two FBCc as for example {F, G} and {H, J}. A
more distributed allocation can also be defined leading to
5 FBCs as shown in Table I.

B

G

DC

H

A

F

E

J

Fig. 6. FB instance allocation scenarios for event-path crossing.

Table I. FB instance-allocation scenarios
Thread assignment scenarios

FB Network
2 threads 3 threads 5 threads

EP merging {A,B,C} {D}

{A} {B,C} {D} -

EP splitting {A,B,C} {D}

{A,B} {C} {D} -

EP crossing {A,B,C,D,E}
{F,G,H,J}

{A,B,C,D,E}
{F,G} {H,J}

{A,B} {C} {D,E}
{F,G} {H,J}

 It is clear that the 2-thread assignment scenarios constitute
the most lightweight solutions in terms of OS resource
requirements. Scenarios that result in bigger number of FBCs
offer greater degree of flexibility and parallelism. For
example lets consider the case where the FB instance B of fig.
5a has just been activated as a result of an event propagation
through the event path D, B, C. In the case of a 2-thread
solution ({A,B,C} {D}) the execution of FB instance B must
be completed before an incoming event in the FB instance A
can be processed, that is not a restriction in the case of a 3-
thread solution such as the ({A} {B,C} {D}).

D. Implementing Event Connections
 A first attempt to provide a flexible realization of event
connections that would favor run time re-configurability is
presented in [12]. The use of the Event Connection Manager
was proposed to implement both inter and intra-device
connections. Event connections between FBs that are
allocated to the same FBC or thread are implemented locally
through the use of the FBC event dispatcher and not through
the ECM [2]. Specifically for the inter-device connections the
use of SIFB, a special kind of FB proposed by the standard,
was disputed since it destroys the implementation
independent design that the standard is supposed to ensure.
An extended description of the proposed approach to obtain
location transparency in FBNs is given in [13]. Regarding the
implementation of intra-device connections, either using
SIFBs or not, the following alternative implementations are
considered:
• Using common function calls. This approach currently

adopted by FBRT is inefficient as it imposes a sequential
non-preemptable execution scheme.

• Using native signaling mechanisms of the underlying OS.
This approach is very efficient but portability is lost.

• Using existing middleware’s. This approach provides
extra functionality, allows maximum portability,
flexibility and favors reconfigurability. An advantage of
this approach is also the centralized, single-point of event
synchronization. This is an approach adopted in [2][4]
where the ECM was implemented on top of a common
middleware.

 An alternative implementation that greatly simplifies the
task of control engineer by hiding communication
idiosyncrasies was proposed in [14] and considers the use of
the IPCP.

E. Implementing Data Connections
 Data overwriting is not an issue in the FBN so there is no
need for buffering data values. A single storage location is
reserved per each data for the most recent (valid) value to be
stored and read when needed. The Data Connection Manager
(DCM) concept first introduced in [12] and later implemented
in [2][4], is a passive object that provides protected (on the
concurrent access point of view) storage elements for FB
instance data outputs and also provides the links required by
consumers to these storage elements to realize data
connections.

V. INTERFACING TO MECHANICAL PROCESS
 According to the standard the process interface of a device
“provides a mapping between the physical process and the
resources. Information exchanged with the physical process
is presented to the resource as data or events, or both.” The
standard also proposes that this process mapping may be
modeled by a special kind of service interface function blocks
(SIFBs). SIFBs are adopted by most of the research groups to
interact with the controlled process without any further
examination of the process interface. However, SIFBs make
the design model implementation-platform dependent, so its
use should be avoided.
 There are various alternatives differing in the level of
abstraction offered by the mechanical process interface (MPI)
that may even affect the application design. At the lower level
the process interface could probably offer a minimum set of
trivial I/O services, just like an I/O device driver does. In this
case the MPI should implement a great deal of platform
dependent I/O functionality including the transformation of
data from a hardware specific representation to an IEC
compliant representation and vice-versa. Moving to the next
level of abstraction the MPI may offer more complex services
simplifying the implementation MPIFBs and making them
more platform-independent. On an even higher level of
abstraction the MPI may offer direct mapping of process
parameters to IEC compliant event/data inputs and outputs
within the application’s FBN. This solution may require more
configuration and initialization effort but makes the use of
SIFBs unnecessary (obsolete), thus simplifying the
application design and making it more implementation
independent. The concept of Mechanical Process Terminator
(MPT) and Mechanical Process Parameter (MPP) were

Int. Conf. on Industrial Electronics, Technology & Automation (CISSE-IETA 06), Dec. 4-14, 2006

 6

defined in [14] to allow an implementation of this highly
abstract process interface.
 In a first implementation attempt of the Mechanical Process
Interface we compromise the higher level of abstraction and
move to the 2nd level of abstraction. MPI FBs should utilize
services of MPI layer in order to access (read/write) the
parameters of the controlled process. These parameters are
represented as MPP instances, each of which encapsulates the
implementation specific mechanism that enables interfacing
with the acquisition card. The current implementation of MPI
is based on the comedi acquisition driver [4], thus MPPs refer
to comedi device acquisition channels. The MPI can be
configured during start-up so that actual process parameters
are mapped through appropriate acquisition channels to
named MPPs. A MPI FB can then refer to a MPP by its name
or the id that is assigned during MPI configuration and access
it using a simple API. For instance, an algorithm of an analog
output MPIFB can write a value to an analog process actuator
that is mapped to the “AO1” MPP, with the following
statement:
mpi->getMPPAnalogOuputByName(“AO1”)-
>write(value);

VI. PROTOTYPE IMPLEMENTATIONS
 The FBRT [11] is the first execution environment for
IEC61499 FB based control applications. The method
invocation approach that is adopted for the implementation of
event connections makes the environment not usable for real-
time applications and imposes many restrictions to its use in
real world applications. Performance measurements for this
execution environment are not available.
 The RTAI-AXE execution environment (http://seg.ece.
upatras.gr/mim/RTAI-AXEpackage.htm) exploits real-time
Linux to provide a real-time execution platform for FBNs. Its
design favors run-time re-configurability. It is supported by
automatic code generators that translate the XML based
design specifications to C++ code. Performance
measurements are presented in [4].
 The RTSJ-AXE (http://seg.ee.upatras.gr/mim/RTSJ-
AXEpackage.htm) exploits the real-time specification for
Java to provide the first real-time java based implementation
for FBNs. Automatic code generation from XML based
design specs is supported by Archimedes ESS. Performance
measurements are presented in [5].
 IsaGraph [15], a well known commercially available
toolset that supports the IEC61131 function block, includes in
its latest version support for IEC61499. The proposed
execution environment even though very restrictive provides
the first commercially available tool. Performance
measurements for this execution environment are not
available.
 The Fuber execution environment is under development at
Chalmers University of Technology [8]. This environment is
not currently described in a publicly available document.
Performance measurements are not available.
 Torero project (http://www.uni-magdeburg.de/iaf/cvs
/torero/) describes an effort for an IEC 61499 compliant
device but no detailed implementation specific publications
are publicly available

VII. CONCLUSIONS
 The IEC 61499 standard has many open issues regarding
the execution of FB networks. This may result in
incompatible execution environments that would not ensure
the same behavior for control applications. It is clear that the
standard should be extended to this direction possibly in the
form of an execution profile that has to define a set of
execution semantics that will warrant portability of control
applications across different execution environments. This
paper intends to provide a contribution to this direction by
presenting and discussing alternative execution scenarios and
surveying existing execution run-time environments.

REFERENCES
[1] International Electro-technical Commission, (IEC), International

Standard IEC61499, Function Blocks, Part 1 - Part 4, IEC Jan. 2005.
[2] Κ.Thramboulidis, G. Doukas, A. Frantzis, “Towards an Implementation

Model for FB-based Reconfigurable Distributed Control Applications”,
7th IEEE International Symposium on Object-oriented Real-time
distributed Computing, May, 2004.

[3] K. Thramboulidis, D. Perdikis, S. Kantas, “Model Driven Development
of Distributed Control Applications”, The International Journal of
Advanced Manufacturing Technology, Springer-Verlag, DOI
10.1007/s00170-006-0455-0

[4] Doukas, G., K. Thramboulidis, “A Real-Time Linux Execution
Environment for Function-Block Based Distributed Control
Applications”, 3rd IEEE International Conference on Industrial
Informatics, Perth, Australia, August 2005, (INDIN´05).

[5] Thramboulidis, K., A. Zoupas, “Real-Time Java in Control and
Automation: A Model Driven Development Approach”, 10th IEEE
Inter. Conference on Emerging Technologies and Factory Automation,
Catania, Italy, September 2005. (ETFA'05).

[6] M. Colla, E. Carpanzano, A. Brusaferri, “Applying the IEC-61499
Model to the Shoe Manufacturing Sector”, 11th IEEE Inter. Conf. on
Emerging Technologies and Factory Automation, Sept. 20-22, 2006.

[7] A. Zoitl, G. Grabmair, F. Auinger, C. Sunder, “Executing real-time
constrained control applications modelled in IEC 61499 with respect to
dynamic reconfiguration”, 3rd IEEE International Conference on
Industrial Informatics, 2005. INDIN '05, 10-12 Aug. 2005

[8] G. Cengic, O. Ljungkrantz, K. Akesson, “Formal Modeling of Function
Block Applications Running in IEC 61499 Execution Runtime”, 11th
IEEE International Conference on Emerging Technologies and Factory
Automation, September 20-22, 2006, Czech Republic.

[9] L. Ferrarini, C. Veber, “Implementation approaches for the execution
model of IEC 61499 applications”, 2nd IEEE International Conference
on Industrial Informatics, (INDIN '04). 24-26 June 2004.

[10] J.L.M. Lastra, L. Godinho, A. Lobov, R. Tuokko, “An IEC 61499
application generator for scan-based industrial controllers”, 3rd IEEE
Inter. Conf. on Industrial Informatics. INDIN '05. 10-12 Aug. 2005

[11] FBRT (Function Block Run-time Toolkit), Rockwell Automation,
http://www.holobloc.com

[12] K. Thramboulidis, C. Tranoris, “An Architecture for the Development
of Function Block Oriented Engineering Support Systems”, IEEE
Intern. Conference on Computational Intelligence in Robotics and
Automation, Canada August 2001.

[13] K. Thramboulidis, “A Model Based Approach to Address Inefficiencies
of the IEC61499 Function Block Model”, 19th International Conference
on Software & Systems Engineering and their Applications, Paris -
December 5-7, 2006

[14] K. Thramboulidis, “Development of Distributed Industrial Control
Applications: The CORFU Framework”, 4th IEEE International
Workshop on Factory Communication Systems, Vasteras, Sweden.
August 2002.

[15] ICS Triplex ISaGRAF, Commercially Available IEC 61499 Software,
http://www.icstriplex.com/

[16] A. Zoitl, R. Smodic, C. Sunder, G. Grabmair, “Enhanced real-time
execution of modular control software based on IEC 61499”,
Proceedings 2006 IEEE International Conference on Robotics and
Automation. ICRA 2006, May 15-19, 2006, Page(s):327 – 332.

