
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2007, Seattle, Washington, April 30 – May 02, 2007.
© 2007 ACM 978-1-59593-628-8/07/0004 $5.00

Multi-grained Level of Detail Using a Hierarchical Seamless Texture Atlas

Krzysztof Niski∗
Johns Hopkins University

Budirijanto Purnomo†

Johns Hopkins University
Jonathan Cohen‡

Lawrence Livermore National Laboratory

Figure 1: Renderings of the 36 million sample Thai statue model and the 22 billion-sample USGS Earth data set with node layouts and
triangle densities. Tessellations range from sparse in blue through green, yellow and red to dense in purple. (Black regions represent missing
samples in the input Earth data set.)

Abstract
Previous algorithms for view-dependent level of detail provide lo-
cal mesh refinements either at the finest granularity or at a fixed,
coarse granularity. The former provides triangle-level adaptation,
often at the expense of heavy CPU usage and low triangle rendering
throughput; the latter improves CPU usage and rendering through-
put by operating on groups of triangles.

We present a new multiresolution hierarchy and associated algo-
rithms that provide adaptive granularity. This multi-grained hierar-
chy allows independent control of the number of hierarchy nodes
processed on the CPU and the number of triangles to be rendered
on the GPU. We employ a seamless texture atlas style of geometry
image as a GPU-friendly data organization, enabling efficient ren-
dering and GPU-based stitching of patch borders. We demonstrate
our approach on both large triangle meshes and terrains with up to
billions of vertices.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric algo-
rithms, object hierarchies

Keywords: level of detail, texture atlas, parametrization, geometry
image, out-of-core

1 Introduction
Since the early days of interactive 3D computer graphics, the need
to represent complex 3D geometries at multiple levels of detail has
been apparent [Clark 1976]. In the interim, CPU performance, main
memory capacity, and triangle processing performance have all in-
creased dramatically. However, despite these gains, the need for
level of detail has increased in recent years.

The increased need stems from ever-improving 3D data acquisi-
tion methods. The scales of these modern 3D scanners, such as SIR
(space-borne imaging radar), Lidar (light detection and ranging),

∗e-mail: niski@cs.jhu.edu
†e-mail: bpurnomo@cs.jhu.edu
‡e-mail: jcohen@llnl.gov

standard laser range finding, photometric techniques, etc., range
from meters down to millimeters down to tens of microns or finer,
depending on the technology and the scale of the target model. As
a result, large 3D models today contain hundreds of millions to bil-
lions of samples, which include not only the geometric position, but
normals (measured or computed), colors, and other material prop-
erties.

Most recently, the highest performance systems have used a very
coarse-grained approach, minimizing the CPU processing required
while maximizing the triangle throughput of the graphics hardware.
However, even this latest breed of algorithms has it limitations. In
particular, the granularity (i.e., the number of triangles forming an
atomic unit) at which the level of detail is adjusted at run-time is
constant and fixed in advance, and in many cases a great deal of
processing goes into computing the hierarchy for that one, particu-
lar granularity.

In this paper, we propose a mesh representation that is multi-
grained. It is both spatially hierarchical and multi-resolution, and
these two aspects are managed independently and dynamically
rather than bound together during pre-processing. At run-time, it is
possible to adjust the resolution of any individual hierarchy node,
or to split or merge nodes. As we show in our analysis, this is
beneficial for two reasons. First, the data structure is appropriate
for any balance of CPU/GPU processing powers. This allows us
to control both the CPU and the GPU usage, making our method
adaptable to varying hardware configurations. Second, even for a
given CPU/GPU combination, there may be no single, ideal granu-
larity. The best granularity may depend on local characteristics of
the surface and the viewing parameters (e.g., location of the view
frustum). Thus, it is desirable to allow a spatially-adaptive granu-
larity.

We develop our multi-grained hierarchy in the context of hi-
erarchical, seamless texture atlases. For arbitrary-topology input
meshes, these atlas domains are constructed out-of-core through
a process of patchification and parametrization. Alternatively, for
regular height field inputs, the domain is constructed through a sim-
ple partitioning process. Given the atlas domain, geometry may be
stored as a three-channel geometry image or a single-channel height
image as appropriate, and the same domain is used to store attribute
textures such as color and normal maps.

Given this new hierarchy structure, we define the corresponding
new problems for real-time geometry adaptation, allowing an appli-
cation to specify not only an error threshold or a triangle budget, but
also simultaneously a maximum number of nodes to be rendered.
This last parameter directly impacts the time required for the CPU
to perform the adaptation. We present algorithmic solutions to these

153

adaptation problems, and also discuss the seamless rendering of the
resulting geometry.

Our new approach to level of detail has a number of desirable
properties:

• Load management: The load on the CPU and GPU is man-
aged independently by setting the maximum node count and
maximum triangle count, respectively. This unique ability
of our hierarchy provides an extra degree of freedom to our
quad-queue adaptation algorithm over existing algorithms.

• GPU-based border resolution: Our implementation em-
ploys vertex textures to deliver geometry to the vertex pro-
cessing unit, enabling the stitching of neighboring patch bor-
ders directly on the GPU.

• Rendering-optimization-friendly: Due to the regular grid
structure of mesh patches the rendering primitives are rela-
tively easy to optimize, producing triangle strips with excel-
lent vertex cache coherence. Even in the presence of vertex
texturing we have seen performance in excess of 100M trian-
gles/second.

• Reusable (implicit) topological data: On the current hard-
ware generation, we can store in texture memory reusable,
regular grids of various resolutions, storing only (u,v) vertex
coordinates and the corresponding index lists. This data is
reusable across the entire model (and across all models). On
future GPU architectures, it may well be possible to generate
this underlying topology-driven data on the fly.

• Loosely constrained hierarchy neighbors: Compared to
most quad-tree LOD hierarchies, we have few restrictions on
the hierarchy level or resolution level of two neighboring sur-
face patches. Seamless borders are achieved for neighboring
patches even if they differ by several hierarchy levels and/or
resolution levels.

• Fragment-level attribute preservation: Our general para-
metric approach allows preservation of mesh attributes in tex-
ture maps. Thus their resolution (and their corresponding
footprint in texture memory) is determined independently of
the load on the vertex processing unit.

• Coherent data redundancy: Given a child node that covers
a subset of its ancestor’s domain, we can temporarily use the
ancestor’s data to render the child, regardless of the required
resolution. This enables our method to render any cut of the
model without cracks or missing data while the correct data is
loaded.

We demonstrate our approach on several large meshes and ter-
rains with up to billions of vertices. We examine some of the ben-
efits of the increased flexibility of our multi-grained hierarchy and
look at rendering output and performance of our current prototype
system.

2 Related Work
2.1 View-dependent Level of Detail
View-dependent level of detail algorithms allow localized changes
in the resolution of a polygonal mesh according to the current view-
ing parameters. Early view-dependent algorithms [Xia and Varsh-
ney 1996; Floriani et al. 1997; Luebke and Erikson 1997; Hoppe
1997] used a tree or DAG structure to allow very fine-grained mod-
ifications to the mesh according to some error metric. This ability
of view-dependent algorithms to operate at various locales across
a mesh is especially important for rendering of terrains, which are
typically vast in scale [Lindstrom et al. 1996; Duchaineau et al.
1997; Hoppe 1998].

For today’s large data, algorithms must generally deal with is-
sues of out-of-core operation. It is possible to apply fine-grained,
view-dependent level of detail in an out-of-core setting [El-Sana

and Chiang 2000; Lindstrom and Pasicco 2001; Lindstrom 2003].
However, the most recent algorithms generally apply changes in
mesh resolution in a very coarse-grained fashion, seeking to min-
imize CPU usage while maximizing the triangle throughput of the
GPU [Ganovelli et al. 2004; Borgeat et al. 2005; Cignoni et al.
2005; Hwa et al. 2005].

Our algorithm seeks a balance between the fine-grained and the
coarse-grained representations by providing an adaptable granular-
ity, and thereby providing the ability to balance CPU and GPU us-
age. As compared to [Borgeat et al. 2005] in particular, our algo-
rithm performs patch border stitching on the GPU and allow multi-
ple levels of resolution difference between neighbors as opposed to
restricting to a single level difference.

Applications such as Google Earth [2005] perform a task simi-
lar to our system, with several key differences. The chief of these
is their inability to opearate on general models, reducing their ap-
plicability to terrain datasets only. These systems also focus on
tertiary data such as satellite imagery or street maps rather then the
underlying geometry. As a result, they give no guarantees on error
threshold or triangle count, replacing geometry with high-quality
textures. While these systems are very effective at their task, the
method presented in this paper strives to be more general and rig-
orous.

2.2 Geometry Images
Like the geometry clipmap approach to rendering large ter-
rains [Losasso and Hoppe 2004; Asirvatham and Hoppe 2005],
our hierarchical format stores geometric data in a form of geom-
etry image. A geometry image [Gu et al. 2002] is essentially a
two-dimensional array of (x,y,z) values. A mesh is defined by the
implicit regular-grid structure of the array. A number of methods
exist for constructing a geometry image by resampling an arbitrary-
genus [Gu et al. 2002] or genus-0 [Praun and Hoppe 2003] polygo-
nal mesh. It is also possible to construct geometry images of multi-
ple charts – either regular [Purnomo et al. 2004] or irregular [Sander
et al. 2003]. The simple topology of regular grids makes geometry
images appealing for many forms of geometry processing, includ-
ing compression and rendering.

Our data format takes its direction from the work of [Purnomo
et al. 2004]. Each of our highest resolution geometry images is
a single chart of their seamless texture atlas. However, we im-
pose a hierarchical node structure on each of these charts. Multiple
nodes may thus cover a chart, and each can select an appropriate
resolution for rendering. Furthermore, we develop an out-of-core
approach to constructing the texture atlas for application to large
meshes. This choice of data format brings the rendering of arbi-
trary topology surfaces much closer to the domain of terrain render-
ing and makes it possible to produce seamless boundaries between
adjacent nodes of different hierarchy levels and resolutions. Un-
like the geometry clipmap approach, our algorithm provides error-
guided adaptation, seamless patch boundaries, and the ability to
trade CPU workload for rendering quality.

Another approach similar to ours on the surface is the work of [Ji
et al. 2005]. Like us, they employ a form of seamless geometry im-
age on the GPU using a quad-tree for level of detail. However, their
approach is applied to models several orders of magnitude smaller
than ours, restricts the quad-tree adaptation to a single level differ-
ence between neighbors, and is based on charts created through a
manual process.

3 Hierarchical Seamless Texture Atlas
Our multi-grained level of detail hierarchy consists of a forest of
quad-trees, each of which is built on the domain of a single square
chart of a seamless texture atlas. A one-tree hierarchy is illustrated
in Figure 2. The texture data α (a height map in this case) is filtered
to resolutions β , γ , δ , and ε . The chart domain is hierarchically

154

Node 2A Node 2B

Node 2C
Node 2D

Node 2E Node 2F

Node 2G

Node 2H

Node 1BNode 1A

Node 0
Node 2I Node 2J

Node 2K Node 2L

Node 2M Node 2N

Node 2O

Node 2P

Node 1D
Node 1C

Root Node

Node 1A Node 1B

Node 2A Node 2B Node 2C Node 2D Node 2E Node 2F Node 2G Node 2H

Node 1C Node 1D

Node 2J Node 2K Node 2L Node 2M Node 2O Node 2P

γ
β

α

α

Node 2NNode 2I

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

γ
β

α

δ

γ
β

α

δ

γ
β

α

δ

γ
β

α

δ

γ
β

δ
γ

β

α

δ

γ

β

ε

ε

Level 0

Level 1

Level 2

Figure 2: One chart of a hierarchical seamless texture atlas. Each node of the quadtree spatial hierarchy has access to multiple resolutions
of the geometric data, allowing separate, dynamic adjustment of node spatial extent and resolution. Geometric data for each chart is stored
separately in a image pyramid. The blue and green cuts produce the same number of triangles and the same maximum error. The red cut
maintains the maximum error bound, but uses fewer triangles, as not all areas have the same geometric error.

subdivided using a quad-tree structure. Each node of the quad-tree
covers a particular region of the chart domain and has access to
several image resolutions for that region.

Ideally, every node could access every resolution, but there are
a few practical limitations to this. For example, nodes at level 1
cannot access texture resolution ε because that resolution has too
few samples to be split amongst the four nodes of level 1 (because
ε has the smallest allowable node texture resolution). Similarly,
nodes at level 2 cannot access texture resolutions ε or δ , because
the δ resolution is too small to split across the nodes of level 2.
Access to a resolution may also be restricted because it is too large.
For example, the root node (level 0) cannot access resolution α .
This is due to the fact that our implementation assumes a single
texture state and draw call per node, and the hardware only supports
textures up to some fixed, maximum resolution. Given these two
restrictions, a node has access to

r = min(log2(M)− l, log2(R)) (1)

resolutions, where l is the level of the node, M is the maximum
resolution of this chart’s texture, and R is the maximum texture res-
olution supported by the hardware.

This hierarchy structure is a departure from the traditional tree
structure employed in LOD systems. In a more traditional LOD
tree, each node represents one particular level of detail. One can
subdivide a node into its sub-nodes to refine the object or merge
nodes into their parent to coarsen the object. In our hierarchy, a
node can be refined not only by subdividing it into its sub-nodes, but
also by increasing its choice of resolution for its region of coverage.

Given this new degree of freedom, notice that there are actually
multiple cuts through the tree and resolution choices that achieve
the same error bound and triangle count. For example, the blue cut
contains one node, and the green cut contains 7 nodes. However,
both cuts render the chart entirely at resolution β . In general, the
blue cut would be considered superior because it achieves the same
result with fewer nodes, and our algorithm would ultimately merge
the nodes of the green cut up to the single blue node if that resolu-
tion was really appropriate everywhere. The more typical red cut

exposes the benefit of our method: by subdividing a node we can
often use one or more lower-resolution sub nodes while maintaining
the same geometric error bound.

As a result there are many ways to reconstruct a model with a
given error threshold or triangle budget by varying the number of
nodes used. This permits the balancing of CPU and GPU work-
loads by adjusting the number of nodes parameter independent of
the error or triangle parameter.

It is worth noting here that at first glance, this ability to store
multiple levels of detail at each node may resemble the structure
employed by the HLOD algorithm [Erikson et al. 2001]. However,
in that work, the tree represents a scene graph, and merging children
nodes into the parent implies merging the representations of multi-
ple distinct objects. Each node in that structure does store multiple
levels of detail, but there is still only single cut that can achieve any
particular scene triangulation. Thus it is not possible in that system
to use the desired number of nodes to control the CPU load of the
adaptation algorithm independent of the triangle count.

4 Seamless Texture Atlas Construction
In previous work [Purnomo et al. 2004], we introduced the seamless
texture atlas as a parametric domain for texturing arbitrary-topology
meshes with guaranteed C0 continuity in the presence of texture
mip-mapping and geometric level of detail. It consists of a collec-
tion of quadrilateral charts which cover the surface. We showed
that by sampling surface attributes on the charts of such an atlas us-
ing a 1-pixel overlap on all the boundaries, it is straightforward to
maintain continuity. That process has the following steps:

1. Cluster: Using a combined metric incorporating planarity
and compactness, iteratively merge triangles into clusters us-
ing a greedy heuristic. The result is a collection of polygonal
patches.

2. Quadrangulate: Partition each n-sided patch into n quadri-
lateral patches. This process connects a central vertex of each
patch to a central vertex on each of the patch boundaries, rem-
iniscent of the first level of Catmull-Clark subdivision.

155

3. Parameterize: Parameterize each quadrilateral patch onto
the unit square domain using an efficient, sparse, linear-
least-squares solution to a uniform spring system followed by
an iterative algorithm optimizing an area-preserving texture
stretch metric.

4. Resample: Capture attributes, such as position, color, or nor-
mal by uniform sampling in the square domain of each chart.
Align the samples with the domain boundaries to ensure 1 ring
of replicated texels around the patch.

We have adapted that original process for out-of-core operation
to enable processing of larger meshes. It is primarily the initial clus-
tering phase that requires modification. We perform a two-phase
clustering as follows:

1. Gridify: Use a uniform 3D grid to partition a large, unindexed
collection of triangles into multiple files.

2. Per-cell Cluster For each grid cell, perform geometric vertex
hashing followed by in-core clustering. The goal is for the
union of clusters of all grid cells to fit in core. Each cluster
stores only aggregate information used to compute the com-
bined error metric: quadric error matrix, surface area, and per-
boundary-edge length. In addition, triangles that cross cell
boundaries are stored with their current cluster for use in the
next step.

3. Global Cluster: Load coarsest level patches from all cells to-
gether. Perform geometric vertex hashing among boundary-
crossing triangles to compute shared patch boundaries and
their lengths. Cluster patches until desired number (or cost
metric threshold) is reached.

Following the second clustering pass, perform quadrangulation,
parametrization, and resampling on a per-patch basis. Note that
during these steps, as well as the per-cell clustering, the compu-
tation is trivially parallelizable and may be performed on a large
compute cluster if necessary.

For regular height map inputs, the preceding parametrization al-
gorithm is unnecessary. We simply partition the height map into
charts of the desired maximum node resolution, maintaining the
expected 1-pixel overlap between adjacent charts.

5 Hierarchy Creation
For each chart in our texture atlas, we create a quadtree hierarchy,
starting with a root node. Each root node is subdivided into four
children nodes in the texture domain, and each these is further sub-
divided, and so on, down to a pre-specified subdivision depth. For
atlases with multiple charts, the root nodes are initialized with a
pointer for each of their four boundary edges to the root node of
the adjacent tree. As we subdivide, this information provides the
foundation for computing all node neighbor relationships during
the view-dependent adaptation algorithm.

We associate with each node in the hierarchy a region of the chart
domain that is one quarter of its parent’s region. The associated
textures are created to be of resolution (2n + 1)x(2n + 1), where
n is the LOD level of the data. These “power of two plus one”-
resolution textures have the desirable property that when one splits
them into quadrants with a one-pixel shared interior boundary, their
children’s resolutions are the next smaller power of two plus one.
This is convenient for crack elimination between adjacent patches
on the surface.

The hierarchy generation process also computes bounding boxes
for each node and error values for each level of detail. We measure
the error for a given level of detail by considering the distance from
each of the original samples in the node’s region of coverage from
the corresponding point in parameter space on the simplified mesh.
The error is calculated by interpolating a corresponding vertex po-
sition from the four nearest vertices from the simplified mesh, and

calculating the distance to the original vertex, thus giving a geo-
metric deviation for that point. Our current implementation uses
the maximum operator to combine the sample errors for each level
of detail, but the average operator is an equally valid choice, de-
pending on the needs of the application.

The hierarchy building stage is easily separable, as the compu-
tations for each node are independent of neighboring nodes. As a
result the preprocessing stage is easily multi-threaded, allowing for
a significant improvement in preprocessing performance, especially
on multiprocessor (or multi-core) machines.

6 Interactive Rendering
Given the complete multi-grained hierarchical data structure, the
major components necessary for interactive rendering are algo-
rithms for view-dependent adaptation, a scheme for data manage-
ment, methods of rendering the selected patches, and an approach
to stitching together the boundaries of adjacent patches at different
resolutions and hierarchy levels.

6.1 View-dependent Adaptation

Traditional view-dependent LOD methods have only one degree of
freedom – they can only increase the detail of a node by subdividing
the node into its more densely tessellated children. Thus, the num-
ber of triangles and the number of nodes are typically tied together
by a roughly constant number of triangles per node.

The method presented in this paper is free from these restrictions,
allowing the application to select both the desired amount of detail
in terms of error thresholds or maximum triangle count, as well as
the number of nodes used to render the object. While this allows
for more flexibility in the system, it also requires a new method
for adapting the mesh to the specified detail thresholds based on
the current viewing parameters. In the standard LOD formulations,
two common problems statements are: (1) “Given a maximum er-
ror threshold (object space, screen space, etc.), compute a mesh
which minimizes the number of triangles without exceeding the er-
ror threshold,” and (2) “Given a maximum triangle budget, compute
a mesh which minimizes the error without using more triangles than
the budget allows.” For each of these problems, our new degree of
freedom adds to the problem formulation: “...given a maximum
number of allowable nodes.”

Consider the first problem with our new amendment. A simple
top-down algorithm might work as follows. Start with the minimum
number of nodes (the root nodes) on the active cut, each at its lowest
level of detail. Refine each node to the first level with an error
beneath the error threshold. If there are more nodes available in
the budget, place the current nodes on a priority queue for splitting.
The split priority is set to the number of triangles that would be
saved if the node was split and each of its children adapted to the
error threshold. Iteratively remove a node from the queue, split it,
adapt its children and place them on the split queue until the node
budget is exhausted.

A more efficient, coherent algorithm for this problem is a vari-
ant of the well-known dual-queue algorithms [Duchaineau et al.
1997; Luebke and Erikson 1997]. Two queues, the split and merge
queues, hold every node that is currently on the cut. The split pri-
ority is computed as above. The merge priority is the number of
triangles that would be added as a result of merging siblings up to
their parent. We perform a set of merge, split and adapt operations
until no more benefit is to be gained.

Now consider the second problem statement. This one requires
the balancing of detail for individual nodes so that the best possi-
ble choice is made for the entire mesh. In the traditional hierarchy,
where refining and splitting a node are synonymous, as are coars-
ening and merging, a dual-queue approach can solve this using a
greedy heuristic.

156

In our case however, we need to control refining and coarsen-
ing resolutions as well as splitting and merging nodes. We pro-
pose a new quad-queue algorithm to perform this optimization.
The queues are organized as two dual-queue pairs: the split/merge
queues and the refine/coarsen queues.

Each of the nodes of the current cut appears on all four queues,
divided into two phases. In the first phase, as in the standard dual-
queue algorithm, we refine/coarsen the current nodes so that (a)
they are within the triangle budget, (b) no node can be refined with-
out going over the budget, and (c) the refine and coarsen queues are
balanced (i.e., they minimize error).

In the second phase we propose a set of splits and merges of
nodes, the order of which is determined using the merge and split
cost heuristics. We then split and merge the nodes until (a) the node
count is below the maximum allowable node count, and (b) the next
(least bad) merge will require more triangles then can be saved by
performing the next (best) split.

We then proceed back to the refine/coarsen process where we
adapt the new hierarchy node cut so that it fits within the user-
specified limits. At the end of each refine/coarsen iteration we store
the maximum geometric error in the cut, which is then used to eval-
uate the effectiveness of the split/merge iteration. If the new error
is lower then the error before the split/merge process, we know that
a better node layout has been selected, and we perform another it-
eration of the split/merge process to further improve the cut. If, on
the other hand, the geometric error has increased, we know that we
have made the node layout worse, and we roll back the last set of
split/merge operations and terminate the adapt process. Although
our current split/merge heuristic does not guarantee improvement
at every iteration, a more thorough optimization would be pro-
hibitively expensive as it might have to search the whole space of
possible split/merge and refine/coarsen operations to find the best
choice.

Given the final set of nodes and their associated geometric res-
olutions generated by the adaptation process, we also compute an
appropriate resolution for any additional attribute textures, such as
normal maps or color textures, using the projected screen-space size
of the nodes’ bounding volumes and a desired pixel-to-texel size ra-
tio. These textures are then placed on the request stack for loading
and management.

6.2 Data Management

Similar to many large rendering systems, our system maintains
least-recently-used caches of data in both video memory and main
memory, with non-resident data being fetched asynchronously in a
separate thread according to a priority queue.

However, our system has some unique capabilities in terms of
data redundancy and reuse. While a node awaits some particular
resolution of data for rendering, it may be temporarily rendered us-
ing any other resolution of the node itself or of one of its ancestors,
all of which cover its entire domain (and this has some associated
temporary effect on the triangle count and the visual error). This is
made possible by the use of the quad-tree structure, which allows
for the trivial mapping of a child node into its parent. Furthermore,
if the mesh has a complete representation in frame i, we are as-
sured of having a complete, usable representation for frame i + 1,
regardless of which data updates arrive on time.

The use of this redundant data is inexpensive storage-wise (on
disk, the data are stored in blocks with each resolution level only
represented once), and the least-recently-used cache replacement
policy ensures that textures are replaced in a timely fashion after
their replacements arrive. As an exception to the LRU policy, we
also find it convenient to lock the lowest resolution texture for the
level-zero nodes in memory to ensure there is always some fast-
rendering representation available for the entire model (this low-
resolution data occupies less then one tenth of one percent of GPU

Figure 3: Border stitching is performed when nodes of different
tessellations share a border. In this example the nodes are two LOD
levels apart, forcing vertices in the more densely tessellated node to
be collapsed in order to match the lower resolution node.

RAM for the 22 billion sample Earth data set).

6.3 Patch Rendering
Our patch-rendering approach pre-computes a set of uniform (u,v)-
grids, each a triangulated plane in 2D, to feed to the vertex process-
ing unit. Each grid is a power of two plus one resolution to match
the resolution of the geometry images containing the actual (x,y,z)-
coordinates. These grids are stored in video memory and are reused
for all rendered patches.

On receiving a (u,v)-grid vertex, the vertex processing unit looks
up the (x,y,z)-coordinates from the geometry image using a vertex
texture lookup, performs the necessary transformations, and sends
the results down the graphics pipeline. In the fragment unit the
color and normal maps can be applied to further enhance the vi-
sual quality of the resulting image. The geometry and attribute im-
age map resolutions are managed independently, allowing higher-
resolution color and normal data to be used where necessary, while
still retaining lower-resolution geometry data.

The use of regular grids of vertices allows us to perform some
very simple but effective optimizations. The most important of
the optimizations performed on the (u,v) grid is the organization of
mesh rendering into triangle strips of adjacent columns. Adjusting
the strip length to roughly half the vertex cache size of the hard-
ware minimizes vertex cache misses, achieving close to the optimal
condition of executing the vertex program only once per vertex (or
0.5 vertex program executions per triangle). A second important
optimization is the use of minimal per-vertex data sent to the GPU.
By using the (u,v) grids we can minimize the data to two floating
point values per vertex, achieving close to maximum performance
from the GPU.

The use of the 2D input data also allows us to perform additional
mesh operations on the GPU, such as mesh spherification for ter-
rains, which allow us to send height maps to the GPU and render
a spherical earth. Our method thus allows the data to be stored in
a more compact representation, requiring 1

6 the storage when using
unsigned short height maps.

Although the vertex texturing method provides a much cleaner
solution to rendering, we have also implemented a VBO version,
which uses the CPU to perform border matching and vertex arrays
for the renderer instead of vertex texture lookups. The VBO method
has the advantage of using the fastest rendering path in current gen-
eration GPUs, resulting in improved rendering throughput at the
cost of a somewhat higher CPU workload.

6.4 Border Stitching
The use of uniformly-tessellated 2D planes allows us to reconstruct
the original model without cracks even in the presence of different
LOD neighbors. To this end we duplicate one row and column in
each geometry image so that any two neighboring nodes share an
identical border for the same image resolution.

To stitch the border between adjacent nodes with different res-
olutions we calculate the texel selected by the lower-resolution
neighbor, and force the current vertex to select the same texel.
This guarantees that both vertices will pick the same sample from

157

Figure 4: The triangle density is represented by the color of each
node, ranging from blue for very low density to purple for highly-
tessellated nodes. Our system is capable of adaptively selecting the
resolution of each node, permitting large LOD differences between
adjacent nodes.

the geometry image, matching the higher-resolution to the lower-
resolution border and eliminating cracks as shown in Figure 3. Tra-
ditionally this process would be performed on the CPU because the
GPU cannot access the vertex coordinates of its neighbors. How-
ever, because the vertex coordinates are stored as geometry images
and sampled on the GPU, we can access any sample by changing
the texture coordinates of the lookup, allowing a node’s sampling
to match a lower resolution neighbor.

We see a more complex situation in Figure 4. In this example
from the Earth data set we see a very coarse flat area surrounded
by densely tessellated mountains, as well as two levels of hierar-
chy depth difference on a node border. Because we do not restrict
the hierarchy depth differences between neighboring nodes, a node
may have multiple neighbors along a single border edge. To handle
this general case we send an array containing the resolutions of the
neighboring nodes along all four node boundaries to the node be-
ing rendered. This enables the node to match the higher-resolution
segments of its border to its lower-resolution neighbor. This data is
constant per node and is sent to the GPU using constant registers,
leaving vertex data unaffected.

While this process changes the geometric error of the node, it
does not change the overall geometric error of the model. Although
the error is increased along the boundary of the higher-resolution
node, the maximum error in the scene remains unaffected since
the new error along the border cannot exceed the error level of the
lower-resolution neighbor.

However, the border stitching does impose one new restriction
on the selection of node resolutions: a node’s resolution may not be
so low that it could have more neighbors on a single edge than it
has boundary vertices for them to match.

7 Experimental Results
We have applied our algorithms to several terrain and mesh data
sets, including the USGS Earth (21.6 billion samples), USGS North
America (5.5 billion samples), Puget Sound (16k x 16k), Grand
Canyon (2k x 4k), Thai statue (10M polygons), and cuneiform
tablet (1M polygons).

7.1 Atlas Construction
The cuneiform tablet model contains 1M triangles. Running on a
AMD dual-Opteron 2.4GHz, the model took 16 seconds for gridify,
30 seconds for in-core clustering, 30 seconds for global clustering,
15 seconds for quadrangulation, 1 hour for parametrization, and 2
minutes to resample the 30 resulting charts at 512x512 samples per
chart (coordinates and normals).

The Thai statue model contains 10M triangles. Running on a
AMD dual-Opteron 2.4GHz, the model took 2 minutes to gridify,
5 minutes for in-core clustering, 2 minutes for global clustering,
3 minutes for quadrangulation, 6 hours for parametrization, and 5
minutes to resample the 138 resulting charts at 512x512 samples
per chart (coordinates and normals).

Model Samples Trees Size (MB) Time (min)
Earth-flat 21.6 B 70 17 120
Earth-sphere 21.6 B 70 17 718
N. America 5.5 B 15 3.5 29
Puget Sound 268 M 4 1 1.1
Thai Statue 130 M 140 32 1.2
Tablet 8 M 30 6.8 .05

Figure 5: Hierarchy creation information. Samples are scalars for
the height fields and 3D positions for the general models. Output
size refers to the hierarchy node data and not the actual sample data.
All of the quadtrees have a depth of 5.

0 8 16 24 32 40 48 56 64 72 80 88

25

50

75

100

125

150

Elapsed Time (s)

Earth Rendering (M Tris/s) Earth Loading (MB/s)
Thai Statue Rendering (M Tris/s)
Thai Statue VBO Rendering (M Tris/s)

Thai Statue Loading (MB/s)
Thai Statue VBO Loading (MB/s)

Figure 6: Rendering throughput over 2,000-frame paths, using a
budget of 4M triangles and 350 nodes. The rendering rate exceeds
50M triangles/s for the earth data set (with GPU spherification) and
100M triangles/s for the Thai statue model, even in the presence of
large data transfers to the GPU. The average frame rate is approx-
imately 15fps for the earth data set and 20fps for the Thai statute
model.

In practice, we achieved a nearly 40x speedup by performing
the parametrization stages on a 20-node Intel dual-Xeon 3.2GHz
cluster. Thus, the total wall-clock time for the cuneiform tablet was
roughly 4 minutes and the total time for the Thai statue was roughly
30 minutes.

7.2 Hierarchy Creation
The hierarchy creation stage of our method was performed on a
quad-core 2.66GHz Mac Pro system running OSX using 8 simulta-
neous threads using less than 500MB of memory. The models pro-
cessed are shown in Figure 5. For the spherical version of the Earth
model, the additional time was required to convert from rectilinear
coordinates to spherical coordinates for the purpose of bounding
sphere and error computations. Note that for the spherical earth,
we have chosen to minimize storage size by maintaining the data as
a height (radius) field and spherifying the data on the GPU.

7.3 Rendering
We have evaluated the rendering performance of our system as well
as its ability to adapt to various hardware configurations using the
same hierarchy. All of the tests were run on a system with dual
2.4GHz AMD Opteron CPUs and a NVIDIA Quadro 4500 with
512 MB VRAM.

Figure 6 shows the performance of the system while following a
path over the 22 Billion Earth data set. From the graphs we can see
that our method can reliably render at over 50M triangles/s even
when loading large amounts of data due to both the out of core

158

100 150 200 250 300 350 400 450
0.1

1

10
Ge

om
etr

ic
err

or
 (p

ixe
ls)

Nodes
100 200 300 400 500 600 700 8000

0.005

0.01

0.015

F
ra

m
e

ad
ap

t t
im

e
(s

)

Nodes

Figure 7: Effect of node count on screen-space error (left) and adapt
time (right). Both graphs use the triangle budget mode with a 2M
triangle budget to render the Earth data set.

loading and redundant data layout. Note that for the spherical earth
model, we have opted to store the model as a scalar (radius) field
and compute the 3D coordinates on the fly in the vertex unit. The
reduces storage and bandwidth requirements but has some signifi-
cant impact on throughput. For standard height fields or geometry
images, we regularly see throughput over 100M triangles/second
with the vertex texture lookups and border stitching, and up to 150
M triangles/s when using a VBO implementation of our method
(which does stitching on the CPU and no vertex texture lookups).

In Figure 7 we show the number of nodes versus the average
adapt time and the number of nodes versus the average screen-space
error in pixels for the Earth data set. Notice that there is a clear
trade-off between the CPU time and the number of nodes as well
as between the number of nodes and the error. Both of the exper-
iments were run with a triangle budget of 2M triangles. Given a
desired node (CPU) budget, our method allows an intelligent selec-
tion of nodes while maintaining either a maximum triangle count or
maximum error bound.

A similar trade-off is performed when adapting to an error
threshold, shown in Figure 8. Looking at just the solid lines at
any particular error threshold, we see that using more nodes signif-
icantly reduces the number of triangles required to meet that error
threshold. In practice, this means that increasing the number of
nodes to an appropriate level increases the frame rate of the sys-
tem (the adaptation stage is generally pipelined with the rendering
stage). Note, however, that there is also some system-specific trade-
off here due to the decreasing batch size of the rendering calls as we
increase the number of nodes.

We have compared our multi-grained approach to the fixed-
granularity methods used in previous systems by disabling our sys-
tem’s ability to refine and coarsen the nodes independently of the
split/merge process. This forces our system to split a node to refine
it, and to merge sibling nodes to a parent to coarsen them. The re-
sults for the adapt process, run in error threshold mode, are shown
in Figure 8. The solid lines indicate our system run in its intended
multi-grained fashion, with each line indicating a different node
count setting. The dashed lines indicate the emulation of the fixed-
granularity systems, with each line indicating a particular number
of triangles per node. Note that in typical fixed-granularity system,
each such granularity would require an entirely new hierarchy.

In general, we see that the availability of more nodes in the
multi-grained system even as the error threshold is increased en-
ables better adaptation, producing fewer triangles for a given er-
ror threshold than the fixed-granularity approach. As an example
scenario, consider that when the error threshold is increased, our
multi-grained system can coarsen individual patches as necessary
without being forced to merge siblings (which may often increase
the error prohibitively). Notice in the figure that at 1 pixel of er-
ror, the fixed-granularity approach with 8k triangles/node produces
2.6 times more triangles than our multi-grained approach with 400
nodes, and at 8 pixels of error, it produces 7 times more triangles.

1 2 3 4 5 6 7 8104

105

106

107

138 Nodes

Tr
ia

ng
le

 C
ou

nt

200 Nodes 300 Nodes 400 Nodes

Error (Pixels)

128K Triangles/Node 32K Triangles/Node 8K Triangles/Node

138 Nodes

138 Nodes

138 Nodes
138 Nodes

138 Nodes
138 Nodes

138 Nodes

138 Nodes

156 Nodes

156 Nodes
144 Nodes

144 Nodes

141 Nodes
141 Nodes

141 Nodes
141 Nodes

231 Nodes

165 Nodes

156 Nodes
150 Nodes

144 Nodes
141 Nodes

138 Nodes
138 Nodes

Figure 8: This graph compares our method, in solids, against fixed-
granularity LOD methods drawn using broken lines. The graph
shows the number of triangles required by each of the methods to
render the model at a given screen-space error as well as the number
of nodes required to render the model for the fixed resolution meth-
ods. As shown in the graph our method requires fewer triangles to
render the scene, especially when additional nodes are used.

Figure 9: Throttling the CPU and GPU to simulate different ma-
chine configurations. Left: Using a 2M triangle budget, we adjust
the node count to maintain a fixed adapt time in the presence of
the throttled CPU. Right: Using a fixed node budget, we adjust the
triangle budget to maintain a fixed rendering time. Thus the node
and triangle budgets may be used to adapt the overall system to the
particular CPU/GPU combination.

In the same figure, we see that our system even outperforms the
fixed-granularity approach when comparing particular adaptations
using the same number of nodes (and the fixed-granularity approach
in practice has little control over the number of nodes used). At 8-
pixels of error, the 8k triangles/node adaptation uses 138 nodes, but
produces 3.5 times more triangles than our multi-grained adaptation
with 138 nodes. Similarly, we see that the multi-grained adaptation
with 138 nodes produces the same number of triangles at 4 pixels of
error as that 8k triangles/node adaptation does at 8 pixels of error.
So the new approach produces an adaptation with half the error
using the same number of nodes and triangles.

To test the flexibility of our system we simulated varying ma-
chine configurations by throttling both the CPU and the GPU per-
formance of the computer. In the Figure 9 we throttle the 2.4GHz
AMD Opteron CPU to three different settings, 2.4GHz, 1.8GHz and
1.0GHz, by using available power-saving modes. The data shows
that it is possible to achieve a desired performance on a various
CPUs by adjusting the number of nodes parameter to the adapt rou-
tine.

Next we test the GPU load balancing capabilities of our system
by throttling the GPU to 470MHz, 200MHz and 100MHz using
GPU overclocking tools. By adjusting the triangle budget only we
can control the rendering rate of our system in order to adjust for
various levels of GPU performance. Our system as a whole is thus
capable of balancing the GPU workload independently of the CPU
workload, allowing it to take advantage of a larger number of nodes

159

while maintaining a steady frame rate.

8 Conclusions
We have presented a series of data structures and algorithms, as well
as a prototype system, that explore a number of ideas and trends
for high performance rendering on evolving graphics hardware.
Our approach incorporates ideas from seamless geometry atlas
parametrization, geometry image resampling, and quad-tree-based
hierarchical rendering to expand on the state-of-the-art in level of
detail systems. The resulting multi-grained, multi-hierarchy system
builds on the previous work by expanding the adaptation options for
every node, allowing them to not only split/merge, but also to re-
fine/coarsen. This added flexibility allows not only for better adapt
performance, reducing the triangle count for a given error thresh-
old, but also for the balancing of the CPU and GPU workloads. As
shown in our results, through adjusting the node and triangle bud-
gets the user can control the amount of work performed by the CPU
and the GPU, respectively. The flexibility of the system allows it to
be more adaptable to the hardware configuration of the host and to
reduce the triangle to error ratio by adaptively selecting node reso-
lutions. By adaptively selecting resolutions our system can produce
more detailed meshes using fewer triangles then previously possi-
ble on a fixed node budget.

Our system also uses the latest abilities of GPUs to take advan-
tage of their ever-increasing performance, and the increasing flex-
ibility of the vertex and fragment processors. The use of features
such as geometry images and vertex texturing provides an elegant
solution to the border stitching problem and allows our method to
be easily extended in the future.

Finally, a number of additional features common to high-
performance rendering systems could be incorporated with our
proof-of-concept implementation in the future to produce a system
that is both very flexible and has even better performance. These
include features such as accurate data pre-fetching, data compres-
sion, back-patch culling, geomorphing and occlusion culling. The
resulting system would be even more capable of fully harnessing
the power of the latest GPUs. In our opinion the proposed approach
represents a promising visualization technique due to its flexible
adapt algorithm, GPU-friendly data representation and easy exten-
sibility.

9 Acknowledgments
We would like to thank the USGS, Stanford University Graphics
Laboratory, and National Research Council of Canada for the mod-
els used in our experiments. This research was sponsored in part by
NSF Medium ITR IIS-0205586, a DOE Early Career Award, and
an NVIDIA Fellowship (the views expressed in this work are not
necessarily those of our sponsors).

References
ASIRVATHAM, A., AND HOPPE, H. 2005. Terrain rendering using GPU-

based geometry clipmaps. GPU Gems 2. ch. 2, 27–46.

BORGEAT, L., GODIN, G., BLAIS, F., MASSICOTTE, P., AND LAHANIER,
C. 2005. GoLD: interactive display of huge colored and textured models.
ACM Trans. Graph. 24, 3, 869–877.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO,
F., AND SCOPIGNO, R. 2005. Batched multi-triangulation. In IEEE
Visualization ’97, 27–35.

CLARK, J. H. 1976. Hierarchical geometric models for visible surface
algorithms. Commun. ACM 19, 10, 547–554.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER, M. C.,
ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997. Roaming ter-
rain: real-time optimally adapting meshes. In IEEE Visualization ’97,
81–88.

EL-SANA, J., AND CHIANG, Y.-J. 2000. External memory view-
dependent simplification. Comput. Graph. Forum 19, 3, 139–150.

ERIKSON, C., MANOCHA, D., AND BAXTER, W. V. 2001. HLODs for
faster display of large static and dynamic environments. In ACM Sympo-
sium on Interactive 3D Graphics, 111–120.

FLORIANI, L. D., MAGILLO, P., AND PUPPO, E. 1997. Building and
traversing a surface at variable resolution. In IEEE Visualization ’97,
103–110.

GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2004. Adaptive tetrapuzzles: Efficient out-of-core con-
struction and visualization of gigantic multiresolution polygonal models.
In SIGGRAPH 2004, 796–803.

GOOGLE, 2005. Google earth. http://earth.google.com.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry images. In
SIGGRAPH 2002, 355–361.

HOPPE, H. 1997. View-dependent refinement of progressive meshes. In
SIGGRAPH 97, 189–198.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In IEEE Visualization ’98, 35–42.

HWA, L. M., DUCHAINEAU, M. A., AND JOY, K. I. 2005. Real-time op-
timal adaptation for planetary geometry and texture: 4-8 tile hierarchies.
IEEE Trans. Vis. Comput. Graph 11, 4, 355–368.

JI, J., WU, E., LI, S., AND LIU, X. 2005. Dynamic LOD on GPU. In
Computer Graphics International 2005, 108–114.

LINDSTROM, P., AND PASICCO, V. 2001. Visualization of large terrains
made easy. In IEEE Visualization 2001, 363–370.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F., FAUST,
N., AND TURNER, G. A. 1996. Real-time, continuous level of detail
rendering of height fields. In SIGGRAPH 96, 109–118.

LINDSTROM, P. 2003. Out-of-core construction and visualization of mul-
tiresolution surfaces. In ACM Symposium on Interactive 3D Graphics,
93–102.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain render-
ing using nested regular grids. ACM Trans. Graph. 23, 3, 769–776.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simplification of
arbitrary polygonal environments. In SIGGRAPH 97, 199–208.

PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and remesh-
ing. ACM Transactions on Graphics 22, 3 (July), 340–349.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless texture
atlases. In ACM/Eurographics Symposium on Geometry Processing, 65–
74.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND HOPPE,
H. 2003. Multi-chart geometry images. In ACM/Eurographics Sympo-
sium on Geometry Processing, 146–155.

XIA, J. C., AND VARSHNEY, A. 1996. Dynamic view-dependent simplifi-
cation for polygonal models. In IEEE Visualization ’96, 327 – 334.

160

