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A Class of Iterative Signal Restoration Algorithms 
AGGELOS K. KATSAGGELOS, MEMBER, IEEE, AND SERAFIM N .  EFSTRATIADIS, STUDENT MEMBER, I w E  

Absfmct-In this paper, a class of iterative signal restoration algo- 
rithms i s  derived based on a representation theorem for the general- 
ized inverse of a matrix. These algorithms exhibit a first or higher or- 
der of convergence, and some of them consist of an on-line and an off- 
line computational part. The conditions for convergence, the rate of 
convergence of these algorithms, and the computational load required 
to achieve the same restoration result5 are derived. A new iterative 
algorithm i s  also presented which exhibits a higher rate of convergence 
than the standard quadratic algorithm with no extra computational 
load. These algorithms can be applied to the restoration of signals of 
any dimensionalitj. Iterative restoration algorithms that have ap- 
peared in the literature represent special cases of the class of algo- 
rithms described here. Therefore, the approach presented here unifies 
a large number of iterative restoration algorithms. Furthermore, ba\ed 
on the convergence properties of these algorithms, combined algo- 
rithms are proposed that incorporate apriori knowledge about the w- 
lution in the form of constraints and converge faster than the previ- 
ously used algorithms. 

I. INTRODUCTION 
HE recovery or restoration of a signal that has been T distorted is one of the most important problems in sig- 

rial processing applications [I] ,  [ 181. More specifically, 
the following degradation model is considered: 

41 = Dx, ( 1 )  

where the vectors y and x represent, respectively, lexi- 
cographically ordered blurred and original signals. The 
matrix D represents a linear deterministic distortion which 
may be space varying or space invariant. When y and x 
represent images, then the distortion may be due to mo- 
tion between the camera and the scene or due to atmo- 
spheric turbulence. The signal restoration problem is then 
to invert (1) or to find a signal as close as possible to the 
original one, subject to a suitable optimality criterion 
given y and D.  Equation ( I )  also represents the more gen- 
eral degradation model where an additive noise term is 
considered. In this case, the restoration problem takes 
again the form of solving (1 )  for x, where D is replaced 
by a square well-conditioned matrix and y by D'y, where 

denotes the transpose of a matrix or vector. This case 
will be separately studied in Section 111, since computa- 
tionally simpler algorithms can be used. 

Iterative algorithms are used in  our work in solving the 
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signal restoration problem. Iterative restoration algo- 
rithms have a number of advantages over direct or recur- 
sive restoration techniques, and they have been used ex- 
tensively in the literature [ 181. Most of these algorithms 
have a linear or first-order convergence rate. Singh et al.  
[ 191 derived an iterative restoration algorithm with a 
quadratic rate of convergence, when the matrix D in ( I )  
is invertible. Morris et ul. [ 14]-[ 161 and Lagendijk et ul. 
[13] generalized this algorithm for higher orders of con- 
vergence. In  their derivation, the matrix D in ( I )  was in- 
vertible. In 1141-[I61 it was further assumed that D rep- 
resents a convolution operator. 

In this paper, we extend the results in [ 131-[ 161 and 
[ 191 by showing that when D is singular, the higher order 
algorithms converge to the minimum norm solution of ( l ) ,  
provided that a solution exists. This is a very important 
result because for a large number of distortions of prac- 
tical interest (motion, out-of-focus), the matrix D is sin- 
gular. Furthermore, we derive iterative algorithms with 
linear and higher order convergence rates for the general 
case when D in ( 1 )  is a rectangular matrix. In this case, 
the limiting solution of these algorithms is the minimum 
norm least-squares (MNLS) solution of ( 1 ) .  The deriva- 
tion of these algorithms is based on a representation theo- 
rem for the generalized inverse D+ of the matrix D. Iter- 
ative restoration algorithms benefit a great deal from the 
use of constraints which incorporate properties of the so- 
lution into the restoration process. However, the direct 
use of constraints with the higher order algorithms may 
result in divergence or meaningless results. We propose 
techniques which allow us to effectively use constraints 
with a combination of linear and higher order iterative 
algorithms. 

The derivation of the linear and higher order algorithms 
obtaining the MNLS solution of ( 1 )  is presented in Sec- 
tion 11. Computationally simpler higher order algorithms 
solving for the minimum norm solution of ( I ) ,  when D is 
a square, positive semidefinite matrix, are presented in 
Section 111. Such a situation may result, for example, 
when a noise term is added to ( I ) .  Then. after regular- 
ization, the restoration problem is again the solution of a 
set of linear equations analogous to ( I ) ,  where D and 
are replaced by another matrix A and a vector 6, respec- 
tively. These algorithms extend the results reported in 
[13]-[I61 and 1191. In  Section IV, the algorithms are 
compared with respect to their computational load. The 
incorporation of constraints are discussed in Section V ,  
and a number of experimental results are presented in Sec- 
tion VI. Finally, conclusions are presented in Section VII. 
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11. M I N I M U M  NORM LEAST-SQUARES SOLUTION 
In this section we assume that the matrix D in ( I )  is an 

in x n matrix, where m I n.  That is, D E L ( R ” ,  R ” ’ ) ,  x 
E R” and y E R”’,  where L (  R ” ,  RJJ’ )  is the set of matrices 
that map R” into R”’, the n-dimensional and 
m-dimensional Euclidean spaces. respectively. Let 03 ( D )  
and X ( D )  denote, respectively, the range and the null 
space of D and let dim (S  ) denote the dimensionality of 
the subspace S [20]. If d i m ( ( R ( D ) )  = r ,  then since 
dim(03(DT)) = r,  weget t h a t d i m ( X ( D ) )  = n - rand 
dim(31.(DT)) = m - r. Equation (1 )  has at most one 
solution if and only if r = n ,  and we get no solution if y 
E 31. ( DT). The degradation model of ( I )  can be modified 
so that D is a square matrix ( i n  = n ) ,  by increasing the 
size of x ,  by adding zeros, or by reducing the size of y. 
Even in this case, however, for a large number of com- 
mon distortions (motion, out-of-focus), the distortion ma- 
trix is singular, that is, r < n.  Since in both cases (square 
and rectangular D )  it cannot be guaranteed that y E 03 ( D ) ,  
a least-squares (LS) solution is sought (the case when D 
is square and y E 03 ( D )  will be studied in Section 111). 
Such a solution minimizes the Euclidean norm 11 Dx - y ( 1 .  
The LS solution satisfies the normal equations 

DTD.x = D’y. ( 2 )  

The set of x’s that satisfy (2) forms a closed convex set 
which contains a unique vector of minimum norm [ 5 ] .  
Then the generalized inverse D+ E L ( R ” ’ ,  R ” )  is defined 
by D+y = x + ,  where x +  is the minimum norm least- 
squares (MNLS) solution of (1) .  A general theorem rep- 
resenting D +  as the limit of a sequence of matrices, pre- 
sented in Groetch [ 5 ] ,  is presented next without proof, 
due to its significance. 

A. Representation of D +  and x f  

Theorem I :  Suppose D E L ( R ” ,  RI”) and let D* = 
DTD/03(DT). If Q is an open set with a ( D * )  C Q C (0, 
w )  and { h ( z ) }  is a family of continuous real valued 
functions on Q with lirnkh ( z )  = z - ’  uniformly on a( D * ) ,  
then 

D+ = lim h ( D * )  DT, ( 3 )  
I, 

where the convergence is in the uniform topology for 
L(R”’ ,  R ” ) .  Furthermore, 

I ( h ( D * P ‘ -  D+I/ 5 S U P (  1 1  - z h ( z , l }  IID+II, 

( 4 )  
where the supremum is taken over all i E a ( D * ) .  0 

Some of the notation used above is as follows. The 
spectral radius of a square matrix T and the restriction of 
Tto a subspace S of R” are, respectively, denoted by a( T )  
and T I S  [20]. Clearly, the matrix D* is symmetric and 
positive definite. Therefore, its spectral radius is a subset 
of the set (0, w 1. 

Theorem 1 is very powerful because it  provides us with 
a general expression ( 3 )  for representing and iteratively 
computing the generalized inverse of a matrix. Further- 

more, it provides us with a measure of the rate of con- 
vergence (4). Therefore. it  unifies a large number of it- 
erative restoration techniques. Any family of functions 
{ h } with the properties stated by Theorem 1 can result 
in a new representation for D’. Clearly. some of these 
families of functions result in more attractive representa- 
tions, from a computational point of view. I t  is noted here 
that Theorem 1 holds not only for matrices but for any 
linear operator with a closed range [5J. 

In  signal restoration we are primarily interested in solv- 
ing for x + .  Expressions for .x+ instead of D +  are derived 
as follows. The convergence of the sequence 
{ h . ( D * )  D7 } to DT is in the uniform topology for L (  R”’, 
RI’),  which means that [5] 

iim ( I ~ ~ ( D * ) D ~  - D + I (  = 0. ( 5 )  
I 

The uniform convergence of { h (D* ) DT} to D f  implies 
strong convergence of { ( D * )  DT} to D’, which means 
that for each y E R”’ 

lim I / ~ ~ ( D * ) D ‘ \ .  - ~ + y l l  = 0. ( 6 )  
I 

Therefore, (3) and (4) are written, respectively, as [ 3 ] ,  
[ 101 

xi = l imh(D*)DT ( 7 )  
I 

and 

I I ~ ~ ( D * ) D ‘ ? .  - x + / l  5 sup( ( 1  - zh(z)l} . I / X + I I .  

( 8 )  
where the supremum is again over all i E a( 0”). There- 
fore, Theorem 1 can be restated with (7) and (8) replacing 
(3) and (4), respectively. In the following section, differ- 
ent iterative restoration algorithms will be derived, cor- 
responding to different choices of { h ( z )  } ,  by using (7) 
and (8).  

B.  A Linear Algorithtn 
Consider the sequence of functions { h 

. h ( z )  = P > 0 

h(z) =h,(z) ( 1  - :AI(: 

I 

I = o  

z )  1 defined by 

It is shown [3], (51 that I i m k d m h ( z )  = z-’ uniformly on 
compact subsets of the set 

i ; : o  < : < p). 2 ( I O )  Q 2 , =  {z:11 - p ; I  < I }  = 

According to Theorem 1 and (9), by setting xI = 
h (D* ) D‘?,, we get the iteration 

xo = PDTy 

XI + I = .YI + ODT( - D.rk) 

= ( I  - /3DTD).~, + PDTY, ( 1 1 )  



7 x 0  I F ~ E  m A N s A c - r i o N s  ON ACOUSTICS. SPEECH. A N I )  S I G N A L  PROCFSSING. v o ~  j x .  NO 5. MAY IWO 

which converges to x t  for 

0 < p < 2 . I /DI(-2.  ( 1 2 )  
Iteration ( 1  1 )  also results from a successive approxima- 
tions approach to the solution of the normal equations (2). 
It has been studied and used extensively for signal resto- 
ration (71, [ 181. According to (8), the rate of convergence 
of iteration ( I  1 )  is linear and it is characterized by the 
re la t ion 

where [ 5 ]  

c = max { ( 1  - 

( 14) 
An equivalent way of describing the linear rate of con- 
vergence of iteration ( 1  1)  is with the use of the residual 
error at step k of iteration (9) [ 3 ] .  It is defined as 

r, = 1 - & ( z )  (15) 

and it represents the residual error associated with each 
eigenvalue of D*, since z E o ( D * ) .  Then, according to 
iteration (9), 

r ,+ I = ror,. (16)  

Equation (16) represents a straight line on the r, r, + I- 

plane. 

C. Higher Order Algorithms 

tegerp ? 2 
Consider the sequence of functions { h ( z )  } for an in- 

fo(z)  = P > 0, 

The sequence defined by (17) converges uniformly to z - '  
on compact subsets of (10) [3], [5]. Application of 
Theorem 1 results in the algorithm [ 3 ] ,  [ 5 ] ,  [8]-[10] 

Do = /3DTD, x g  = PDTy, (18a) 
p - I 

a, = ' c  ( I  - D,)' ,  
1 = 0  

DL+l = CPLDL, . ~ i ( + l  = @LXL. (18c) 

An advantage of iteration (18) is that the matrix sequence 
{ CP, } or { D, } can be computed in advance or off--line, 
although for a general D this may result in excessive stor- 
age. The solution sequence { x, 1 is then computed on-line 
after the distorted data y are available. As observed from 
(18), the limit of Dk is the projection onto the row space 
of D .  This projection is equal to the identity matrix when 
D is invertible. That is, the distortion matrix is also up- 
dated. This means that if xi( is interpreted as the observed 
distorted signal at each iteration, then the distortion op- 

erator, which maps the original signal into x k ,  is ap- 
proaching the identity operator (if the inverse exists) as 
the iteration number increases. 

Algorithm ( 1  8) exhibits p th order of convergence. That 
is, according to relation (8) [3], 161, 

where the convergence factor c is given by (14). Equiv- 
alently, it is easily shown that [ 3 ]  

r , ,  I  = r f ,  

where r, is defined by (15). Equation (20) represents a 
pth-order curve on the r, r, + ,-plane. Certain of these 
curves for p = 2,  3 ,  4, 9, 20 are shown in Fig. 1 .  The 
curve representing the rate of convergence of the linear 
algorithm (16) is also shown. Clearly, as p increases, the 
residual error for most of its values tends to go to zero in 
one iteration. Notice that the values - 1 and 1 are ex- 
cluded from the range of values that r, takes. 

D. A New Iterutive Algorithm 

Let us regard z-I as the root of the function f(u) = 
( U - '  - z ) ~ ,  where 17 > 0. If the Newton-Raphson method 
is used in approximating this root, then the sequence { U ,  } 
is generated according to [3] 

for a suitable U , .  Suppose that for /3 > 0, a sequence of 
functions { h ( z )  } is defined by 

fok) = P 

The convergence and the rate of convergence of this al- 
gorithm can be described by considering r, defined by 
(15). That is, i t  is found in a straightforward way that 

Note that for 17 = I ,  this algorithm becomes the quadratic 
algorithm ( p  = 2 )  of (17). The curves described by ( 2 3 )  
for different values of 17 are shown in Fig. 2.  The lines 
r, + I = r, and r, + I = - r , ,  also shown in this figure, are 
dividing the space into the regions I and 11, defined, re- 
spectively, by I r, + I I < 1 r, I and 1 r, + I  I L I r, [ .  Clearly, 
if part of the curve represented by (23) for a certain 17 lies 
in region I, and if 1 r, I < I ,  iteration (22) converges; 
otherwise, it may not converge. For example, for 17 > 1 
and I r, 1 < I ,  iteration (22) converges to z - '  on compact 
subsets of flo, although the convergence rate of the algo- 
rithm may be slower than that of the quadratic. 

On the other hand, for 0.5 < 17 < I ,  the part of the 
curve (23) for which r, 5 -17 lies in the region 11. There- 
fore, we need to restrict the residuals to satisfy rk > -17, 



KATSAGGELOS AND EFSTRATIADIS. ITERATIVE SIGNAL RESTORATION ALGORITHMS 78 I 

1 

.- 
x 
' 0  
* 

-1 
-1 0 1 

rk -axis 

Fig. 1 ,  Representation of the residual error of (16) and (20). respectively. 
for various values of the o r d e r p .  
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Fig. 2 .  Representation of the residual error of (23). for various values of 
0. 

or r, I 0. One way to accomplish this is by using 17 = 1 
in evaluating r l  ( k  = 0)  and then changing 17 to any value 
such that 0.5 < 17 < 1. The rate of convergence of iter- 
ation (22) is pictorially represented by the slope of the 
curves shown in Fig. 2.  For example, for rk I 0.2, iter- 
ation (22) converges faster with 17 = 0.8 than with 17 = 
1.0. With the conditions on 7 imposed according to Fig. 
2 in mind, application of Theorem 1 results in the itera- 
tion [3] 

Do = pDTD, xo = pDTy, ( 24a ) 

( 24b ) 

( 24c ) 

1 +, = I + - ( I  - D,) ,  
17 

Dk+ I = +,Dp, Xk+ I = +,x,, 

where v = 1 fork = 0 and 0.5 < 17 < 1 fork 2 1 .  I n  
general, the rate of convergence of iteration (24) depends 
on the distribution of the eigenvalues of the matrix D* 
defined by Theorem I .  

111. MINIMUM NORM SOLUTION 
In this section we consider the solution of 

Ax = b, (25)  

where A is a square positive semidefinite matrix and b E 

& ( A ) .  This is a case of special interest. Equation (25) 
may be the degradation model of ( l ) ,  when, for example, 
D = A represents the degradation due to atmospheric tur- 
bulence. Equation (25) may also result from the regular- 
ization of the ill-posed signal restoration problem. More 
specifically, the following degradation model is consid- 
ered. 

1' = Dx + w, 
where y and x represent, respectively, the lexicographi- 
cally ordered distorted and original signals, and w denotes 
the additive noise. According to a regularization approach 
presented in [7] and [ I  11, the solution of (26) is replaced 
by the solution of the well-conditioned system of equa- 
tions 

(26) 

(DTD + cyCTC)x = DTq. (27)  
The matrix C represents a high-pass filter and its role is 
to restrict the energy of the restored signal at high fre- 
quencies, due primarily to the amplified noise. The reg- 
ularization parameter cy is a function of the signal-to-noise 
ratio [7]. Therefore, the presence of additive noise in the 
degradation model does not alter the form of the iterative 
algorithms presented in Section 11, since (1)  is now re- 
placed by ( 2 5 ) .  

Clearly, (25) can be solved by using any of the algo- 
rithms presented in Section 11. A key difference, however, 
between (1)  and (25) is that although matrix D is in gen- 
eral a rectangular matrix, matrix A is always square, pos- 
itive definite, or positive semidefinite. Therefore, (25) 
might have a solution, which means that b E & ( A ) .  As a 
matter of fact, the constraint C can be designed in such a 
way that b E & ( A )  [7]. In this case, the minimum norm 
solution can be found with fewer computations than those 
required by the least-squares approach, as is shown next. 

An iteration due to Bialy [2] with linear rate of conver- 
gence, suitable for finding the solution of ( 2 5 ) ,  is pre- 
sented by the following theorem. 

Theorem 2: Let A : R" --t R" be a positive semidefinite 
matrix. F o r b  E R", xo E R" consider the iterative process 

X k + l  = Xk + P(b  - Ax, ! ) ,  (28) 

where 0 < 0 < 2 - IIAII-'. Then, the sequence { x k ,  k 
I 0} converges to x* = i + P,,,, { xo}, where i is the 
minimum norm solution of Ax = b and P,,,, { xo} is the 
projection of xo onto the null space of A ,  if and only if b 

We can think of iterations ( 1  I )  and (28) as forming a 
E & ( A ) .  U 



pair, since they both have a linear rate of convergence. 
Iteration ( I  1) successively approximates the solution to 
the normal equations (2), while iteration (28) successively 
approximates the solution to (25). In extending the above- 
mentioned correspondence between the linear algorithms 
( I  1)  and (28) to the higher order algorithms, we present 
the following theorem [ 3 ] ,  IS]. 

Theorem 3: Let A : R" -+ R" be a positive semidefinite 
matrix. For a given integer p L 2 and p > 0, consider 
the iterative process 

A. = PAT, x o  = oh, ( 2 9 4  

P -  I 

Ah+ I = @kAk3 X k +  I = @ L - ~ L ?  (29c) 

where 0 < P < 2 . 11 A 1I-I. Then the sequence { q, k 2 
0 )  converges to x* = i. where i is the minimum norm 

U 
The proof of Theorem 3 is presented in the Appendix. 

Algorithm (29) with p = 2 was proposed by Singh er al. 
[ 191 for the case that I /  I - A 11 < 1 ,  and by Morris et al .  
[ 141 for the case that A is positive definite and represents 
a linear space invariant system (convolution case). Al- 
gorithm ( 2 9 )  for any p 2 2 was proposed by Morris et 
al. [14], 11.51 and by Lagendijk et c i l .  [13] for the case 
that A is positive definite. Therefore, Theorem 3 extends 
the previously reported results. 

solution of Ru = h ,  if and only if b E 63 ( A ) .  

Iv. COMPARISON BASED ON T H E  COMPUTATIONAL 
LOAD 

The question we address in this section is the follow- 
ing. For a specific restoration problem, which of the it- 
erative algorithms presented in Sections I1 (B, C,  and D) 
and 111 should one use? We answer this question by con- 
sidering the amount of computation required by each al- 
gorithm in obtaining the same solution point or in satis- 
fying the same error criterion. 

Clearly, algorithms (28) and (29), if applicable, should 
be used, since they require fewer computations than their 
counterparts, iterations ( 1  1) and ( 1  8 ) ,  respectively. Ad- 
ditionally, iteration (24) should be used over iteration (1  8) 
for p = 2 ,  if q is chosen according to the discussion in 
Section 11-D, since the former requires the same number 
of computations as the latter, with the exception of an 
additional multiplication by the scalar 1 /q. Therefore, in 
the following, the algorithms of Section 11-B and C will 
be compared. The same comparison holds true for the al- 
gorithms of Section 111. 

Iterative algorithms give the exact solution as k + CO, 

but in  practice the iterative process is terminated after a 
finite number of iterations. Since the distortion operator 
is known, c in (14) is known, therefore, the number of 
iterations required by the algorithms to reach an approx- 
imate solution can be computed. More specifically, let us 
denote by k ,  and k,, the iteration steps of the first and p th- 
order algorithms, respectively. Let us also suppose that 

m,] iterations of the p th-order algorithm are run, that is, 
k,, = 1. * . ' , m,). Then. according to ( 1  3) and ( 1  9), the 
k,, th  iteration step of algorithm ( 18) is equivalent to N (  k,, ) 
iterations of the linear algorithm, where 

N (  k,, ) = p k ~ z  - pk/' - I ,  ( 3 0 )  

That is, had the k,, th iteration step of algorithm ( 1  8) been 
replaced by N ( k , , )  iteration steps of algorithm ( I  l ) ,  the 
restoration results would have been the same. Now, the 
total number of iteration steps of algorithm ( I  1 )  denoted 
by m , ,  which are equivalent to m,, iteration steps of al- 
gorithm ( I  8), are given by the expression 

According to (31). due to the exponential relation be- 
tween m l  and m,,, a tremendous number of iterations may 
be required by the linear algorithm in obtaining the same 
result with a higher order algorithm. For example, if p = 
5 and ins = 10, then ml = 9 765 624. However, the re- 
lation between the computational load required by the lin- 
ear and p th-order algorithm in running, respectively, m I 
and m,, iterations, is not exponential, as explained below. 

In the general case, let us assume that matrix D has 
dimensions tn X n ;  then D* is an n X n square matrix. 
Thus, the computational load for the linear algorithm after 
m l  iterations is MI = mn' + ( m l  + 1 ) m n  multiplies and 
A ,  = n'(m - 1 )  + ( m ,  + 1 )mn additions, with a total 
of Cl = n'( 2m - 1 ) + 2 ( m, + 1 )mn operations. On the 
other hand, m,, iterations of the pth-order algorithm re- 
quire M,, = ntn + m,, [nm + ( p  - 1 )n'm] multiplies and 
A,, = n ( m  - I )  + m , , [ n ( m  - 17) + ( p  - I)n'm] ad- 
ditions, with a total of C,, = n ( 2 m  - 1 )  + m,[n(2m - 
n )  + 2 ( p  - I)n'm] operations. The efficiency of the 
higher order algorithms over the linear depends on the 
order chosen, the dimensions m and n of the matrix D ,  
and the number of iterations required. Table I shows the 
smallest number of iterations which the quadratic algo- 
rithm ( p  = 2 )  must run in order to be computationally 
more efficient than the linear algorithm, as a function of 
the dimensions of the matrix D.  In  this case, matrix D is 
considered to be square ( m  = n )  and multiplies and ad- 
ditions are assumed to require the same amount of com- 
putation. According to Table I ,  although the required 
number of computations per iteration is greater for the 
higher order algorithms, the overall computational load is 
indeed less than that required by the linear algorithm, after 
a small number of iterations. The latter is due to the fact 
that the error for a given p decreases exponentially with 
a factor p ,  whereas the number of computations increases 
linearly with the same factor. 

The computational savings with the use of the higher 
order algorithms increases when the distortion matrix D 
has a special form. For example, consider the common 
case when D is circulant. Then the algorithms are imple- 
mented using the Discrete Fourier Transform (DFT). For 
the linear algorithm, the number of computations after in, 
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I 
iterations is MI = ( m ,  + 2 )  N F  complex multiplies and 
A ,  = ( m ,  + 1 ) N F  complex additions, with a total of Cl 
= ( 2ml  + 3 )  NF complex operations, where N F  is the ex- 
tent of the DFT. For the p th-order algorithm, the number 
of computations after in,, iterations is Mp = (m,p + 1 ) N ,  
complex multiplies and A,, = m,,( p - 1 ) N F  complex ad- 
ditions, with a total of C,, = [ m,, ( 2 p  - 1 ) + 1 ] N F  com- 
plex operations. Clearly, since Cl and C,, depend linearly 
on m,  and mp, respectively, while the relation between m ,  
and mp is exponential, according to ( 3 1 ) ,  C,, decreases 
relatively to C , ,  as the order p and iteration number m,, 
increase. For example, consider the case when p = 2 and 
m2 = 8; then C2 = 25NF. According to ( 3 1 ) ,  the equiv- 
alent number of iterations for the linear algorithm is m ,  
= 255 and C ,  = 513NF. I f p  = 3 and m3 = 8, then C3 = 
41NF. In this case, the linear algorithm requires m ,  = 

6560 and C ,  = 13 123NF complex operations. 
The analysis of the required computational load can be 

carried out from a different point of view, if we assume 
that an error threshold E is determined in advance in ter- 
minating the iteration. Then, we are interested in finding 
the smallest ml or m,,, and of course that choice of the 
order p which minimizes the total number of computa- 
tions. By using ( 1 3 ) ,  m ,  is determined by ml = [log 
(E/c)/log ( c ) 1  , where r.1 is the smallest integer 
which is greater than or equal to x. For the higher order 
algorithms, m,, is given by 

and the optimum order pop[ minimizes C,,/NF. Two ex- 
amples with c = 0 . 9 ,  are given in Table 11. In the first 
example, E = IO-'andp, ,,,, = 3 ,  m3 = 4 ,  and C, = 21NF. 
In the second example, E = I O p 6  and p ,,,,, = 2 ,  mz = 8, 
and C2 = 25NF. Note that in the last example, the linear 
algorithm would require m ,  = 131 iterations and C ,  = 
265NF complex operations in order to meet the same error 
criterion. 

In conclusion, the computational load required by the 
p th-order algorithm is indeed smaller when compared to 
the computational load required by the linear algorithm. 
This statement is further amplified if the order p is a com- 

posite number. Then arithmetic computations are reduced 
dramatically, due to the decomposition of the pth-order 
algorithm into lower order algorithms, as was discussed 
by Morris et al.  [ 161. 

V. COMBINED ALGORITHMS 
An attractive feature of the linear iterative algorithms 

of ( 1  1) and (28)  is the possibility of incorporating prior 
knowledge about the solution into the restoration process, 
in the form of constraints [ 181. Among the different con- 
straints, the nonlinear positivity constraint has been shown 
to be very powerful and useful [ 181. However, according 
to our experimental evidence, when the positivity con- 
straint is used with the higher order algorithms, it gener- 
ally leads to erroneous results or causes divergence. The 
qualitative explanation we offer at this point is that this 
behavior is due to the decoupling of the computation of 
D,! from the computation of x,! in ( 1 8 ) ,  ( 2 4 ) ,  and (29) .  
That is, there is no adjustment mechanism in the higher 
order algorithm as with the linear algorithm via the error 
term ( y - Dx,!) in ( 1  1) or the error term ( b  - Ax,!) in 
(28). Therefore, the development of constrained higher 
order algorithms is an open research topic. A first step 
toward this direction is an iterative algorithm which makes 
use of both the linear and the p th-order algorithms along 
with the application of constraints, as discussed next for 
the algorithm in Section I1 [ 3 ] ,  [ I O ] .  

Let us denote by k ,  and k,, the iteration numbers of the 
first and pth order algorithms, respectively. According to 
(30)  and ( 3 1 ) ,  a combination of these algorithms can pro- 
duce the same restoration results as each algorithm alone. 
More specifically, given a positive number E ,  the required 
total number of iterations m ,  and m,, for algorithms ( I  I )  
and ( 1 8 ) ,  respectively, are determined as discussed in 
Section IV. If m,, is even(odd), then the pth order algo- 
rithm updates the solution only at its odd (even) iteration 
steps except at the last one, while its even(odd) iteration 
steps are replaced by N (  k,,) equivalent iterations of al- 
gorithm ( 1 3 ) .  (The opposite occurs for tn,) odd.) The last 
iteration of the pth order algorithm is replaced by K = m ,  
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- p""'-' iterations of algorithm (13). For example, if m,, 
is even, then fork,, = I ,  3 ,  . . . , m,, - 1 .  we have k ,  = 
0. while for k,, = 2, 4, . . . , in,, - 2, we have k ,  = I ,  
2, * , 
K. In general, if we denote by k the iteration number of 
the combined algorithm, then 

, N(k,,),andfork,, = tn,,, wehavek, = 1,2, * * 

. mod ( I  * m/,, 2 )  + k, ,  ( 3 3 )  

where mod ( i ,  2 )  represents the modulo operation. When 
the combined algorithm is used, the proper deterministic 
constraint(s) can be imposed whenever algorithm ( 1  I )  is 
applied. Note that, since after the incorporation of con- 
straints (30) does not hold as is, the range of k ,  can be 
smaller than N (  k , , ) .  

Adaptive regularized iterative image restoration algo- 
rithms have also appeared in the literature 161, [ 1 I ] ,  based 
on iterations ( I  1) and (28). We have proposed a combined 
adaptive iterative algorithm based on iterations ( 1  8), (24), 
and (29) [4]. The same idea is used as the one described 
above. That is, one iteration of the pth-order algorithm 
(18), for example, is combined with N(k,,) iterations (30) 
of the linear adaptive algorithm, in forming a combined 
adaptive iteration step. 

VI. EXPERIMENTAL RESULTS 
Certain experimental results which demonstrate some 

of the basic ideas of the previous sections are described 
in this section. A synthetic signal of length 64 samples 
consisting of two impulses, x ( n )  = 6 ( n  - 30) + 6 ( n  - 
35), is used in our experiments. The simulated distortion 
is due to motion over 11 samples. The impulse response 
of such a distorting system is a rectangle, resulting in a 
singular matrix D. The normalized residual error [left- 
hand side of conditions (13) and (19)] is shown in Fig. 3 ,  
resulting respectively from the application of iterations 
(1 1) and (18) for different values of p. In our simulations, 
the value of x+ was substituted by the available signal x,,,. 
The normalized error is shown again in Fig. 4 with the 
application of the positivity constraint. The combined al- 
gorithm described in Section V for m,, even is imple- 
mented in this case for the higher order algorithms. It is 
observed in this case that the smaller the parameter p, the 
higher the convergence rate. This is due to the fact that 
the smaller the parameter p ,  the more often the higher 
order algorithm is applied. Due to this observation, the 
linear algorithms combined with the algorithm proposed 
in Section 11-D is not shown in Fig. 4, since its perfor- 
mance is very similar with the performance of the quad- 
ratic algorithm. 

Finally, the algorithm with quadratic convergence is 
compared to the algorithm proposed in Section 11-D. The 
distortion is the same as before, while an image line is 
used as a test signal. Thc normalized error is shown in 
Fig. 5 .  The faster convergence of the new algorithm over 
the quadratic algorithm is obtained with no extra compu- 

1 

iteration number 
I 

Fig. 3. Normalized residual error versus number ot iteration lor algo- 
rithms ( 1  1 )  and (18 ) .  for various values o tp .  

- 3 - .  './ '/ I 
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Fig. 4.  Normalized residual error versus iteration number for the linear 
and combined algorithms o f  Section V.  tor various values o t p .  with the 
incorporation of the positivity conbtraint. 

-E 0 2 4 6 8 1 0 ~ 2 1 4 1 6 1 8 2 0 2 2 2 ~ 2 ~ 2 ~ 3 ~ 3 2 3 ~ 3 ~ ~ 8 ~  

iceration number 
I 

Fig. 5 .  Normalized residual error versus iteration number for algorithm 
(24) tor various values ot q ( q = I  . O  corresponds to  the quadratic al- 

tational load. gorithm ) 
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VII. DISCUSSION A N D  CONCLUSIONS 
A number of iterative signal restoration algorithms have 

been derived based on a representation theorem for the 
generalized inverse of a matrix. Some of these algorithms 
have appeared in the literature and some are new. An al- 
gorithm relating to the method of stochastic approxima- 
tions can be also derived based on Theorem 1 131, [ 5 ] ,  
[ 121. Therefore, the approach followed here unifies the 
derivation of a large number of iterative restoration al- 
gorithms. These algorithms are applicable to the general 
case when additive noise is considered in  the distortion 
model. The restoration approach is the same since the so- 
lution of (1)  is replaced by the solution of (25). According 
to the analysis of Section IV, the application of the higher 
order algorithms is more advantageous due to the com- 
putational savings. In addition, due to the fact that they 
require a smaller number of iterations to converge, trun- 
cation or roundoff errors may be less pronounced. 

One of the attractive properties of the linear restoration 
algorithms is the possibility of incorporating constraints 
in the iteration, which express c( priori knowledge about 
the solution. Although the straightforward incorporation 
of constraints in  the higher order algorithms results in un- 
desirable results, we have proposed an algorithm which 
combines the constrained linear and the p th-order itera- 
tions. This combined algorithm converges faster than the 
constrained linear algorithm and with less overall com- 
putational load. 

The algorithms presented can be used for the restora- 
tion of signals of any dimensionality as well as for the 
solution of any type of inverse problem which accepts the 
formulation of (1 )  or (25). The application of the algo- 
rithms to band-limited signal extrapolation is currently 
under investigation. Since the approach presented here in 
deriving iterative restoration algorithms is general, the use 
of other families of functionsh ( z )  which satisfy Theorem 
1, and may lead to useful iterative restoration algorithms, 
is also currently under investigation. 

APPENDIX 
PROOF OF THEOREM 3 

Denote by A,, i = 1 ,  . , n the eigenvalues of A .  
Since A is positive semidefinite, A, > 0 for i = 1 ,  * . . , 
rand  A, = O f o r i  = r + 1 ,  - * * , n ,  where r is the rank 
of the matrix. Since A is symmetric, it has a complete set 
of orthonormal eigenvectors u I ,  . . * , U,,, where ( U , ,  U / )  

= 6,. That is, A can be written as 

If we define 

T = ( I  - P A )  = U ( I  - P A ) U T ,  (A-2) 

and Tk = I - A k ,  then the iterative algorithm (29) can be 
written as 

Solving for x L ,  we obtain the following formula: 
cP-1 \ 

or by using (A-2). 
pk - I 

xL = c U ( I  - PA)IUTbb. ( A-5 1 
I = o  

Since A is symmetric, R” = X ( A )  o C R ( A ~ )  = x ( A ~ )  
0 R ( A ) .  The ( n  - Y )  eigenvectors that correspond to the 
zero eigenvalues of A span 32 ( A  ) since 

Au, = A,u, = 0, or U, E N ( A )  

f o r i = r +  l;..  , n  

and ( u l ,  U , )  = 6, 
for i , j  E ( r  + 1, n ) .  

Then @ ( A )  = @ ( A T )  = s p a n l u , ,  
be written as 

* , U , }  and bcan  

b = Uc or UTb = c,  (‘4-6) 

where c = [ c l ,  
tor. From (A-5) and (A-6) we get 

* , cI,lT is the coefficient column vec 

/’A - I 

XL = U ( I  - PA)’c 
, = O  

Since A is positive semidefinite, 0 < A,,, I ) I  A 1 1 .  In 
fact, A,,,, = IIA I)?. It is assumed that 

or 0 < P . ) ) A I )  < 2 o < PA,,,, < 2 

or I 1 - PA”,,, 1 < 1’ (A-8) 

(A-9 1 
Therefore, since A, > 0 for i = 1 ,  * * . , r  

1 1  - P A , (  < 1 
and 

( 1  - PA,)”cL) + 0 fork -+ 03, (A-10) 

where U is a positive, strictly increasing function of k such 
that U( 1)  I 1 .  Now, if b E @ ( A )  

C r + I  = * * * = c,, = 0. (A-11) 

Finally, from (A-7) we get 
I 

X L  = C c,A,’ [ 1 - ( 1  - Ph,)”i]u, (A-12) 
J =  I 

and fork + 03, due to (A-lo), 
I 

i = x, = C C/A,-lU/, (A-13) 
,= I  
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where is the minimum n o m  solution, since Af = b and 1161 -. "Fast reconstruction of linearly distorted signals." / € € E  Trcni.\. 
Acousr.. S p e d i .  S i C y n d  P r o c ~ e . ~ i r i , y .  vol. 36. pp. 1017-1025. July 
1988. 

ui7d Science. 2nd ed. 

the infinite set of solutions is equal to x = i + .i, where 

get 
E 32 ( A  ). Now if b e ( A  1 9  from (A-7) and (A-lO), we [ 171 A. W. Naylor and G.  R .  Sell. Lineur Operuror Theory i r i  Eiigirirrriri,y 

1181 R. W. Schafer. R. M .  Mersereau. and M.  A .  Richards. "Constrained 
New York: Springer-Verlag, 1982. 

iterative restoration algorithms," Proc.. IEEE.  vol. 60. pp. 432-450. 
Apr. 1981. 

1191 S .  Singh. S .  N. Tandon. and H .  M.  Gupta. "An iterative restoration 
technique." SigriuI Processitig 11. pp. 1 - 1  I. 1986. 

1201 G.  Strang, Lirieur Aigrbru wid Irs Applicurioris, 2nd ed .  
Academic. 1980. 

( A -  14) New York: 

and fork -+ 00,  xk 4 03 since at least one of the c i ,  where 
i = r + 1 ,  . . . , n ,  is different from zero. Q.E.D.  
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