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 Abstract-- The International Electro-technical Commission 
(IEC) has adopted the function block (FB) concept to define the 
IEC 61499 standard for the development of the next generation 
distributed control applications. However, even though many 
researchers are working last years to exploit this standard in 
factory automation a lot of issues are still open. Except from the 
open issues in the design phase a lot of execution semantics are 
still undefined making the development of execution 
environments a difficult task. In this paper the semantics of the 
execution of the IEC 61499 Function Block model are examined, 
possible alternatives are investigated and existing 
implementations are discussed.  
 
Index terms—IEC 61499, Function Block, Factory Automation, 
IEC61499 execution environment, execution model semantics, 
distributed control applications. 

I. INTRODUCTION 
 The Function Block (FB) is a well-known and widely used 
by control engineers construct. It was first introduced by the 
IEC1131 standard on programming languages for 
programmable logic controllers, and was later extended by 
the IEC’s 61499 standard [1] to share many of the well 
defined and already widely acknowledged benefits of object 
technology. The IEC61499 describes a methodology that 
utilizes the FB as the main building block and defines the way 
that FBs can be used to define robust, re-usable software 
components that constitute complex distributed control 
systems (DCSs). Complete control applications, can be 
defined by one or more FB Networks (FBNs) that specify 
event and data flow among function block or subapplication 
instances. The event flow determines the scheduling and 
execution of the operations specified by each function block’s 
algorithm(s).  
 The standard mentions that “standards, components and 
systems complying with this part of IEC 61499 may utilize 
alternative means for scheduling of execution.” From this 
statement it is clear that some issues have been intentionally 
open to be defined later by developers. However, in our 
attempt during last years to develop prototype 
implementations of execution environments [2][3][4][5] we 
have confronted a lot of open issues that can result in 
implementations that will give quite different behaviour for 
the same FBN. This problem is also recognized by other 

research groups working towards the implementation of 
IEC61499 execution environments [6][7][8][9]. This means 
that a lot of execution semantics have to be further defined by 
the standard to avoid the existence of many different 
execution platforms with different behaviours.  
 In this paper, the execution semantics of the function block 
model as presented in the IEC61499 are examined. Open 
issues are highlighted and discussed and alternative solutions 
are proposed to address these problems. The execution 
semantics of the FB instance are first examined, followed by 
an in depth discussion of the FBN execution semantics. 
Alternatives are discussed and already existing 
implementations of these alternatives in today’s execution 
environments are presented.  
 The remainder of the paper is organized as follows. In the 
next section a brief introduction to the FB model is given. In 
section 3, the execution semantics of the FB instance are 
examined. The execution semantics of FB network are 
examined in section 4. Section 5 deals with the 
implementation of the interface of the FBN to the mechanical 
process, and finally the paper is concluded in the last section. 

II. THE IEC 61499 FUNCTION BLOCK MODEL 
  The FB, the basic construct of IEC61499,  consists of a 
head and a body, as shown in figure 1(a). The head is 
connected to the event flows and the body to the data flows, 
while the functionality of the function block is provided by 
means of algorithms, which process inputs and internal data 
and generate output data. The sequencing of algorithm 
invocations is defined in the FB type specification using a 
variant of statecharts called Execution Control Chart (ECC). 
An ECC consists of EC states, EC transitions and EC actions, 
as shown in fig. 1(b). An EC state may have zero or more 
associated EC actions, except from the initial state that shall 
have no associated EC actions. An EC action may have an 
associated algorithm and an event that will be issued after the 
execution of the algorithm. EC transitions are directed links 
that represent the transition of the FB instance from one state 
to another. An EC transition has an associated Boolean 
expression that may contain event inputs, data inputs, and 
internal variables. As soon as this expression becomes true 
the EC transition fires.  
 FB instances are interconnected to form FBNs, as shown in 
fig. 2. A FBN may be executed on a single device but it is 
usually executed on a network of interconnected devices. A 
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device may contain zero or more resources, where a resource 
is considered [1] to be “a functional unit, contained in a 
device which has independent control of its operation and 
may be created, configured, parameterized, started-up, 
deleted, etc., without affecting other resources within a 
device.” The use of the term “resource” taken into account the 
resource model that is given in [1] is too restrictive and 
misleading if we consider the meaning of the term in 
computer engineering according to which a resource is a more 
general concept that abstractly describes a run-time entity that 
offers one or more services. Except from the fact that the use 
of the “IEC61499 resource” is restrictive and misleading, 
specific arguments for its use are not given. Even more, 
questions are still open on the semantics and usability of the 
resource concept and on its realization with real-world 
artifacts. A special kind of resource may be used to act as 
container of FB instances, as is the case in the RTAI-AXE 
execution environment, but this is an implementation issue 
that should not be defined by a standard that claims that 
defines an implementation independent specification. This is 
the reason for not dealing with the IEC61499 resource in the 
rest of this paper. 
 

 
(a) Function Block type 

 
 

(b) Execution Control Chart 
 

Fig. 1. Graphical representation of Function Block type. 
 

  
Fig. 2. The control application as a network of interconnected FB 

instances. 

III. FB INSTANCE EXECUTION SEMANTICS  
 Two main kinds of FB types are proposed by the standard, 
the basic FB type and the composite FB type. The basic 
function block type utilizes the ECC to control the execution 
of its algorithms. The composite function block type is 
composed of a network of interconnected FB instances and 
has no ECC, so its execution semantics are quite different 
from those of the basic FB type. The following subsections 
address these two kinds of FB type and the event processing 
policy. 
 
A. Basic Function Block execution semantics 

 According to [1] the execution of algorithms in basic FB 
instance is “coordinated by the execution control portion (FB 
head) of the FB instance in response to events to its event 
inputs.” A brief description of the timing characteristics of 
this process is presented in fig. 3. t2 is the time that the event 
arrives at the event input of the FB instance and the ECC 
starts its execution. It is assumed that at a previous time t1, 
the required by the FB instance data, to process this event 
were made available. At t3 the execution control function 
notifies the scheduling function to schedule an algorithm for 
execution. At t4 the execution begins and at t5 the algorithm 
derives the output data that are associated with the WITH 
qualifier to the output event of the corresponding EC action 
(see fig.1). At t6 the scheduling function is notified that the 
algorithm execution has ended. The scheduling function 
invokes at t7 the execution control function, which signals at 
t8 the event that is defined by the corresponding EC action. 
  The standard assumes the existence of a scheduling 
function to the associated 61499 resource. However, this 
assumption except from the fact that implies a big overhead 
for devices with resource constraints such as IEC-compliant 
sensors and actuators where a scheduler is not required, it is 
not actually required, even for devices with no restrictions on 
resources, since the thread that executes the ECC can also 
execute the algorithms of the corresponding EC actions. This 
thread can be either the thread of the FB instance in the case 
of an active FB instance (FB instance with its own thread of 
execution) or the thread of the FB container [4] in which the 
FB instance was injected, as explained in the next section.  
  In the case of assigning the same thread for the execution 
of the ECC and algorithms, that is the case of our execution 
environments[3][4][5], it is clear that the ECC cannot react 
during the execution of algorithms to the events that occur at 
the FB instance’s event inputs. However, this is not possible 
even for the case of having two threads, one for the ECC and 
one for algorithms as is the case with the standard, since 
according to [1] “all operations performed from an 
occurrence of transition t1 to an occurrence of t2 (see fig. 4) 
shall be implemented as a critical region with a lock on the 
function block instance.”  

 
Fig. 3. Execution model of Basic Function Block [1] 

 

 
Fig. 4. ECC operation state machine [1]. 

 
 To further examine this problem, the operation state 
machine of the ECC presented in fig.4 is used. S0 represents 
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the idle state, S1 represents the state of evaluating transitions 
and S2 the state of performing the actions. Based on this state 
machine the following two scenarios are considered:  
1. the event has to be consumed by the FB instance before 

the occurrence of the next event to its event inputs. That 
is, the transition t2 should occur before the arrival of the 
next event,  

2. the event may occur when the FB instance is in states S1 
or S2.  

 To satisfy the requirement of the first scenario the FBN 
should be scheduled in such a way that the execution of the 
FB instance will be terminated before its deadline that should 
be before the appearance of the next event. For the second 
scenario, if the loss of the event is permitted by the nature of 
the application, the event is simply ignored, either wise the 
event is stored so as to be consumed immediately after the 
transition t2 to the S0 state. All the above alternatives can be 
supported by the execution environment given the appropriate 
notation at the design level. For example the control engineer 
should define, at design time, for each event the following 
properties: ‘event loss permitted’ and ‘event consumption 
before next event’. The latter property will be utilized during 
schedulability analysis of the FBN to define the deadline of 
the corresponding FB instance that has to be met by the 
scheduler. 
 The solution proposed above and implemented in the 
context of RTAI and RTSJ-AXE execution environments can 
also implement the proposed by the standard behavior, if 
there is a need for such a behavior. After the execution of the 
ECC the corresponding thread should issue a yield command 
to the operating system that will result to the rescheduling of 
this thread, which of course in this time will execute the 
algorithms of the associated EC actions. If a different priority 
for the algorithm execution is required the proper update of 
the thread’s priority is required before the yield operation. 
 A different approach is proposed in [8] where two threads 
are used for the execution of FB instance: a) the “event 
executing” thread, which handles incoming events and 
execute the ECC, and b) the “algorithm executing” thread, 
which executes the activated algorithms. This approach was 
adopted, according to the authors, to allow the acceptance of 
events by the FB instances during algorithm execution. 
However, this doesn’t really make any sense if we consider 
the constraint imposed by the FB model according to which 
the new incoming event(s) should not trigger an ECC 
transition before the currently executing FB algorithm/action 
finishes. The only advantage of this approach i.e., the ability 
to execute FB algorithms and ECC with deferent priorities 
can be also obtained in the case of one thread as it was 
already stated. 
 
B. Composite Function Block execution semantics 
 As defined in [1] the composite FB type has event input and 
output, as well as data input and output variables. The WITH 
qualifier is also supported by the composite FB type. This 
definition means that the composite FB type could not be 
considered only as a design time artefact but an 
implementation-time construct should be defined for the 
proper implementation of the composite FB instance. This 

construct may have its own thread of execution if the FB 
instance is defined at design time as active, or it can be 
executed by the thread of the FB container (a concept 
described in the next section) in which the FB instance will be 
assigned, if defined as passive. Since there is no ECC for the 
composite FB type the ECC of the receiver constituent 
component FB instance will be executed. The remaining 
execution semantics of the composite FB instance will be the 
same as those of the FB network diagram execution 
semantics, which will be examined in the next section. 
 
C. Event processing policy 
 The standard does not define the event-processing policy 
not even the clear-event policy, while an unreliable transition 
evaluation order is defined. To avoid the unpredictable 
behaviour of the FB-network diagram, the event-processing 
policy should be defined at the design phase so as the control 
engineer is aware of the corresponding execution semantics 
of its design. We consider three alternatives that can be 
supported by FB-based run-time environments for the 
processing of input events.  
a) events are processed on a first come order. This is 

implemented by a traditional FIFO event queue. 
b) events are processed on a priority based order. This can 

also be implemented by priority queues. 
c) All pending input events are candidates for processing at 

the time the thread of the FB inserts the running state.  
 The standard defines that the evaluation order of transitions 
is defined by the order in which they are declared in the 
textual FB specification. However, this results in a non 
deterministic execution, since the control engineer is working 
with the graphical notation during the ECC construction and 
editing time and there is no way to define the transition 
declaration order in textual specification. To address this 
problem we propose the use of the “evaluation-order priority” 
property for the transition. This priority has to be defined at 
the design level. A default priority that leads to a non 
deterministic evaluation order is also supported. 
 Regarding the clear event policy an event is considered to 
be consumed by the system whether this event is used or not 
in a transition expression of the corresponding state. The 
event is considered to be consumed in both cases either the 
transition fires or not. An exception will be supported for the 
events that are marked as ‘persistent’ in the design time. A 
persistent-event is cleared only when a transition has been 
fired by this event. 
 The assumption adopted by UML2.0 according to which an 
event may fire more than one transitions according to a guard 
condition is adopted. If all possibilities are not covered by the 
guard conditions and no transition is enabled, the event is 
simply cleared except from the case of a persistence event. 

IV. FB NETWORK EXECUTION SEMANTICS 
 In this section an attempt is made to examine alternative 
means for implementing FBNs with more focus on scheduling 
the execution of the operations specified by algorithms of 
function blocks that constitute applications defined by FBNs.  
 
A. Allocating FB instances to threads 
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 One of the primary open issues for the implementation of 
the FBN is the allocation of FB instances to threads or 
processes.  The following possible alternatives are considered 
for the allocation of FB instances to execution threads: 
a) All passive FB instances of the FBN are assigned to one 
thread of execution  
 This sequential single-threaded approach that is proposed 
by some research groups [10][11] seems to be inefficient for 
complex FB networks, as is also depicted in [6][9], and 
should be avoided. 
b) One thread per each FB  
 This approach, which is simple and straight-forward for 
devices that have to execute a small number of FB instances, 
was successfully adopted in the RTSJ-AXE package where 
the ECC class is defined to extend the RealtimeThread of the 
real time Java specification. An instance of the ECC class is 
assigned to each FB instance. However, as the number of FB 
instances of the FBN increases this approach may introduce a 
significant overhead since each thread has a cost in terms of 
device resources.  
c) One thread may execute a subset of the FB instances of the 
FBN  
 This approach seems to be the most efficient and flexible 
for large FBNs and since it was successfully adopted in the 
RTAI-AXE and CCM-AXE packages is studied in more 
detail in the rest of this section.  
 
B. Allocating a subset of the FBN to a thread 
 Two possible alternatives are considered in the allocation 
process of FB instances to system threads: a) allocation is 
done with the constraint that each FB instance is allowed to 
be executed by only one thread, b) more than one threads are 
allowed to execute (in different time instances) the same FB 
instance.  
 According to the first scenario the execution of a specific 
FB instance or a set of FB instances is assigned to a single 
specific thread. This scenario was first presented in [2] where 
a first implementation was also discussed by introducing the 
concept of FBC, which is a single-threaded active object. FB 
instances are injected into FB containers which handle the 
execution of those FB instances. The FBC accept input events 
and dispatch them to its injected FB instances enforcing their 
execution, i.e., the execution of ECC and corresponding 
algorithms. Generated output events are also handled by the 
FBC and are either routed to FBC’s queue if the target FB 
instance belong to the same FBC, or to the Event Connection 
Manager (ECM) of the device [2]. This approach does not 
impose synchronization issues on the access of FBs. Each 
FBC is independent in both aspects of execution and 
(re)configuration and can communicate with other FBCs 
through simple communication mechanisms (ECM, DCM) 
responding to events without imposing complicated 
synchronization. This scenario was adopted for the prototype 
implementation of the RTAI Archimedes execution 
environment [4]. A quite similar implementation approach is 
proposed in [6] even though the concept of FBC is not 
explicitly used. However, the decision to implement the 
IEC61499 resource as a single thread process makes the 

resource quit similar to our FBC concept and the approach 
similar to the one described above. 
 An approach for allocating FB instances to threads with the 
possibility of an FB instance to be executed by more than one 
threads is discussed in [16]. According to this a thread is 
statically assigned to an event-source and is allowed to 
execute the FB instances along the propagation path (event 
path) of the event into the FBN to the corresponding output 
event-sink (output IPP). To get a better utilization of threads 
and eventually OS resources than the one obtained in [16] a 
thread pool can be considered and a demand-led policy can be 
adopted in thread assignment without any static allocation of 
FB instances to the thread-pool threads. It should be 
mentioned that in both cases, FB instances should be 
considered as shared resources and should be protected from 
concurrent access by multiple threads, since they are not be 
reentrant. Mechanism of the OS such as priority inheritance 
and priority ceiling may be exploited in the case of hard real-
time applications to resolve problems such as priority 
inversion that may occur when multiple threads are allowed 
to access the same FB instance. Moreover, dynamic priority 
schedulers may be needed, especially in the thread-pool case, 
as threads may need to alter their priority as they execute 
different FBs. 
  
C. FB instance to thread allocation heuristics 
 The assignment of FB instances to FBCs or threads is not a 
trivial task for complex FBNs since multiple aspects and 
contradicting parameters such as OS resource economy and 
runtime efficiency should be taken into account. The 
following allocation heuristics can be used in this process.  
• FB instances that are sequentially connected in the FBN 

without the need to be executed concurrently are allocated 
in the same FBC, as is the case for FBIs B and C in fig. 
5a, A and B in fig.5b, and A, B, C, D and E in fig.6. 

• For the case of event-path (EP) merging that is shown in 
fig. 5a two alternatives are possible. The FBIs of one 
event-path (A, B and C or D, B and C) are allocated in 
one FBC and the remaining FBIs of the other event path 
(D and A respectively) are allocated to another FBC. 
Alternatively the common FBIs of the event paths, i.e., B 
and C, are allocated to one FBC, and the remaining FBIs 
of each event-path are allocated to one FBC.  An 
analogous process is followed for the case of event-path 
splitting. Table II presents the possible allocation 
scenarios, where the notation {A,B,C} denotes that the FB 
instances A, B and C are allocated to the same FBC or 
thread. 

 

 
 
Fig. 5. FB instance allocation scenarios for event-path merging and splitting. 

 
• More alternatives are possible for the case of event-path 
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merging shown in fig. 6. FBIs of one EP can be allocated 
to one FBC, as for example {A, B, C, D and E} or {F, G, 
C, H and J} with the remaining FBIs of the other EP either 
allocated to one FBC as for example {F, G, H and J} or to 
other two FBCc as for example {F, G} and {H, J}. A 
more distributed allocation can also be defined leading to 
5 FBCs as shown in Table I. 

 

B

G

DC

H

A

F

E

J

 
 

Fig. 6. FB instance allocation scenarios for event-path crossing. 
 

Table I. FB instance-allocation scenarios 
Thread assignment scenarios 

FB Network 
2 threads 3 threads 5 threads 

EP merging {A,B,C} {D} 
 

{A} {B,C} {D} - 

EP splitting {A,B,C} {D} 
 

{A,B} {C} {D} - 

EP crossing {A,B,C,D,E} 
{F,G,H,J} 

{A,B,C,D,E} 
{F,G} {H,J} 

{A,B} {C} {D,E} 
{F,G} {H,J} 

 
 It is clear that the 2-thread assignment scenarios constitute 
the most lightweight solutions in terms of OS resource 
requirements. Scenarios that result in bigger number of FBCs 
offer greater degree of flexibility and parallelism. For 
example lets consider the case where the FB instance B of fig. 
5a has just been activated as a result of an event propagation 
through the event path D, B, C. In the case of a 2-thread 
solution ({A,B,C} {D}) the execution of FB instance B must 
be completed before an incoming event in the FB instance A 
can be processed, that is not a restriction in the case of a 3-
thread solution such as the ({A} {B,C} {D}).  
  
D. Implementing Event Connections 
 A first attempt to provide a flexible realization of event 
connections that would favor run time re-configurability is 
presented in [12]. The use of the Event Connection Manager 
was proposed to implement both inter and intra-device 
connections. Event connections between FBs that are 
allocated to the same FBC or thread are implemented locally 
through the use of the FBC event dispatcher and not through 
the ECM [2]. Specifically for the inter-device connections the 
use of SIFB, a special kind of FB proposed by the standard, 
was disputed since it destroys the implementation 
independent design that the standard is supposed to ensure. 
An extended description of the proposed approach to obtain 
location transparency in FBNs is given in [13]. Regarding the 
implementation of intra-device connections, either using 
SIFBs or not, the following alternative implementations are 
considered: 
• Using common function calls. This approach currently 

adopted by FBRT is inefficient as it imposes a sequential 
non-preemptable execution scheme. 

• Using native signaling mechanisms of the underlying OS. 
This approach is very efficient but portability is lost.  

• Using existing middleware’s. This approach provides 
extra functionality, allows maximum portability, 
flexibility and favors reconfigurability. An advantage of 
this approach is also the centralized, single-point of event 
synchronization. This is an approach adopted in [2][4] 
where the ECM was implemented on top of a common 
middleware. 

 An alternative implementation that greatly simplifies the 
task of control engineer by hiding communication 
idiosyncrasies was proposed in [14] and considers the use of 
the IPCP.  
 
E. Implementing Data Connections 
 Data overwriting is not an issue in the FBN so there is no 
need for buffering data values. A single storage location is 
reserved per each data for the most recent (valid) value to be 
stored and read when needed. The Data Connection Manager 
(DCM) concept first introduced in [12] and later implemented 
in  [2][4], is a passive object that provides protected (on the 
concurrent access point of view) storage elements for FB 
instance data outputs and also provides the links required by 
consumers to these storage elements to realize data 
connections.  

V. INTERFACING TO MECHANICAL PROCESS 
 According to the standard the process interface of a device 
“provides a mapping between the physical process and the 
resources.  Information exchanged with the physical process 
is presented to the resource as data or events, or both.” The 
standard also proposes that this process mapping may be 
modeled by a special kind of service interface function blocks 
(SIFBs). SIFBs are adopted by most of the research groups to 
interact with the controlled process without any further 
examination of the process interface. However, SIFBs make 
the design model implementation-platform dependent, so its 
use should be avoided. 
 There are various alternatives differing in the level of 
abstraction offered by the mechanical process interface (MPI) 
that may even affect the application design. At the lower level 
the process interface could probably offer a minimum set of 
trivial I/O services, just like an I/O device driver does. In this 
case the MPI should implement a great deal of platform 
dependent I/O functionality including the transformation of 
data from a hardware specific representation to an IEC 
compliant representation and vice-versa. Moving to the next 
level of abstraction the MPI may offer more complex services 
simplifying the implementation MPIFBs and making them 
more platform-independent. On an even higher level of 
abstraction the MPI may offer direct mapping of process 
parameters to IEC compliant event/data inputs and outputs 
within the application’s FBN. This solution may require more 
configuration and initialization effort but makes the use of 
SIFBs unnecessary (obsolete), thus simplifying the 
application design and making it more implementation 
independent. The concept of Mechanical Process Terminator 
(MPT) and Mechanical Process Parameter (MPP) were 
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defined in [14] to allow an implementation of this highly 
abstract process interface. 
 In a first implementation attempt of the Mechanical Process 
Interface we compromise the higher level of abstraction and 
move to the 2nd level of abstraction. MPI FBs should utilize 
services of MPI layer in order to access (read/write) the 
parameters of the controlled process. These parameters are 
represented as MPP instances, each of which encapsulates the 
implementation specific mechanism that enables interfacing 
with the acquisition card. The current implementation of MPI 
is based on the comedi acquisition driver [4], thus MPPs refer 
to comedi device acquisition channels. The MPI can be 
configured during start-up so that actual process parameters 
are mapped through appropriate acquisition channels to 
named MPPs. A MPI FB can then refer to a MPP by its name 
or the id that is assigned during MPI configuration and access 
it using a simple API. For instance, an algorithm of an analog 
output MPIFB can write a value to an analog process actuator 
that is mapped to the “AO1” MPP, with the following 
statement: 
mpi->getMPPAnalogOuputByName(“AO1”)-
>write(value);   

VI. PROTOTYPE IMPLEMENTATIONS 
 The FBRT [11] is the first execution environment for 
IEC61499 FB based control applications. The method 
invocation approach that is adopted for the implementation of 
event connections makes the environment not usable for real-
time applications and imposes many restrictions to its use in 
real world applications. Performance measurements for this 
execution environment are not available. 
 The RTAI-AXE execution environment (http://seg.ece. 
upatras.gr/mim/RTAI-AXEpackage.htm) exploits real-time 
Linux to provide a real-time execution platform for FBNs. Its 
design favors run-time re-configurability. It is supported by 
automatic code generators that translate the XML based 
design specifications to C++ code. Performance 
measurements are presented in [4]. 
 The RTSJ-AXE (http://seg.ee.upatras.gr/mim/RTSJ-
AXEpackage.htm) exploits the real-time specification for 
Java to provide the first real-time java based implementation 
for FBNs. Automatic code generation from XML based 
design specs is supported by Archimedes ESS. Performance 
measurements are presented in [5]. 
 IsaGraph [15], a well known commercially available 
toolset that supports the IEC61131 function block, includes in 
its latest version support for IEC61499. The proposed 
execution environment even though very restrictive provides 
the first commercially available tool. Performance 
measurements for this execution environment are not 
available. 
 The Fuber execution environment is under development at 
Chalmers University of Technology [8]. This environment is 
not currently described in a publicly available document. 
Performance measurements are not available. 
 Torero project (http://www.uni-magdeburg.de/iaf/cvs 
/torero/) describes an effort for an IEC 61499 compliant 
device but no detailed implementation specific publications 
are publicly available 

VII. CONCLUSIONS 
 The IEC 61499 standard has many open issues regarding 
the execution of FB networks. This may result in 
incompatible execution environments that would not ensure 
the same behavior for control applications. It is clear that the 
standard should be extended to this direction possibly in the 
form of an execution profile that has to define a set of 
execution semantics that will warrant portability of control 
applications across different execution environments. This 
paper intends to provide a contribution to this direction by 
presenting and discussing alternative execution scenarios and 
surveying existing execution run-time environments. 
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