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Abstract

Multivariate gait data have traditionally been challenging to analyze. Part 1 of this review explored applications of fuzzy,
multivariate statistical and fractal methods to gait data analysis. Part 2 extends this critical review to the applications of artificial
neural networks and wavelets to gait data analysis. The review concludes with a practical guide to the selection of alternative gait
data analysis methods. Neural networks are found to be the most prevalent non-traditional methodology for gait data analysis
in the last 10 years. Interpretation of multiple gait signal interactions and quantitative comparisons of gait waveforms are
identified as important data analysis topics in need of further research. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is the second of a two-part review of
emergent data analysis techniques applied to gait data.
The analysis of quantitative gait data has traditionally
been a difficult problem. Due to a handful of persistent
challenges, such as high-dimensionality, temporal de-
pendence and curve correlations [1], numerous alterna-
tive data analysis techniques have been recently
investigated. In Part 1 of this review [1], fuzzy, multi-
variate statistical and fractal methods were introduced
and critiqued in terms of gait data analysis. While
statistical methods are well understood and most widely
applied among gait researchers, fuzzy and fractal ap-
proaches are not to be dismissed. The present paper
expands the review by surveying applications of artifi-
cial neural networks and wavelets (Fig. 1) as a means to

Abbreviations: FA, Factor analysis; FD, Fractal dynamics; FC,
Fuzzy clustering; MCA, Multiple correspondence analysis; NN, Neu-
ral networks; PCA, Principal component analysis; WT, Wavelet
transforms.
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E-mail address: ttkchau@ieee.org (T. Chau).

analyze gait data. Both artificial neural networks and
wavelets have played dominant roles in signal and
image processing applications in the engineering world
(see for example, [2—35]). Their introduction to gait data
evaluation, although a contemporary event, has gener-
ated enormous interest in the biomechanics community,
as evidenced by the volume of publications reviewed
herein.

As in Part 1, the review of each method adheres to
the following format. A conceptual overview of each
methodology will be presented. Partial mathematical
formulations will be included only in the simplest cases
while references for further exploration will be pro-
vided. The discussion then proceeds to summarize re-
cent applications of each method to gait data analysis,
closing with a list of perceived advantages and practical
issues.

At the conclusion of this review, I will revisit the
challenges identified at the beginning of Part 1 [1] and
through a series of tables, compare the extent to which
each challenge has been overcome by each of the dis-
cussed methods. Brief mention will be made of other
techniques which may potentially enhance the analysis
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of gait data. All mentioned and reviewed techniques are
organized according to the research or clinical ques-
tions that they suitably address. This summary can
serve as a quick guide to gait interpretation teams
looking to apply alternative data analysis methods.

2. Neural network (NN) applications in gait analysis

2.1. Conceptual overview

The body of literature on artificial neural networks
(ANN) is intractably vast. Here, only some very general
comments will be made. One specific type of neural
network, the multilayer feed-forward neural network [6]

Data analysis techniques

Fuzzy systems

Clustering (FC) Neural networks (NN)

Coding Multilayer feedforward

network (perceptron)

Multivariate statistics

Principal component analysis (PCA)
Factor analysis (FA)

Multiple correspondence analysis (MCA) Time-frequency analysis

Wavelet transform (WT)
Fractal Dynamics (FD)

Detrended fluctuation analysis (DFA)

Relative dispersion analysis (RD)

Fig. 1. Data analysis methods in this two-part review. The methods
on the right are discussed in this paper, while those on the left were
surveyed in Part 1 [1].
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Fig. 2. Typical neural network training and operation.

does require specific mention. It has been the standard
workhorse in a wide range of applications including
gait analysis. In the literature, this network has a
number of equivalent names, including the multilayer
perceptron or back-propagation network. For a general
introduction to multilayer feed-forward networks see
Hinton [7,8]. Ohno-Machado and Rowland [9] present
a brief introduction and review of multilayer neural
networks in physical medicine and rehabilitation. The
list of different artificial neural networks is ever increas-
ing. Other prominent types include the radial basis
function [10], the probabilistic neural network [11] and
the self-organizing feature map [12].

Artificial neural networks typically have inputs and
outputs, with some processing or so-called hidden layers
in between. In traditional statistical language, the in-
puts are the independent variables and the outputs are
the dependent variables. The following comments focus
on multilayer feedforward networks but also apply to
many other types of networks.

In general, the ANN can be likened to a flexible
mathematical function which has many configurable
internal parameters. To accurately represent compli-
cated relationships among gait variables, these internal
parameters need to be adjusted through an optimiza-
tion or so-called learning algorithm. In ‘supervised’
learning, examples of inputs and corresponding desired
outputs are simultaneously presented to the network,
which iteratively self-adjusts to accurately represent as
many examples as possible. Learning is complete when
some criterion such as prediction error falls below a
preset threshold.

Once the neural network is trained (i.e. its internal
parameters are fine-tuned), it can accept new inputs
which it has not previously seen and attempt to predict
an accurate output. To produce an output, the trained
network simply performs function evaluation. Fig. 2
summarizes this conceptual overview of a neural net-
work. The only assumption in deploying a multilayer
feedforward neural network (with one hidden layer) is
that there exists a continuous functional relationship
between the input and output data. This assumption is
so general and unrestrictive that it is seldom mentioned.

2.2. Recent literature

Unlike any previous technology, neural methods en-
dow gait analysis with a highly flexible, inductive, non-
linear modeling ability. This non-linear property has
facilitated the study of complicated gait variable rela-
tionships which have traditionally been difficult to
model analytically. Recent efforts generally fall into
three categories of application; (1) classification of hu-
man gait; (2) biomechanical modeling; and (3) predic-
tion of gait variables and parameters. This is not an
absolute grouping with many works crossing these
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Table 1
Summary of neural network classification of gait data

Author Inputs Network type Outputs:categories Results

Holzreiter and 128 FFT coefficients Feed forward (1) Able-bodied gait; (2) Pathological gait up to 95%
Kolile [13] (one hidden layer)

Barton and 1316 maximum pressure Feed forward (1) Healthy feet; (2) pes cavus, (3) hallux valgus 77-100%
Lees [14] values (two hidden layers)

Barton and 30 FFT coefficients Feed forward (1) normal walking; (2) 20 mm thick sole; (3) 3.5 kg mass 83.3%
Lees [15] (two hidden layers)

Lafuente et al.  cadence, velocity, five kinetic Feed forward (1) healthy; (2) ankle arthrosis; (3) knee arthrosis and (4) 80%
[16] parameters (one hidden layer) hip arthrosis

boundaries. Where ambiguity exists, the work has been
classified according to the primary efforts.

2.2.1. Classification

There have been several attempts to automatically
classify a person’s gait or diagnose a walking condition
with neural networks. One of the first attempts was
undertaken by Holzreiter and Kohle [13] who at-
tempted to categorize gait pathology based on ground
reaction forces. They measured two successive ground
reaction forces during normal walking from 131 sub-
jects with various lower limb conditions, including cal-
caneus fracture and limb deficiencies (i.e. prosthesis
users). Ninety-four healthy persons complemented the
study sample. Holzreiter and Kohle computed fast-
Fourier transforms (FFT) of vertical components of the
two ground reaction forces. The FFT coefficients
served as inputs to a standard network with one hidden
layer which, with adequate training, could achieve up
to 95% accuracy in discriminating healthy from patho-
logical gait. See Table 1. This early work demonstrated
simple two-category gait classification with a fairly
large number of input parameters.

With a similar goal of classifying gait pathologies,
Barton and Lees [14] extended the classification prob-
lem to three output categories. Unlike the three-layer
network used by Holzreiter and Kohle, Barton and
Lees commissioned a more complex neural network
with two hidden layers to categorize maximum pressure
prints into one of three categories: healthy feet, pes
cavus and hallux valgus. Below-foot pressure patterns
were recorded from 18 subjects during normal walking.
The patterns were rotated to a common orientation,
scaled to a common size and normalized to the interval
[0,1]. The network inputs consisted of a massive 1316
measured pressure values, dwarfing the number of in-
puts used by Holzreiter and Kohle. The reported accu-
racies ranged from 77 to 100% based on the relatively
small volume of test and training samples. Additional
work is required to ascertain the practical advantage
for such a classification system as the studied foot
conditions are routinely identified by observational gait

analysis. Furthermore, the use of the second hidden
layer was not well motivated. A single hidden layer is
known to be theoretically sufficient for learning most
functional relationships [10]. This point will be further
elaborated upon in Section 2.4.

Hip—knee joint angle diagrams are characteristic of a
subject’s gait pattern and therefore could serve as the
basis for automated identification of gait patterns. This
is the justification of Barton and Lees [15] for exploiting
hip—knee joint angles from eight healthy subjects for
classification of walking condition. Hip and knee angles
were calculated via a set of four reflective markers.
Subjects walked on a motorized treadmill at constant
speed under three conditions: normal walking, simu-
lated leg length difference and simulated leg weight
difference. The angles were preprocessed in three steps,
namely, normalization in time, fast-Fourier transform
and standardization to the interval [0, 1]. As the angu-
lar curve was predominantly of low frequency content,
only the low frequency coefficients of the hip and knee
angles served as inputs. As in their previous work,
Barton and Lees invoked a neural network with two
hidden layers without justification for the second hid-
den layer. The average accuracy of discriminating
among the three walking conditions was 83.3%.

Lafuente et al. [16] returned to a standard feedfor-
ward network (one hidden layer), asserting its adequacy
for four-category gait classification. The sample popu-
lation consisted of 148 subjects with ankle, knee or hip
arthrosis and 88 control subjects without limb pathol-
ogy. Measurements were made at three different walk-
ing speeds either shod or barefoot. The inputs therefore
consisted of cadence, velocity and parameterizations of
five kinetic magnitudes. Based on these inputs, a
trained three-layered neural network distinguished be-
tween the four gait categories with an accuracy of 80%,
a statistically significant improvement over a traditional
bayesian quadratic classifier [17]. These efforts are sum-
marized in Table 1. Collectively, they have established
the potential for multicategory classification of compli-
cated pathological gait using standard feedforward neu-
ral networks.
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2.2.2. Biomechanical modeling

The highly non-linear mapping of neural networks
has encouraged investigators to model the elusive rela-
tionships between EMG, kinematic and kinetic parame-
ters. The following studies have attempted to use
standard feedforward neural networks to capture vari-
ous aspects of this traditionally abstruse interaction.

Heller et al. [18] assembled a single-hidden layer
network in the attempt to reconstruct EMG of the
semitendinosus and vastus medialis muscles from kine-
matic data. Specifically, the kinematic inputs consisted
of hip and knee angles, angular velocities, angular
accelerations and integrated foot contacts, all measured
during normal and fast-paced walking. Data were col-
lected from one healthy subject. Timing and amplitude
of the reconstructed signals were accurate and com-
parable to that predicted by traditional, explicit models
of the musculoskeletal system. From this study, the
authors highlighted advantages of inductive biome-
chanical models such as neural networks over deduc-
tive, inverse musculoskeletal models.

1. There is no time delay in the generation of EMG.

2. A single neural network can model activations of
multiple muscles.

The following disadvantages of inductive biomechan-
ical models were identified.

1. The inductive models are only valid over the range
of motion represented in the training examples.
Inverse musculoskeletal models are valid over the
entire range of movement.

2. Inductive models do not offer biomechanical insight
into the locomotion system since the mathematical
equations are not based upon the structure of the
biomechanical system.

The first disadvantage is not entirely accurate as one
of the greatest strengths of neural networks is their
ability to generalize to data upon which it has not
previously trained [8], granted adequate training exam-
ples are available. The second disadvantage is partially
true in the sense that the structure of the mathematical
equations of an artificial neural network are generic
and not specific to human biomechanics. Although

Table 2
Summary of neural network modeling of gait relationships

often challenging to interpret [19], it is the freely ad-
justable parameters (weights and biases) of the trained
network which do in fact capture the structure of the
biomechanical system.

With particular focus on the relationship between
muscle activity and lower-limb dynamics, Sepulveda et
al. [20] invoked two single-hidden layer neural networks
to model correlations between EMG and joint charac-
teristics. Training data were taken from Winter [21] and
included EMG from 16 muscles along with moments
and angles for the hip, knee and ankle. The network
input consisted of 16 normalized EMG values. Training
data were sampled from the gait cycle at 20 evenly
spaced time intervals. One network was created to
model the relationship between EMG and joint mo-
ments while another network modeled the interdepen-
dence of EMG and joint angles. Sepulveda et al. tested
their models with perturbed EMG signals ( +20% ran-
dom noise and amplitude offset) and observed robust
behaviour, with less than 7% deviation in the output
angles and moments. The authors also simulated the
removal of a particular muscle and found that outputs
of the EMG-joint moment model agreed with expecta-
tions based on physiological principles. While their
model demonstrates modeling of a complex relationship
in biomechanics, the authors acknowledge limitations
due to a lack of exposure to intersubject variability and
pathological gait data and the omission of temporal
relationships.

Prentice et al. [22] developed a neural network to
model the shaping function of a central pattern genera-
tor for human locomotion. Using two sinusoidal inputs
at a frequency equal to the stride rate, their network
was able to produce a representation of EMG ampli-
tude and timing characteristics of eight lower extremity
muscles at various walking speeds over a period of 12
strides. The prediction errors, measured as percentages
of the output operating range, were generally below
20%. With very simple networks and a single temporal
parameter of stride rate, Prentice et al. demonstrated
the potential of simultaneously modeling a cohort of
muscle activations for such applications as functional

Author Relationship modeled

Network type

Inputs Outputs

Heller et al. [18] Hip and knee angle, angular velocity

and acceleration and integrated foot

contact

Sepulveda et al. EMG from 16 muscles (right leg)
[20] moments

Prentice et al. Two sinusoidal signals at stride rate

EMG envelope of semitendinosus and
vastus medialis

Hip, knee and ankle joint angles and

EMG envelopes of eight lower

Feed forward (one hidden layer)

Two feed forward networks (one
hidden layer each)
Feed forward (one hidden layer)

[22] extremity muscles
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Table 3
Summary of neural network prediction of gait parameters®

Author Inputs

Predicted output

Network type Results

Gioftsos and
Grieve [23]

Aminian et al. Forward, vertical, lateral and heel
[25,26] accelerations

Durations of right, left and double

Herren et al. [27] Ten select parameters of forward,

vertical, lateral and heel
Savelberg and EMG (gastrocnemius)
Herzog [28]

Walking condition, Recurrent network
walking speed
Incline and speed

Incline and speed

Tendon force

up to 73% accuracy

Two feed forward networks (one
hidden layer)

speed: <6% (mean
error) 12 ine = 0.98

Two feed forward networks (one pfpccd =0.965
hidden layer)

piznc]inc =0.936
Feed forward (two hidden layers) 0.71<r2<0.98

212 is the correlation coefficient and p? is the cross-correlation coefficient.

Table 4

Summary of neural network prediction of gait parameters (continued from Table 3)*

Author Inputs Predicted output Network type Results
Liu et al. [29] EMG (soleus), ankle joint angles and Tendon force Feed forward (two hidden layers) p2>0.9
angular velocities
Savelberg and de Insole pressure values (48) Horizontal Feed forward (two hidden layers) Typically
Lange [30] foreaft force p2>09
Cottrell et al. 12 joint angles at time 7—oJ 12 joint angles at Recurrent network (Tau net) Good
[31] time ¢ qualitative
results
Tucker and 5 EMG (lower limb) Velocity and Feed forward, self-org. map, fuzzy 94%, 56%, 91.4%
White [32] cadence inference, neuro-fuzzy , 76%
condition

2 r2 is the correlation coefficient and p? is the cross-correlation coefficient.

electrical stimulation. Table 2 tabulates these modeling
attempts using neural networks.

2.2.3. Prediction

The flexible modeling ability of neural networks also
facilitates the prediction of gait parameters which are
difficult to measure outside of controlled laboratory
conditions. As summarized in Table 3 and Table 4, a
colourful collection of gait parameters have been pre-
dicted using neural networks.

Gioftsos and Grieve [23] investigated the application
of recurrent neural networks for the prediction of walk-
ing speed and walking condition from temporal mea-
surements. Recurrent networks are feedforward
networks in which the outputs feed back to the inputs
(see Elman [24]). The networks received three temporal
measurements as input in milliseconds, namely, the
durations of right single support, left single support and
double support. Their study involved 20 subjects with
healthy gait, walking at seven different speeds and
under three different conditions. In addition to normal
walking, each subject’s gait was artificially altered by
first wearing an ankle weight and subsequently by
wearing a knee brace. Gioftsos and Grieve [23] found
that they lacked adequate training samples for the
recurrent network. In fact, the improvement in predic-
tion accuracies over a simple linear discriminant was

not statistically significant.

To assess the energy cost of overground walking, the
incline of the terrain and the speed of walking must be
known. These parameters are not readily measured
outside of a controlled laboratory environment while
body accelerations are easily detectable through ac-
celerometry. This is the motivation of Aminian et al.
[25,26] and Herren et al. [27] for building neural net-
works to predict incline and speed from body
accelerations.

Aminian et al. [25,26] measured the forward, vertical
and lateral accelerations of the trunk and right heel
acceleration from a handful of subjects walking at
various speeds and inclines. Ten parameterizations of
these accelerations were found to be closely correlated
with speed and incline, and were thus used as neural
network inputs. Aminian et al. constructed two three-
layered feedforward neural networks to separately fore-
cast speed and incline of walking from these 10
parameters. Training data were obtained from treadmill
walking while testing data consisted of self-paced walk-
ing on an outdoor, multiple incline circuit. In general,
predicted speeds and inclines agreed very closely with
the actual values, both with training and testing data.
Aminian et al. showed that neural networks can easily
predict difficult-to-measure variables from those that
are more easily accessible.
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Herren et al. [27] expanded the study to include 20
subjects and also formalized the feature selection pro-
cess. With an expanded list of 28 parameters derived
from the four accelerations, they used correlation co-
efficients and stepwise regression analysis to select a
subset of parameters that are most closely associated
with speed and incline. In addition to neural network
prediction, Herren et al. also developed a linear model
through multiple linear regression to predict speed and
incline. While the neural prediction was fairly accurate
for both speed and incline, the strictly linear model only
predicted speed at a comparable level of accuracy. This
suggests that the relationship between bodily accelera-
tions and speed is linear while that with incline is
non-linear. The work of Herren et al. specifically illus-
trated that neural networks cannot be applied blindly.
One needs to prudently choose inputs which will be
good predictors of the outputs. As well, through the
comparison with multiple linear regression, a key fea-
ture of neural networks is underlined, namely the abil-
ity to model non-linear relationships among variables.

The aforementioned approaches focussed on predict-
ing static parameters. In contrast, Savelberg and Her-
zog [28] were interested in estimating a dynamic
variable over a period of time. Their specific goal was
to predict dynamic tendon forces using EMG signals of
the gastrocnemius muscles of a cat. Tendon forces and
EMG signals were recorded from three cats while walk-
ing at four different speeds. Savelberg and Herzog
employed a four-layer (two hidden unit layers) feedfor-
ward neural network. The input to the network con-
sisted of rectified and averaged EMG values from the
current and previous 29 time steps. The corresponding
desired output was the tendon force at the current time.
After training the neural network, Savelberg and Her-
zog investigated intrasession, intrasubject and intersub-
ject generalization ability. While the neural network
could accurately predict tendon force from EMG in all
three scenarios, they noted that to achieve good predic-
tion, it was necessary to first determine the variables
which impact the EMG—force relationship. For exam-
ple, for intersubject tests, the body mass of the cat was
required to account for differences in muscle force
magnitudes between animals. This study underscored
the importance of prudently choosing neural network
inputs. It also exemplified the feasibility of predicting
time-varying gait signals and the modeling of highly
non-linear relationships, such as that between EMG,
force and speed of walking.

The artificial neural network prediction of time-vary-
ing tendon force was further investigated by Liu et al.
[29]. In addition to EMG, they incorporated five ankle
joint angles and angular velocities as neural network
inputs for the prediction of soleus tendon force. As in
Savelberg and Herzog, a two-hidden layer neural net-
work was constructed and experimental data consisted

of force, EMG and kinematics from three cats walking
at four speeds. They tested force prediction under the
same three levels of generalization and found that the
addition of kinematics only selectively improved predic-
tion. Based on the good intersubject predictions, Liu et
al. concluded that the EMG-force relationship was
similar among cats walking at the same speed. While
their work further portrays the ability to predict forces
from EMG without an explicit muscle model, the au-
thors acknowledge a principal drawback of neural net-
works, namely, that insights into the modeled
relationship, i.e. between EMG and tendon force, are
not automatically provided by the neural network.

It is difficult to evaluate activities of daily living with
laboratory-bound force plates. Numerous trials are
usually required to obtain a few representative force
measurements. These disadvantages, among others, mo-
tivated Savelberg and de Lange [30] to invoke a neural
network to predict horizontal fore-aft forces from in-
sole pressure patterns. They believed that if horizontal
forces could be predicted accurately from insole pres-
sures (which are related to the vertical forces through
the sensor area), one would have a more portable
alternative than force plates for obtaining vertical and
horizontal force components. Savelberg and de Lange
measured spatially averaged insole pressure patterns
from eight areas under the foot along with the ground
reaction force. Data were collected from four subjects
walking at various speeds. A four-layer feedforward
neural network (two hidden unit layers) was employed.
The 48 inputs consisted of eight pressure values at the
current and previous five time steps. The horizontal
ground reaction force constituted the single network
output. With their very small sample size, Savelberg
and de Lange noted good within-subject prediction but
poor intersubject prediction. They measured the quality
of the prediction by the coefficient of cross-correlation
between actual and predicted force curves. Their work
substantiates the existence of a relationship between
insole pressure patterns and horizontal force and
demonstrates the potential of neural network prediction
in this context. However, to assess the practical accu-
racy of this mapping, one would require, as the authors
admit, a much larger experimental sample. Training a
neural network with an inadequate number of samples
leads to poor generalization ability. In these last two
works, no justification is given for the commissioning of
a second hidden layer.

Gait signals do not fluctuate at a fixed rate and are
therefore difficult to predict analytically. This phe-
nomenon was briefly examined by Cottrell et al. [31]
using an adaptive recurrent network. They trained the
network to predict 12 joint angles representing level
walking at a self-selected, constant pace. The outputs of
the network were the angles at time ¢ while the inputs
were the angles at some earlier time ¢ — 6 where J was
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an adjustable delay. Once the network was trained on
signals at the self-selected pace, it was able to predict
joint angles at different walking speeds. Cottrell et al.
achieved real-time adaptive prediction by automatically
modulating the network’s time constant and delay
parameter 6. Although significantly more complex than
standard feedforward networks, Cottrell et al. demon-
strated that subtle rate variations in gait signals can be
automatically incorporated into the predicted output of
a recurrent network. This ability could be exploited in
the detection of subtle pathological anomalies in gait.

Recently, the flavours of neural networks in gait
analysis have begun to diversify. In addition to the
standard multilayer feedforward neural network,
Tucker and White [32] have applied three other neuro-
computational approaches for kinematic prediction
based on EMG. These newcomers to gait analysis
included a self-organizing map [12], a powerful topo-
graphical clustering algorithm, a fuzzy inference system
[33,34], a system which reasons approximately with
rules and fuzzy sets, and a neuro-fuzzy hybrid system
[35], one which combines neural networks with fuzzy
processing. They collected EMG data from five lower
extremity muscles from 16 subjects walking at nine
combinations of velocities and cadences. The normal-
ized EMG linear envelopes were fed into the network in
their entirety. This input is similar to the 30 point
temporal signal used by Savelberg and Herzog. The
output of the network was a single number coded to
represent the nine possible combinations of velocity and
cadence. Tucker and White found that the best predic-
tion occurred with the feedforward neural network with
the fuzzy inference system close behind. Their work has
opened the door to future investigations of different
neural network algorithms for gait data analysis and
further highlights the ability to study the entire gait
waveform. Recent work in prediction is recapped in
Table 3 and Table 4.

2.3. Benefits to gait analysis

With the potential to address most of the traditional
data analysis challenges, artificial neural networks have
much to offer to gait analysis.

The three-layered feedforward network is a universal
function approximator [36,37]. This means that given
enough processing units, commonly known as hidden
units, a three-layer network can approximate any con-
tinuous function, regardless of its complexity. In the
context of gait analysis, this property allows one to
model any relationship among gait variables, provided
adequate data are available and requisite network com-
plexity is computationally feasible. As evidenced in the
neural modeling of muscle activity and kinematic inter-
actions [20], this property facilitates the study of tradi-
tionally analytically unmanageable relationships.

Neural networks can handle vast amounts of gait
data, demonstrated most notably by the large studies
conducted by Holzreiter and Kohle [13] and Lafuente
et al. [16]. High dimensional data can also be manipu-
lated, as seen in Barton and Lees [14], where an as-
tounding 1316 pressure values were input into a neural
network. Robustness to errors in the data due to mis-
calculations or instrumentation fault is yet another
beneficial property. Two final benefits to gait analysis
include the inherent non-linear mapping ability and the
demonstrated aptitude at capturing temporal depen-
dence [28].

Neural networks capture patterns in the data within
their internal parameters, which are known as weights
and biases [8]. Past work has not attempted to interpret
the weights and biases of a trained network, an effort
which could potentially yield new insight into underly-
ing gait patterns. Alternatives for interpreting weights
and biases include neural rule extraction [38,39], Hinton
diagrams [40,41] and bond diagrams [42].

2.4. Application issues

Despite the numerous potential and proven benefits
of neural networks to gait data analysis, one must be
cognizant of the key issues regarding their application.

In general, a neural network cannot directly process
raw gait data. Proper pre-processing of input and post-
processing of output variables are essential for good
generalization performance of the neural network [10].
Ranges of variables are usually harmonized and nor-
malized to avoid saturation [43] of the processing units
and to generally facilitate optimization. In the reviewed
gait analyses, pre-processing encompassed a host of
techniques such as scaling, normalization, fast Fourier
transforms, rectification and averaging. The choices of
appropriate pre- and post-processing of gait data, while
significantly affecting performance, are not always ob-
vious, requiring a combination of experience and trial-
and-error.

As part of pre-processing, neural network application
is oftentimes preceded by a judicious selection of input
variables. Typically there are insufficient samples to
warrant the use of all available variables, i.e. there will
not be enough training data. Alternately, the use of all
available variables results in a prohibitively large net-
work that will be difficult to train with the available
computing resources. The work of Aminian et al. [25],
and Savelberg and Herzog [28] underline the impor-
tance of selecting the appropriate input variables.

Selection involves discarding irrelevant variables and
retaining only those that are potentially good predictors
of the desired output variables. Although formal fea-
ture selection methods from statistical pattern recogni-
tion exist (see Siedlecki and Sklansky [44]), they have
not been widely applied in gait analysis. Possible rea-
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sons are the complexity and heuristic nature of the
algorithms. Most often it appears that the selection of
independent gait variables relies heavily on clinical
experience and is generally not a well documented
subject. The ultimate performance of the neural net-
work is highly sensitive to the choice of input gait
variables.

The network architecture must be chosen prudently
as network performance is highly architecture-sensitive
[45]. Although no concrete rules exist, some general
prescriptions ([10], pp. 372—-380; [46], pp. 176—180) and
([43], pp. 145-147) provide guidance. The network
architecture is intimately related to the ability to gener-
alize to new data. The use of two hidden layer architec-
tures, such as that employed by Barton and Lees[15]
and Savelberg and Herzog [28] have not been ade-
quately justified. As discussed earlier, networks with
one hidden layer are universal approximators and the
added computation associated with a second hidden
layer is only warranted for approximating discontinu-
ous functions [37].

Since multilayer feedforward networks are trained by
an optimization algorithm, one must contend with the
prevalent problems of non-convergence and local min-
ima traps [43]. With multilayer perceptrons, the most
popular training algorithm is back-propagation [40]
and its variants. Other alternatives such as the Leven-
berg—Marquardt algorithm (see Bishop [10]) provide
faster training and better probability of convergence
under certain conditions. Alternatively, one may em-
ploy other types of neural networks such as the proba-
bilistic neural network [11], which do not require
optimization during training.

In the reviewed works, neural network classification
accuracies, although significantly better than statistical
alternatives in some instances [16], are not yet adequate
for use as an automatic clinical diagnostic tool. Further
improvements and innovations are necessary to im-
prove reliability of classifying pathological gait.

Almost all the reported studies have exclusively ex-
ploited standard feedforward neural networks. Other
proven alternatives such as the radial basis function [10]
which also boasts the universal approximation property
[47], have not yet been investigated. In other disciplines,
these networks have exhibited certain performance ad-
vantages over the standard backpropagation network
(see for example Shaffer et al. [48], Blue et al. [49]).

3. Gait analysis with wavelet transforms (WT)
3.1. Conceptual overview
Traditional spectral analysis methods such as the

Fourier transform (FT) tell us which frequency compo-
nents are contained in a signal. However, they do not

tell us at what time those frequency components are
present in the signal. This information is important in
analyzing non-stationary signals, where the frequency
content changes over time. Examples of non-stationary
signals include the transient EMG [50], the EMG asso-
ciated with 50-80% maximum voluntary contraction
[51], the EMG associated with local muscle fatigue
during a sustained contraction [52] and velocity and
acceleration signals with sharp high-frequency tran-
sients [53]. The wavelet transform overcomes this defi-
ciency in the FT by providing both frequency and time
information simultaneously. Like the FT, the wavelet
transform comes in both continuous and discrete
flavours. Gait data analysis has only focussed on the
discrete transform, as will the ensuing discussion.

A discrete wavelet transform (DWT) operates on a
discrete signal, i.e. one that has values at discrete
instants in time. The length of a discrete signal is the
number of time instants over which the signal is mea-
sured. The two essential elements of a wavelet trans-
form are the wavelet and scaling signals.

The wavelet basis signal is a finite energy signal with
compact support. This means that the signal only exists
over a finite period of time, unlike Fourier basis func-
tions which have infinite extent. The set of basis func-
tions are obtained by translating and contracting or
dilating a prototype wavelet. In the simplest case, these
basis functions are orthonormal.

The following is the filter bank interpretation of the
discrete wavelet transform. Suppose we have a signal
x(n) of length N and maximum frequency f,.... The
transform decomposes the signal x(n) into two subsig-
nals, namely the fluctuation and trend signals, each of
length N /2. The fluctuation signal d, contains the upper
half of frequency components in the original signal. It
is obtained by passing the original signal through a
high pass or bandpass filter with passband, [f;,../
2, fmax)- This is equivalent to the convolution of the
wavelet basis signal with the original signal.

Similarly, the low frequency trend signal a; is ob-
tained by filtering the original signal through a low pass
filter with passband [0, f;,./2]- This is equivalent to the
convolution of the scaling signal with the original sig-
nal. The low and bandpass filters used in a wavelet
transform are quadrature mirror filters.

The two subsignals constitute the first level of decom-
position as shown in Fig. 3. The subsignals are down-
sampled by a factor of 2, meaning that every other
sample is discarded. This is justified by the Nyquist
sampling rule. Since the bandwidth of each subsignal is
half that of the original signal, the subsignals actually
contain more samples than necessary to capture the
constituent frequencies in the subsignals.

The decomposition is repeated only on the first trend
signal to produce a second trend and fluctuation signal.
Again the signal bandwidth and signal length are
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halved. This process is repeated on subsequent trend
signals until a subsignal of length 1 is obtained. For a
signal of length N, there will be K =1og N/log 2 levels
of decomposition.

Note that by bisecting the bandwidth of each subsig-
nal, the frequency resolution is doubled, i.e. we are
focusing on a finer band of frequencies. Likewise, sub-
sampling by a factor of 2 reduces the number of time
samples and hence decreases time resolution. In other
words, we have fewer time samples to represent the signal
over its duration. This tradeoff between time and fre-
quency resolution is the hallmark of the wavelet trans-
form. Low frequency components are more difficult to
resolve in the frequency domain, and thus finer frequency
resolution is desirable. On the other hand, high frequency
components are more difficult to resolve in the time
domain, demanding better time resolution. The wavelet
transform meets these requirements, providing enhanced
frequency resolution at low frequencies and better time
resolution at high frequencies.

Finally, the discrete wavelet transform of the signal
x(n) is obtained by concatenating the last trend signal
with all the fluctuation signals. Specifically,

DWT [x(n)] = (ag|dx|dx 1| |daldy).- (M

The original signal can be reconstructed from the
transform values through multiresolution analysis
(MRA). Essentially, averaged and detail signals are
constructed and summed together to reproduce the
original signal. Averaged signals are expansions in terms
of the scaling signals with values of the trend signals as
coefficients. Similarly, detail signals are expansions in
terms of the wavelet signals with values of the fluctuation
signals serving as coefficients.

Fig. 4 and Fig. 5 portray a noisy kinematic signal and
its discrete wavelet transform. Since the original signal
contained 512 values, there are nine levels of decompo-
sition. The first few fluctuation signals (d,, d,,...) are
labelled and separated by dotted lines for illustrative
purposes.

Another way to view this discrete wavelet transform
is to plot the transform values by decomposition level,
over time, as in Fig. 6. Only the coefficients of the
fluctuation signal are plotted. The height of the spikes is
proportional to the magnitude of the transform value
while the direction, upward or downward, is indicative
of its sign, either positive or negative. This plot gives a
rough idea of the frequency content in the signal over
time. Generally, the more the signal is decomposed, the
lower the frequency of the subsignal. The energy of the
subsignal at a given level is given by the sum of squares
of the transform values. Hence, for the noisy kinematic
signal example, the large spikes at deeper levels of
decomposition (Fig. 6) suggest that most of the signal
energy resides in lower frequencies at distinct instances
in time. On the other hand, the high frequency noise
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components (smaller spikes in levels 1 and 2) occur
throughout the signal’s duration.

A simple way to filter noise from the signal is to
threshold the transform values. Hence, only transform
values above a specified noise threshold are retained,
others are set to zero. The inverse wavelet transform is
then applied to the thresholded transform values. Con-
tinuing with the above example, the thresholded trans-
form and the resultant reconstructed signal are shown
in Fig. 7 and Fig. 8. This smoothing method is known
as hard thresholding of the wavelet transform. Extend-
ing this simple scheme, soft thresholding [54] or wavelet
shrinkage [55] also pushes all coefficients outside the
thresholds towards zero by a preset amount. For a
recent review of techniques for smoothing differentiated
biomechanical signals via hard thresholding, refer to
Wachowiak et al. [53].

There are numerous different types of discrete
wavelet transforms, such as the Haar transform,
Daubechies family of transforms and Coiflets trans-
form[56]. The differences among the transforms lies in
the definitions of the wavelet and scaling basis func-
tions, i.e. the filter banks. The number following the
wavelet transform name is related to the number of
coefficients in the quadrature mirror filter. Some pre-
scriptions on the choice of wavelet basis is given in
Walker [57].

This highly simplified overview has merely brushed
the surface of the filter bank interpretation of the
wavelet transform. The technique has deep theoretical
foundations in multiresolution signal decomposition
[58], real analysis [59] and filter bank design [60]. For a
review of wavelet applications in the biomedical arena,
see Unser and Aldroubi [61]. Introductions to funda-
mental principles can be found in Rioul and Vetterli
[62], Walker [57] and Graps [63].

3.2. Recent work

There have been two types of wavelet applications in
the analysis of movement data, signal smoothing and
signal discrimination. Each is reviewed below and sum-
marized in Table 5.

Kinesiological data exhibit sharp spikes correspond-
ing to impacts such as heel strikes. Butterworth and
spline filters, while generally successful at smoothing
biomechanical signals, undesirably attenuate impact
signals and amplify edge effects. This is the motivation
cited by Wachowiak et al. [64] in their investigation of
wavelet-based smoothing of displacement data. Using
an experimental rig, they measured the displacement of
a falling cylinder capped with half a rubber ball. The
set-up was intended to simulate impact signals. Wa-
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Fig. 8. Reconstructed, smooth signal after wavelet thresholding.
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Table 5
Summary of wavelet analysis of gait signals

Author Data Transform

Demonstrated capability

Wachowiak et  Displacement at heel strike
al. [64] (simulated)
Ismail and Angular displacement

Asfour [65] Daubechies

Tamura et al. Daubechies 3
[66]
Marghitu and

Nalluri [67]

Acceleration signals

Joint angles Coiflet

Haar and Daubechies 4

Biorthogonal, Coiflet and

Signal smoothing while retaining impact signals

Signal smoothing while resolving d-function peaks

Signal discrimination via energy of selected decomposition
levels
Signal discrimination via wavelet energy distributions

chowiak et al. applied the Haar and fourth order
Daubechies wavelet to the displacement data. Through
hard-thresholding, they found that the Haar wavelet
produced a signal with negligible boundary effects and
retained transient accelerations. However, the trans-
form did not yield a smooth signal, having retained
some unwanted noise components. Wachowiak et al.
reported less satisfactory results with the Daubechies
wavelet but concluded that the technique showed
promise, on the basis of removing initial noise and
mitigating boundary effects. Their results are somewhat
expected as the Haar transform is better suited to
filtering discontinuities [57]. They concluded that the
challenge in applying wavelets to kinesiological data
amounted to the determination of an appropriate
wavelet basis function.

To further justify the use of wavelets for smoothing
kinematic data, Ismail and Asfour [65] identified a
number of limitations encountered with common But-
terworth filters. These included the problems of highly
sensitive derivatives in the filtered signal, large root
mean square errors (RMSE) and a lack of agreed upon
cut-off frequency and filter order. In their experiments,
Ismail and Asfour [65] applied Biorthogonal, Coiflet
and Daubechies wavelets of different orders to simu-
lated angular displacement data. Wavelet coefficients
were thresholded by wavelet shrinkage. For compari-
son, the same data were also filtered with Butterworth
filters. Their results demonstrated that the wavelet
transforms were remarkably superior to Butterworth
filters at simultaneously reducing noise content in all
frequency ranges while minimizing loss of signal energy.
In particular, the fourth order Daubechies wavelet at
only the second level of decomposition provided the
best results, in terms of maximizing the retained energy
while minimizing the RMSE. In general, the Butter-
worth filters achieved overall smoothing but could not
resolve the delta function peaks, introduced end-point
errors and thus produced very large RMSE. Similar to
the conclusion of Wachowiak et al., Ismail and Asfour
remark that the central challenge lies in the choice of an
appropriate wavelet function. In addition, they also

highlight the danger of over-smoothing the data via
wavelets.

The discrete wavelet transform decomposes a contin-
uous signal into coefficients which carry spectral and
temporal information about the original signal. Tamura
et al. [66] noted that these informative coefficients could
therefore serve as discriminatory features for signal
classification. To demonstrate the point, Tamura et al.
exploited wavelets in the classification of acceleration
signals. The magnitude of acceleration close to the
body’s center of gravity was recorded from 20 subjects
during normal walking, walking up and walking down
a stairway. The third-order Daubechies wavelet trans-
form was applied to the acceleration signal with decom-
position at nine levels. While it was difficult to
distinguish the walking conditions in either time or
frequency domain alone, the time—frequency represen-
tation of wavelets offered new insight. Specifically,
Tamura et al. found that coefficients at the fourth and
fifth decomposition levels were suitable for accurate
classification. The sum of squared wavelet coefficients
at these levels served as the discriminating features. No
formal accuracies were reported but the visible discrim-
inability in sum of squares graphs alone, shows promise
in this technique. Since the sum of the squared coeffi-
cients is related to signal energy, Tamura et al. hypoth-
esized that the discrimination of the different types of
walking is related to differences in energy consumption.

Adopting this energy interpretation of squared
wavelet coefficients, Marghitu and Nalluri [67] applied
the wavelet transform in the detection of differences
between normal greyhound gait and that affected by
tibial nerve paralysis. Coxofemoral, femorotibial and
tarsal joint angles were computed for six quadrupedal
subjects. The six-coefficient Coiflet wavelet was applied
to the kinematic time series, yielding eight wavelet
decomposition levels. The percentage energy contribu-
tion of frequency components at each level was defined
as the sum of squared coefficients in each level divided
by the total energy in the original signal. Through
signal reconstruction with selected wavelet coefficients,
Marghitu and Nalluri found that low frequency compo-
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nents among subjects were very similar while differ-
ences manifested themselves at high frequencies. To
contrast normal and affected gait, energy distributions
at each decomposition level were compared within sub-
jects. Marghitu and Nalluri identified significant differ-
ences only in the signal energy of the tarsal joint angle
at decomposition levels 3 and 4. Their work demon-
strated the novel use of wavelet coefficients to detect
and quantify subtle abnormalities in gait, which would
have otherwise been overlooked by conventional graph-
ical comparisons.

3.3. Benefits and application issues

The greatest advantage of wavelet transforms over
conventional Fourier transforms, is the provision of
localized time and frequency information about a gait
signal. Dynamic changes in walking, such as modified
acceleration, can be easily detected [66] as shifts in local
signal energy. Thus, wavelet transforms hold promise
for revealing obscure pre- and post-intervention
changes in gait. Further, using wavelets, gait signals can
be locally de-noised with minimal signal energy loss
[65]. This ability permits for example, the retention of
impact signals while discarding confounding contami-
nations at similar frequencies occurring at different
times in the gait cycle, a task beyond the capabilities of
conventional filters.

The wavelet packet transform [68], a natural general-
ization of the wavelet transform, has not been applied
in gait analysis. By decomposing both the trend and
fluctuation signals, the time—frequency plane can be
arbitrarily tiled to suit the specific signal under analysis.
The wavelet packet transform has been successful in
deciphering EMG signals [50,51].

In the application of wavelet transforms to gait sig-
nals, the selection of appropriate wavelet and scaling
basis functions is a central, open question. The simplest
Daubechies transform (i.e. with four wavelet numbers)
has been the most successful and popular choice in the
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Fig. 9. Number of studies exploiting each gait data analysis method
over the last 10 years.

few gait studies reviewed. In general, the Daubechies
and other smooth bases are well-suited to smoothly
varying time series while the Haar transform is recom-
mended for time series with discontinuous jumps [57].
Further, complex-valued wavelet bases are better
adapted for capturing oscillatory behaviour whereas
real-valued wavelet basis can more adeptly isolate
peaks or discontinuities in the signal [69]. Horgan [70]
give additional practical tips on selection of appropriate
basis functions from the perspective of optimal signal
smoothing.

4. Comparisons and summary

A number of technical challenges in quantitative
analysis of gait data were identified in Part 1 of this
review [1]. This section summarizes the extent to which
individual methods in this two-part review have met the
identified challenges. The present limitations of the
methods are also highlighted. For detailed elaborations
on principal components, factor analysis, multiple cor-
respondence analysis, fuzzy clustering and fractal dy-
namics, please refer to the first paper [1] in this
two-part review.

4.1. Prevalence of methods

In contrasting the various methods, it is interesting to
first observe the dominance of neural network-based
analyses of gait data over the past 10 years (Fig. 9),
based on the reviewed literature. This prevalence speaks
to the relative ease with which neural networks are
applied, their widespread availability in commercial and
educational software and their generic applicability to a
broad spectrum of analysis problems. Fig. 9 also indi-
cates that most of the analyses are not of an ex-
ploratory nature (since neural networks are not good
exploratory tools) but driven by well-defined clinical
and research questions. This lop-sided concentration
suggests that more effort is required in non-neural
network applications to more accurately gauge their
practical benefits and limitations in gait data analysis.
Further, objective comparisons of multiple methods in
addressing a common clinical or research question have
not yet been conducted. Such studies would be invalu-
able in defining the future directions of quantitative
methods for analyzing gait data. Incidentally, PCA is
the only technique whose history in gait data analysis
dates back more than a decade. Its ongoing utility was
reaffirmed by the recent work of Deluzio et al. [71,72].

4.2. Issues addressed

The following tables compare the extent to which the
reviewed methods have addressed each of the identified
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Table 6

Addressing the issue of high-dimensionality
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Method Maximum number of dimensions

Interpretability of results

In gait studies

Potential

Visualization

Mathematical result

PCA 101 Theoretically unlimited Good only if Interpretable linear equations [1]
two-dimensional projection
FA 16 Theoretically unlimited Good only if Interpretable linear equations [1]
two-dimensional factor plane
MCA 21 Theoretically unlimited Good only if Matrix of profile points not
two-dimensional factor plane interpretable without plotting
NN 1316 Theoretically unlimited; practically Can only view outputs for Non-linear equation is not
limited by available computational given inputs interpretable
power
Table 7

Addressing the issue of high-dimensionality (continued from Table 6)

Method Maximum number of dimensions

Interpretability of results

In gait studies Potential

Visualization

Mathematical result

FC 4 Theoretically unlimited Can easily visualize two or Interpretable cluster centers;
three-dimensional clusters multidimensional membership
functions not easily interpretable

FD 1 Two and three dimensional analysis Always use bivariate plots to view  Fractal dimension easily
demonstrated in physiology dependence interpretable

WT 1 Two-dimensional transform Can view energy profiles, plots of Coefficients easily interpretable via
demonstrated in image processing  coefficients plots of coefficients

Table 8

Addressing the issue of temporal dependence (‘P’ indicates potential to analyze data type, but not yet demonstrated in gait studies)

Method Admissible data types

Temporal dependence

Kinematic Kinetic EMG  Other Incorporated Extracted information
PCA Yes P Yes P Yes [71] Significant® portion of gait cycle
FA Yes P Yes P No NA
MCA Yes Yes P Yes Partial (via fuzzy coding) Significant® time windows
NN Yes Yes Yes P Yes Difficult to extract explicit time relationships
FC Yes P P Yes No NA
FD Yes P P p? Yes Nature of fluctuations over long times
WT Yes P Yes p® Yes Frequency content in local time interval

2 Must be a time-varying quantity.

® Significance of a variable in PCA is defined in terms of the contributed variance.
¢ Significance of a profile point in MCA is defined in terms of contributed inertia.

challenges. In Table 6 and Table 7 the demonstrated
and potential ability to manipulate multivariate data is
summarized. Note that methods which can theoretically
analyze any number of variables are limited practically
by visualization and computational constraints. The
interpretability of the analysis is closely tied to its
usefulness with multivariate data. Here, interpretation
is measured in terms of appeal to human visual percep-
tion and comprehensibility of numerical results. Imme-
diately, one sees that the neural network offers the
greatest ability to handle high-dimensional data but

sacrifices interpretability [19]. The statistical methods
PCA, FA and MCA yield the most readable results if
the data can be adequately represented in two-dimen-
sional displays. PCA is likely the recommended choice
as a first step in data reduction and often proceeds FA,
MCA and neural network modeling.

Another comparison concerns admissible types of
data and is related to the issue of incorporating tempo-
ral dependence. Table 8 outlines the different gait data
which have been analyzed by the various methods. A
‘P” designates the potential to analyze a type of data,
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although not yet demonstrated in published gait stud-
ies. ‘Other’ data refers to discrete entities such as gen-
der, constants for a given trial, such as anthropometric
data and other continuous, time-evolving quantities
such as metabolic measurements. The last column indi-
cates the method’s ability to handle explicit time depen-
dence. Although all methods have the potential to
analyze the various types of gait data, the versatility of
neural networks has been most widely demonstrated.
With the exception of fuzzy clustering, all methods can
incorporate time dependence to some extent. However,
the temporal information extracted by each method is
different. For general exploration of temporal depen-
dencies and the detection of subtle differences over
time, a combination of time domain methods (such as
PCA and MCA) along with time—frequency analysis
(wavelet transform) is recommended. If one is only
interested in modeling the temporal evolution of gait
signals without a need for explicit interpretation, then a
neural network is the tool of choice.

In quantitative gait analysis, one of the common end
goals is to detect changes due to interventions such as
therapy, orthoses or surgery. A suitable analysis
method for this purpose is one which can quantitatively
and directly compare entire gait waveforms and pin-
point differences. As shown in Table 9 few methods can
analyze the entire gait waveform adequately. Further-
more, neural networks cannot easily isolate specific
differences between curves. Conceivably, one could as-
sign network outputs to measure different portions of a
curve, but even then the localization would be crude.
Note that MCA can provide qualitative but not quanti-
tative comparisons between curves. PCA and the
wavelet transform can identify local differences in vari-
ability and energy/frequency, respectively. However,
these are only limited aspects of the gait waveform.

Table 9
Addressing the issue of measuring differences between curves

Method Differences between curves

Ability to quantify
differences

Ability to localize
differences

PCA Yes, as differences in
principal component

Yes [71]; locate differences
at specific instances of gait

scores cycle
FA No No
MCA No No
NN Yes, as differences in Difficult to automatically

neural network outputs pinpoint differences

FC No No

FD Yes, as differences in No, fractal dimension is a
fractal dimension global measure

WT Yes, as differences in Yes, can detect local

wavelet coefficients or
total energy

differences in energy
distributions

Further work is required to supplement these tools with
an objective, standard measure of differences between
complete gait curves. To this end, canonical correlation
analysis for functions [73] and regression analysis for
functional responses [74] are two alternatives worthy of
deeper exploration.

Another identified challenge is the variability in gait
data. The multivariate statistical methods, PCA, FA
and MCA, explicitly deal with variance in the data.
PCA finds projections to maximally capture total vari-
ance. FA finds factors to maximally reveal covariance
structure while MCA finds projections that maximally
preserve inertia (total variance). Since variance is effec-
tively ‘information’ for these methods, large variability
in the data may lead to the identification of false
patterns. This same sensitivity to variability, however,
could also act as a useful tool for identifying extraordi-
nary fluctuations in specific measurements early in the
analysis.

Variability is indirectly accounted for in the feedfor-
ward neural network during training. Statistically, net-
work training can be likened to learning the
distribution of the expected value of the outputs condi-
tioned on the inputs [75]. Through this ‘averaging’
process, the feedforward neural network can be robust
to large variability in the data . However, this robust-
ness is contingent upon the use of abundant training
data.

Fractal analysis has specifically focussed on long-
range intrasubject variability, without assuming that
the variability is random. In particular, fractal analysis
can detect subtle changes in stride interval variability
[76]. Fuzzy clustering can identify grouping tendencies
amid natural intersubject variability [77]. With the re-
viewed methods, there is indeed potential for assessing
and understanding gait data variability. This potential
nonetheless hinges heavily upon the depth of the user’s
domain knowledge. Although able to deal with some
aspects of the data’s variability, the suppression of
rampant variability is not the central focus of the
reviewed methods. Care should be taken, as in Haus-
dorff et al. [78] and West and Griffin [79], to verify that
observed patterns have not arisen from spurious or
random effects.

The ability to detect and model non-linear relation-
ships in gait data is important for gaining deeper
insights into pathologies and physiological mechanisms.
With the exclusion of PCA and FA, the methods do
not make assumptions about the linearity of the data’s
relationships. Again, the type of relationship detected
or modeled is different for each method. The neural
network seeks a relationship between a general set of
inputs and outputs, and in this sense, is the most
generic tool among the methods. The downside is the
lack of readability of the modeled relationship. MCA
could reveal interesting non-linear relationships among
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Table 10
Addressing the issue of detecting non-linear relationships in gait data

Method Non-linear relationships

Ability to Extracted information
detect?

PCA No Not applicable

FA No Not applicable

MCA Yes Relationship between column and
row profile points (gait variable
values or fuzzy sets)

NN Yes Functional relationship between
inputs and outputs (dependent and
independent gait variables)

FC Yes Grouping inclinations (inherent
similarities) among subjects or
observations

FD Yes Relationship between fluctuations in
measurements separated by long
times

WT Yes Relationships between time and

frequency characteristics of gait
signals

Table 11
Limitations of alternative gait data analysis methods

Method Limitations

PCA Only detects linear relationships in data;
Heavy reliance on subjective interpretation of components
FA Only detects linear relationships in data;

Heavy reliance on creative labeling of factors

MCA Factor plane becomes cluttered and difficult to interpret
with moderate data volumes;
Sensitive to coding of gait signals;
Reliance on subjective identification of associations among
profile points

NN Captured relationships are generally difficult to interpret

FC Number of groups needs to be specified a priori
Fuzziness parameter needs to be chosen arbitrarily

FD Utility demonstrated only for stride interval time series
Has only been applied to univariate signals

WT Little guidelines on selection of wavelet basis for gait
signals

Has only been applied to univariate signals

gait variables insofar as those patterns can be aptly
interpreted by the user. The wavelet transform, fractal
analysis and fuzzy clustering offer valuable insight into
specific types of possibly non-linear relationships. If
modeling non-linearity is a primary objective, the neu-
ral network is the clear preference. For exploring po-
tential non-linearities, the remaining methods all have
relative merits, especially where clinical interests match
the type of extractable information, see Table 10.

4.3. Limitations

A review of the limitations of each method can also
help to determine appropriate avenues of application.
Table 11 highlights the critical limitations already men-
tioned in the foregoing discussions. For the wavelet
transform and fractal analysis, the limited scope of
application to date is itself an obstacle in objectively
gauging the usefulness of these methods in gait data
analysis.

4.4. Other emergent data analysis methods

In addition to the emergent techniques in gait data
analysis reviewed herein, the potential of several other
prominent data analysis methods from statistics, engi-
neering and computer science remain untapped.

Projection pursuit is an exploratory multivariate
statistical method [80] that seeks low-dimensional data
projections most different from multivariate normality
[81]. This method is more general than PCA as it can
uncover multiple levels of structure.

Decision trees are fundamental techniques in machine
learning where a set of easily readable rules are auto-
matically induced from a data set (see for example
Quinlan [82], Quinlan [83] or Bohren et al. [84]). Deci-
sion trees have been used to develop locomotion con-
trol rules for functional electrical stimulation [85] and
could be exploited in the interpretation of multivariate
gait data.

Pattern discovery refers to a host of algorithms that
automatically search for non-random relationships in
the data and present those patterns in a comprehensible
format (see for example Chau and Wong [86] or Wong
and Yang [87]). These methods could be applied to the
automatic detection and deciphering of high-dimen-
sional inter-relationships among gait variables.

Non-linear projection describes a family of methods,
including learning vector quantization [12] and Sam-
mon mapping [88], that seek data projections which are
not linearly related to the original data. They can thus
uncover more general relationships in data.

In addition, the previously mentioned radial basis
functions [10], a versatile alternative to feedforward
neural networks, have not been commissioned in gait
data analysis.

4.5. Choosing an analysis methodology

To assist readers in the selection of suitable analysis
methodologies, the various methods are organized into
specific research or clinical analysis needs in Table 12.
The leftmost column groups together tasks that involve
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fundamental processing of gait signals. The middle
column comprises techniques which seek unknown in-
formation from the gait data and is therefore labelled
‘exploratory’. The final column lists methods which
fulfill specific goals, such as classifying subjects or
predicting certain parameters. The superscript ‘a’ indi-
cates methods which have not yet been applied to gait
data analysis, but which have demonstrated potential
for analyzing continuous signals. Bearing in mind the
above summaries of issues addressed, Table 12 can
serve as a quick selection guide for candidate analysis
options.

Note that a single analysis method, such as the
discrete wavelet transform, may serve multiple pur-
poses. These groupings serve only as a guide and are
not necessarily mutually exclusive. For example, detect-
ing differences in gait waveforms, a task classified as
‘processing’, may also have exploratory objectives. Fur-
thermore, a given analysis may employ multiple meth-
ods in a hybrid scheme, such as fuzzy coding followed
by MCA [89,90].

5. Conclusion

Quantitative analysis and clinical interpretation of
gait data can be formidable tasks. Traditional methods
such as signal parameterizations and qualitative inspec-
tion of bivariate plots have fallen short in meeting
persistent challenges of quantitative and objective anal-
ysis. Only in recent years have gait analysis studies
begun to take advantage of non-traditional analysis
methods. These methods present a variety of fresh
perspectives on gait data but are not without individual
shortcomings. In particular, neural networks have
proven to be a dominant and promising alternative tool

Table 12
Data analysis methods arranged by analysis needs

in numerous studies, but lack overall readability. Multi-
variate statistical methods such as PCA and FA, al-
though limited by linearity assumptions, have
demonstrated a practical ability to provide powerful
interpretations into healthy and pathological human
gait. Other methods such as fractal analysis, wavelet
transform and fuzzy clustering still require additional
studies to clarify their potential in enhancing gait data
analysis. However, it is already clear that these methods
can offer additional insights into gait data and human
locomotion that are simply not achievable with tradi-
tional analyses. The most notable example is the fractal
dynamics of gait. At the present time, no emergent
technique in isolation can sufficiently meet all the chal-
lenges of quantitative gait analysis. Much work remains
to be done in elevating the level of analysis to wide-
spread clinical acceptance and applicability. From this
review, the most marked on-going needs are in visual-
ization and interpretation of multiple gait signal inter-
actions and the quantitative comparisons of gait
waveforms. As in many other disciplines, hybrid ap-
proaches to data analysis (for example Miyoshi et al.
[91], Rao [92], Tzafestas et al. [93] and Al-Fahoum and
Howitt [94]) exploiting the collective strengths of multi-
ple techniques, may define the future trend for quanti-
tative analysis of gait data.
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