
Adaptive Server Selection for Large Scale Interactive
Online Games

Kang-Won Lee
IBM T.J. Watson Research

Hawthorne, NY

kangwon@us.ibm.com

Bong-Jun Ko
Columbia University

New York, NY

kobj@ee.columbia.edu

Seraphin Calo
IBM T.J. Watson Research

Hawthorne, NY

scalo@us.ibm.com

ABSTRACT
In this paper, we present a novel distributed algorithm that
dynamically selects game servers for a group of game clients
participating in large scale interactive online games. The
goal of server selection is to minimize server resource usage
while satisfying the real-time delay constraint. We develop
a synchronization delay model for interactive games and
formulate the server selection problem, and prove that the
considered problem is NP-hard. The proposed algorithm,
called zoom-in-zoom-out, is adaptive to session dynamics
(e.g. clients join and leave) and lets the clients select appro-
priate servers in a distributed manner such that the number
of servers used by the game session is minimized. Using
simulation, we present the performance of the proposed al-
gorithm and show that it is simple yet effective in achieving
its design goal. In particular, we show that the performance
of our algorithm is comparable to that of a greedy selection
algorithm, which requires global information and excessive
computation.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
communications; C.2.4 [Distributed Systems]: Client/server

General Terms
Algorithms, Performance, Design

Keywords
MMOG, Server selection, Distributed algorithm, Synchro-
nization delay model

1. INTRODUCTION
Large scale interactive online games, such as Massively

Multi-player Online Games (MMOG), aim to support a very
large number of clients. In practice, MMOG providers often
are required to support tens of thousands of geographically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’04, June 16–18, 2004, Cork, Ireland.
Copyright 2004 ACM 1-58113-801-6/04/0006 ...$5.00.

distributed users simultaneously. In this respect, MMOG
providers have so far focused on developing a highly scal-
able game server architecture and supporting network in-
frastructure that spans wide geographical regions while sat-
isfying loose real time requirements [5, 16]. Recently, how-
ever, MMOGs are beginning to incorporate more interactive
features and action sequences to attract users [12]; thus it
becomes increasingly important to provision enough server
resources to support real-time interaction between users.

There are several challenges in augmenting MMOGs with
such interactive features. First, unlike in online First-Person-
Shooting (FPS)-type games where a small number of nearby
users are assigned to the same game session, MMOG games
must maintain a persistent virtual world view for a large
number of game players that are distributed over the net-
work. Second, the maintenance of a long-lived persistent
world mandates a server-based game architecture, where
clients interact with a central server that keeps track of the
game states. However, this conventional server-client archi-
tecture does not scale well as the number of clients increases.
To overcome this limitation, a mirrored server architecture
has been proposed [7, 2, 10], where a set of distributed game
servers are orchestrated to support a large number of dis-
tributed clients. In this architecture, the game servers are
typically interconnected via well provisioned network links,
and each game client is directed to connect to the closest
game server. In parallel with this architectural develop-
ment, proposals have been made to dynamically provision
game servers on the fly exploiting emerging Grid technolo-
gies [14, 5]. According to these on-demand game architec-
tures, game servers can be provisioned to accommodate the
capacity requirements as the user demand changes. Thus it
now becomes an important issue to dynamically provision
and utilize server resources in an efficient manner.

In this paper, we present a novel distributed algorithm
that selects game servers for a group of game clients partic-
ipating in large scale interactive online games. The goal of
the server selection algorithm is to select the minimum num-
ber of servers while satisfying the real-time delay constraint
of the game session. To this end, we develop a synchroniza-
tion delay model for interactive games, formulate the server
selection problem, and prove that finding an optimal solu-
tion to the considered problem is NP-hard. The proposed
algorithm, called zoom-in-zoom-out, is adaptive to session
dynamics (e.g. clients join and leave) and lets the clients
select appropriate servers in a distributed manner such that
the number of servers used by the game session is minimized.
Using simulation, we present the performance of the pro-

posed algorithm with various zoom-in-zoom-out techniques
and show that it is simple yet effective in achieving its de-
sign goal. In particular, we show that the performance of
our algorithm is comparable to that of a greedy selection
algorithm, which requires global information and excessive
computation.

The remainder of this paper is organized as follows. Sec-
tion 2 presents synchronization delay model and problem
formulation. Section 3 presents the proposed server selection
algorithm. Section 4 presents the performance of the pro-
posed algorithm in comparison with more expensive greedy
algorithm. Section 5 presents an overview of related work,
and finally Section 6 concludes the paper.

2. PROBLEM FORMULATION

2.1 System model
In our model, a server refers to an entity that calculates

and simulates the game states based on the players’ actions,
and a client refers to an entity that renders and presents
the game states to the player. We assume that a virtual
persistent world of the game is divided into multiple regions,
where there are relatively few game players (compared to
the number of users in the entire game world) in each region
interact with one another in a direct manner. We call the
persistent state of a region as the sessions.

For simplicity, we assume a mirrored-server architecture,
where multiple game servers are interconnected via well pro-
visioned links. In this architecture, each client is assigned
to one of the servers, called the contact server, which is re-
sponsible for forwarding the client’s action data to all the
other servers participating in the same game session. This
effectively defines a one-to-one mapping from a client to a
server. We call this mapping an allocation. Upon receiving
all clients’ actions that belong to the same time slot, each
game server independently calculates a new game state and
sends the updated state to the directly connected clients.

For accurate game simulation and presentation, game eve-
nts generated by the players must be ordered according to
a global clock. In many practical game systems, however,
time is divided into discrete slots and events that have been
generated during the same time slot are considered to have
happened simultaneously [8, 9]. We define the synchroniza-
tion delay between a client and a server as the time differ-
ence between the instance that the client sends its players’
actions and the instance that the client renders a new game
state in response to the actions sent to the server. This syn-
chronization delay depends on the network latency from the
client to the server (upstream latency), processing time at
the server, and the network latency from the server to the
client (downstream latency).

To synchronize game play and interaction amongst all
players participating in the same session, the game system
must take into account synchronization delays between all
clients in the session and the corresponding servers. More
specifically, a game server must calculate a new game state
after action data from the farthest client have arrived. Oth-
erwise, the action from the farthest client will not be syn-
chronized with others. Similarly, at the client side, a new
game state should not be presented to the players until the
same game state is delivered to the farthest client from the
server. Otherwise, the game simulation becomes unfair to
the farthest clients [3].

2.2 Delay model and problem statement
Let C denote a set of game clients that participate in the

game session and let S denote a set of available game servers.
Servers in S form an undirected connected graph, called the
server network. Let ds(j, k) denote the shortest distance (or
latency) between servers sj and sk, and let dc(i, j) denote
the distance between a client ci and a server sj . Suppose
client ci is mapped to server sj in some allocation A. Then
we say server sj serves client ci under A. We define Cj ⊂ C
as the set of clients that are directly connected to the server
sj , i.e., Cj = {ci ∈ C|sj serves ci}. We also define the
session server set, S(A) under the allocation A as the set of
servers that serve at least one client in C, i.e., S(A) = {sj ∈
S|Cj 6= φ}.

Let Du(i, k) be the upstream distance between a client ci

and a server sk. We note that Du(i, k) is defined not only
for a client and a server that are directly connected, but also
for a client and a server connected indirectly via some other
servers forwarding the client ci’s actions to server sk through
the shortest path in the server graph, i.e., Du(i, k) = dc(i, j)+
ds(j, k), where sj is the contact server for ci. On the other
hand, the downstream distance from sj to a client ci ∈ Cj is
just dc(i, j) as ci receives game states from its contact server
sj .

We now consider the overall synchronization delay for a
session. As previously discussed, for a server to simulate
game state in a fair manner it must wait until all the action
data from all the clients in the session to arrive. In other
words, a server sj must wait for maxi∈C Du(i, j) before game
simulation. Then it processes the action data and sends
out updates to all the clients it serves. This game state
update takes up to maxi∈Cj

dc(i, j) for the farthest client.
Since this condition must hold for all servers, the overall
session synchronization delay Ds(A) under allocation A can
be written as:

Ds(A) = max
j∈S(A)

{max
i∈C

Du(i, j) + max
i∈Cj

dc(i, j)}

Based on this session synchronization model, we now for-
mulate our problem. Our goal in this paper is to minimize
the number of servers allocated to a session, while satisfying
a given synchronization delay requirement. Formally stated,
given a network topology consisting of a set of servers S and
a set of clients C, and a real-time delay requirement ∆, find
a server allocation Amin that minimizes |S(A)| subject to
Ds(A) ≤ ∆ and |S(A)| ≥ 1. This problem is NP-hard as it
generalizes the set-covering problem [6].

Theorem 1. The considered server allocation problem is
NP-hard.

Proof. Consider, in our model, the case when the dis-
tance between every pair of servers is zero. Then the opti-
mization goal in this specific case would be to minimize the
number of servers subject to the condition that every client
is within distance ∆/2 from the server, to which it is allo-
cated, where ∆ is the sync-delay bound in our model. This
is exactly a set-covering problem, in which a set is defined
by the set of clients that are within the distance ∆/2 from
each server. Since our problem generalizes the NP-hard set-
covering problem, it is also NP-hard.

(a) The topology (b) Allocation A1

(c) Allocation A2 (d) Allocation A3

Figure 1: Examples of game server allocation

3. SERVER SELECTION ALGORITHM

3.1 Impact of Server Allocation
In this section, we first analyze the impact of server al-

location using an example. Figure 1 illustrates a simple
example with 3 servers, s1, s2, and s3, and 2 clients, c1 and
c2. Figure 1(a) shows a network configuration, where the
solid lines represent the latency between the servers in the
server network, and the dashed lines represent the latency
between each server-client pair.

Figures 1(b) – 1(d) show three different server allocations,
A1, A2, and A3, where allocated session servers are marked
in gray. According to the session delay model, the overall de-
lay for allocation A1 is 10 with both maximum upstream and
downstream delays being 5 (between c2 and s1). Allocating
s2 instead of s1 as the session server (allocation A2) re-
duces the synchronization delay to 6 (upstream/downstream
3 each). Note that, though the end-to-end distance between
the clients are the same in A1 and A2, the synchronization
delay is reduced by placing the server at the center of the
network. Finally, if we allocate two servers at the edges of
the server network as in allocation A3, the synchronization
delay decreases to 4 with the upstream latency 3 (e.g., along
the path c1-s1-s2-s3) and the downstream latency reduced
to 1. In this case, the reduction comes from placing the
servers near the clients at the expense of using two servers.

From this example, we can draw the following intuition to
design our server selection algorithm:

• If we had to choose only one server to minimize the
overall synchronization delay, then it would be opti-
mal to select a server that minimizes the maximum
distance (not the average) to all clients. In graph the-
ory, such a node is called the center of a network. In
this paper, we call it a core server.

• If it is faster to forward packets via the contact server
over the server network than to send packets to a re-
mote server directly, allocating servers near the “edge”
of the server network (and close to the clients) reduces
the overall synchronization delay. However, this comes

at the expense of increasing the number of servers in
the session.

Based on these observations, we design a distributed server
selection algorithm as follows.

3.2 Server Selection Algorithm
Given a set of clients C, a set of servers S, and delay

requirement ∆, do the following:

• STEP 1: Initially allocate each client ci ∈ C to the
closest server in S. Denote this initial contact server
of ci by s0(ci). This produces an initial allocation
A. We assume that the session has been provisioned
to satisfy the delay requirement ∆, i.e., Ds(A) ≤ ∆.
Otherwise, note the violation, and call for a high level
session regrouping.

• STEP 2: Find the core server, s∗ ∈ S, of the session
that minimizes the maximum distance to the clients.
Finding the core of a network in a distributed sys-
tem has many interesting applications (e.g. core-based
multicast tree construction), and thus has been stud-
ied in various contexts. In this paper we employ a
tournament-based method studied in [17].

• STEP 3 (Zoom-In): For each client ci, do the fol-
lowing. Let sk(ci) be the current contact server of ci.
Also, among the servers that are further from ci than
sk(ci) but are closer to s∗, find the closest server to
ci, and denote it by sk+1(ci). Then probe sk+1(ci) to
see whether the session synchronization delay would
still be within the bound ∆ if the client migrated to
sk+1(ci). If yes, sk+1(ci) is the new contact server for
ci. Repeat this step for all clients until no client can
migrate to a server that is closer to s∗.

• STEP 4 (Zoom-Out): For each client ci, do the fol-
lowing. Let sk(ci) be the current contact server of
ci, and S′ be the current set of contact servers for
all clients. Then among the servers in S′ that are
closer to ci than sk(ci), find the farthest server from
ci, and denote it by sk+1(ci). Then probe sk+1(ci) to
see whether the session synchronization delay would
still be within the bound ∆ if the client migrated to
sk+1(ci). If yes, sk+1(ci) is the new contact server for
ci. Repeat this step for all clients until no client can
migrate to a server that is farther from s∗.

The procedure in STEP 3 has the effect of moving a clus-
ter of the session servers toward the core server. With this
zoom-in procedure, the overall synchronization delay tends
to increase. When this step cannot proceed without increas-
ing the synchronization delay beyond the real-time delay,
this zoom-in process terminates. By performing the proce-
dure in STEP 4, we seek to further reduce the number of
session servers. This is possible because after the zoom-in
procedure, servers near the core server are most likely to
have been selected. However, some of them can be removed
without affecting the overall synchronization delay.

The computation overhead incurred at each client is not
too severe. The step 1 requires the communication overhead
of O(|S|) for each client for exact computation. In most
practical situations, however, it will be O(k) where k � |S|
is the number of servers in the client’s region. The step 2

S*

c0

c2

c1

c4
c3

(a) Initial allocation

S*

c0

c2

c1

c4
c3

(b) Zoom-In

S*

c0

c2

c1

c4
c3

(c) Zoom-Out

S*

c0

c2

c1

c4
c3

(d) Final allocation

Figure 2: ZIZO algorithm

requires a total of log2 |S| tournaments for the entire session.
The step 3 requires either O(1) or O(k) depending on the
type of the zoom-in algorithm (see Section 3.3). The step
4 requires O(m) where m � |S| is the number of session
servers.

Figure 2 illustrates the above procedure through an exam-
ple. In Figure 2(a), each of 5 clients, c0, · · · , c4 is initially
allocated to the closest server. In this allocation, we have 5
servers participating in a game session by the clients. Now,
in Figure 2(b), each client incrementally probes servers that
are closer to the core server, for example, client c2 migrates
twice toward the core server as long as the delay bound is
satisfied. As a result of the zoom-in procedure, three servers
near the core server are selected. Now, clients further seek
to reduce the number of session servers by moving out from
the core server. For example, in Figure2(c), two clients, c1

and c2, were able to migrate to the session servers closer
than the core server, with s∗ no longer being allocated to
any client. The final server allocation is shown in Figure
2(d), with only two servers being selected by the procedure.

3.3 Implementing the Selection Algorithm
There are several issues when one tries to implement the

above mentioned server selection algorithm. This subsection
briefly discusses them.

The first issue concerns game session migration. Although
a game architecture based on on-demand technologies en-
ables our dynamic server selection, migrating a game session
from one server to another is a relatively expensive proce-
dure. As a result, probing a new server and trying to migrate
the game session in each zoom-in and zoom-out step by a
client is not a good idea. We address this issue by handling
the probing and zoom-in zoom-out steps in the control and
management plane, not in the actual game session plane. To
support this operation, a server that has been probed by a

client runs a simulation on synchronization delay computa-
tion and maintains a virtual state. The clients keep probing
the next possible server following the server selection algo-
rithm until they reach a steady state. Only when the entire
zoom-in and zoom-out process terminates, do the clients co-
ordinate and move the game session to the newly allocated
servers. In this way, we can minimize the management and
session migration cost.

Secondly, the performance of the “zoom-in” and “zoom-
out” procedures in our proposed algorithm relies on the ef-
fectiveness of the server search algorithm. We consider two
types of search methods. The first method is a full search
of all servers in S. This may be costly if S is large, but
will provide the most accurate result. The second method is
an approximation based on a hypothesis that when a client
selects the next server, it will be most likely on the short-
est path from the client to the core server. For the second
method, once we discover a core server s∗, we first construct
a shortest-path tree spanning all the servers in S(A) with s∗

being the root. This tree may include a non-session server
but all the leaf nodes are session servers. We migrate the
clients along this tree when they zoom-in or zoom-out. More
precisely, when zooming in, each client probes the parent of
the current contact server in the tree. Similarly, when zoom-
ing out, a client probes the server that is closest to the client
among the children of the current contact server.

Finally, we consider two different types of client migration
strategies for the zoom-in and zoom-out process. In a naive
implementation, each client may individually probes candi-
date servers and make a decision on migration. In this case,
it is possible that, while some clients connected to a server
could change their contact server, others may fail to mi-
grate because it would violate the overall delay constraints.
Therefore this uncoordinated migration of clients may result
in a suboptimal result by temporarily increasing the number
of servers allocated to the session. An alternative approach
we consider in this paper is to coordinate the migration of
all clients on the same server simultaneously, and move them
only when all the clients can migrate to new servers. In the
next section, we present the effectiveness of the considered
design alternatives using a simulation-based study.

4. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-

posed algorithm through simulations. For simulation, we use
a two-level, Internet-like topology generated by the BRITE
topology generator [4]. Out of 5,000 nodes (50 AS × 100
nodes per AS) generated by BRITE, we randomly select a
total of 100 servers and 50 clients to participate in the same
game session. Note that we have selected a relatively small
number of clients (with respect to that of the servers) in the
simulation since our goal is to evaluate the performance of
the algorithm for a “single” session. In the aggregate, there
will be many such sessions and the total number of clients
will be much larger than that of servers. We measure the
performance results by repeating each simulation 100 times.
To emulate the well-provisioned server network with little
congestion, the inter-server latency is set to be smaller than
the client-to-server latency. In particular, we show the case
when the latency between two servers is reduced to 25% of
the latency in underlying topology given by the topology
generator, while our findings hold regardless of the particu-
lar reduction factor.

For evaluation, we first compare the performance of the
proposed algorithm to a centralized algorithm that performs
the server selection in a greedy manner. To briefly describe
the idea, the greedy algorithm tries to add a new server to
a session server set by exhaustively searching for a server
that, when added, results in the minimum increase in the
synchronization delay. When a new server is added, each
client calculates the delay to the new server and connects
to it if it gives lower synchronization delay. In this way,
the synchronization delay is guaranteed to decrease mono-
tonically as the number of servers increases. This greedy
algorithm is similar to the one presented in [13] in the con-
text of the Web server replica placement problem, which
has been shown to perform closely to the optimal solution.
Note that this greedy algorithm is not only impractical to be
applied in a distributed networking environment, but also is
computationally expensive because it must evaluate the new
synchronization delay for each of the servers that have not
yet been added to the session server set.

In the results shown in this section, we use some abbre-
viated indices to indicate different ways of migrating the
clients as explained in Section 3.3: -Tr(migrate clients along
a tree) and -Sr(migrate clients by “search”) distinguish two
different ways of selecting the next server to migrate to,
and -C(migrate each client individually) and -S(migrate all
clients in a coordinated manner) represent two different ways
in moving clients from one server to another.

0

5

10

15

20

25

30

25 30 35 40 45 50 55

se

rv
er

s
se

le
ct

ed

delay bound (msec)

ZIZO-Tr-C
ZIZO-Tr-S
ZIZO-Sr-C
ZIZO-Sr-S
Greedy

(a) server capacity unlimited

0

5

10

15

20

25

25 30 35 40 45 50 55

se

rv
er

s
se

le
ct

ed

delay bound (msec)

ZIZO-Tr-C
ZIZO-Tr-S
ZIZO-Sr-C
ZIZO-Sr-S

(b) server capacity limited

Figure 3: The number of servers allocated as a func-

tion of delay bound

Figure 3 depicts the number of servers allocated by the
proposed algorithms and the greedy algorithm. We vary the
sync delay bound ∆ along the x-axis. Figure 3(a) shows the
results when the servers’ capacity is unbounded, i.e., each
server can serve an arbitrary number of clients, and Figure

3(b) is when each server’s capacity is bounded by 10 clients.1

From Figure 3(a) we find that the performance of our pro-
posed algorithm is comparable to that of the greedy algo-
rithm. We also note that if the delay bound is sufficiently
large, the optimal number of servers for the unbounded case
is 1, and the optimal number of servers for the bounded
case is 5. We observe that both ZIZO (zoom-in-zoom-out)-
Sr-C and ZIZO-Sr-S find this solution as the delay bound
increases. On the contrary, ZIZO-Tr-C and ZIZO-Tr-S are
slow in convergence in the unbounded case, and fail to reach
the optimal point in the bounded case. From this result, we
find that the performance of the proposed algorithm is sen-
sitive to the server search mechanism. More specifically,
we conclude that the full search algorithm provides much
better performance than the tree-based search does. On the
other hand, we observe that the coordination in client migra-
tion offers little benefit. This observation implies that each
client can independently make a greedy decision regarding
its server selection, and they can still achieve as good allo-
cation of the server resources as the case with explicit client
coordination.

0
2
4
6
8

10
12
14
16

25 30 35 40 45 50 55 60 65

m

ig
ra

tio
n

pe
r

cl
ie

nt

sync-delay bound

ZIZO-Tr-C
ZIZO-Tr-S
ZIZO-Sr-C
ZIZO-Sr-S

Figure 4: The number of server migrations per client

Figure 4 plots the average number of migrations for a
client until it converges. Recall that these migrations do
not happen in the data session domain but in the control
domain. Therefore this graph indicates the computation
overhead and message exchange overhead of each algorithm
rather than the actual session migration overhead. With no
surprise, the tree-based search scheme results in less migra-
tions than the full search case. However, the non-tree search
case does not require an excessive number of migrations, ei-
ther, increasing the number of migrations by only a small
constant factor. In particular, the uncoordinated client mi-
gration (ZIZO-Sr-C) seems to strike a good balance between
performance and complexity.

Finally we evaluate the adaptivity of the proposed algo-
rithm by considering the case when the clients incrementally
join the gaming network. Whenever a client joins the net-
work, we perform the server selection algorithm on top of
the current allocation obtained when the last client joined.
Figure 5 presents the result when finally all 50 clients have
joined. Compared to Figure 3(a) when all the clients are
given initially, we observe that the “on-line” performance of
our algorithm is similar to the “off-line” case. This is par-
ticularly true for the non-tree search case (ZIZO-Sr-C and

1We do not compare the results of the case of bounded server
capacity to the greedy method since the greedy algorithm
cannot be properly applied to such cases.

0

5

10

15

20

25

25 30 35 40 45 50 55

se

rv
er

s
se

le
ct

ed

delay bound (msec)

ZIZO-Tr-C
ZIZO-Tr-S
ZIZO-Sr-C
ZIZO-Sr-S

Figure 5: The number of servers allocated after the

clients incrementally join

ZIZO-Sr-S). Thus we conclude that the proposed algorithm
is adaptive to the session dynamics.

5. RELATED WORK
In the context of real-time group communication, our prob-

lem shares some similarity with the delay-constrained mul-
ticast tree construction problem [11, 15]. The goal of the
delay-constrained multicast tree construction problem is to
construct a lowest-cost multicast tree with an additional
constraint of an upper bound on the end-to-end delay. Our
work differs in that the delay present in server-client gam-
ing networks is not the end-to-end delay but the nonlinear
combination of client-to-server and server-to-server delay as
given in our delay model.

Our work expands the dual of the minimum K-center
problem [1], in which the number of servers is to be min-
imized when the maximum distance between clients and the
nearest server is given, into a case where the inter-server
delay must be taken into account as well. The (log(N)+1)-
approximation bound is known for this problem, and we are
currently investigating the possibility of finding a formal ap-
proximation bound for our problem.

Saha et al. [14] have proposed an on-line games hosting
platform by developing middleware based on existing grid
components. The proposed gaming architecture supports
various aspects of game service provisioning and manage-
ment including account management, game software update
and distribution, and server resource provisioning. In the
commercial world, Butterfly.net [5] is implementing the idea
of building a scalable gaming infrastructure based on grid
computing technology. However, both these works focus on
architectural issues, leaving such issues as server allocation
unaddressed.

6. CONCLUSION
In this paper, we presented a novel distributed algorithm

that dynamically selects game servers for a group of game
clients participating in large scale interactive online games.
The goal of server selection is to minimize server resource us-
age while satisfying the real-time delay constraint. The pro-
posed algorithm, called zoom-in-zoom-out, is adaptive to ses-
sion dynamics and lets the clients select appropriate servers
in a distributed manner such that the number of servers
used by the game session is significantly reduced compared
to when clients select the closest servers. We have consid-
ered various zoom-in techniques that the clients can imple-

ment. Using simulation, we have shown that the full search
mechanism during the zoom-in procedure results in better
performance than the tree-based alternative. We have also
shown that clients can perform this zoom-in procedure with-
out explicit coordination and still can achieve good results.
Overall our algorithm has been shown to perform compa-
rable to a greedy selection algorithm, which requires global
state information and excessive amount of computation.

7. REFERENCES
[1] J. Bar-Ilan and D. Peleg. Approximation algorithms

for selecting network centers. In Proc. 2nd Workshop
on Algorithms and Data Structures, Lecture Notes in
Comput. Sci. 519, pages 343–354, 1991.

[2] D. Bauer, S. Rooney, and P. Scotton. Network
infrastructure for massively distributed games. In
NetGames’02, April 2002.

[3] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming in age of empires and beyond.
In Game Developers Conference 2001.

[4] BRITE. http://www.cs.bu.edu/brite/.

[5] Butterfly.net. http://www.butterfly.net/.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
second edition, 2001.

[7] E. Cronin, B. Filstrup, and A. Kurc. A distributed
multiplayer game server system, technical report,
Univ. of michigan. Technical report, May 2001.

[8] C. Diot and L. Gautier. A distributed architecture for
multiplayer interactive applications on the internet,
IEEE networks magazine, vol. 13, no. 4, July/August
1999.

[9] Y.-J. Lin and S. P. Katherine Guo. Sync-MS:
Synchronized messaging service for real-time
multi-player distributed games. In Proceedings of 10th
IEEE International Conference on Network Protocols
(ICNP 2002), November 2002.

[10] M. Mauve, S. Fischer, and J. Widmer. A generic
proxy system for networked computer games. In
NetGames’02, April 2002.

[11] M. Parsa, Q. Zhu, and J. J. Garcia-Luna-Aceves. An
iterative algorithm for delay-constrained
minimum-cost multicasting. IEEE/ACM Transactions
on Networking, 6(4), August 1998.

[12] PlanetSide. http://www.planetside.com/.

[13] L. Qiu, V. Padmanabham, and G. Voelker. On the
placement of web server replicas. In Proc. 20th IEEE
INFOCOM 2001, August 2001.

[14] D. Saha, S. Sahu, and A. Shaikh. A service platform
for online games. In NetGames’03, May 2003.

[15] H. F. Salama, D. S. Reeves, and Y. Viniotis. An
Efficient Delay-Constrained Minimum Spanning Tree
Heuristic, Technical Report TR-96/46, North Carolina
State University. Technical report, 1996.

[16] Terazona. http://www.zona.net/.

[17] D. G. Thaler and C. V. Ravishankar. Distributed
center-location algorithms. IEEE Transactions on
Selected Areas in Communications, vol. 15, issue 3,
April 1997.

