
Server characterisation and
selection for personal metasearch

Paul Thomas

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

May 2008

c© Paul Thomas

Except where otherwise indicated, this thesis is my own original work.

Paul Thomas
27 May 2008

My PhD programme has resulted in several publications:

• Thomas, P., and Hawking, D. Evaluating sampling methods for uncoopera-
tive collections. In Proc. ACM SIGIR (2007). This paper describes a number of
methods for generating random samples and evaluates each on a number of col-
lections. It also introduces a new sampling technique, “multiple queries”, which
produces samples of similar quality to the best current techniques but with sig-
nificantly reduced cost. This work forms the basis of Chapter 4.

• Thomas, P., and Rowlands, T. Estimating the value of automatic disambigua-
tion. In Proc. ACM SIGIR (2007). Poster. A common motivation for personalised
search systems is the ability to automatically disambiguate queries. Following
analysis of log files from three search providers, this paper suggests that auto-
matic disambiguation is of use in only limited situations. Some of this work is
included in Section 3.2.

• Thomas, P., and Hawking, D. Evaluation by comparing result sets in context.
In Proc. CIKM (2006). This paper considers established evaluation techniques for
personal metasearch, personalised search, or enterprise search and introduces a
new technique which offers real judgements in context without significant over-
head. Experiments demonstrate the effectiveness of the method. This work
forms the basis of Chapter 8.

• Hawking, D., and Thomas, P. Server selection methods in hybrid portal search.
In Proc. ACM SIGIR (2005). Exhaustive metasearch methods are not appropriate
in some real-world Web systems. This paper argues instead for a hybrid meta-
search system, and evaluates server selection methods for such a situation. Two
new methods, HARP and AWSUM, are introduced and perform well compared
with established methods. This work is continued, with more methods and a
different evaluation framework, in Chapter 7. Hybrid metasearch models are
discussed in Section 2.1.5.

• Wu, M., Thomas, P., and Hawking, D. TREC 14 enterprise track at CSIRO and
ANU. In Proc. TREC (2005). This paper reports experiments carried out in the
TREC enterprise track by the CSIRO/ANU group in 2005. Email structure was
used in known-item and discussion search tasks. Although email search remains
an important open area, this thesis concentrates on a metasearch framework and
these experiments are not reported here.

The experiments reported in Chapters 4 and 8 were run in collaboration with David
Hawking. In each case the experimental work, including software and analysis, were
original with me. The new sampling technique of Chapter 4 was also original.

Acknowledgements

I am most grateful for the advice, support, and encouragement of my supervisor,
David Hawking. His broad knowledge, technical expertise, and continued good hu-
mour has made this work possible. Thanks too to Peter Christen and Tom Gedeon,
also on my panel, for their support and input.

Colleagues at the CSIRO, the ANU, and elsewhere have provided sound advice
and useful conversations; I would especially like to thank Tom Rowlands, Peter Bailey,
Ross Wilkinson, Tim Tang, Tim′ Jones, Alex Krumpholz, Mark Baillie, Leif Azzopardi,
and Milad Shokhoui for their input. Thanks also to the participants in the “IR and
friends” series for their enthusiasm.

The libraries of the Australian National University and the CSIRO, and the Sta-
tistical Consulting Unit at the Australian National University, have provided a good
deal of support.

I am grateful for the help of the approximately 50 people who participated in the
survey of Section 3.3, and those who distributed it; the approximately 100 people who
participated as test users in experiments of Chapter 8; and the users who participated
in the experiments of Chapter 9.

Additional financial and in kind support during this project was provided by the
CSIRO.

vii

Abstract

A single search interface to all a person’s digital resources, such as email archives,
corporate databases, websites, and subscription services, is appealing but a central
index of all private, corporate, subscription and web data is impractical. A metasearch
approach can instead integrate any number of existing search services over a variety
of data.

This thesis advocates and examines personal metasearch, or metasearch over a user’s
entire set of digital resources. Metasearch has been well studied in other environ-
ments, but has not before been considered with this range of resources; therefore
several aspects are re-examined in this new application. Experiments in document
sampling, collection size estimation, language modelling, and server selection, all im-
portant subproblems in metasearch, demonstrate that established techniques which
work well in traditional settings do not necessarily operate well over the wide range
of resources in personal applications.

Many techniques for sampling documents from a collection are biased, especially
towards longer documents; other metasearch subproblems often rely on unbiased
samples and their performance is adversely affected. A new technique for generat-
ing samples is therefore proposed and evaluated, and results indicate improvements
in sample quality.

Techniques for collection size estimation, language modelling, and server selection
are also investigated in a personal metasearch framework. Several techniques prove
inappropriate or have been over-fitted in earlier work, but some appear useful. In each
case, performance is improved with better-quality samples of documents as input.

Finally, standard evaluation techniques are a poor fit to the personal metasearch
environment, and this thesis proposes a new method based on a functioning search
tool inserted into the natural retrieval process. This allows study of real information
needs, works with dynamic and/or private collections, and records judgements in
their full context. It has been validated in a number of experiments and used with a
working personal metasearch tool to compare methods for server selection.

Contributions of this thesis include the first analysis of personal metasearch, from
a theoretical basis and from studies of potential users; a new algorithm for document
sampling which is better able to operate over the wide variety of data sources found in
this application; an evaluation of a number of metasearch algorithms and an analysis
of common failures; an evaluation technique suited to personal and dynamic collec-
tions; and a platform for further research.

ix

x

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Thesis outline . 2

2 Metasearch 5
2.1 Models for search . 5
2.2 Implementation . 11
2.3 Operational systems . 14
2.4 Summary . 16

3 Personal metasearch 19
3.1 Alternatives . 19
3.2 Personalisation . 21
3.3 A survey of information sources . 22
3.4 PIS, a personal information searcher . 26
3.5 Research problems in personal metasearch 27
3.6 Summary . 28

4 Server characterisation: sampling documents 29
4.1 Notation . 30
4.2 Related work . 30
4.3 Multiple queries . 37
4.4 Sampling cost . 38
4.5 Sampling experiments . 39
4.6 Results . 43
4.7 Conclusions . 49

5 Server characterisation: size 51
5.1 Related work . 52
5.2 Size estimation experiments . 60
5.3 Results . 61
5.4 Conclusions . 72

xi

xii Contents

6 Server characterisation: subject matter and language 73
6.1 Related work . 73
6.2 Language modelling experiments . 78
6.3 Results . 83
6.4 Conclusions . 89

7 Server selection 91
7.1 Related work . 92
7.2 Selection experiments . 112
7.3 Results . 117
7.4 Conclusions . 129

8 Evaluating personal metasearch 131
8.1 Established approaches . 131
8.2 Embedded comparisons . 142
8.3 Validating the design . 146
8.4 Case study . 153
8.5 Applications . 154
8.6 Conclusions . 154

9 Evaluating server selection 157
9.1 Experiment . 157
9.2 Results . 159
9.3 Observations . 160
9.4 Conclusions . 161

10 Summary and conclusions 163
10.1 Summary of findings . 163
10.2 Building a personal metasearch tool . 165
10.3 Future work . 166
10.4 Overall conclusion . 167

A Notation and terminology 169
A.1 Notation . 169
A.2 Terminology . 171

B Instruments for searcher survey 173

C Instruments for evaluation experiments 177
C.1 Demographic questions . 178
C.2 First experiment . 179
C.3 Later experiments . 180

D Instruments for server selection evaluation 181
D.1 Sorting with SM-TSS . 183

Contents xiii

E Software 185
E.1 Interface . 185
E.2 Modules . 185

Bibliography 191

xiv Contents

List of figures

2.1 Models for search . 6
2.2 A metasearch process . 12

3.1 Information sources available to an individual 20
3.2 Two approaches to personalising search tools 21
3.3 PIS, a personal information searcher. 27

4.1 Calculations for pool-based sampling . 34
4.2 Email samples for test “S” . 46

5.1 The Schumacher-Eschmeyer (capture history) technique 55
5.2 Errors in size estimates, given random samples 63
5.3 Errors in size estimates, with and without the correction of Shokouhi

et al. 66
5.4 Improvement in size estimates with more interactions 67

6.1 Quality of models . 84
6.2 Improvement in quality measures with more documents 86
6.3 Improvement in quality measures with more documents from multiple

queries samples . 87
6.4 Improvement in quality measures with more documents from query-

based samples . 88

7.1 Similarity under the high correlation scenario 95
7.2 Example calculations for ReDDE . 105
7.3 Performance of server selection algorithms 119
7.4 Correlation of collection rankings with size-based ranking 120
7.5 Queries for which .GOV is the best collection 122
7.6 Queries for which calendar is the best collection 123
7.7 Performance of server selection algorithms, given models from best

samples . 125
7.8 Performance of server selection algorithms, given models from typical

samples . 126
7.9 Correlation between measures of model quality and selection perfor-

mance . 128

8.1 Sample two-panel interfaces . 143
8.2 Extra feedback from the two-panel interface 144

xv

xvi List of figures

9.1 Server selection for each panel in PIS . 158

D.1 Logged data from PIS . 183
D.2 Reviewing logged data in PIS . 183
D.3 The SM-TSS algorithm . 184

E.1 The PIS software . 186
E.2 PIS with two panels . 186
E.3 Extra feedback from PIS . 187

List of tables

4.1 Characteristics of sampling methods . 31
4.2 Collections used in the experiments . 40
4.3 Metasearch testbeds in the literature . 41
4.4 Estimated cost for each sampler . 43
4.5 Email samples for test “T” . 44
4.6 χ2 results for test “T” . 45
4.7 χ2 results for test “S” . 45
4.8 Summary of sampling methods . 50

5.1 Characteristics of size estimation methods 52
5.2 Size estimates compared, using random samples 64
5.3 Size estimates compared, using the multiple queries sampler 69
5.4 Size estimates compared, using the QBS sampler 70

6.1 Term frequencies extracted from the email collection 80
6.2 Document frequencies extracted from the email collection 81

7.1 Characteristics of server selection methods 93

8.1 User demographics for first evaluation experiment 147
8.2 User demographics for second evaluation experiment 149
8.3 User demographics for third evaluation experiment 151
8.4 User demographics for fourth evaluation experiment 152
8.5 User demographics for evaluation case study 153
8.6 Summary of evaluation validation experiments 155

9.1 Inferred preferences for server selection 160
9.2 Inferred preferences with alternative indicators 161

xvii

xviii List of tables

Chapter 1

Introduction

Many people routinely access information from several different computer-based re-
sources, such as email archives, corporate databases, local and public websites, and
subscription services. Typically, each resource has its own search tool, each with a dis-
tinct interface and set of capabilities. This multiplication of tools means that a person
who wants to find some information which could be in any one of these sources —
or which may be scattered amongst several — faces increased work and is exposed to
certain types of error.

This thesis considers one solution, a personal metasearch system which integrates
arbitrary combinations of existing search tools. In metasearch, a single tool provides
a unified interface to a number of otherwise independent search servers, forward-
ing a user’s query to each of them and collating result sets. Each server can operate
normally, with its own index and performing any local optimisations as needed, and
copies of documents are not necessarily needed by the metasearch tool.

An effective metasearch system raises interesting research questions in several ar-
eas including source discovery, characterisation, selection, query translation, result
merging, and presentation. This thesis considers the subproblems of server character-
isation, or inferring parameters such as the size and subject matter of each resource,
and server selection, the problem of identifying the resources most likely to be of use
for a given query. While both problems have been well studied in other environments,
they have not before been considered with the range of resources likely to be used in
personal metasearch. This thesis presents the first work in this setting.

Experiments reported here consider document sampling, collection size estima-
tion, language modelling, and server selection and demonstrate that established tech-
niques which work well in traditional settings do not necessarily operate well over
the range of resources in personal applications. These experiments also confirm the
interdependence of each subproblem; poor-quality document samples, for example,
provide poor-quality size estimates and then poor language models and server selec-
tion in turn. Despite this, several techniques show promise and it has been possible to
build and test a personal metasearch tool.

Evaluating personal metasearch tools or algorithms also presents a new set of chal-
lenges, and this thesis suggests and validates a new evaluation technique which is
appropriate for applications such as personal metasearch which include private or
personal documents, fast-changing collections, and in which personal context plays

1

2 Introduction

an important role. Experiments with a working personal metasearch tool and this
novel evaluation technique demonstrate it can be used to compare metasearch algo-
rithms in situ and that the results of these comparisons broadly, but not entirely, agree
with those from test collections.

1.1 Thesis outline

The remainder of this thesis is arranged as follows. Since there is little overlap be-
tween the literature on, for example, server characterisation and system evaluation,
related work is considered in each chapter as appropriate.

Metasearch, in contrast to other problems in information retrieval, assumes re-
trieval tasks are carried out over multiple independent collections. Chapter 2 dicusses
this and introduces five models od the retrieval process. Consideration of these sug-
gests a hybrid metasearch model, with direct access to some collections and only in-
direct access to others, is most feasible for operational tools. Chapter 2 also outlines a
process for metasearch, including the important steps of server characterisation and
selection.

Previous applications of metasearch have operated over sets of public collections,
and over documents which are more or less homogeneous. Chapter 3 suggests an al-
ternative application, personal metasearch, which is the focus of this thesis. This chapter
reports on a survey of computer users which confirms that people make use of a great
many information sources, with a wide variety of characteristics, and indicates that a
personal metasearch tool could be of real benefit.

For a tool to be of most use, however, several outstanding questions need to be
considered. This thesis considers two: server characterisation and server selection.
Chapters 4 to 6 consider server characterisation, the process of determining attributes
such as the number of documents in each collection and the range of subjects covered;
and Chapter 7 considers server selection, the process of choosing the server or servers
most likely to be useful in answering a given query.

An essential first step in most characterisations is collating one or more sam-
ples of documents from each collection. These samples are generally assumed to be
randomly selected, but random selection is a challenge without the cooperation of
servers. Chapter 4 considers a range of techniques for generating samples, without
assuming server cooperation, and for the first time evaluates each using two tests for
bias. This chapter also introduces a new testbed, more appropriate for personal meta-
search techniques than those used to date. Although all sampling techniques appear
biased, there is a good deal of variation and a technique proposed here, “multiple
queries sampling”, seems promising for the range of collections likely in personal
metasearch.

Chapter 5 discusses techniques for estimating the size of collections. Size is an
important characteristic in its own right, as a proxy for coverage and completeness,
and is also used in language modelling and server selection. Several algorithms have
been proposed for estimating collection size in a metasearch environment, and five

§1.1 Thesis outline 3

of these are tested. No single size estimation technique works well in all cases, but
broad patterns suggest some might be useful for a working tool. The quality of size
estimates is also shown to depend upon the quality of the document samples used as
input; in particular, those algorithms which produce more biased samples lead in turn
to poorer size estimates. Estimates using samples from the multiple queries algorithm,
however, are largely indistinguishable from those using perfectly random samples.

Chapter 6 concludes work on characterisation by considering techniques for infer-
ring the subject matter and language of collections. Two main approaches are consid-
ered: classifications into topic hierarchies and simple language modelling. Language
models are examined further in a series of experiments, where the quality of an in-
ferred model is again shown to depend on the quality of the document samples given
as input. Again, models based on the multiple queries sampler are largely indistin-
guishable from those based on true random samples. Three measures of model quality
are also investigated.

Using the samples, size estimates, and models from previous chapters, Chapter 7
discusses the problem of server selection: choosing the collection, or collections, most
likely to be useful for a given query. A large number of techniques have been pro-
posed for this task, and again a number of these are tested in a personal metasearch
context. Many methods are shown to be biased toward larger collections, regardless
of utility, but a method based on Kullback-Leibler divergence performs well in a va-
riety of circumstances. Once again, however, the performance of selection techniques
depends crucially on the quality of the samples, size estimates, and models used as
input.

With techniques for server characterisation and selection it is possible to build a
personal metasarch tool. Having built such a tool, however, questions remain: how
can it be evaluated? How can one choice of algorithm or parameter be compared with
another? Experiments in Chapters 4 to 7 make use of a fixed testbed and invented
queries, which are assumed to be representative of real use. This is a standard tech-
nique, but in Chapter 8 a survey of this and other options suggests none are a good
match for the personal metasearch environment. An alternative technique, which em-
beds evaluation in a working search tool, is proposed instead and tested in a series of
experiments. These experiments demonstrate that the technique is able to distinguish
high- from low-quality result sets, under a variety of circumstances, and that it can do
so with minimal overhead for users or experimenters while still allowing for a user’s
full context, real information needs, and private or fast-changing collections. This
technique is used in Chapter 9 to evaluate two of the server selection methods consid-
ered earlier, and this case study confirms that the embedded evaluation technique is
practical and can produce useful comparisons.

Finally, Chapter 10 summarises the work of previous chapters and suggests direc-
tions for future research.

Appendix A summarises the notation and terminology used in this thesis, and
Appendices B to D have details of the instruments used in survey and evaluation
experiments. The software used in Chapters 8 and 9 is described in Appendix E.

4 Introduction

Chapter 2

Metasearch

Computer users typically have access to a variety of data sources, covering different
subjects and with different methods for access [Barreau and Nardi 1995; Teevan et al.
2004]. This chapter considers techniques for information retrieval in these multiple-
-source situations.

Section 2.1 describes five models for search over multiple collections. Two tra-
ditional designs, the “multiple services” and “central index” models, are commonly
implemented but are, respectively, prone to error and not generalisable. Metasearch
models, which provide a single interface to a number of search tools, are more promis-
ing, and Section 2.1.5 argues for a “hybrid metasearch” model for many applications.
Section 2.2 discusses implementation issues for metasearch tools, including a sum-
mary of each step in the process, and Section 2.3 considers existing metasearch tools
and related work.

In this discussion, a document is considered the basic unit of retrieval. This may be,
for example, a piece of email; a posting to an online forum; a web page;1 or a single
record from a database. A collection is a set of documents held at the same repository,
such as all archived email or a complete database. Servers are applications, local or on
the network, which provide search capabilities for a collection: for example, an email
application’s “search” function or a database front-end. Section A.2 summarises this
and other terminology used in this thesis.

2.1 Models for search

There are several feasible models for search services which span more than one data
source. Extreme cases are multiple services, a central index, and exhaustive meta-
search; other models are selective metasearch or a hybrid approach (Figure 2.1).2 In
this section, each model is described and implications considered for quality, speed,
and cost of search.

1This thesis follows the convention of using “web” for any set of documents mainly using HTTP
[Fielding et al. 1999] and HTML [Raggett et al. 1999], including local or private webs, and capitalised
“Web” for the publicly-available World-Wide Web.

2The terminology in this section is based on that of Craswell et al. [2004].

5

6 Metasearch

(a) Multiple services (b) Central index

(c) Exhaustive metasearch (d) Selective metasearch

(e) Hybrid metasearch

Figure 2.1: Models for search. Arrows down the page represent queries; arrows up the page
represent sets of documents.

§2.1 Models for search 7

2.1.1 Multiple services

The “multiple services” model (Figure 2.1(a)) is the simplest of the five. In this model,
there is a one-to-one correspondence between collections and search tools. Each col-
lection is indexed separately, and each index has its own search tool with its own
interface. This represents the status quo for most users and collections: for example,
on a typical PC there may be individual tools (and indexes) for email, web search, file
search, and any databases. This is further discussed in Section 3.3 following.

Although simple to implement and well-understood, this model imposes a signif-
icant burden on users and allows certain types of errors:

Cognitive burden If each collection presents its own search interface, a user with
access to more than one collection must choose amongst different tools to find infor-
mation they need. For each search task, they must decide where the required infor-
mation is likely to be held; launch the appropriate tool for that collection; translate
their information need into an appropriate query, or sequence of interface actions, for
the tool; and scan the returned result set for the information they need. If the need is
not satisfied after an initial query and the user does not give up, he or she must either
reformulate the query to search the same collection or, worse, repeat the entire process
with a different collection.

The load imposed by this model is significant: as well as the burden of remember-
ing how to operate a separate tool for each collection, and the capabilities and features
of each, a user must decide which collection is the most appropriate for each informa-
tion need.

Errors The requirement that the user choose a collection within which to search
makes certain types of error possible.

The first may occur when a collection is chosen and searched, and no relevant
information is returned; a user may give up at this point unaware that there is relevant
information in one or more other collections and that a second search could return it.
The second type of error made possible by the multiple services model occurs when
a user chooses a collection, searches it, and finds apparently relevant information;
however, unbeknownst to the user, more correct or more up-to-date information may
be available from another collection.

These errors are mitigated by a model that subsumes several collections into a
single search tool. Four such models are discussed below.

2.1.2 Central index

An obvious way to search multiple collections is to make a local copy of each collec-
tion ahead of time, building a local index, and use this index to respond to queries
as illustrated in Figure 2.1(b). This is the model employed by some existing systems,
such as the FirstGov portal,3 which searches several independent US government web

3http://www.first.gov/

8 Metasearch

sites, and the Australia.Gov portal,4 which does the same for the Australian gover-
ment. This can provide a single search tool, avoiding the errors and load of multiple
services; in addition, any duplicate documents can be eliminated. However, there are
often constraints on copying (“crawling”, in web systems). Further, the cost is signifi-
cant, local optimisations may be lost, and the time taken to copy may result in a slow
response to changes in a collection. If copying is carried out frequently to maintain
freshness, significant load may be imposed on the constituent document servers and
networks.

Constraints on copying Most significantly, it will not be possible to copy a number
of important collections. Access to some collections is charged for every document
retrieved; others will be crippled by copyright or restrictions on usage. A further
case, common to many collections, is that there is no way to enumerate all docu-
ments: the only access is through a search tool without browsing capability. Many
online databases work on this model, including for example the popular CiteSeer5

and PubMed6 collections. Evidently, if a collection cannot be reliably copied then a
central index will be impractical.

Cost of copying A major problem faced by a copying search tool is the network
traffic generated by large-scale copying. Since some overhead is incurred in copy-
ing (network protocol headers, duplicate documents, etc.), the traffic generated will
exceed the total size of real data. Craswell et al. [2004] estimate as much as 70% over-
head in a web crawl, and it is reasonable to expect similar figures for other network
protocols.

Incremental copying, where only small parts of a collection are copied at a time,
can reduce instantaneous network load considerably but the traffic generated for an
entire copy is unchanged. A number of other methods are available for reducing
network traffic or copying time [Baeza-Yates and Castillo 2007; Castillo et al. 2004;
Craswell et al. 2004; Edwards et al. 2001]; however even with these techniques the
scale of some document collections (such as the Web) means copying would require
considerable resources and would certainly be beyond the reach of either a personal
or an enterprise tool.

Staleness Staleness is introduced when a local index is out-of-date with respect to
a collection. Result sets returned from a stale index may miss recent additions to a
collection, may not make best use of the available information, or may include doc-
uments no longer in the collection and therefore inaccessible; the chance of staleness
will increase as the collection is updated more frequently relative to the index. Sys-
tems which maintain an index may choose to update the index more frequently, in-
curring more cost and reducing staleness, or less frequently, saving some cost at the

4http://govsearch.australia.gov.au/search/search.cgi?collection=gov_
combined&form=au

5http://citeseer.ist.psu.edu/
6http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed

§2.1 Models for search 9

expense of staleness; they may also use document characteristics to estimate an appro-
priate update frequency [Cho and Garcia-Molina 2000; Cho and Garcia-Molina 2003;
Craswell et al. 2004; Fetterly et al. 2003], but some staleness is inevitable.

Local optimisations Since individual servers can be expected to know something
about the collections they index and the users they serve, they can offer appropriate
local optimisations. For example, they may translate terms (“law” to “act” for a legis-
lation search, or “exhaust” to “emissions” for a search of environmental information)
or rank results according to frequency of use [Agichtein et al. 2006; Freyne et al. 2004;
Joachims 2002b]. This specialised knowledge will be lost if the collection is copied.

2.1.3 Exhaustive metasearch

The problems with multiple tools and a central index suggest a metasearch model.7

In metasearch, a single tool (sometimes called a “broker” or “receptionist”) provides
a unified interface to a number of otherwise independent search servers, forward-
ing a user’s query to each of them and collating result sets. Each server can operate
normally, with its own index and performing any local optimisations as needed, and
copies of documents are not necessarily needed by the metasearch tool.

In the “exhaustive” metasearch model of Figure 2.1(c), each user query is trans-
lated and submitted to each server, and result sets from all servers are merged before
being presented to the user. Since no copying is needed and each server can operate
normally, this avoids the problems of copying and of local optimisations described
above. Significant difficulties, however, exist with scale and availability.

Network bandwidth, availability, and response time An obvious problem is the
cost, in network traffic, of forwarding a user’s query to each server and receiving
the replies. Following Craswell et al. [2004], the network traffic generated is (|q| +
|r|)(|S|+ 1), where |q| and |r| are the size of a query and response and S is the set of
servers interrogated. (The extra query and response is the traffic from and to the user.)
Using figures of 1kB for |q| and 20kB for |r|, with even five servers being searched
126kB of network traffic is required to present a result list to the user, and this grows
with the number of servers known to the system. The traffic can be reduced by lim-
iting the number of results retrieved from each server [Lempel and Moran 2002], but
the approach rapidly becomes infeasible for even the best-connected hosts.

Final results can be returned to the user only after every search engine has returned
its result list (or been timed out, with consequent loss of effectiveness). This means
the user is likely to experience significant delays, and the system as a whole will often
be faced with unavailability of one or more servers.

Interface wrappers Since we cannot in general assume that each server provides
an identical search interface, we will need to provide a wrapper for each interface

7Metasearch is also referred to as “distributed information retrieval” — for example by Baumgarten
[1999] and Callan et al. [1995] — and “federated search”, for example by Avrahami et al. [2006].

10 Metasearch

— potentially each server — which converts the user’s query, feeds it to the search
interface, and extracts search results. These wrappers can be generated automatically
in some circumstances [Perkowitz et al. 1997; Raghavan and Garcia-Molina 2001], but
generating and maintaining wrappers for a large number of servers represents a good
deal of work [Avrahami et al. 2006].

Availability of search interfaces Not all collections are associated with a search
server; evidently, if a search interface is not available for a collection then that collec-
tion cannot be included in an exhaustive metasearch tool. Experiments by the author
suggest that in a large set of Web sites, only 31% of collections had a search interface
[Hawking and Thomas 2005]. The survey of search users reported in Chapter 3 also
provides evidence that search functions, while widespread, are not universal.

2.1.4 Selective metasearch

A well-studied, although little-used, alternative to exhaustive metasearch is the more
selective model of Figure 2.1(d). In this model, a metasearch tool forwards each user
query to a subset of the available servers, chosen for their likely utility. The meta-
search tool must maintain adequate data to inform the selection, but in exchange can
dramatically reduce the time and traffic needed to respond to a query. Selection meth-
ods are discussed in Section 2.2.2 below and in Chapter 7.

There is some evidence [Abbaci et al. 2002; Hawking and Thistlewaite 1999; Powell
et al. 2000; Xu and Croft 1999] that a selective metasearch model can provide better
search quality than a central index, given a “very good” server selection algorithm,
although the “relevance-based ranking” used in these studies and by French et al.
[1999] uses prior knowledge of which documents are relevant.

The selective metasearch model, with a strict one-to-one correspondence between
servers and collections, is generally assumed in studies of server selection [French
et al. 1998; French et al. 1999; Powell and French 2003; Rasolofo et al. 2001]. However,
as it stands it is unlikely to be appropriate for searching all of a user’s collections:
to work as required, every collection must have an associated server and a wrapper
must be maintained for each. Selective metasearch can be incorporated into a hybrid
model to accommodate this.

2.1.5 Hybrid metasearch

Both exhaustive and selective metasearch seem to be impractical for real-world tools.
An alternative model suggested by Craswell et al. [2004], pictured in Figure 2.1(e),
accommodates constraints on server availability. Some or all servers are considered
candidates for metasearch, and hence for server selection, and other collections are
copied and indexed locally. To answer a user’s query, a number of servers are selected
(as in selective metasearch) along with one or more collections from the local index.
Since larger collections are more likely to provide a search interface [Hawking and

§2.2 Implementation 11

Thomas 2005], the volume of data copied can be substantially reduced and staleness
is less of a concern.

Hybrid search can be considered a special case of selective metasearch, except
for the consideration of copying collections to local storage; in this special case the
metasearcher has full information for one or more collections, and almost zero cost of
lookup and retrieval. In this thesis therefore the selective model is assumed. For sim-
plicity, this thesis also assumes a one-to-one correspondence between collections and
servers; for those collections in the hybrid model which are copied locally, a “server”
may just be a part of the metasearcher itself.8

2.2 Implementation

Any working metasearch implementation must make some assumptions about the
environment it works in, and in particular about the search servers included. Any im-
plementation will also follow the same general process: the description below draws
on and expands that in Cope et al. [2003].

2.2.1 Assumptions

In building a working metasearch tool, some minimum assumptions are necessary. In
particular, such a tool requires that each server has a well-defined and stable interface,
which accepts a query and returns a set of more or less useful documents. More ex-
pressive client-server protocols supporting metasearch have been suggested, but are
not well-used. For example, Z39.50 [ANSI/NISO 2003] is supported in the main only
by bibliographic databases, and STARTS [Gravano et al. 1997a; Gravano et al. 1997b]
and Pharos [Dolin et al. 1996] have not been widely implemented. Smaller, personal
or corporate collections such as intranets, email archives, calendars, and the like do
not support any such protocols and are unlikely to in the future.

In the general case a useful metasearch tool should not make any assumptions
about the way a server generates a result set, or the quality of the search algorithm
employed. Further, although result sets are typically ordered and very often include
extra information, such as document titles or summary text, for generality this thesis
assumes that only an unordered set of document identifiers is available.

Some techniques make further demands of server capabilities. Many sampling
techniques, most algorithms for characterising term distributions, and some server se-
lection algorithms require that the text of documents is available to the metasearcher.
Document ranking and merging techniques variously make use of document text,
server-assigned quality scores or ranks, or document titles and summaries. In the
following chapters these requirements are noted, should they exceed the minimum
outlined above. These additional requirements may affect the techniques’ applicabil-
ity in some cases.

8PIS, the personal metasearch tool described in Section 3.4, is implemented in this way.

12 Metasearch

Server discovery Server characterisation
(a) First phase: before any query

Server selection Query translation Result merging
(b) Second phase: for each query

Figure 2.2: A metasearch process

2.2.2 A metasearch process

Figure 2.2 suggests a process for metasearch. In this view there are two phases: a first
phase, carried out before any query is issued, discovers and characterises available
servers. A second, query-time phase selects a set of servers for a user’s query; trans-
lates the query as appropriate, issues the translated queries, and gathers result sets;
and merges the result sets before presenting them to the user. Each step is discussed
further below.

Server discovery Before a metasearch tool can be used, it must determine which
data sources are available. This can be automated to some extent — for example,
Cope et al. [2003] give a decision tree which can find search interfaces in a Web crawl
and Barbosa and Freire [2005] introduce a “form-focused crawler” — but is generally
considered a manual process.

Server characterisation Having determined which servers are available to a user,
the offline phase continues by determining relevant characteristics of each. (This step
is elided by some metasearch engines, which assume all servers cover the same col-
lection and operate in similar fashion [Selberg and Etzioni 1995], or which hard-code
characteristics of servers used [Glover et al. 1999].) Relevant characteristics for meta-
search tools may include collection size [Liu et al. 2001; Shokouhi et al. 2006; Si and
Callan 2003b], subject matter [Callan et al. 1999; Callan and Connell 2001; Gravano
and Ipeirotis 2003; Ipeirotis et al. 2001], effectiveness [Craswell et al. 2000], and over-
lap between collections [Bharat and Broder 1998; Hernandez and Kambhampati 2005].

§2.2 Implementation 13

A tool with knowledge of a user’s preferences may also attempt to discover charac-
teristics such as language or languages used, reading level, update frequency, or geo-
graphic coverage.

Server characterisation can rely on manual descriptions [Dolin et al. 1996; Levy
et al. 1996], classification against a predetermined taxonomy [Gravano and Ipeirotis
2003], or can be entirely automated.

With these two steps completed in advance of any query, the metasearch tool has
the information needed to weight, or select, servers on a per-user or per-query basis.

Server selection For reasons outlined in Sections 2.1.3 and 2.1.4, it is not generally
desirable or even feasible to forward every query to every server. Server selection is
the process of choosing the server or servers most useful for answering a particular
query.

Several algorithms have been developed for performing server selection, each of
which uses information about the query as well as characteristics of each server to pre-
dict which are likely to provide the best match. Examples include CORI [Callan et al.
1995], CVV [Yuwono and Lee 1997], GlOSS [Gravano et al. 1999], Kullback-Leibler
divergence [Si et al. 2002], and ReDDE [Si and Callan 2003b].

This step has also been called “collection selection” (for example, Callan et al.
[1995]), “subcollection selection” [Baumgarten 1999], “text database discovery” [Gra-
vano et al. 1994], “text-source discovery” [Gravano et al. 1999], and “database selec-
tion” [French et al. 1998]. This thesis uses the term “server selection” as the selective
metasearch model already assumes a one-to-one correspondence between servers and
collections; “database” is ambiguous in the case where some server is in fact a front-
end to a business database; and “text-source discovery” is likely to be confused with
“server discovery”.

Query translation In some cases, the query as entered by the user will need to be
translated from the metasearcher’s syntax to that of each selected server. The trans-
lated queries can then be forwarded to the selected servers, and a result set gathered
from each. This portion of the process is likely to be driven by rules or grammars
defined when servers are discovered.

Query translation is only possible to the extent that each query language has
matching semantics [Chang et al. 1996]. In some cases, more sophisticated semantics
(such as fielded search, proximity, or different notions of “aboutness”) may be lost; the
extent of this problem depends on the servers used and is not presently understood.

Result merging Given a number of result sets, from those servers selected which
have returned one or more documents, the remaining task is to generate a single use-
ful result set. This step is generally called “result merging”, although other terms
in use include “database merging” [Voorhees and Tong 1997], “collection fusion”
[Voorhees et al. 1994], and “subcollection fusion” [Baumgarten 1999]. In the case
where collections overlap in one or more documents, it is possible that two or more

14 Metasearch

result sets may include the same document and a deduplication step will be necessary
[Bernstein et al. 2006; Conrad et al. 2003]. Further, in most cases a metasearch tool will
return a ranked list, and not an unordered set, to the user and therefore a ranking step
will be needed as part of the result merging process [Callan et al. 1995; Rasolofo et al.
2003; Si et al. 2002]. This ranking step may make use of overlap in result sets, if any,
as well as document features and any knowledge about the servers.

2.3 Operational systems

A number of metasearch systems have been demonstrated, searching library cata-
logues, news sources, and especially the Web. They have adopted either an exhaustive
or a selective model.

2.3.1 Exhaustive metasearch systems

A number of exhaustive metasearch systems use public search engines to search the
Web. MetaCrawler [Selberg and Etzioni 1995] was developed to increase coverage of
Web search since “no single search service [was] sufficient” and at the time the growth
of the Web made it seem unlikely that a single search service would previde enough
coverage. MetaCrawler submitted users’ queries to six search engines in parallel (at
the time of writing, the current version uses eight or more9), collated the results, re-
sorted them and removed duplicates. Optionally, MetaCrawler could make a local
copy of each result to remove dead links and improve sorting.

Users’ clicks on results were logged and treated as an indication that the clicked-on
result was useful. Using this metric, Selberg and Etzioni calculated that the best con-
temporary search engine could return only 45% of the total pool of useful results and
concluded that metasearch was significantly improving performance of Web search,
although later experiments showed no improvement [Hawking et al. 2001].

As of August 2007 similar exhaustive systems for Web metasearch, working on
the same model, include Dogpile, Ixquick (which also offers manual server selection),
and Mamma.10

2.3.2 Selective metasearch systems

Selective metasearch systems have seen significantly more research effort, but have
been used only on a small scale. As well as whole-of-Web search services, they have
been used for more specialised domains.

The ProFusion system of Gauch et al. [1996] used six Web search engines to in-
crease coverage of the public Web. It offered automatic server selection as well as
manual selection; the automatic selection used a list of known terms to determine

9http://www.metacrawler.com/
10Dogpile: http://www.dogpile.com/. IxQuick: http://www.ixquick.com/. Mamma:

http://www.mamma.com/.

§2.3 Operational systems 15

which of 13 categories a query belonged to (such as “food” or “society, law, and gov-
ernment”) and then chose a server based on prior manual relevance judgements for
queries in this category.

Documents were deduplicated and re-sorted according to server-assigned scores
and per-server modifiers based on recent performance and the assigned query cate-
gory. Evaluation with twelve queries suggested that precision and recall were sub-
stantially improved over any single Web search engine and over other metasearch
systems of the time.

Like MetaCrawler and ProFusion, the SavvySearch system [Dreilinger and Howe
1997; Howe and Dreilinger 1997] was motivated by the apparent impossibility of a
single search engine covering the public Web. SavvySearch used a pool of eleven
servers, and performed server selection to minimise network load and processing ef-
fort at each server. Two to six servers were selected for each query, depending upon
network and CPU load at SavvySearch itself.

Server selection in SavvySearch used a combination of recent server performance
(as measured by the number of results returned and the response time) and learned
effectiveness on similar queries in the past (as measured by the number of user clicks
on results from each server). Informal evaluation from several months of public use
suggested it was a well-liked and useful service, and that precision improved as query
terms were repeated.

Inquirus 2 [Glover et al. 1999] also provided whole-of-Web metasearch, using eight
servers (six general and two specific to news and current events). Users were invited
to select one of seven categories, such as “research papers” or “individual home-
pages”, when submitting a query, and these categories were used to select servers
based on manual rules. (A similar feature was mooted for SavvySearch.) Choice of
category also affected query translation; for example, Inquirus 2 added the terms “ab-
stract” and “references” to some translated queries in the “research papers” category.

Results were downloaded by the metasearcher and reordered according to rules
which again varied by category and which were based on features such as topical
relevance, reading level, and the presence or absence of particular keywords. In in-
formal evaluations, this reranking in particular appeared responsible for promoting
many relevant documents which otherwise would have been far down the combined
result list.

Four other projects have examined metasearch in more specialised environments:
MetaSEEk for image search, PENG in the context of journalism, AllInOneNews for
news search, and FedLemur in a government portal.

The MetaSEEk tool of Beigi et al. [1998], which offered metasearch for images, was
motivated by the difficulties of “knowing where search engines are, what they are
designed to retrieve, and how to use them” — a motivation similar to the “cognitive
load” observations on p. 7. Users were able to search by colour or texture, giving
the system an example image, or by keyword. MetaSEEk’s server selection algorithm
used the type of search and past performance on similar queries to select up to ten
“search options”, each a particular mode of a particular underlying server. Perfor-
mance was measured by clickthrough logging, in the same manner as SavvySearch,

16 Metasearch

and explicit “like” and “don’t like” options attached to each retrieved image.
Beigi et al. [1998] compared their server selection with random selection over 250

sessions, measuring the number of queries per session and the number of images
marked “like” and “don’t like”. An informal analysis suggested that sessions using
automatic server selection were shorter, which may have been a result of users find-
ing a usable image faster. No difference was observed in users’ feedback, but since
feedback was not compulsory this may not be surprising. In the same vein, later ex-
periments [Benitez et al. 1998] suggested MetaSEEk users could find a single target
image with fewer interactions.

PENG [Baillie et al. 2006] provides personalised tools for journalists. As well as
a “push” component, which filters incoming news feeds to display new material, a
“pull” component provides a metasearch service. A variant of query-based sampling
[Azzopardi et al. 2006; Callan et al. 1999] is used to build a description of each server,
personalised for each user; at query time the CORI algorithm [Callan et al. 1995] plus
a user-provided “trust” score are used to select servers and merge results.

AllInOneNews [Liu et al. 2007] is a news metasearcher which is intended to be
more up-to-date and more scalable than alternatives with a central index. Descrip-
tions of each news server are built by crawling, and AllInOneNews uses these de-
scriptions for server selection and result merging.

FedLemur [Avrahami et al. 2006] is a metasearch system built on the Lemur tool-
kit11 which searches official statistics from 20 US government agencies by using ex-
isting Web-based search functions. As with PENG, FedLemur uses query-based sam-
pling to build a model of each collection, and CORI or SSL [Si and Callan 2003c] to
merge results. Tests reported by Avrahami et al., using Cranfield-style queries and
judgements (see Section 8.1.1), suggest selecting 30 documents from each of three
servers for each query; however no comparisons have yet been made with a central
index.

2.4 Summary

This chapter has considered five models for searching multiple collections. The mul-
tiple services model, which is common at present, is inconvenient and prone to error;
the other common alternative, the central index model, is infeasible in most circum-
stances and may lose local optimisations. The remaining alternatives are metasearch
models, which present a single interface to the user but delegate the work of search-
ing to existing specialised tools. Of these, the hybrid model is the most feasible in
real-world situations and is the model considered in the remainder of this thesis.

Given some minimal assumptions about the participating servers, metasearch im-
plementations typically use a two-phase process involving some processing prior to
any query (server discovery and characterisation) and some for each query (server
selection, query translation, and result merging).

11http://www.lemurproject.org/

§2.4 Summary 17

A number of metasearch systems have been built, either on an exhaustive or a se-
lective model. Many have been motivated by the apparent impossibility of indexing
the entire Web; current Web search engines however provide an excellent service with-
out resort to metasearch for coverage. A small number of other tools operate in more
specialised domains, but none suggest a compelling use of metasearch techniques.
One application which would be useful, which could not be built but for metasearch
techniques, and which has not been seriously considered, is personal metasearch. This
is described in the next chapter.

18 Metasearch

Chapter 3

Personal metasearch

The metasearch systems of Section 2.3 operate over a set of public collections, in most
cases, and over collections which are more or less homogenous. This thesis advo-
cates an alternative application, personal metasearch, which instead operates over all
the heterogeneous and possibly private collections which a user has access to.

Most computer users have access to a vast amount of information in electronic
form: personal files, calendars, public and private web sites, corporate databases,
email, and so forth (Figure 3.1). At present, each information source typically of-
fers its own search tool or tools, each with its own interface and each with different
capabilities and restrictions: this is the multiple services model of Section 2.1.1. Given
that a needed piece of information may come from any of these sources, a user needs
to: (1) decide where it’s likely to be found; (2) start or switch to the appropriate tool;
(3) translate their information need into some appropriate syntax or sequence of ac-
tions; and (4) scan the resulting set of documents for the information they need. If
the need isn’t satisfied, the user will have to either reformulate the query (and repeat
steps 3–4) or, worse, start a different tool to look elsewhere (and repeat all of steps 1–4).

A single metasearch tool operating over all collections would reduce cognitive
load by eliminating step 1 and the need to guess which source is needed; by providing
a single interface, it would also save users having to learn how to use several tools.
A single tool would also save the time needed to start seperate applications or open
separate URLs. Further, by searching all sources at once a metasearch tool would
mitigate the risk of missing information by choosing the wrong source, or of accepting
information while a more correct or up-to-date version can be found elsewhere. Such
a tool compares well to other solutions (Section 3.1), and offers an alternative view of
personalisation (Section 3.2). A survey of searchers reported in Section 3.3 suggests a
personal metasearch tool would be of real benefit.

3.1 Alternatives

There are apparent alternatives to a personal metasearch tool, each of which provides
a unified interface to at least some data types.

A number of free and commercial “desktop search” programs provide a single
search interface to many, or most, of the documents available on a single PC. Ex-

19

20 Personal metasearch

(a) Distinct tools (b) Unified tool

Figure 3.1: An example of the range of information sources available to an individual. A
personal metasearch system aims to provide a unified search interface to all of them.

amples include Beagle,1 Copernic,2 Google Desktop,3 Phlat [Cutrell et al. 2006], Spot-
light,4 Stuff I’ve Seen [Dumais et al. 2003], Yahoo! Desktop Search,5 and many others.
Typically, they are able to index a large number of common data types, and will crawl
a filesystem to index all local or networked files.

Personal information management (PIM) systems offer another alternative by pre-
senting a single front-end for managing a variety of data types. These systems can of-
fer search capability as part of their single-tool approach; examples include Haystack
[Adar et al. 1999] and TaskVista [Bellotti and Thornton 2006].

Both approaches provide a single interface to a variety of document types, but
both adopt the central index model. This has several implications, as outlined in Sec-
tion 2.1.2. The most important are a limit to the data which can be indexed, and a loss
of optimisations.

For the most part, these programs are only able to consider local files. Some also
offer search of the public Web, either through affiliation with a Web search engine or in
a very limited sense through a search of visited or cached Web pages. Other collections
are not searchable by these programs even in principle: even if there were parsers
or adapters for every collection, the size of the collection or the rules surrounding
document access would make local indexing impossible in many cases.6 As many
users make use of data on local intranets or subscription services (Section 3.3.2), this
is an important omission.

Further, any optimisations of more specialised tools may be lost. For example, a

1http://www.beagle-project.org/
2http://www.copernic.com/
3http://desktop.google.com/
4http://www.apple.com/macosx/features/spotlight/
5http://desktop.yahoo.com/
6For example, in May 2007 Dialog, a commercial search tool for publications, claimed to include

20,000,000,000 documents.

§3.2 Personalisation 21

6

-

� -

Personalisation of algorithms

TREC ad hoc style “Personalised” Web search

PIM toolsDesktop search

Pe
rs

on
al

is
at

io
n

of
da

ta
m

or
e

le
ss

less more

Personal metasearch

Figure 3.2: Two orthogonal approaches to personalising search tools: personalisation of algo-
rithms or of data. See Section 8.1.1 for comments on “TREC ad hoc”.

calendar application may display upcoming appointments in preference to past ones
in response to a query; this sort of local knowledge would be lost if the same files were
indexed centrally.

These limitations can be overcome only by reverting to a multiple services model,
which is undesirable, or by introducing metasearch as a personal application.

3.2 Personalisation

As a tool used by individuals, a search tool can be adapted to each user and their
particular circumstances. Figure 3.2 illustrates two orthogonal approaches to person-
alisation: personalisation of algorithms, as exemplified by personalised Web search
and some PIM tools, and personalisation of data, as exemplified by PIM tools and
desktop search.

Personalisation of algorithms The more common approach is to search the same
collections for each user, but use adaptive algorithms which modify each result set
according to the user’s preferences. Examples include UCAIR [Shen et al. 2005],
which used a user’s viewing patterns, as exposed by clicks on result lists, to rerank
Web search results; a more comprehensive variant from Teevan et al. [2005b] also
considered documents indexed with Stuff I’ve Seen [Dumais et al. 2003] and Web
pages viewed as evidence in reranking. Both studies showed improved performance

22 Personal metasearch

over Web searches for a number of users. A similar approach was suggested by Mc-
Gowan et al. [2002], and algorithms for personalisation have been further considered
by Glover et al. [1999], Limbu et al. [2006], and Pitkow et al. [2002] amongst others.

A common motivation for personalising a tool in this way is to automatically dis-
ambiguate queries which might otherwise perform poorly [Koutrika and Ioannidis
2005; Limbu et al. 2006; Shen et al. 2005; Sugiyama et al. 2004; Teevan et al. 2005a]. Ex-
periments across a range of search tools, however, have found little likely benefit from
automatic disambiguation in domains where a user has some knowledge [Thomas
and Rowlands 2007]. The benefit to using these techniques in personal metasearch
therefore seems small.

Personalisation of data An alternative approach, which can be investigated inde-
pendently, is to adapt search tools by using different data sources for each user, in-
cluding data sources which (alone or in combination) may be unique to an individual.
This approach has been explored to some extent by desktop and PIM tools, but the
central index model adopted by these tools limits the possible data sources and hence
the personalisation. A personal metasearch tool should be capable of much greater
personalisation in this sense. This alternative requires re-examination of metasearch
techniques, and has not yet been well studied.

3.3 A survey of information sources

In order to understand the variety of collections in day-to-day use and understand
the potential benefit of personal metasearch, a number of knowledge workers were
invited to participate in a survey. Participants, all of whom were frequent users of a
variety of search services, were asked about tasks they perform with computer-based
sources; what those sources were; and characteristics of each.

Information gathered by this survey includes collection characteristics such as
scale, contents, and search interfaces, which can inform system design. Information
on scale and contents can also inform evaluation of personal metasearch sytems, for
example by suggesting appropriate test collections. Other information, such as cost
and success rates, provides realistic constraints on the interactions a metasearch tool
may have with servers. After describing one or more sources, participants were also
invited to comment on metasearch tools and the search process in general.

Survey instruments, including a full list of questions, are included as Appendix B.

3.3.1 Respondents and tasks

Respondents were recruited from amongst people who were heavy users of comput-
erised information sources. While this convenience sample is not representative of
computer users more generally, it does include people who make heavy use of search,
who use many sources, and who have a good understanding of the sources they use.
It is reasonable to expect that early adopters of new search tools would share these
characteristics.

§3.3 A survey of information sources 23

The survey ran for five months and 52 responses were recorded. Respondents
included librarians, undergraduate and graduate students, taxonomy developers, re-
searchers, lecturers, journalists and news analysts, as well as a publisher, a translator,
a computer system operator, an adminstrative officer, and an editor. They reported us-
ing computerised sources for a wide variety of tasks including research for colleagues
and customers, their own research, developing teaching material, literature search,
developing taxonomies and thesauri, finding material for publication, checking copy-
right information, consulting archives, editing, translating, budgeting, carrying out
technical support, and entertainment.

Many respondents indicated that these tasks involve searching multiple collec-
tions, using multiple interfaces; for example, a librarian described research for clients
“involving general internet searching, individual website searches, library databases
and subscription services”. Other responses described “searching databases and [the]
web” and “[searching] main sources of information”.

A follow-up question asked when participants were most likely to give up search-
ing. Responses here also suggest that search over several collections is commonplace:
a librarian described giving up “when the information cannot be tracked down in
both hardcopy and electronic resources” and a reference librarian was likely to give
up “when I exhausted all the library’s stock and all my networks”.

Most respondents indicated they considered computerised resources a first port of
call, and only gave up a search after spending some effort and possibly checking in a
number of collections. This suggests that anything which improves search for these
heavy users will have an immediate impact. Other responses suggest that in many
cases a personal metasearch tool would provide such an improvement.

3.3.2 Data sources

The major part of the survey attempted to understand characteristics of the data
sources used. The vast majority of respondents indicated that they made use of lo-
cal files, as well as files shared amongst their section or their organisation, the public
Web, and email archives. Many also use a local intranet.

Other sources mentioned were varied and included:

• library catalogues;

• bibliographic databases, scholarly and general, including WorldCat,7 JSTOR,8

and Project MUSE;9

• online journals and e-books;

7http://www.worldcat.org/
8http://www.jstor.org/
9http://muse.jhu.edu/

24 Personal metasearch

• news sources including Factiva,10 Dialog,11 LexisNexis,12 and online newspa-
pers;

• image databases including ARTstor;13

• archives, including census data and digitised manuscripts;

• reference material including encyclopedias, Wikipedia,14 glossaries, monolin-
gual and bilingual dictionaries;

• legal and financial databases such as LawPoint;15

• online forums including bulletin boards, blogs, and Usenet;

• specialised databases such as patent, medical, legal, or taxonomic databases;

• local resources including CD-ROMs, backups, wikis, Lotus Notes, brochures,
and manuals;

• and many unspecified commercial databases.

The majority of collections had some sort of search facility: 81 replies to the ques-
tion “does this source offer a search facility of any kind?” were affirmative and only 7
negative. Although many collections required ongoing access fees or the purchase of
software, no responses suggested any form of per-query fee.

Respondents identified some overlap between different collections, but it appears
limited. Describing local files, one noted “some of the information can be found in
other work sources, but not the complete information”. Comments on specialised
databases, available over the Web or otherwise, included “sometimes [data can be
found elsewhere] but usually there is a time delay in access”; “yes can be found else-
where”; and “. . . some of my data is from the IPUMS [Integrated Public Use Microdata
Series] . . . Other material is available at ICPSR [Interuniversity Consortium for Politi-
cal and Social Research]”.

There are clearly a great variety of collections in use, comprised of a variety of
data types. In some cases, sets of collections are covered by existing search interfaces:
Factiva for example searches the archives of many news and business publications,
and Project MUSE searches many non-profit academic publishers. However, none
of these cover more than one data type and overlap is limited. Further, since every
respondent indicated they use at least one private collection, interfaces such as these
could not cover the complete set of collections likely to be used at any one time.

10http://www.factiva.com/
11http://www.dialog.com/
12http://www.lexisnexis.com/
13http://www.artstor.org/
14http://www.wikipedia.org/
15http://www.lawpoint.com.au/

§3.3 A survey of information sources 25

3.3.3 Implications for metasearch

In many cases, the collections identified above cannot be indexed centrally for reasons
of access, timeliness, or scale. Each collection is used in day-to-day tasks, however, so
it would not be appropriate to arbitarily exclude any from a unified interface. This ar-
gues for a metasearch interface, which could include all potentially useful collections
without the cost of maintaining a central index.

Other considerations suggest a particular model of metasearch. Since some col-
lections (for example, Project MUSE and Dialog) charge according to the number of
accesses or time connected, and since some tasks described involve very particular
information needs, an exhaustive model is not appropriate; further, since some col-
lections do not offer their own search service, the selective model is infeasible. This
suggests the hybrid approach described in Section 2.1.5.

The number of collections each person has access to, and the small overlap from
person to person, suggests that techniques for server characterisation must demand
little manual intervention. This thesis therefore considers fully automatic techniques
for characterisation, not manual or semi-manual techniques such as those of Glover
et al. [1999] or Dolin et al. [1996].

Comments on metasearch

At the end of the survey, participants were asked whether metasearch tools would be
of use (“do you think it would be useful to be able to search all or some of the sources
you’ve identified via a single search interface?”). Responses varied, but were broadly
supportive:

• “yes, I see great value in federated searching, but also to have the option to
search individual sources if required” (a librarian);

• “yes, like Gigablast or Rollyo” (a librarian);16

• “would be appropriate for similar resources” (a systems librarian);

• “that would be easier” (a graduate student);

• “searching Wikipedia and getting relevant sources from WorldCat could be use-
ful” (a graduate student);

• “yes . . . I have not come across any centralized interface for archive holdings
. . . what I might find HIGHLY useful is a centralized repository describing the
online presence of varied archives” (a student);

• “if my internal documents [were] linked to the larger software, I could use both
more efficiently” (an administrator);

16Gigablast: http://www.gigablast.com/. Rollyo, a Web metasearcher with manual server selec-
tion: http://www.rollyo.com/.

26 Personal metasearch

• “yes, especially when people can’t remember whether the fact they’re seeking
was in [a specialist collection] or an email, or saved Word document” (a taxon-
omy developer);

• “yes . . . to simultaneously search local documents/files as well as the WWW”
(an IT consultant);

• “at times a federated search would be good. Especially a search of the subscrip-
tion databases” (a librarian);

• “many of my customers would love to have one search interface, they often
don’t have the skills to identify the best starting point” (a librarian).

Negative comments included:

• “no, I wouldn’t trust it” (a reference librarian);

• “often when I use source-specific interfaces that is OK because selecting the
source is part of the search process” (a graduate student in history);

• “I have mentally organized these different search/information areas” (a gradu-
ate student in the history of medicine);

• “absolutely not. The databases that I use are specialized and well designed” (a
PhD student);

• “. . . stuff I get from people I know, which means I actually have to talk to them”
(a university lecturer).

It appears that people who make heavy use of search services, and who use sev-
eral different collections day-to-day, largely consider metasearch to be useful. Those
who disagree have concerns about losing the specialised nature of collections, or the
specialised tools available; a good metasearch tool should therefore at least offer ex-
plicit server selection. It may also expose the advanced features of any underlying
servers, although these features are rarely used in traditional search [Silverstein et al.
1999] and may not be of pressing importance even in specialist retrieval for research
[Cox 2006].

Together with the observations above and in Section 2.1, the responses to this sur-
vey suggest that many people commonly use more than one collection, and that a per-
sonal metasearch tool could be of real use in this situation. In the next two sections, a
working metasearch tool is described and some research problems are outlined.

3.4 PIS, a personal information searcher

A personal information searcher, PIS, has been implemented. This prototype personal
metasearch tool has been used as a testbed for metasearch algorithms, to gain experi-
ence in practical aspects of personal metasearch, and in the user experiments of Chap-
ter 9. Figure 3.3 shows PIS searching eleven collections for documents on metasearch,
and presenting a single merged result list.

§3.5 Research problems in personal metasearch 27

Figure 3.3: PIS, a personal information searcher.

PIS implements effective algorithms for server characterisation (sampling and col-
lection size estimation) as well as several alternatives for server selection (four meth-
ods) and result presentation (six methods). As a hybrid metasearch tool, it does its
own indexing of email, calendars, contact lists, and local files; it uses adapters to ex-
isting tools for LDAP directories, the public Web, web front-ends to other servers, and
SQL databases.

PIS has been tested on Unix and Windows computers. An overview of the de-
sign and information on capabilities, including modules for document sampling, file
parsing, server characterisation and selection, searching, and result merging are in
Appendix E on page 185.

3.5 Research problems in personal metasearch

The process outlined in Section 2.2.2 suggests several areas of research interest in per-
sonal metasearch.

Although a small body of work has considered the problem of server discovery, as
discussed in Section 2.2.2, it has generally been assumed that servers are known to the
metasearch tool ahead of time. Given the wide range of possible servers in a personal
application, and users’ knowledge of their own work tasks, it is reasonable to assume
that servers will be identified by users (or, for example, system administrators) in
advance.

Further, although the range of document types considered here is wider than in
other work, there is no reason to believe the result merging problem should be sig-

28 Personal metasearch

nificantly different to that already studied. Informal evaluation using the PIS tool
appears to confirm this intuition (Section 9.3). Despite the importance of a good result
merging technique, then, it is not considered in any detail here.

Two major questions for building a working personal metasearch tool remain:
how can we characterise servers? Having done so, how can we select between them?
This thesis concentrates on these problems. They have been considered in earlier
work, but in very different environments, and evidence from the present research sug-
gests that conclusions from earlier studies do not always hold in this new application.
In what follows, Chapters 4 to 6 consider techniques for server characterisation (sam-
pling, size estimation, and subject matter and language); Chapter 7 considers server
selection.

Finally, having built a personal metasearch tool the remaining questions are: how
can we evaluate it? How can we compare one choice of algorithm or parameter with
another? Chapters 8, 9 and 10 consider these questions.

3.6 Summary

This thesis advocates personal metasearch, or metasearch over all the collections a com-
puter user has access to including private or restricted collections such as email or
subscription services. A personal metasearch tool would reduce cognitive load for
users and mitigate the chance of certain types of error.

Such a tool can be distinguished from desktop search software, which search a
wide variety of sources but are limited by their central index model; and from per-
sonal information management software, which provide a single management inter-
face and similarly do not provide metasearch functions. It can also be distinguished
from “personalised” Web search by considering personalisation of algorithms sepa-
rately from that of data.

This analysis is supported by a survey of frequent searchers. The survey suggests
that users have access to many collections, with very different data, and typically each
with its own interface; that many search tasks make use of multiple collections; and
hence that a metasearch tool is practical and would be of benefit.

A working prototype has been constructed, but the metasearch process of Sec-
tion 2.2.2 suggests research will be needed in a number of areas and in particular in
server characterisation, server selection, and system evaluation. The following chap-
ters consider this research.

Chapter 4

Server characterisation:
sampling documents

An important first step in the metasearch process is to characterise each server; that is,
to determine ahead of time properties such as the number of documents in each col-
lection, the subject matter, or what language or languages are used. This information
is useful at query time to inform the processes of server selection, query translation,
and result merging.1

In the most general case, we assume that search engines do not cooperate with
any metasearch framework and provide only the most minimal interface: they simply
accept a query and produce a set of document identifiers as a result. In particular,
they do not make available statistics such as the number of documents indexed, term
frequencies, or weights; nor do they expose any information on their internal work-
ings. Techniques are therefore needed to estimate these characteristics, and the vast
majority of these estimation techniques are improved by or explicitly rely upon ran-
dom (unbiased) samples of documents. Overlap estimates [Bharat and Broder 1998]
explicitly rely on random samples as input; so too do the standard capture-recapture
[Liu et al. 2001], sample-resample [Si and Callan 2003b], multiple sample-resample
and capture history [Shokouhi et al. 2006], and random document [Broder et al. 2006]
techniques for estimating collection sizes. As demonstrated in Chapter 5, biased sam-
ples lead to systematic underestimates of collection size.

As will be shown in Chapters 6 and 7 biased samples, and hence biased term
statistics and size estimates, also have a negative impact on the accuracy of language
models and on the performance of server selection algorithms.

Obtaining a random sample from an uncooperative search engine is however a
non-trivial task. With a limited interface, it is not possible to enumerate documents
in the collection or to retrieve them according to some identifier; therefore a meta-
searcher cannot simply take a uniform sample. Further, characteristics of the search
engine which improve performance for typical uses are likely to make sampling less
convenient. For example, certain documents may be more likely to be returned since

1Some of this chapter has been published as Thomas and Hawking [2007]. The experimental work
was original with the author, as was other material reproduced here including the multiple queries
sampler and the “T” and “S” tests.

29

30 Server characterisation: sampling documents

they are considered in some sense more important, or more useful, and this introduces
strong bias. Similarly, result lists may be arbitrarily truncated, or near-duplicates may
be removed, to save work at the server or to present a more useful list to a client. Any
random sampling technique will have to work in this environment.

Ideally, for metasearch we would like a sampling technique which produces sam-
ples with as little bias as possible; which requires as little run-time or pre-processing
resources as possible; and which works over a wide range of collections and servers
with as little prior knowledge as possible.

In this chapter techniques are evaluated against these criteria. A number of candi-
date algorithms have been developed for sampling from the Web, some of which are
more generally applicable, and the runtime cost and performance of these are consid-
ered. A new method, “multiple queries”, is also introduced: this provides samples
of similar quality to existing methods with much reduced cost. Finally, this chapter
examines the effects of the parameters available in each technique.

4.1 Notation

In the discussion which follows, notation follows that of Bar-Yossef and Gurevich
[2006]: D is the set of all documents available through a server, d an individual doc-
ument from D, and N = |D| the number of documents a server provides access to. x
represents the mean of some value x.

For each query q sent to a server, RES(q) denotes the results returned. This result
set may be constrained by a limit k, imposed either by the server itself or by a sampler;
if |RES(q)| ≥ k we say that q “overflows”, and if |RES(q)| = 0 we say q “underflows”.
Note that Bar-Yossef and Gurevich [2006] refer to overflow if |RES(q)| > k. This thesis
prefers the definition |RES(q)| ≥ k as, without extra information from a server, it is
not generally possible to tell whether a result set is bounded by k or by the number of
matches. The two definitions are interchangable by incrementing or decrementing k.

This and other notation is summarised in Appendix A.

4.2 Related work

The problem of sampling from an uncooperative server is very similar to that of sam-
pling from the Web, and several algorithms have been introduced for the latter. These
are summarised in Table 4.1.

“General” methods do not rely on particular document characteristics, and are appli-
cable across a wide variety of document types.

4.2.1 Single queries

Bharat and Broder [1998] introduced a simple technique for sampling random pages
from Web search engines. The technique does not however rely on any particular

§4.2 Related work 31

Queries Docs/ Hyperlink Doc
needed run graph text

General methods
Single queries Stream 1 — —
Query-based — Any — Needed

Pool-based Pool 1 — Needed
Random walk on MATCHP+ — 1 — Needed

Multiple queries Stream Any — —
Hyperlink methods

PAGERANK-SAMPLE — Any Needed —
WebWalker — 1+ Needed Needed

(UN)DIRECTED-SAMPLE — 1+ Needed —

Table 4.1: Characteristics of sampling methods. “General” methods do not require a hyperlink
graph and are examined in the experiments of this thesis.

characteristic of the Web or of Web pages and is applicable to a variety of collections.
The algorithm is extremely simple: a single query is constructed and sent to a search
engine, and a sample document is chosen at random from the set of matches returned.
To build a sample of more than one document, the algorithm can be repeated.

The algorithm was orginally applied to Web search engines, which typically return
a small set of results regardless of the number of possible matches. As a work-around,
Bharat and Broder generated queries which they expected to return between one and
100 documents, although if a query matched more than 100 documents they used only
the top 100 returned. Query terms came from a lexicon built during an earlier crawl,
and queries were either four-term disjuncts or two-term conjuncts with terms chosen
for their frequency.

In a later paper, Gulli and Signorini [2005] used this method with slight modifica-
tions to estimate the size of public search engines and hence the public Web. Query
terms again came from an earlier crawl, but Gulli and Signorini used single-term
queries in more than 75 languages.

Although working with an uncontrolled, dynamic collection meant Bharat and
Broder were not able to investigate the quality of the sampler, they identified six
sources of bias. Two of these are relevant to the metasearch case. “Query bias” is
the bias towards longer, content-rich documents which are more likely to match the
queries used. “Ranking bias” is the result of search engines ranking documents and a
sampler not seeing those past rank k. By choosing queries with a smaller number of
results, they note that it is possible to reduce ranking bias at the expense of increasing
query bias. Query bias has been noted in other work [Bar-Yossef et al. 2000; Bar-Yossef
and Gurevich 2006] and is confirmed by the results in Section 4.6 below.

In the implementation of the single queries sampler used here, ranking bias is
eliminated by choosing and issuing queries until one is found which neither under-
flows nor overflows.

32 Server characterisation: sampling documents

4.2.2 Query-based sampling

The popular query-based sampling method of Callan et al. [1999] uses terms seen in
document text as a source of queries. Although originally introduced as a means of
obtaining “sufficiently random” samples for learning language models, it has since
been used as a general sampling technique by a number of researchers [Callan and
Connell 2001; Hawking and Thomas 2005; Shokouhi et al. 2006; Si and Callan 2003b].
Besides the multiple queries method below, this is the only technique originally aimed
at metasearch rather than Web applications.

Starting with an initial one-term query, the server is interrogated and the text of
the top r ranked documents is retrieved. Each retrieved document is added to the
sample and then used to update a language model m — typically just a set of (word,
frequency) pairs. If the stopping criteria are not yet met, a term is chosen from the
learned model and the server is interrogated again. Since the algorithm requires ac-
cess to the text of documents to update the model, it may not be appropriate to all
collections.

There are four major choices implementing this algorithm: the source of initial
queries, the result cut-off r, the way terms are chosen from m, and the stopping cri-
teria. Callan et al. [1999] suggest that the initial query makes little difference, and
their experiments used the top four documents for each query and stopped after re-
trieving 300 documents or issuing 150 queries. Terms were chosen uniformly from m.
Experiments considered the quality of the learned model, not the distribution of the
documents sampled, since a generally-applicable random sample was not the original
intent [Callan et al. 1999; Callan and Connell 2001].

Callan et al. suggested four methods for choosing query terms from m: uniform
selection and selection based on document frequency, total term frequency, or mean
term frequency in m. Later experiments by Baillie et al. [2006a] considered these alter-
natives. Using Kullback-Leibler divergence and predictive likelihood, they compared
the quality of learned models for each method across a pair of TREC testbeds. Uni-
form selection performed well, as did selection based on document frequency, but the
samples were not evaluated for bias towards any subset of the collection.

Baillie et al. [2006a] and Shokouhi et al. [2006] also considered alternative stop-
ping criteria, in both cases based upon the rate of change of m. Both groups were able
to demonstrate improved performance in a metasearch system evaluation with their
stopping criteria as compared with a fixed threshold. In the experiments in this chap-
ter, however, the consideration is not the quality of a learned model but the bias in a
sample and so a fixed number of documents are sampled with each run.

In the implementation used here, the first query was chosen at random from the
SMART stopword list [Salton and McGill 1983], a list of common English words, and
subsequent terms were chosen randomly and uniformly from the terms in m. No
stemming or stopping was used in processing the queries.

§4.2 Related work 33

4.2.3 Pool-based sampling

Rejection sampling is a Monte Carlo method which can be used to simulate sampling
according to one distribution π (for example, the uniform distribution) when it is only
feasible to draw samples with some other distribution p (such as that resulting from
query or ranking biases). Bar-Yossef and Gurevich [2006] introduced an application
of this technique to the problem of sampling Web pages. The algorithm consists of a
first round of rejection sampling, which chooses a query according to the size of its
result set; and a second round, which chooses a document from the result set of this
query.

Pool-based sampling requires as input a “query pool” P , a set of queries drawn
from all possible queries a server accepts. Ideally queries in P have high recall (mean-
ing that taken together, they cover a large proportion of the documents in D), and
simultaneously a low probability of underflow or overflow. P+ denotes the subset of
P which neither underflows nor overflows, so P+ = {q ∈ P : 0 < |RES(q)| < k}.

MATCHP (d), the “match set” of d for some d ∈ D, is the set of queries which a
document d matches from amongst a pool P . MATCHP (d) can be calculated from the
text of a document — for example, if P is the set of all 3-gram queries, it suffices to
extract text from d and enumerate all 3-grams. The pool-based sampler does therefore
rely on the text of a document being available to the metasearch system; in some cases
this will not be true and the pool-based sampler will not be practical. Further, should
the sampler and the underlying search engine consider the “matching” operation dif-
ferently, due for example to differences in stemming and stopping, this difference in
MATCHP (d) will introduce error.

The first part of the pool-based algorithm, summarised in Figure 4.1, uses rejection
sampling to choose a query q from P+ with a distribution based on |RES(q)|. A query
is chosen uniformly from the pool and forwarded to the server; if it neither underflows
nor overflows we accept it with probability |RES(q)|/k and continue.2

In the second part of the algorithm, a candidate document is chosen uniformly
from RES(q). At this point the probability of choosing a document d as a candi-
date is proportional to the probability that d matches the query; in other words to
|MATCHP+(d)|. A second round of rejection sampling therefore returns d as a sample
with probability 1/|MATCHP (d)|, and otherwise iterates selecting another query and
document. Note that although documents are presented as candidates with a distribu-
tion based on |MATCHP+(d)|, they are selected as samples based on 1/|MATCHP (d)|.
This introduces an error the size of which depends on the difference between P and
P+. This difference is hard to determine without detailed knowledge of how queries
and documents are processed at the search engine.

Experiments to characterise possible pools P used text from a crawl of web pages
in the Open Directory Project (ODP).3 Bar-Yossef and Gurevich used a crawl of a
subset of the ODP as a source of terms and considered single terms, 3-, 5-, and 7-term

2The original description of the algorithm leaves the parameters C and φ̂(q), the envelope constant
and the unnormalised sample distribution, unspecified. In the implementation used here, φ(q) is uni-
form, the sampler uses an unnormalised version φ̂(q) = 1 for all q, and therefore C = k/φ̂(q) = k.

3http://dmoz.org/

34 Server characterisation: sampling documents

Step Probability

1 Select a query q Pr(q selected) = 1/|P|
2 Issue q
3 If q overflows, reject it Pr(¬q overflows) = |P+|/|P|
4 Accept q, possibly Pr(q accepted) = |RES(q)|/k
5 — Pr(d in RES(q)) ∝ |MATCHP+(d)|
6 Select document d from results Pr(d selected) = 1/|RES(q)|
7 Accept d, possibly Pr(d accepted) = 1/|MATCHP (d)|

Pr(d sampled) = Pr(q selected) Pr(¬q overflows) Pr(q accepted)
Pr(d in RES(q)) Pr(d selected) Pr(d accepted)

∝ 1
|P|
|P+|
|P|

|RES(q)|
k

|MATCHP+(d)| 1
|RES(q)|

1
|MATCHP (d)|

∝ |P+|
|P|2

1
k︸ ︷︷ ︸

a

|MATCHP+(d)|
|MATCHP (d)|︸ ︷︷ ︸

b

Figure 4.1: Calculations for pool-based sampling. Part a is independent of the query and the
document; part b is independent of the query, and independent of the document to the extent
that P+ = P .

phrases for recall, underflow, overflow, and other properties. Five-term phrases were
considered the best tradeoff in this instance, and were used in the initial experiments
below.

4.2.4 Random walk on MATCHP+

A further method, based on sampling through random walks, was introduced at the
same time as pool-based sampling [Bar-Yossef and Gurevich 2006]. This variant uses
the Metropolis-Hastings algorithm, which carries out a random walk with each step
chosen according to a “proposal function”, and before each step employs an accep-
tance/ rejection procedure to determine whether or not the step will be taken. If the
proposal function satisfies certain simple criteria, a walk with the Metropolis-Hastings
algorithm will eventually converge on a desired distribution. The parameter B, the
burn-in period, determines the maximum number of steps in the walk: as with other
random walk methods, this can only be set empirically without prior knowledge of
the collection.

Bar-Yossef and Gurevich adapt this algorithm to collections without a hyperlink
structure by defining a graph such that two documents are joined by an edge iff there
is at least one query which both match: i.e. an edge exists between two documents
x and y iff MATCHP+(x) ∩ MATCHP+(y) 6= ∅. Given a document d, the sampler then
proceeds by choosing a query uniformly from MATCHP+(d) (which determines a sub-

§4.2 Related work 35

set of edges from the current document); choosing a document d′ uniformly from the
results of this query (which determines an individual edge); and then choosing to fol-
low the edge and set d to d′ with probability |MATCHP+(d)|/|MATCHP+(d′)| (which
adjusts for the odds of seeing d′). After B iterations, the current document is returned
as the sample.4

The walk does not require that the entire graph be computed ahead of time, which
would require knowledge of every document in the collection; instead, edges can be
computed from the text of a document and adjacent nodes can be enumerated, given
an edge, from a match set. MATCHP (d) can also be computed as needed, and queries
that under- or overflow can be removed as they are discovered.

Evaluation experiments compared this random walk with the pool based and sin-
gle query samplers on a testbed of 2.4 million documents from the ODP. With both
the pool based and random walk samplers, “no or little” bias was seen due to doc-
ument size, and no “significant bias” due to the static document rank used by their
search sytem [Bar-Yossef and Gurevich 2006]. As with other methods, it seems no
quantitative tests for bias have been performed.

Unlike other variants on random walks, a random walk on MATCHP+ does not re-
quire an explicit hyperlink structure and is appropriate to a wide range of collections.
It is therefore included in the experiments below.

A further set of sampling methods assume documents are linked in a graph, such as a
web graph; a random walk can then provide a uniform sample. These techniques are
not generally applicable in the metasearch case, since not all constituent collections
will have such a structure (databases and catalogues for example may not). They are
therefore not examined in these experiments.

4.2.5 PAGERANK-SAMPLE

The PAGERANK-SAMPLE algorithm of Henzinger et al. [2000] samples pages from a
web based on a random walk of the web graph.5 It follows from the observation that,
given a web crawl, for any document d

Pr(d is sampled) = Pr(d is crawled) ×
Pr(d is sampled | d is crawled)

so a uniform sample can be obtained by sampling from crawled pages such that
Pr(d is sampled | d is crawled) is inversely proportional to Pr(d is crawled).

Henzinger et al. note that for a walk of length L, where L is “long enough”, Pr(d
is crawled) ≈ L× PAGERANK(d), where PAGERANK(d) is the classic PageRank score

4The general form of the algorithm is to accept each move with probability
P(d′)/P(d) Q(d|d′)/Q(d′|d), where P is the desired distribution and Q the sampling distribution.
Since P is uniform, the first term can be ignored. Q(d′|d), the chance of seeing d′ if we are at d, is propor-
tional to the number of queries both match: Q(d′|d) = |MATCHP+(d) ∩ MATCHP+(d′)|/|MATCHP+(d)|.
Q(d|d′) is similar, and the second term simplifies to |MATCHP+(d)|/|MATCHP+(d′)|.

5Henzinger and colleagues did not name this algorithm. The name PAGERANK-SAMPLE follows Rus-
mevichientong et al. [2001].

36 Server characterisation: sampling documents

[Brin and Page 1998]. Further, it is possible to estimate PAGERANK(d) by doing a
walk on the web graph and using the number of times d is visited, normalised by
the walk length. This in turn allows the estimation of Pr(d is crawled) and hence the
probability of including d in a sample.

There are limitations to this technique. The first is in the choice of L: for the ap-
proximation to hold L must be approximately

√
N, but N is unlikely to be known in

advance — indeed, as will be discussed in Chapter 5, one major use for samples is to
estimate N. Further, the estimation of PAGERANK(d) from the number of visits to d
is made approximate by a difference in definition: while PAGERANK is described by a
random walk which includes jumps to every node in the web graph, in this case the
entire graph will not be known in advance and the sampler is limited to jumping to
nodes already crawled. This also limits it to sampling from pages which are connected
to the start point.

Experiments by Henzinger et al. investigated several likely sources of error: bias
due to the choice of start node, dependence between nodes in the walk, and errors
in estimating PAGERANK. Results on an artificial web graph did seem to show a bias
towards pages with high in-degree and high PAGERANK, but less than with a more
naı̈ve scheme. No quantitative tests were performed.

4.2.6 WebWalker

Bar-Yossef et al.’s WebWalker algorithm [2000], again for sampling web pages, is de-
rived from the fact that a random walk on a regular, undirected graph provides a
close to uniform sample of nodes. While web graphs are neither regular nor undi-
rected, and while it is not feasible to know the graph in its entirety before sampling,
Bar-Yossef et al. suggest a technique for adapting a web crawler to provide a suitable
subgraph.

At each step in a random walk, a search engine is interrogated to find inlinks
to the current node. These links, plus outgoing links from parsed HTML, are made
undirected and added to the graph along with sufficient self edges such that the node
is of some constant, high, degree. The Web graph is therefore transformed into a
regular, undirected graph, and the walk will converge on a uniform distribution.

The length required before a walk can produce uniform samples depends on the
transition matrix and so on the exact edges in the induced graph. From earlier exper-
iments Bar-Yossef et al. estimate a walk length of 3,000,000 steps, although since the
vast majority (>99%) of edges are self edges the actual number of document down-
loads will be far smaller. With further information about the distribution of links, it
is also possible to construct a walk which is longer but allows an arbitrary number of
documents to be sampled in one run.

Experiments on documents from a large Web crawl seemed to show a definite bias
towards pages with high indegree, but did not seem to be biased towards pages near
to (or far from) the seed. Again, no quantitative tests have been reported.

§4.3 Multiple queries 37

4.2.7 DIRECTED- and UNDIRECTED-SAMPLE

Two further sampling methods based on random walks of the web graph were de-
scribed by Rusmevichientong et al. [2001]. The intuition is similar to that behind
PAGERANK-SAMPLE: on a random walk of the web graph (modified so that there
are no “dead ends” and so that every document has a self link), a uniform sample
can be obtained by including each document d with probability Pr(d is sampled) =
1/Pr(d is crawled). The two methods differ in how they estimate the probability of d
being included in a crawl.

DIRECTED-SAMPLE starts with a random walk on the web graph; during the last
part of this walk, each distinct document is recorded. These documents are candidates
for inclusion. To estimate Pr(d is crawled) for each of these candidates, DIRECTED-
SAMPLE carries out a second crawl, starting from the candidate and noting the pro-
portion of steps in this crawl which return to d.

UNDIRECTED-SAMPLE reduces the walk length by collecting inbound links for
each document visited, in the manner of WebWalker, and constructing an undirected
graph. The algorithm then uses the degree of each document d as an estimator for
Pr(d is crawled) directly, eliminating the second crawl of DIRECTED-SAMPLE.

Rusvevichientong et al. provide a proof that given a long enough walk, sam-
ple probabilities with either algorithm approach the uniform distribution. As with
PAGERANK-SAMPLER and WebWalker, choosing the walk length L is important but
difficult a priori.

A set of experiments on an artificial web graph of 100,000 nodes did not appear
to show any bias by either sampler towards documents of high degree, although an
implementation of PAGERANK-SAMPLE on the same testbed did appear biased.

4.3 Multiple queries

The multiple queries sampler is a straightforward extension of the single queries sam-
pler. To reduce query bias, the sampler simply runs several queries with a large cut-off
k and then chooses any number of documents from the union of all result sets. Note
that if a document is returned in reponse to more than one query, the sampler records
it only once. This has a similar effect to adjusting for visit frequency in PAGERANK-
SAMPLE. Queries are chosen from a pool defined independently of the collection, with
as high a recall as possible, and as with other samplers any which under- or overflow
are ignored.

The high values of k (10,000 in initial experiments) suggest a large amount of net-
work traffic; however since there is no need to download the text of documents, and
since the sampler can return many documents from a single run, this traffic does not
seem excessive. Further, since document text is not required the sampler is applicable
to a wide variety of servers. Experiments varying k and queries used are described in
Section 4.6.2 below.

38 Server characterisation: sampling documents

4.4 Sampling cost

A desideratum for a working metasearch system is that samplers should require as
few resources as possible. The most significant resource is communication with the
servers being sampled, and this section considers the cost for each document sampled
both in the number of queries issued and in the number of documents downloaded
and parsed. As noted, the PAGERANK-SAMPLE, WebWalker, and (UN)DIRECTED-SAM-
PLE algorithms rely on explicit hyperlinks between documents and are not applicable
to most collections likely to be used in metasearch; they are therefore not further con-
sidered.

For each of the following analyses a first step is to determine how many queries
successfully complete (i.e. neither underflow nor overflow). Following Bar-Yossef
and Gurevich [2006] the validity density of a document, denoted VDENSITY(d), is just
|MATCHP+(d)|/|MATCHP (d)|, or the proportion of those queries d matches which re-
turn 1 . . . k − 1 results. Similarly, VDENSITY(P) represents the proportion of queries
in a pool P which neither underflow nor overflow: VDENSITY(P) = |P+|/|P|.

4.4.1 Single queries

In its original form, the cost of the single queries sampler is a single query per doc-
ument sampled for any collection and any source of queries. In the implementation
used here, it first must find a query which neither underflows nor overflows; the num-
ber of queries needed for this is geometrically distributed with p1 = VDENSITY(P), so
the sampler can be expected to issue 1/VDENSITY(P) queries per document sampled.

In both implementations, there are no documents downloaded or parsed.

4.4.2 Query-based sampling

The cost of the query-based sampler depends upon characteristics both of the collec-
tion (for example, the overlap in queries covering each document) and of the server
(for example, the tendency to promote certain documents). It is possible however to
determine a lower and an upper bound on the cost.

For n documents sampled in a single run with results cut off at r documents, the
minimum number of queries is dn/re, or 1/r queries per document sampled. An up-
per bound is set by the stopping criteria: for example, as originally defined the sam-
pler terminates after issuing a maximum bn/2c queries. By construction, the sampler
also downloads and parses each sampled document.

4.4.3 Pool-based sampling

We consider the first round of rejection sampling (to find a query) and the second
round (to find a document) seperately.

In the first round, the number of iterations needed to find and select a valid query
is geometrically distributed with p1 = (|RES(q)|/k) VDENSITY(P); so the expected
number of queries issued before one is selected is 1/p1 or k/(|RES(q)| VDENSITY(P)).

§4.5 Sampling experiments 39

In the second round, having selected a query a document from the result set is
downloaded and considered for the final sample. The chance of sampling a docu-
ment after each iteration is 1/|MATCHP (d)|, so the number of queries selected before
a document is selected is geometrically distributed with expected value |MATCHP (d)|.

The expected number of queries executed per document sampled is therefore

E(Q) =
k

|RES(q)| VDENSITY(P)
|MATCHP (d)|.

We can also expect that |MATCHP (d)| documents will be downloaded and parsed
for each document in the final sample.

4.4.4 Random walk on MATCHP+

As with the single queries sampler, the expected number of queries the sampler must
issue before finding one which neither underflows nor overflows is 1/VDENSITY(P).
After each such query is found, the sampler will download and parse a document; and
it repeats the entire process B times (recall that B is the burn-in time of the random
walk). It will therefore need an expected B/VDENSITY(P) queries and B downloads
per document sampled, although with more knowledge of the query pool and col-
lection it is possible to collect second and subsequent documents more cheaply by
continuing the random walk.

Since the cost depends on B, a tunable parameter, it is possible to improve run-
time at the expense of decreasing the walk length and hence the randomness of the
collected sample.

4.4.5 Multiple queries

The cost of the multiple queries sampler is determined by the number of queries per
sample sq, the number of documents per sample n, and the pool validity density. Since
the method needs sq queries which neither underflow nor overflow, from which it will
select n documents, the expected cost is

(
sq/n

)(
1/VDENSITY(P)

)
queries per docu-

ment sampled. (Note that VDENSITY(P) will likely be higher for the multiple queries
sampler than elsewhere, as k is very high and overflow is less likely.) No documents
are downloaded.

4.5 Sampling experiments

A number of experiments explored two questions: first, do the sampling techniques
described above provide unbiased samples across a range of collections? Secondly,
what effect do the available parameters have on performance?

Tests were run with PADRE [Hawking et al. 2000], versions 5.7.3.33 and 6.3.1.3,
doing indexing and searching. No stemming or stopping was used.

40 Server characterisation: sampling documents

Size (in terms)

Collection No. docs Range Mean Std dev Topics

calendar 1k 1–20 4 2 Mixed
zsh-list 9k 2–59k 176 179 Narrow

procmail 24k 2–14k 207 215 Narrow
email 25k 1–26k 199 295 Mixed

WSJ 99k 9–10k 462 450 Broad
.GOV 1.2M 0–43k 6803 5720 Broad

Table 4.2: Summary statistics of collections used in the experiments.

4.5.1 Collections used

Past work has evaluated sampling techniques either on the public Web [Bar-Yossef
et al. 2000; Bar-Yossef and Gurevich 2006; Bharat and Broder 1998; Gulli and Signorini
2005; Henzinger et al. 2000; Rusmevichientong et al. 2001] or on divisions of TREC
ad hoc [Harman 2005] or Web Track data [Baillie et al. 2006a; Callan et al. 1999; Shok-
ouhi et al. 2006]. However, these collections do not resemble those likely to be used
in personal metasearch applications: the Web is extremely large and covers a great
variety of topics, and TREC collections are all of one data type. Further, neither the
Web nor TREC collections include private or semi-private information such as email;
and most investigations have used only one collection, so a sampler’s performance
can only be evaluated in a single application.

The experiments in this and later chapters use six collections, summarised in Ta-
ble 4.2. These are representative of the range of resources which are likely to be used
in personal metasearch applications, as examined in Section 3.3: sizes range over three
orders of magnitude, data types are varied, and topic areas range from the very fo-
cussed (development of the zsh shell6) to the very broad (several years’ worth of
archived email). Each collection is mostly English-language. None are on the scale
of the largest likely collections, such as the Web or Dialog. However, rather than ask
each user’s tool to sample (for example) the public Web, it is likely that a personal
metasearch tool would use hard-coded or pre-computed characteristics for larger col-
lections. The collections used here span the likely size range of local, private, or work-
group collections, where pre-computed estimates are infeasible.

Table 4.3 summarises this testbed and a selection of others commonly used in
metasearch experimentation — generally partitions of TREC ad hoc or Web data, often
created with an eye to producing collections of approximately equal size. The avail-
ability of extensive relevance judgments for the TREC ad hoc collections has made
them the basis for most metasearch testbeds. However, arbitrary partitionings of a
small collection of newspaper and government documents don’t seem to model likely
applications of personal metasearch as suggested by the survey of Section 3.3.7 Com-

6http://zsh.dotsrc.org/
7D’Souza et al. [2004a] note that this division is unlikely to model other metasearch applications

§4.5 Sampling experiments 41

Size (×1000 documents)

Testbed Colls Range Mean Std dev Partitions

TREC ad hoc
TREC123-17-bysource 17 7– 226 64 56 By source & date

UBC-100† 100 1– 40 11 9 Sequential, for size
SYM-236 236 < 1– 8 3 3 By source & date
UDC-236 236 3– 3 5 < 1 Sequential, for size

TREC4-kmeans 100 < 1– 83 6 11 By topic
TREC123-10col 10 18– 263 108 — Arbitrary

Web
WT2g‡ 951 < 1– 8 < 1 < 1 By server

WT10g‡ 11590 1– 26 < 1 < 1 By server
.GOV‡ 7792 < 1– 16 < 1 < 1 By server

.GOV2‡ 17186 < 1– 717 1 18 By server
Other

Personal metasearch 6 1–1200 234 454 By source

Table 4.3: A selection of metasearch testbeds in the literature. After Hawking and Thomas
[2005], Powell et al. [2000], and Si and Callan [2003b]. “Colls” abbreviates “collections”.
TREC123-10col is not distributed, so data for this collection is incomplete. † The UBC-100
testbed is also referred to as “TREC123-100col”. ‡ Figures for Web testbeds assume that docu-
ments are divided according to Web server.

pared with other testbeds, the personal metasearch testbed used here has a much
larger range of collection sizes, fewer collections, and a much wider variety of docu-
ment topics and sources.

The “calendar” collection, the smallest in the testbed used here, contains 1049 doc-
uments (appointments) from a calendar application, spanning about two years. Doc-
uments are typically sentence fragments, only a few terms long, and the terms used
in each document have little overlap with others.

The “zsh-list” collection is the archives of a public mailing list discussing devel-
opment of the zsh shell, a narrow technical topic. The archives used span 12 years
and include 9138 documents (email messages). The “procmail” collection is similar,
being the archives of six years of a public mailing list discussing the procmail8 email
software. This collection includes 24,482 documents.

“Email” is a third email collection, this time of 24,974 documents from a personal
email archive with much broader topics. The archive spans around five years. Spam
has been excluded.

“WSJ” (from TREC CD 1) collects several years of contents of the Wall Street Jour-
nal, including articles and letters. It covers a broad range of topics, and length varies
widely across the 98,732 documents.

either.
8http://www.procmail.org/

42 Server characterisation: sampling documents

The largest collection, “.GOV” (from the TREC Web Track), is a 1,247,753 page par-
tial crawl of Web hosts in the .gov top-level domain (US government agencies).9 As
with the WSJ collection, document size, style, and topics vary considerably. Docu-
ments in the .GOV collection were converted to plain text using lynx.10

4.5.2 Parameter settings

In the first instance, each sampler was run with parameters set as originally described
by their authors. For the single queries sampler, samples were taken with k = 100
and with queries from a 1% subset of terms in each collection. (If all queries were
exhausted in the course of a long run, two- and finally three-term disjuncts were used.)

The query-based sampler used the top four results from each query, and stopped
when the sample size n had been reached or (following Callan et al. [1999]) when
bn/2c queries had been issued. Terms were chosen randomly and uniformly from the
learned model.

The pool-based sampler was run with a limit k = 5, and a query pool of a 1%
subset of 5-grams, or phrases of five terms, from each collection (for .GOV, a 0.1%
subset was taken, as the collection is large). The random walk sampler used the same
parameters, although it was possible to use a pool of all possible 5-grams since in this
instance queries do not need to be enumerated in advance.

The multiple queries sampler used single-term queries, with terms chosen inde-
pendently of the collection from the SMART stopwords [Salton and McGill 1983].
Each run used 100 queries, with a result limit k = 10,000, and twenty documents
were sampled per run.

The estimated cost of each sampler with these settings is summarised in Table 4.4.
The random walk sampler is significantly more expensive than others; however this
cost scales with B, the burn-in time. Lower burn-in times are considered in Sec-
tion 4.6.2 below. Costs for the pool-based and multiple queries sampler are similar,
although the multiple queries sampler generally requires fewer interactions and never
requires document text.

4.5.3 Tests for bias

Two simple tests were developed to indicate bias in samples.

“T”, number of times seen If from a collection of size N we draw i independent
samples, each of size n, and each sample is drawn randomly, then the probability of
seeing a document t times in the i samples follows a binomial distribution: Pr(seen t
times) = (i

t)(
n
N)t(N−n

N)i−t. A χ2 test [Sheskin 2004] compared this expected distribu-
tion with observed frequencies from large numbers of samples.

9http://es.csiro.au/TRECWeb/govinfo.html
10http://lynx.isc.org/

§4.6 Results 43

Single Query Pool Random Multiple
queries based based walk queries

Collection q d q d q d q d q d

calendar 1 0 < 1 1 1 1 1000 1000 34 0
zsh-list 1 0 < 1 1 7 2 1123 1000 5 0

procmail 1 0 < 1 1 8 2 1137 1000 6 0
email 1 0 < 1 1 8 2 1173 1000 5 0

WSJ 1 0 < 1 1 25 4 1161 1000 8 0
.GOV 2 0 < 1 1 11 1 2140 1000 23 0

Table 4.4: Estimated cost in queries (“q”) and document downloads (“d”), per document
sampled, for each sampler.

Failure of this test would most likely indicate that some individual documents are
being sampled too frequently and others too infrequently — in other words that there
is a bias towards some subset of the documents.

“S”, size distribution Test “S” considers one likely source of bias. Earlier work has
suggested that the single query sampler, in particular, strongly favours longer docu-
ments. This could be due to two factors: a ranking bias, if search engines promote
longer documents, or a query bias, since longer documents are more likely to contain
some chosen search terms. Ranking bias is controlled in the implementations used
here, but there may still be effects of query bias.

To investigate, each collection was divided into deciles according to document
length, and the proportion of documents sampled from each decile was noted. A
random sample should have documents from all deciles equally represented. As for
test “T”, a χ2 test (df = 9) provided comparisons. Failure of this test indicates a bias
towards documents of particular lengths; in practice this tends to be towards longer
documents.

4.5.4 Exploring parameter settings

Informed by the results of the initial tests, a series of experiments investigated the
effects of the available parameters for each sampler. These are described in more
detail in Section 4.6.2 below.

4.6 Results

Results showed samplers performed well with only some collections, and that all were
subject to some degree of query bias. Altering query pools or other parameters did
not provide improvements.

44 Server characterisation: sampling documents

Single Query Pool Random Multiple
t Expected queries based based walk queries

0 24381 24540 24431 24389 24381 24378
1 586 333 498 570 586 592
2 7 63 40 15 7 4
3 27 3
4 4
5 3
6 1
7 1
8 2
9 1

p < 0.01 < 0.01 0.01 1.00 0.54

Table 4.5: Email samples for test “T”. i = 30 samples of n = 20 documents each where
possible; i = 600 and n = 1 otherwise. N = 24, 974 documents. Significant deviations from
randomness (i.e. probable non-uniform samples) are underlined. The random walk sampler
produces a distribution identical to that expected.

4.6.1 Tests for bias

Test “T”, number of times seen Table 4.5 summarises the number of times each
document in the email collection was returned by each sampler, and the theoretical
distribution described in Section 4.5.3. p is the chance of seeing a distribution this far
from the expected if we had a truly uniform sample (χ2 test, df = 2 with t ≥ 2 counted
as one category). The email collection is used only for illustration; similar trends were
seen with the other collections tested.

In this example, the single queries sampler has returned fewer documents than
expected: 434 unique documents are returned whereas we would expect 593 from
a truly random sample. Further, those documents which are sampled are returned
too frequently: 63 documents are seen twice (only seven would be expected from
a random sample), and two documents are seen eight times each. Together these
observations suggest a bias towards a subset of the collection. One form of this bias is
considered below.

Table 4.6 summarises test “T” across each collection and sampler. In every case
of test “T” failing, the sampler has sampled too few documents too frequently, sug-
gesting a bias towards some part of the collection. This bias is most extreme with
the calendar collection, on which every sampler failed: the random walk sampler re-
turned one document 24 times and the pool based sampler returned seven distinct
documents more than 15 times each.

The failures on the calendar collection are likely due to the unusual combination
of document length and document language. Since documents are very short, the
graph on MATCHP+ used by the random walk sampler is much sparser and there is

§4.6 Results 45

Single Query Pool Random Multiple
queries based based walk queries

calendar < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
zsh-list < 0.01 < 0.01 0.02 0.51 1.00

procmail < 0.01 < 0.01 0.34 0.90 1.00
email < 0.01 < 0.01 0.01 1.00 0.54

WSJ < 0.01 < 0.01 0.90 0.42 0.92
.GOV < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Table 4.6: χ2 results (p values) for test “T”. Significant deviations from randomness (i.e. prob-
able non-uniform samples) are underlined.

Single Query Pool Random Multiple
queries based based walk queries

calendar < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
zsh-list < 0.01 < 0.01 < 0.01 0.46 0.94

procmail < 0.01 < 0.01 < 0.01 0.41 0.16
email < 0.01 < 0.01 < 0.01 < 0.01 0.01

WSJ < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
.GOV < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Table 4.7: χ2 results (p values) for test “S”. Significant deviations are underlined.

less opportunity to move from the initial document. For other samplers, there may
be strong bias towards the small fraction of documents matching the query pool since
the terms used in each document vary considerably.

Test “S”, size distribution Figure 4.2 illustrates the distribution of documents sam-
pled by each algorithm from the email collection. A truly random sample would in-
clude around 10% from each decile; instead a bias is apparent in all samplers. Table 4.7
has χ2 results (df = 9) for all collections and samplers.

In the vast majority of cases, a failed test is due to a bias towards longer docu-
ments. This is likely due to query bias; a longer document is more likely to match any
given query, and by ignoring overflowing queries the samplers may be effectively
counteracting any length normalisation at the search engine.

As may be expected, the single queries and query based samplers perform poorly
on this test, failing on every collection and exhibiting a large bias towards longer doc-
uments. (The bias in the single queries sampler is particularly large.) The pool based
sampler also fails in all six cases, which seems to be due to the size of the query pool:
a uniform subsample of 1% of 5-grams would cover a small proportion of documents
and these documents would tend to be longer. If this conjecture is correct, a larger
pool (although more difficult to construct) would result in less bias. Section 4.6.2 be-
low explores this possibility by varying query pools.

46 Server characterisation: sampling documents

Largest Smallest

Pr
op

or
ti

on
 o

f d
oc

um
en

ts

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Single queries
Query−based
Pool−based
Random walk
Multiple queries

Figure 4.2: Email samples by size decile for test “S”. A uniform sample would have 10% of
sampled documents in each decile.

§4.6 Results 47

The random walk sampler fails in several cases again with a bias towards longer
documents. It is not clear why this should be, since the sampler explicitly controls
for the number of queries a document matches; however differences in computing
MATCHP (d) at the server and at the sampler may give rise to a bias of this nature.
Since the sampler must agree with an unknown server at each step of query process-
ing, including tokenisation, stemming and stopping, and parsing queries, errors of
this kind are very likely and may explain the observed bias.

The larger number of documents considered by the mutiple queries sampler pro-
vides some improvement on the single queries sampler, and for the zsh-list and proc-
mail collections suffices to overcome query bias. In other cases a significant bias to
longer documents remains, although this new sampler performs no worse than the
random walk sampler and with significantly lower runtime.

4.6.2 Exploring parameter settings

The biases described above may be due in part to the particular parameters chosen for
each sampler. For each sampler, a series of experiments varied the available parame-
ters to investigate possible improvements.

Single queries

The single queries sampler proved particularly susceptible to query bias. Since the
sampler ignores all queries which overflow, varying k will change the subset of queries
used and may affect the quality of the resulting sample; so may varying the source of
queries.

Tests “T” and “S” as above were re-run for the single queries sampler with k = 100,
500, and 10,000; and with queries chosen from a subsample of terms indexed, from a
subsample of 5-grams, and from the collection-independent set of common English
words. In each case the sampler performed poorly, again returning too few unique
documents and with a strong bias towards longer documents. The single queries
sampler is therefore unlikely to avoid bias for any likely combination of parameters.

Query based

Callan et al. [1999] suggest that the source of initial query term makes little differ-
ence to the query based sampler, which leaves three possible parameters: the cut-off
r, which determines how many documents are downloaded with each iteration; the
stopping criteria; and the method for selecting terms from m. Since in this instance
the number of documents to sample, and hence the stopping criteria, is fixed by the
needs of tests “T” and “S”, there are two parameters remaining. Each of these was
varied.

A first set of experiments modified the rank cut-off r. As r increases, there are
fewer feedback loops between the learned model and future queries and the query-
based sampler acts more like the single queries sampler. (At the limit, when r ≥ n
there will only be one query issued, if the result set is large enough, and the samplers

48 Server characterisation: sampling documents

are identical.) Raising r then is unlikely to improve the sampler’s performance, and
with r changed from 4 to either 10 or 100 the samples still failed test “T” in almost all
cases.11

Reducing r may be expected to improve the quality of the samples, since more
queries will be issued and this may increase coverage of the collection. A smaller cut-
off however will also make the query-based sampler more susceptible to query bias,
and this is borne out by experiments: with r = 1, a lower bound, test “T” still indicates
unacceptable bias.

A second set of experiments varied the strategy for selecting query terms from the
learned model m. Three variants were considered (recall that the first experiments
used uniform selection): selection weighted by the document frequency (df) in m,
selection weighted by the total term frequency (tf), and selection weighted by the
mean term frequency (tf / df). Each variant again returned a biased sample from each
collection; however the samples generated with the tf-based strategies appeared still
more biased. This is consistent with results reported by Baillie et al. [2006a].

Although it appears that the query-based sampler is unlikely to produce random
samples given any parameter settings, this may not be a fair test since the sampler was
not originally intended for this purpose. Later chapters therefore reconsider query-
based samples in settings where they have been used: Chapter 5, following, considers
collection size estimation and Chapters 6 and 7 consider language models and server
selection.

Pool based

In the initial experiments a consistent bias was observed in the pool based sampler
towards longer documents. This may have been due to the small query pool (1% of
5-grams for most collections). With a larger pool of 10% of 5-grams, results improved
for both tests and most collections, which is consistent with this conjecture.

While a larger pool improves results, pools here were generated by pre-processing
the collections used. It is not clear how a working system might generate pools except
from document text; since any bias in the pool will result in biased samples, docu-
ments for the pool should be returned by an unbiased sampler. This leaves a difficult
bootstrapping problem.

Further experiments varied k, using the original pool of 1% of all indexed 5-grams.
Improvements over k = 5 were seen with k = 50, and further improvements were
seen with k = 500 across most collections. These samplers however have significantly
increased runtime, as k increases much faster than |RES(q)|.

Random walk on MATCHP+

The quality of the samples generated by the random walk sampler seem to depend
strongly on B, the burn-in period of the walk. The initial experiments used B = 1000,

11In contrast, Baillie [personal communication] found improved coverage with higher r across a TREC-
based testbed. The samples were not however tested for bias.

§4.7 Conclusions 49

as originally specified, and followup experiments used values of B = 100 or 10. With
smaller values of B bias increased markedly; this bias was more apparent with larger
collections. The choice of seed for the walk is strongly effected by query bias, so this
result can be seen as a straightforward result of the sampler taking fewer steps from
this initial biased choice. With some knowledge of the size of the collection and the
connectivity of the MATCHP graph it would be possible to choose a minimal useful B,
but it is not clear how this could be derived without prior knowledge.

Multiple queries

As for the single queries sampler, the multiple queries sampler is sensitive to the value
of k. Samples were taken with k set to 10,000, 1000, and 100; in general, results were
somewhat worse with k = 1000 and deteriorated markedly with k = 100. This is
expected: as k decreases, only queries which are more specific will not overflow. This
leads to a smaller number of documents from which to take a final sample.

This observation may also explain variation seen with different query sources.
With collection-specific query pools of 1% of terms, the multiple queries sampler
showed more bias. For the data here — documents of varying size and format but
all in English and most with full sentences — a list of common words seems to be
more convenient and also produces better samples.

4.7 Conclusions

Several key methods for metasearch rely, explicitly or implicitly, on an unbiased sam-
ple of documents from constituent collections. Techniques for generating these sam-
ples, given only a query interface and an otherwise uncooperative server, must con-
tend with biases due to server optimisations (“ranking bias”) and document content
(“query bias”). It appears possible to eliminate ranking bias but query bias is persis-
tent across a variety of samplers and collections.

This chapter has described nine samplers. Of these, five are applicable to docu-
ment types without hyperlink structures and were tested across six collections rep-
resenting a range of sizes and document types; the five “general” methods are sum-
marised in Table 4.8. No sampler performed well across all collections.

The single queries and query-based samplers are very badly affected by query
bias, and consistently prefer a small set of mostly longer documents across all col-
lections tested. The pool based sampler as initially described performs poorly, but
depends greatly on the choice of pool — with a larger sample of document text the
samples generated are of higher quality. It is not clear, however, how a real-world sys-
tem can generate such a query pool without prior knowledge of collection contents.

The random walk sampler performs better than most alternatives, but has a much
higher cost as measured in interactions with the server. It also requires some knowl-
edge of how queries are processed at each server; any errors in assumptions here are
reflected in biased samples. The new multiple queries sampler can produce samples

50 Server characterisation: sampling documents

Method

Single queries Badly affected by query bias; very cheap.
Query-based Needs access to document text; badly af-

fected by query bias; very cheap.
Pool-based Needs access to document text; choice of

pool is important.
Random walk on MATCHP+ Needs access to document text; best qual-

ity samples; extremely expensive.
Multiple queries Needs support for large result sets; compa-

rable quality to random walk.

Table 4.8: Summary of sampling methods.

of comparable quality, with fewer interactions and no prior knowledge of the collec-
tion being sampled, but requires servers to return large result sets.

Document samples are often used to determine collection size, one of the most
important characteristics of a server for a metasearch system. Experiments in the
next chapter consider these samples, and a variety of size estimation techniques; they
show that the quality of a sample is of great importance in obtaining an accurate size
estimate, and that for many real-world tasks the samples from the multiple queries
method perform almost as well as a truly random sample. Results in Chapter 6 and 7
also demonstrate the importance of good-quality samples in language modelling and
server selection.

Chapter 5

Server characterisation: size

Size — meaning the number of documents included — is an important characteristic
of any collection used in metasearch. Collection size is a proxy for coverage and com-
prehensiveness, and is important input to many server selection methods including
extended KL-divergence, three variants of CORI, and ReDDE [Callan et al. 1995; Si
and Callan 2003a; Si and Callan 2003b]. Collection size is also needed to normalise
term statistics for language models; these language models are used in server selec-
tion as well as result merging [Craswell et al. 1999].

In some instances, servers may report a collection size. It is likely however that
a metasearch engine would rely on its own size estimates; few servers are likely to
report this information, and in many instances reported figures may be inaccurate
(for example, the rough numbers reported by Web search engines) or deliberately
misleading.

Several algorithms have been proposed for estimating collection size in a meta-
search environment with uncooperative servers, or with servers with a basic set of
features. These have been tested previously either with perfectly random samples,
which are hard to obtain, or with samples from query-based sampling, which was
earlier demonstrated to be biased — neither is likely to give an accurate picture of
their performance in a personal metasearch tool. Further, these algorithms have been
tested on TREC data or on the Web, neither of which corresponds to the full range of
collections in a personal context.

Section 5.1 below describes six methods for estimating collection size, as well as
two variants and related work. These methods are evaluated in Sections 5.2 and 5.3,
using the personal metasearch testbed of the previous chapter with samples of vary-
ing size and quality. Although no method for size estimation performs well in all
conditions, broad trends suggest that a small number of methods may be useful in
personal metasearch.

In the discussion following, the set of all documents in a collection is denoted D.
N is the size of this set (so N = |D|), and is the quantity to estimate.1 As elsewhere,
methods presented in this chapter make as few assumptions as possible about each
constituent server and the interface available.

1This and other notation is summarised in Appendix A.

51

52 Server characterisation: size

Information needed

Random Query Doc.
Method sample Model pool text

Capture-recapture (CR) Needed — — —
Multiple capture-recapture (MCR) Needed — — —

Capture history (CH) Needed — — —
Sample-resample (SR) — Needed — —

Basic estimator methods
Random documents (BER) Needed — Needed Needed

Uncorrelated query pools (BEU) — — Needed Needed

Table 5.1: Characteristics of size estimation methods.

5.1 Related work

A number of methods for size estimation have been suggested in the literature, follow-
ing two general approaches. The first approach is to take two or more random samples
from the collection, and count the number of documents in common between samples;
then, using a theoretical distribution, derive an estimate of the collection size. This is
the intuition behind the capture-recapture, multiple capture-recapture, and capture
history methods, described below.

The second general approach relies on estimates of term distribution, either from
models of a collection or from repeated samples. The sample-resample, random doc-
uments, and uncorrelated query pools methods below use this approach.

In this section six methods are described; they are summarised in Table 5.1 below.
Two further variants described in Section 5.2 are also used in the experiments of this
chapter.

5.1.1 Capture-recapture

The most straightforward estimator has come to be called the “capture-recapture”
method. It has long been used in demographics and biological science2 and was in-
troduced to information retrieval by Liu et al. [2001]. The method proceeds from the
observation that given a random sample of n documents from a collection of size N,
taken without replacement, the probability of any one document being included is
n/N. Given a second, independent, sample of n documents from the same collection,
the expected number of documents which are in both (“overlap”) is

E(O) =
n2

N
. (5.1)

(In this and the following section, the capital letter O represents a random variable
and a lowercase o represents a particular value of this variable.) From a count o of the

2Ricker [1975] credits the first use to John Graunt in 1662, estimating mortality rates in London.

§5.1 Related work 53

number of overlapping documents, an estimated collection size can be calculated as3

N̂ =
n2

o
. (5.2)

For example, if two 300-document samples from a collection have four documents
in common, the estimated size of this collection will be N̂ = n2/o = 3002/4 =22,500
documents.

It is evident that the capture-recapture technique can never produce estimates of
more than n2 documents and therefore requires samples of at least size

√
N docu-

ments. This is a serious drawback: unless the approximate size of a collection is
known in advance, the sample size n can itself only be estimated — larger values
of n would tend to reduce error but incur greater cost. The technique could, however,
be extended to gradually increase n over several runs.

The capture-recapture technique was tested by Liu et al. [2001] with collections
of 100,000 to 300,000 documents from TREC testbeds, and with sample size n from
1000 to 4000 documents (0.3% to 4% of the total collection). With samples chosen at
random, observed errors were around 3–5%.

Two weaknesses in the evaluation were identified and addressed by Shokouhi
et al. [2006], although they did not repeat the experiments in this case. First, the sam-
ples used by Liu et al. were true random samples, which as we have seen in Chapter 4
are extremely difficult to obtain in practice; Shokouhi et al. [2006] instead suggest us-
ing samples generated by query-based sampling [Callan et al. 1999]. Secondly, Liu
et al. did not consider what sample sizes were needed for accurate estimates. These
weaknesses are considered in the experiments in this chapter.

5.1.2 Multiple capture-recapture

Shokouhi et al. [2006] introduce two additional methods based on techniques in ecol-
ogy, both of which use repeated samples to improve size estimates. The first, “multi-
ple capture-recapture”, is an elaboration on capture-recapture and considers several
iterations of sampling, each time choosing n documents randomly from a collection
of size N.

Recall that given two samples of size n the expected number of documents o in
the overlap is E(O) = n2/N (Equation 5.1). Given T independent sampling itera-
tions, there are T(T− 1)/2 pairs and so the expected total number of overlaps is then
T(T − 1)/2× n2/N. Given a count o of overlaps between T independent samples, by
rearranging it is possible to obtain an estimated collection size with

N̂ =
T(T− 1)n2

2o
.

If there are two samples (T = 2), this is identical to simple capture-recapture.

3Bailey [1951] notes that this is not in fact the best estimate, especially if o is small, and suggests
instead N̂ = (n(n + 1)) /(o + 1). This estimate seems not to have been used in information retrieval
experiments.

54 Server characterisation: size

Tests of the technique used seven collections of 31,000 to 817,000 documents from
TREC, and 100 to 5000 samples each of 10 documents collected with query-based sam-
pling [Callan et al. 1999]. Multiple capture-recapture was found to consistently under-
estimate the true collection size, which Shokouhi et al. attribute to bias in the samples
used; this is consistent with results reported in Chapter 4 earlier. With this in mind
a correction was suggested for size estimates produced with the capture-recapture
method, and using this correction Shokouhi et al. report errors in estimation of 10–
79% given 5000 samples of 10 documents each.

5.1.3 Capture history

The Schumacher-Eschmeyer technique [Schumacher and Eschmeyer 1943], originally
introduced for estimating the population of fish stocks, builds on the simple capture-
recapture estimate. If each sample is the same size n, Equation 5.2 can be recast as

N̂ =
Mn

o
,

where M is the number of documents seen (“marked”) in the first sample and n
and o are as before.4 As with multiple capture-recapture, the Schumacher-Eschmeyer
technique uses repeated samples to improve estimates. For each iteration i we plot
oi/n, the fraction of documents in the i-th sample which overlap previous samples,
against Mi, the number of distinct documents seen in iterations 1 . . . i− 1 (Figure 5.1).

Note that at the limit Mi = N, when the entire collection has already been seen,
every document in the sample will have been seen, oi/n must be 1, and therefore a line
fitted to the plotted points but passing through the origin will have a slope around
1/N. This allows us to estimate (̂

1
N

)
= ∑i oi Mi

∑i nM2
i

(5.3)

Shokouhi et al. [2006] use this method, which they call “capture history”, for esti-
mating the size of a collection. Using Equation 5.3 gives

N̂ =
∑i nM2

i

∑i oi Mi

where oi is the number of documents in sample i which have already been seen in
earlier samples, and Mi is the number of distinct documents seen in all samples up to,
but excluding, the i-th.

The technique was tested on the same collections as for the multiple capture-
recapture method above, using 100 to 5000 samples each of 10 documents. Again, the
technique consistently underestimated the true size, and a correction was suggested
for this bias. With the correction, errors of 8–78% were reported.

4A good summary of this and other estimation techniques can be found in Ricker [1975].

§5.1 Related work 55

u
e

e
e
e

e

e
u

6

-. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

Distinct documents seen, Mi

Pr
op

or
ti

on
se

en
al

re
ad

y,
o i

/
n

1
0

0 N

Figure 5.1: The Schumacher-Eschmeyer (capture history) technique. The i points (Mi , oi/n)
will fall around a line with slope 1/N.

In this case, and for the multiple capture-recapture estimates above, Shokouhi et al.
report results from only one run on each collection and do not offer analysis of the
distribution of errors. A Wilcoxon test [Sheskin 2004] of the published data suggests
neither method is significantly better than the other (T = 3, n = 7, p = 0.08). This is
consistent with the results reported in Section 5.3 below.

5.1.4 Sample-resample

Si and Callan [2003b] introduced the “sample-resample” method as part of the ReDDE
technique of server selection (discussed further in Section 7.1.9 on page 104). This
method takes the second common approach, based not on repeated random samples
but estimates of term frequency.

The sample-resample algorithm starts by assuming a subset, or model, of the col-
lection is available; this model is generated from a size s subset of the documents in
the collection, and for any query q returns a count dfm(q) of the number of documents
sampled which match q. (These simple models are discussed further in Chapter 6
following.)

To obtain an estimate of collection size, a query q is sent to the appropriate server.
It is assumed that the server returns, as well as any other information, the number of
matches: this is the document frequency of the query, df(q). Now the probability that
any one document, chosen at random from the whole collection, matches q is df(q)/N;

56 Server characterisation: size

and the probability that any one document from the model matches q is dfm(q)/s.
If the model is a good representation of the whole collection, these probabilities are
approximately equal and (after rearranging) the collection size can be estimated with

N̂ =
df(q)

dfm(q)
s.

To improve accuracy, Si and Callan [2003b] choose five different queries and use
the mean of all five results as the final estimate N̂.

Evaluation experiments by Si and Callan used two testbeds: trec123-100col, which
is composed of 100 “small” collections (700–40,000 documents) from TREC CDs 1–3,
and trec123-10col, which is composed of 10 “large” (17,000–263,000 document) collec-
tions from the same data (Section 4.5.1). Using models built by query-based sampling
[Callan et al. 1999], the mean error ranged from 23 to 30%. The capture-recapture al-
gorithm, evaluated over the same testbed and using a comparable number of interac-
tions with the server, had mean errors in the range 18–94% although later experiments
over a different testbed showed errors of up to 542% [Shokouhi et al. 2006].

Sample-resample is probably the most commonly used technique for collection
size estimation in the literature [Avrahami et al. 2006; Hawking and Thomas 2005;
Nottelmann and Fuhr 2003]. There are obstacles to using it in a real system, however.
First, it requires a model of the collection, and one which can accurately predict term
frequencies across the whole collection. As shown in Chapter 4, this is a non-trivial
exercise.

Secondly, the technique requires some cooperation from the server in that it re-
quires a report of df(q) for any query q. While this information is commonly reported,
for example by Web search engines, it is not universal nor reliable [Anagnostopoulos
et al. 2005]. Poor estimates, errors, or deliberate misreporting at the servers them-
selves will necessarily distort size estimates.

Finally, this technique is accurate only to the extent that a metasearch tool is able to
process queries in the same way as each server. Differences in stemming and stopping,
for example, or in interpreting queries, will violate the assumption that frequencies in
the model approximate those in the collection and will result in poorer estimates. In
general, it is not possible to predict exactly how a server will handle any given query.

5.1.5 Basic estimator methods

Broder et al. [2006] describe two techniques derived from a “basic estimator”. Both
techniques need a query pool, or set of queries, P ; this pool must be of known size,
it must be possible to sample randomly, it must cover at least some of the documents
in the collection, and given the text of a document d it must be possible to determine
MATCHP (d), the set of queries from P which d matches. The set of all five-digit se-
quences, for example, is a candidate pool since the size is known (|P| = 105), it is
possible to sample with a simple random number generator, and given the text of a
document it is trivial to list all five-digit sequences it contains.

§5.1 Related work 57

Basic estimator and pool weight

The intuition behind both methods runs as follows. If we are interested in knowing
the size of DP , that subset of D which matches one or more queries in P , then it is a
simple matter to take a random sample of queries from P ; issue each query in turn to
the server; and count the documents returned. Multiplying the number of documents
seen in these sample queries by the ratio of pool size to sample size will then give an
overall estimate.

Each document, however, can be covered by more than one query in the pool and if
counted more than once will bias the estimate. To avoid multiple-counting these doc-
uments, Broder et al. define the weight of a document d as wPd = 1/|MATCHP (d)| and
sum these instead. The weight of a query q is similarly defined: wPq = ∑d∈RES(q) wPd ,
which is the sum of the weights of documents matching q. With access to the text of
each document, it is possible to calculate wPd and hence wPq for any query.

Finally, the weight of a query pool P is defined as

WP ,D = Eq∈P (wPq), (5.4)

which is the expected (or mean) weight of a query from P . WP ,D will not be known
without issuing every query in P , but can be estimated by selecting a random set of
queries and taking the average weight. Broder et al. show that

WP ,D = |DP |/|P|, (5.5)

which is the “basic estimator” used below.

As with the pool-based sampler of Section 4.2.3, errors will be introduced if the
underlying search engine interprets queries differently to the metasearch engine —
for example, due to differences in stemming or stopping. These methods also need
access to the text of documents, which may make them impractical in some cases.

Random documents

The first method using the basic estimator assumes it is possible to sample documents
randomly from the collection.

For any pool P , some proportion of documents in D will match one or more
queries. If we call this proportion pP = |DP |/|D|, it can be shown that

|P|
pP

WP ,D
(5.5)
=

|P|
|DP |/|D|

|DP |
|P|

= |D|
def= N.

58 Server characterisation: size

pP is easy to estimate given a random sample of documents. Given an estimate of
WP ,D as in Equation 5.4, therefore, the total collection size can be estimated by

N̂ =
|P|
p̂P

ŴP ,D .

The .GOV collection, with 1.2M documents, served as a testbed for Broder et al.
[2006] to evaluate the technique. All five-digit sequences formed a pool P . With 100
samples from P , the relative error was 49%; with 5000 samples the relative error was
reduced to 6%.

Five-digit sequences do not all have equal weight wPq , and the variance in weight
introduces further error in the final estimate. To reduce this variance, a random sam-
ple of documents (the size of which was not reported) was used to find the 25% of
queries in P with lowest estimated weight. Using samples only from this smaller
pool, errors in N̂ were further reduced to 14% with 100 samples and less than 1% with
5000.

Using a different pool of 100,000 medium-frequency terms from .GOV provided
better results, with errors from 4% with 100 samples down to 2% with 5000. No vari-
ance reduction was tested in this case.

Errors for the random documents method are small and amongst the best reported
to date; further, this estimator requires many fewer queries than capture-recapture.
Again, however, it relies on the availability of random samples, and as we have seen
in Chapter 4 it is unlikely that such samples are available. Further, unlike most other
methods (but like the uncorrelated query pools method below) it requires access to
document text to calculate MATCHP (d). In most cases, this will be possible but it is
not in the general case.

The choice of query pool would also seem important to the success, or otherwise,
of the random documents method. A query which overflows and which has a re-
sult set constrained by some maximum count will give poor estimates of pP , and as
demonstrated by Bharat et al. the variance in weight between queries in the pool will
affect the quality of the estimate. Without some knowledge of the collection it is not
clear how an appropriate pool can be selected.

Uncorrelated query pools

The second method of Broder et al. [2006] does not assume a random sample is avail-
able. The “uncorrelated query pools” technique assumes instead that for any collec-
tion, there exist two query pools P and Q which are uncorrelated (so the probability
of a document matching a query from P is not related to that of the same document
matching a query from Q). If this is the case,

N̂ =
|DP | |DQ|
|DP ∩DQ|

. (5.6)

§5.1 Related work 59

From the basic estimator of Equation 5.5, |DP | can be estimated by ̂|DP | = |P| ŴP ,D.
An estimate of |DQ| follows the same lines.

To estimate |DP ∩DQ|, Broder et al. note that

|DP ∩DQ|
|P| = WPQ,D

= Eq∈P

(
∑

d∈(DP∩DQ)
wPd

)
;

or the mean weight of documents that match at least one query from each of P and
Q. Combining the estimates of |DP |, |DQ|, and |DP ∩ DQ| in Equation 5.6 gives an
estimate of N.

This technique is similar to capture-recapture (Section 5.1.1 and Equation 5.2), but
with a pool taking the place of individual queries.

As with the random documents method, errors will be introduced with differ-
ences in query or text parsing. Further errors in estimation may be due to correlation
between P and Q; Broder et al. provide bounds for this error, which decreases as
the correlation decreases. If we let pP|Q = Pr(d ∈ DP | d ∈ DQ), or the conditional
probability of a document matching P given it matches Q, then when

c1 pP ≤ pP|Q ≤ c2 pP , where c1 and c2 are arbitrary constants in [0, ∞],
c1WP ,D ≤ N ≤ c2WP ,D .

Note that when P andQ are entirely uncorrelated, pP = pQ = pP|Q, c1 = c2 = 1, and
the estimate is accurate.

Evaluation again used the .GOV collection. The two pools used for the evaluation
of the random documents method proved too correlated, so two alternative pools
were defined: documents with exactly one five-digit sequence and documents with
exactly one medium-frequency word. Errors ranged from 28%, with 1000 samples,
to 21% with 5000. Although this is significantly more error than seen with random
documents, no random samples are assumed; however a pair of uncorrelated query
pools is required and again this suggests either some knowledge of the collection or a
pre-processing stage to investigate correlation.

5.1.6 Relative sizes and overlap

Rather than estimate the absolute size of a collection, Bharat and Broder [1998] attempt
to estimate relative sizes of two or more servers indexing the same collection (for
example, two or more Web search engines). They suggest taking a random sample
from each server, then using a checking procedure for each sampled document from
one server to determine whether it is indexed by the other; then it is possible to say, for
example, that 20% of the documents indexed by server A are also indexed by server B.
By combining two of these ratios, and assuming independence, an estimate of relative

60 Server characterisation: size

size follows. Further, if the size of one overlapping server is known then the size of
any other can be estimated directly.

This technique is useful, if random or near-random samples are available, for es-
timating the relative size of Web search engines. In metasearch more generally, how-
ever, it will not be the case that servers are independently indexing the same collection
and the technique is therefore not considered here.

In a similar vein, Henzinger et al. [2000] use their PAGERANK-SAMPLE algorithm
to estimate the relative, but not absolute, size of eight whole-of-Web search engines.
Lawrence and Giles [1998, 1999], Gulli and Signorini [2005], and Bar-Yossef and Gure-
vich [2006] also investigated the relative size of Web search engines. Again, all of these
studies assumed that each search engine indexed an overlapping subset of the same
collection.

5.2 Size estimation experiments

Although each estimator described above has been evaluated when introduced, there
does not appear to be any published work which compares them all across the same
testbed. The experiments reported here do this, and consider the following questions:

1. How do the size estimates compare across methods, and across collections?

2. How do the size estimates vary given samples of different sizes and different
quality?

3. Which, if any, of the methods is appropriate for personal metasearch?

The six collections used, which are typical of those likely to be included in a per-
sonal metasearch tool, are described in Section 4.5.1 on p. 40. These testbeds vary
significantly from those used in earlier work; in particular, they cover a much wider
range of sizes than previously considered, including a collection (.GOV) with more
documents than any collection used by Liu et al. [2001] or Shokouhi et al. [2006].

Six methods are considered: capture-recapture, sample-resample, multiple cap-
ture-recapture, capture history, and the two basic estimator methods. In addition,
following Shokouhi et al. [2006], corrected variants of multiple capture-recapture and
capture history are included. These are represented by starred forms (such as “capture
history*”) in the results below, and are defined by N̂∗ = 10a, where

a =
log10 N̂ − 1.5767

0.5911

for multiple capture-recapture and

a =
log10 N̂ − 1.4208

0.6429

§5.3 Results 61

for capture history.5 These corrections were derived from observed errors on seven
TREC-derived testbeds, but as observed in Section 5.3.1 below may be overfitted.

In keeping with earlier work, relative error [Liu et al. 2001] is reported in the results
below as an indication of quality. The relative error of a size estimate N̂, given the
true size N, is |N − N̂|/N. (Note that this metric can range above 100% only for over-
estimates; an extreme underestimate can never produce a relative error greater than
|N − 0|/N, or 100%.) In cases where no estimate is possible — for example, because
there is no overlap in the capture-recapture method — an error of 100% is recorded.
Ten runs for each method and collection allow observation of the distribution of these
errors.

PADRE [Hawking et al. 2000] was again used for indexing and searching, and no
stemming or stopping was performed. HTML was converted into plain text by lynx.

5.2.1 Samples and parameter settings

Each estimator was given three sets of samples, taken from three different sources.
The first set were random samples taken uniformly from the entire collection, using
knowledge of the extent of each collection; this is not possible in practice and repre-
sents an upper bound on the quality of samples and hence on the quality of size esti-
mates. Two more sets of samples were drawn from each collection using the multiple
queries sampler (Section 4.3), the best-performing sampler in previous experiments,
and the query-based sampler of Callan et al. [1999], which has been used in earlier
work.

Each estimator has several parameters. In a first set of experiments (Section 5.3.1),
parameters were set as originally described and as summarised above; later exper-
iments (Sections 5.3.2–5.3.4) varied these parameters to investigate the effect on the
generated estimates.

5.3 Results

The estimates from the capture-recapture, multiple capture-recapture, and capture
history methods depended upon the quality of the document samples used. Sample-
resample and the basic estimator methods require more knowledge of the collection,
but perform better with poorer samples.

The multiple capture-recapture, capture history, and sample-resample techniques
are improved if more interactions are allowed with the server. With good quality
samples and sufficient interactions, the multiple capture-recapture and capture his-
tory methods in particular can produce better estimates than other techniques.

5.3.1 Baseline methods

The first experiment provided a baseline for comparison. Each method was run with
parameters set as described by the original authors.

5Personal communication from Milad Shokouhi.

62 Server characterisation: size

• Capture-recapture used two true random samples of 1000 documents each, re-
gardless of the size of the collection. (Liu et al. [2001] used 1000 to 4000 docu-
ments.)

• The multiple capture-recapture and capture history methods both used 100 true
random samples of ten documents each. (Shokouhi et al. [2006] used 100 to 5000
samples. The effect of higher numbers of samples is considered in Section 5.3.2.)

• Sample-resample used language models built from a random sample of 300 doc-
uments, then five resamples using terms chosen uniformly from the learned
model [Callan and Connell 2001; Si and Callan 2003b]. The limit on the number
of results, k, was set to 10,000, and any query which overflowed was ignored as
these could otherwise limit the estimate N̂.

• The random documents method used true random samples of 1000 documents
each to estimate pP , then 1000 queries to estimate WP ,D. Following Broder et al.
[2006], the pool P was all 100,000 five-digit sequences.

• The uncorrelated query pools method used two sets of 1000 queries each to es-
timate pool weights. P was all five-digit sequences, as earlier, and Q was up to
100,000 medium-frequency terms from each collection.

The input to each method represents the best case: for example, samples are drawn
at random and query pools are constructed with full knowledge of the collection.
Subsequent experiments reported in Sections 5.3.2 and 5.3.3 use samples of different
sizes and more realistic quality, and experiments in Section 5.3.4 examine the effects
of other parameters.

Each method was run ten times on each collection, using different samples and
models for each run. Errors for each combination of method and collection are sum-
marised in Figure 5.2.

The errors recorded in this baseline experiment are broadly consistent with pub-
lished results. The multiple capture-recapture and capture history methods perform
better here than originally described; in fact they perform as well “as is” as did the cor-
rected versions of Shokouhi et al. [2006]. These methods were originally tested with
biased samples, however, and improved performance with random samples is un-
surprising. Results also vary for the capture-recapture method on the WSJ collection,
where estimates here are worse than originally reported for comparable collections
(40% mean error for the 98,732 document WSJ collection against 3–5% reported error
for collections of 100,000 to 300,000 documents). Individual runs on the WSJ collection
did however have relative errors as low as 1%, and since earlier figures were reported
from single runs it is possible that this variance was not noticed.

Given random samples, the capture-recapture method performs well compared
with others of greater complexity. Accurate estimates of the 1.2 million document
.GOV collection are impossible, however, since with samples of only 1000 documents
apiece it is not possible to estimate more than N̂ = 1000× 1000 = 1,000,000. In five of

§5.3 Results 63

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

CR MCR CH SR BER BEU

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

calendar
zsh−list
procmail

email
WSJ
GOV

R
el

at
iv

e
er

ro
r,

 %

Size estimation method

Figure 5.2: Errors in size estimates, given true random samples of sizes specified in earlier
work. Methods are capture-recapture (CR); multiple capture-recapture (MCR); capture his-
tory (CH); sample-resample (SR); basic estimator with random documents (BER); and basic
estimator with uncorrelated query pools (BEU). Ten runs of each method for each collection.
In these and subsequent plots, the thick line marks the median, boxes show the interquartile
range, and thin lines show the range. For clarity, outliers more than 1 1

2 times the interquartile
range from the box are not plotted. CH, BER, and BEU all failed to return estimates for at least
one collection (shown as 100% error).

64 Server characterisation: size

Collection t test results

calendar CR < (CH, MCR) < SR < (BER, BEU)
zsh-list (CR, MCR, CH) < SR

procmail CR < BEU < SR
email (CR, MCR, CH) < (SR, BER);

BEU < BER
WSJ (CR, MCR, CH, SR) < BEU

.GOV BER < (SR, BEU) < (MCR, CH);
BER < CR

Overall (CR, MCR, CH) < (SR, BER, BEU)

Table 5.2: Size estimates compared, using random samples. “a < b” indicates the mean error
from method a is less than that from b according to a t test (α = 0.05). Each method was run
ten times on each collection. See text for comments on false alarms.

the ten runs on the .GOV collection, the capture-recapture method found no overlap
at all and failed to produce any estimate.

The multiple capture-recapture method offers no improvement on capture-recap-
ture, and because of the smaller size of each sample is less likely to see overlapping
documents; in seven of the ten runs over the .GOV collection there is no overlap be-
tween any of the 100 samples and the method fails.

The capture history method also fails in seven runs of ten with the .GOV collection,
again since there is no overlap. A larger number of samples improves the chance of
overlap and produces better estimates (see Section 5.3.2), but it does not seem possible
to choose this parameter without some prior knowledge.

The two basic estimator methods failed to complete on the calendar collection,
and the uncorrelated queries method failed to complete on the WSJ collection, as the
coverage of the query pool P was low enough that no documents were found.

Methods compared

The estimates from each method, over each collection, were compared using a series
of t tests. Results are given in Table 5.2: each entry of the form “a < b” indicates that
the mean error from method a is significantly less than that from method b (α = 0.05).
Note that withα = 0.05 and 210 comparisons (six collections and an overall summary,
each with 30 pairwise comparisons), we can expect around 10 false alarms. Applying,
for example, a Bonferroni correction would dramatically reduce the power of the test.
Since the broad trends in Table 5.2 seem consistent, errors in individual comparisons
need not be a problem.

If random samples are available, the sample-resample (SR) and random docu-
ments (BER) methods perform well with the larger collections such as WSJ and .GOV;
for smaller collections, capture-recapture (CR) and capture history (CH) perform well.
The uncorrelated query pools method (BEU) can produce estimates without any sam-
ple, but performs poorly on smaller collections where the coverage of the two pools P

§5.3 Results 65

andQ is relatively low. Of these methods, only capture-recapture and capture history
can produce estimates without access to the text of documents, making them more
generally applicable.

Both basic estimator methods failed to produce an estimate of the calendar collec-
tion. This is due to the definition of the pool P used by both: there are no documents
in the calendar collection which contain even a single five-digit number, so WP ,D and
thus N̂ will always be zero. Although this may be an unusual case, it is not possible
in general to know whether a pool will cover any documents in any given collection.
Similarly, unforseen characteristics of the WSJ collection prevented the uncorrelated
query pools method from producing an estimate (there is no overlap between docu-
ments in each pool). These methods could only be used with enough prior knowledge
of the collection to choose a reliable pool.

Section 5.3.4 discusses experiments with alternative pools for both basic estimator
methods.

Corrected variants

Figure 5.3 summarises relative error for each collection for the multiple capture-re-
capture (MCR) and capture history (CH) methods, with and without the correction of
Shokouhi et al. [2006]. With true random samples, the correction clearly introduces
error: the estimates are significantly worse in all cases except the .GOV collection,
for both methods, and the procmail collection for the capture-history method (t test,
α = 0.05). This is expected, since the correction is designed to counter systematic bias
in the sampling method and in this case there is none. Section 5.3.3 below considers
the correction with more realistic samples.

5.3.2 Number of interactions

The multiple capture-recapture and capture history methods rely on a series of sam-
ples, and the sample-resample method uses a number of resamples to improve the
final estimate. A second series of experiments considered whether the estimates from
these methods improved if they were allowed more interactions with constituent
search engines.

Results are summarised in Figure 5.4, which plots the mean error for each of ten
runs on the six collections against the number of interactions allowed. For the multiple
capture-recapture (MCR) and capture history (CH) methods, it is assumed that each
sample requires only one interaction (so this is the best case); for the sample-resample
method (SR), it is also assumed that building a model from 300 documents requires a
further 301 interactions (one to generate a sample of 300 documents, and then one to
download each).

For reference, Figure 5.4 also indicates the overall mean relative error for the re-
maining three methods. The capture-recapture (CR) method uses only two samples;
the basic estimator methods (BEU and BER) use two much larger samples each, and
require additional interactions to download the text of each document sampled.

66 Server characterisation: size

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

MCR MCR* CH CH*

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00 calendar

zsh−list
procmail

email
WSJ
GOV

R
el

at
iv

e
er

ro
r,

 %

Size estimation method

Figure 5.3: Errors in size estimates, given true random samples, with and without the cor-
rection of Shokouhi et al. [2006]. Methods are multiple capture-recapture (MCR) and capture
history (CH); starred forms use the correction. Ten runs of each method for each collection.
See notes to Figure 5.2 on p. 63 for plotting conventions.

§5.3 Results 67

0 200 400 600 800

0
20

40
60

80
10

0
12

0

Interactions

O
ve

ra
ll

m
ea

n
re

la
ti

ve
 e

rr
or

, %

BEU

BER

CR

SR

CH

MCR

Figure 5.4: Improvement in size estimates from the multiple capture-recapture (MCR), capture
history (CH), and sample-resample (SR) methods with more interactions. Each point is the
overall mean relative error from ten runs on each of six collections; shaded points are the
default number of interactions. Bars are ±1 standard error. Also plotted for reference are
overall mean relative errors from other methods, which use a fixed number of interactions.

68 Server characterisation: size

Errors from the multiple capture-recapture and capture history methods appear
sensitive to the number of interactions allowed. With more interactions than the base-
line 100, errors are reduced; with fewer, they increase dramatically. Using 400 ran-
dom samples, the overall mean error from either method is significantly lower than
that from capture-recapture or either of the basic estimator methods (one-sided t test,
α = 0.05).

A similar pattern is seen for the sample-resample method. As originally presented,
it uses the mean of five estimates as a final size; allowing for the interactions needed
to build the model, this represents 306 interactions. Allowing more interactions im-
proves the final estimate, and with 321 interactions (20 resamples) the overall mean
relative error is significantly lower than that from either basic estimator.

The data plotted in Figure 5.4 is the mean relative error over all collections; each
individual collection, however, shows similar trends. We can conclude that each of the
three methods improves with more interactions, over a variety of collections, and that
the multiple capture-recapture and capture history methods in particular can produce
better estimates than other techniques if they are allowed enough samples.

5.3.3 Sample quality

A third set of experiments considered the effect of sample quality. Any samples used
in a real-world system are prone to bias (Chapter 4), and the questions addressed here
are: do biased samples produce poorer size estimates, and, if so, do errors increase
with sample bias? Further, since biased samples cover fewer documents than random
samples, are biased samples more likely to produce underestimates of collection size?

Two sets of samples were used: samples generated by the multiple queries sam-
pler of Section 4.3, which was the best-performing sampler in previous experiments;
and samples generated by query-based sampling (Section 4.2.2; Callan et al. [1999]),
commonly used in other work.

To investigate the impact of biased but realistic samples, each method tested in
Section 5.3.1 was re-run for each collection in the testbed. Samples for the capture-
recapture, multiple capture-recapture, capture history, and random documents meth-
ods were drawn using the multiple queries sampler; models were built for the sample-
resample method using documents sampled the same way. (The uncorrelated query
pools method does not make use of sampled documents, so was not re-run.) Each
method was again run ten times over each collection, and a t test was used to com-
pare these sets of ten estimates.

The multiple queries sampler was unable to sample 1000 documents from the cal-
endar collection, and so the capture-recapture (CR), sample-resample (SR), and ran-
dom documents methods failed to estimate a size for this collection and were assigned
a relative error of 100%. Estimates were significantly worse on the calendar collection
for the capture-recapture, multiple capture-recapture (MCR), capture history (CH),
and sample-resample methods, but in no other cases was there a significant difference
between estimates produced with these biased samples and those produced earlier.

§5.3 Results 69

Collection t test results

calendar CH < MCR < (SR, CR, BER, BEU)
zsh-list (CR, MCR, CH) < SR

procmail CR < BEU < (SR, BER)
email (CR, MCR, CH, BEU) < SR;

(CR, CH) < BER
WSJ (MCR, CH) < SR < BEU;

CR < BEU
.GOV (BER, BEU) < (CR, MCR, CH, SR)

Overall (MCR, CH) < (SR, BER, BEU);
CR < (SR, BER)

Table 5.3: Size estimates compared, using the multiple queries sampler. “a < b” indicates
the mean error from method a is less than that from b according to a t test (α = 0.05). Each
method was run ten times on each collection. See text for comments on false alarms.

For most collections and all methods of size estimation, then, it appears that the mul-
tiple queries sampler produces estimates as good as those from true random samples.

Each method was again compared with all others, over each collection, and results
are listed in Table 5.3. The uncorrelated query pools estimator performs better here,
relative to the other methods, than in earlier experiments; this is expected since it does
not rely on samples and therefore will not degrade. As noted, the capture-recapture,
sample-resample, and random documents (BER) methods perform poorly on the cal-
endar collection. Otherwise, results with these biased samples are similar to those
using random samples in Table 5.2; the uncorrelated query pools estimator (BEU) re-
mains useful for large collections. Again, we may expect around 10 false alarms; see
Section 5.3.1.

A second experiment considered samples from the query-based sampler of Sec-
tion 4.2.2. Although this is known to produce significantly biased samples (see Sec-
tion 4.5.3, and Shokouhi et al. [2006]), it is commonly used in metasearch applications
including for size estimation. Again, besides the input samples or models, parameters
for each method were unchanged, and t tests compared relative error.

Estimates based on these more biased samples were substantially worse than those
based on random samples. The capture-recapture (CR), multiple capture-recapture
(MCR), and capture history (CH) methods were each significantly worse on five of
the six collections, and the sample-resample method (SR) was significantly worse on
three of the six.

Despite being significantly poorer at estimating the size of the .GOV collection,
the random documents method (BER) proved more robust and was not significantly
worse in any other cases. This is likely due to the choice of query pool; although the
set of documents sampled is biased, the bias is not related to queries in the pool and
so the sample remains a good basis for estimating WP ,D and pP .

70 Server characterisation: size

Collection t test results

calendar CR < CH < MCR < BEU < SR;
CR < CH < MCR < BER

zsh-list (CR, CER, BEU) < (MCR, CH)
procmail BEU < CR < SR < CH < MCR;

BEU < BER < CH < MCR
email BEU < (CR, SR, BER) < CH < MCR

WSJ (CR, BER) < (MCR, CH) < BEU;
(CR, BER) < SR

.GOV (CH, BEU) < (CR, MCR, CH)

Overall (CR, BER, BEU) < CH < MCR < SR

Table 5.4: Size estimates compared, using the QBS sampler. “a < b” indicates the mean error
from method a is less than that from b according to a t test (α = 0.05). Each method was run
ten times on each collection. See text for comments on false alarms.

These results are also shown by the between-methods t tests shown in Table 5.4.
The capture-recapture, multiple capture-recapture, and capture history methods are
particularly affected by the bias in these samples; again, the uncorrelated query pools
method (BEU) performs well with the .GOV collection. Once again, the comments on
false alarms in Section 5.3.1 apply to this experiment.

With samples which are good enough, then, the error in size estimates is not much
affected; and in this regard the multiple queries method produces samples which are
good enough for all but the smallest collection. Samples which are more biased, such
as those from the query-based sampler, introduce significant error.

The second question of interest was: are biased samples likely to produce underes-
timates of size? With fewer documents represented in biased samples, it seems likely
that those methods which rely on random samples will estimate smaller sizes over-
all. This is in fact the case: the capture-recapture, multiple capture-recapture, and
capture history methods report smaller average estimates in most cases with the bi-
ased samples from the multiple queries sampler, and in all cases with the very biased
query-based samples.

Corrected variants

The corrections of Shokouhi et al. [2006] proved of no use given perfectly random
samples, but it is reasonable to expect an improvement given more biased samples.
However, this is not the case: given biased samples from the multiple queries sam-
pler, “corrected” estimates were significantly worse for four of the six collections for
multiple capture-recapture and three of the six for capture history. Given the more
biased samples from the query-based sampler, the “corrected” estimates were signifi-
cantly worse for all collections and both methods (with the sole exception of the WSJ
collection for multiple capture-recapture).

§5.3 Results 71

The corrections do not appear to be useful in this testbed, although improvements
were suggested for TREC data. This may suggest over-fitting in the original work.

5.3.4 Parameter settings

As before, there are a number of parameters for some algorithms. A final set of exper-
iments varied these parameters to investigate possible improvements.

Capture-recapture

The capture-recapture technique had used two random samples of 1000 documents
each. Followup experiments used samples of 500 and of 200 documents, again making
ten estimates for each collection (so using twenty different samples for each). With
samples of 500 documents, estimates for two of the six collections were significantly
worse (one-sided t test, α = 0.05). With samples of 200, estimates for all but one
collection were significantly worse.

This indicates that the capture-recapture technique is, in general, improved by
larger samples and made worse by smaller samples. Generating larger samples is
costly, however, and may not always be practical.

Basic estimator methods

The random documents method failed to produce an estimate for the calendar collec-
tion, since the pool consisted of five-digit sequences and there were no such sequences
in any calendar document (soP+ = ∅). Further experiments considered other choices
of pool.

With a pool for two-digit sequences, which are likely to be much more common,
it was possible to estimate the size of the calendar collection; errors in this case were
similar to those from the multiple capture-recapture or the capture history methods.
(P+ is not empty for this alternative pool, although VDENSITY(P) is still low.) With a
pool of common English words, as used for the mutiple queries sampler, results were
similar.

The choice of pool allows a tradeoff. When queries in a pool match more doc-
uments, there is less chance of failing to return an estimate; however more effort is
needed to estimate WP ,D since each matching document must be downloaded. Sim-
ilarly, by using more of the pool P to estimate WP ,D a more accurate estimate can be
obtained but at the expense of increased work. It is necessary to find the right tradeoff
between increased coverage or sample size (and more accuracy) and lower coverage
or sample size (and more speed), but it is not clear how to do this without some prior
knowledge of the collection.

The uncorrelated query pools estimator also allows a choice of pool. First experi-
ments, following Broder et al. [2006], used five-digit sequences forP and up to 100,000
medium-frequency terms from each collection for Q. Without some prior knowledge

72 Server characterisation: size

of a collection, it would not possible to defineQ this way; followup experiments there-
fore considered an alternative, where Q is the collection-independent list of common
English words. With P either all five-digit sequences, as before, or all two-digit se-
quences, errors were similar and in the majority of cases were not significantly dif-
ferent (two-sided t test, α = 0.05; only in one case, with P all five-digit sequences
and using the zsh-list collection, was there a significant improvement). Provided each
pool covers at least some documents, so VDENSITY(P) > 0, the estimator appears to
be largely insensitive to the exact pools used.

5.4 Conclusions

The experiments in this chapter show that no single method for size estimation works
well in all circumstances. There are however broad patterns:

• Capture-recapture provides good estimates of smaller collections. These de-
grade as samples are more biased but remain better than other methods in many
cases, as long as the sampler itself does not fail (as, for example, the multiple
queries sampler on the calendar collection; see Section 5.3.3).

• If document text is available, the uncorrelated query pools method provides
good estimates of larger collections and does not need a sample of documents.

• If good quality random samples are available, capture-recapture and capture
history provide good estimates of smaller collections; sample-resample and the
basic estimator methods provide good estimates of larger collections. Multiple
capture-recapture and capture history rapidly improve, however, if they are al-
lowed more interactions and can eventually outperform other estimators.

• The two basic estimator methods provide good estimates of larger collections
if good-quality samples are not possible but document text is available. This is
likely to be the case in many applications.

The “corrected” variants of multiple capture-recapture and capture history do not
appear to offer any benefit even with biased samples.

Size estimates produced with multiple queries samples were not significantly dif-
ferent to those produced with random samples, with the exception of some estimates
on the calendar collection. This suggests that the multiple queries sampler produces
samples which, despite being biased, are of high enough quality for metasearch ap-
plications. This is not true of the commonly-used query-based sampler.

Size estimates are used at several points in the metasearch process. In language
models, considered in the following chapter, they are used for normalisation. Esti-
mates are also used to inform server selection, which is discussed in Chapter 7.

Chapter 6

Server characterisation:
subject matter and language

Server selection, discussed in Section 2.2 and in Chapter 7 following, makes use of
characterisations of the available servers. As well as size, overlap, and other charac-
teristics already considered, an important part of this characterisation is the subject
matter of each collection: the types of document which are available and the types of
queries for which it would be a good choice.

Past work has proposed several techniques for summarising subject matter. Sec-
tion 6.1 describes several techniques, as well as variants and related work.

Unigram language models, outlined in Section 6.1.2, can be built with no coopera-
tion from servers and are commonly used in server selection algorithms. These mod-
els are examined in experiments in Sections 6.2 and 6.3, where the quality of a model
is shown to depend on the quality of the sampling mechanism used. While previous
work has generally used TREC or Web data, these experiments again concentrate on
collections representative of those likely to be used in personal metasearch. Across a
range of collections, models built with the multiple queries sampler are largely indis-
tinguishable from those built with true random samples; those built with query-based
sampling are of lower quality. Examination of the correlation and relative power
of three measures suggests that one measure, Kullback-Leibler divergence, captures
model quality more usefully than other proposed alternatives.

6.1 Related work

A large body of work has addressed the problem of characterising the subjects cov-
ered by collections. There have been two major approaches: classifications in a pre-
determined taxonomy, such as a cataloguing scheme (Section 6.1.1), and models of the
terms used in documents (Section 6.1.2). In each case, some proposed techniques re-
quire server cooperation; some require the text of documents; and alternatives assume
that only a query interface is available.

73

74 Server characterisation: subject matter and language

6.1.1 Classifications

A number of systems have been developed to classify collections according to their
subject matter using a pre-determined taxonomy. If queries can also be classified ac-
curately, such schemes simplify server selection: the only operation is to select for
each query those servers which cover a relevant part of the topic hierarchy.

Sheldon et al. [1994] described a hierarchical metasearch system which used “con-
tent labels” to describe cooperating servers. These labels, which were manually as-
signed, included information on servers (location, administrator, name, etc.) and col-
lections (searchable fields and possible query completions). Labels were exposed to
the user through a search tool and could be used for manual server selection and for
search.

The more involved Pharos system [Dolin et al. 1996] used several pre-defined
taxonomies to represent the contents of each collection and to suggest appropriate
servers for a given query. Collections could be on- or off-line. Metadata provided by
each server represented that server’s holdings according to four parallel hierarchies:
subject matter, according to Library of Congress classifications (LCC);1 geographical
coverage of the collection; historical coverage of the collection; and the publication
dates of included documents.

This metadata was collated by each server from per-document information. The
classification of each document could be manual, for example for library holdings
already classified with the LCC, or automatic; Dolin et al. reported using latent se-
mantic indexing [Deerwester et al. 1990] for automatic classification. Once collated,
the metadata was distributed using a scheme similar to Usenet news [Kantor and Lap-
sley 1986]. “Mid-level” servers collected and replicated metadata regarding particular
classifications or time periods, and an overview of the whole distributed system was
collected at each of a number of “high-level” servers.

The hierarchical classification of servers was used by Pharos to suggest a set of
servers for a user’s query. Using latent semantic indexing or some equivalent method,
the query could be mapped to a node, or set of nodes, in a relevant hierarchy; or the
user could navigate the hierarchy and choose a node directly. With the vocabulary
controlled in this way, queries to high-level servers would return a coarse-grained
view of the available resources, and a user could indicate relevant mid-level servers
and eventually individual collections.

Simulation experiments with random collections and queries [Dolin et al. 1997]
and with newsgroup data [Dolin et al. 1999] suggested that the classification scheme
enabled fairly precise selection of collections, although the authors noted that it was
not clear how it would scale to larger holdings. Although Pharos was expected to
scale to millions of servers [Dolin et al. 1997], it appears that it has not been used in
full-scale experiments.

Pharos relied on cooperating servers and a shared classification scheme. Alter-
natives have assumed uncooperative servers, and used a query interface to classify
collection contents.

1http://www.loc.gov/cataloging/classification/

§6.1 Related work 75

Profusion [Gauch et al. 1996], described in Section 2.3.2, used a set of 13 categories
chosen to be representative of users’ interests, including “science and engineering”,
“computer science”, and “travel”. About four queries per category, 48 in total, were
issued to each of the six servers in use; each returned document was manually judged
for relevance. The servers’ performance across each category was later used to influ-
ence server selection and result merging.

The Profusion strategy, although appropriate for a small number of servers and
classifications, could not scale well to large numbers of either. The more scalable
“probe and count” algorithm [Ipeirotis et al. 2001] uses the size of result sets, not
document text, to classify collections in a heirarchical taxonomy. In a first step, a rule-
based classifier such as RIPPER [Cohen 1995; Cohen 1996] is trained with a set of
documents, each in a known category. The classifier outputs rules of the form “if the
document contains termi and term j and . . . , then it is in categoryk”.

Each learned rule is then transformed into a Boolean “probe query” of the form
“termi AND term j AND . . . ” and forwarded to the server; the size of the result set is
used to approximate the number of documents about categoryk in the collection. It is
not clear how the probe and count algorithm deals with query overflow, inaccurate
size estimates from servers, or servers which do not have a Boolean query language.

Document counts for each category are adjusted according to the classifier’s accu-
racy on the training data, and the adjusted counts are finally used to find the node in
the hierarchy which best represents the collection. The algorithm can be adapted to
prefer specificity — classifications which cover only those topics in the collection —
or coverage — classifications which cover as much of the collection as possible. Ex-
periments with two sets of data, from newsgroups and Web-based databases, demon-
strated the probe and count algorithm required fewer interactions with the server
than alternatives and that its performance, on analogues of precision and recall, was
reasonable.

The probe and count algorithm, renamed “QProber”, was extended by Gravano
and Ipeirotis [2003]. While probe and count relied on classifiers themselves produc-
ing rules of the form “if termi and term j and . . . ”, QProber included an algorithm for
generating such rules from the output of other classifiers including support vector
machines [Joachims 1998] and naı̈ve Bayesian classifiers [Duda and Hart 1975]. A
further set of experiments confirmed that these alternative classifiers produced server
characterisations of similar accuracy.

Meng et al. [2002] described a similar system, also using probe queries to assign
collections to a heirarchical taxonomy. Probe queries were created from the names of
each category and all of its sub-categories, and the similarity between each query and
documents in the collection was used to inform the assignment.

Meng et al. introduced three algorithms for calculating this similarity. The first,
“high similarity with database centroid”, uses information on term occurrences in
each document to calculate an overall centroid for the collection. This centroid is
compared, using a cosine similarity measure, with the description of each classifica-
tion and the most similar classifications are retained. Although this technique requires
access to accurate term frequency data for each document in the collection, and is

76 Server characterisation: subject matter and language

therefore not useful for uncooperative servers, Meng et al. suggest that a sample of
documents could be used instead. This was however not considered further.

The second algorithm, “high average similarity over retrieved documents”, is a
variant on the first. Rather than calculate the similarity between the entire collection
and each description, this variant translates each description to a query, takes the
text of the top few documents, and uses the similarity between these documents and
the description as the ranking criteria. This algorithm requires access to the text of
returned documents, and assumes servers are effective, but can otherwise work with
an uncooperative server.

The third and final algorithm of Meng et al. [2002] uses singular value decompo-
sition (SVD). Again, term information is assembled for each of a number of training
collections. This, plus a manual classification of each collection, is given as input to an
SVD classifier, which finds correlations between terms and classifications [Yang and
Chute 1994]. These correlations, with information on term frequencies, can be used to
classify a new collection.

Experiments using classifications from Yahoo!2 and the Open Directory Project3

compared automatic classifications of 24 collections — 18 newsgroups and six Web
collections from two universities — to a manual classification. An analogue of 11-
point average precision indicated that the retrieved documents variant outperformed
the other two algorithms; in a case study [Meng et al. 2002], a prototype which used
this algorithm correctly classified a Web-based database.

6.1.2 Language models

A second line of research has described collections by building language models. These
models consider documents as the result of a stochastic process of language genera-
tion, and describe a probability distribution which captures this. In principle, these
distributions can be arbitarily complex but models have most commonly been sim-
ple: a set of individual terms with associated frequency information [Ponte and Croft
1998]. Tables 6.1 and 6.2 have examples with, respectively, term frequency and doc-
ument frequency. Such language models have also been referred to as “representa-
tives” of collections [Liu et al. 2001; Shokouhi et al. 2007] and as “content summaries”
[Ipeirotis et al. 2001; Ru and Horowitz 2005].

Language models were introduced to information retrieval by Ponte and Croft
[1998], who described a use of models to rank documents in response to a query. A
model is first inferred from the text of each document. Assuming each term occurence
is independent of all others, the probability of generating the query q from the process
underlying document d is the product of the probabilities of generating each term in
the query and the probabilities of not generating every other term:

Pr(q|d) = ∏
t∈q

Pr(t|d) ∏
t∈Td\q

(1− Pr(t|d)) , (6.1)

2http://dir.yahoo.com/
3http://dmoz.org/

§6.1 Related work 77

where Td is the set of terms in the document.
These per-document language models are smoothed in two ways. A naı̈ve calcula-

tion of Pr(t|d) is to use the relative frequency of t in d and assign Pr(t|d) = tfd(t)/|d|,
where tfd(t) is the term frequency of t in d — the number of times t occurs in d — and
|d| is the number of terms in the document. If a term t does not occur at all in d, this
leads to the conclusion that Pr(t|d) = 0 and that t is never a possible output from the
underlying stochastic process. As Ponte and Croft observe, this is a strange conclu-
sion: not seeing something should not mean it is impossible. It is also not useful, since
Pr(q|d) will be zero in all such cases. Instead, where a term does not occur we smooth
the model by approximating

Pr zero(t) = ∑d∈D tfd(t)
∑d∈D |d|

,

so if the term does not appear in a document at all then the mean rate of occurrence
over the whole collection is used instead.

Models are also smoothed by including, for each term t, a component based on the
mean probability of t in those documents where it appears: this is

Pr avg(t) = ∑d∈D(tfd(t)/|d|)
df(t)

.

Given a mixing parameter R̂, this and the previous correction finally give

Pr(t|d) =

{
(tfd(t)/|d|)1−R̂ × Pr avg(t)R̂ if tfd(t) > 0;

Pr zero(t) otherwise.

This definition is substituted into Equation 6.1, and documents are ranked according
to Pr(q|d). Experiments by Ponte and Croft [1998], using TREC ad hoc data, showed
significant improvements in recall and precision using this model-based ranking in-
stead of a standard ranking from INQUERY [Callan et al. 1992].

Similar smoothing can be seen in the Kullback-Leibler method for server selec-
tion, described in Section 7.1.6. Ipeirotis and Gravano [2004] have suggested a further
smoothing technique, which uses mixtures of models according to a collection’s place
in a given topic heirarchy; this topic-based method increased the performance of the
CORI server selection algorithm (Section 7.1.2) in their experiments.

Ponte and Croft described unigram language models for individual documents;
more commonly, models are used to summarise entire collections. Language models
for collections are used in a number of server selection techniques including CORI
[Callan et al. 1995], CVV [Yuwono and Lee 1997], GlOSS [Gravano et al. 1999], and
Kullback-Leibler divergence [Si et al. 2002; Xu and Croft 1999], and are considered in
the experiments below.

Gravano et al. [1997a] describe STARTS, a protocol for communication between a
metasearch application and cooperating servers which includes this sort of collection-
scale model. Each STARTS-compatible server makes available metadata on each col-

78 Server characterisation: subject matter and language

lection it indexes; this metadata includes a term list with associated frequency infor-
mation. This could be used by a metasearch application to inform server selection and
result merging. Harvest [Bowman et al. 1994] similarly distributed metadata, in this
case at the document level, between cooperating components. SearchDB-ML [Pow-
ell and Fox 1998], a simpler alternative, did not include term data but did include
manually-assigned descriptions of each server which could be used to inform server
selection.

In metasearch applications with uncooperative servers, language models for col-
lections can be built from a sample of documents. Query-based sampling, for ex-
ample, was originally proposed as a means to build language models [Callan et al.
1999], and recent work has measured the quality of this technique by the quality of
the models produced (see for example Baillie et al. [2006b]; Shokouhi et al. [2007];
and Section 6.2 below). Since these models are built from a sample — a subset of a
collection — they are constrained to reporting relative term frequencies, such as the
mean number of term occurrences per document sampled. Absolute counts can be
estimated with the addition of a collection size estimate (Chapter 5); Ipeirotis and
Gravano [2002] also suggest an algorithm which estimates total term counts while
sampling as long as the overall shape of the term distribution is known. This alterna-
tive could for example be used to estimate df in the CORI algorithm (Section 7.1.2),
although it does not appear to have been considered.

6.2 Language modelling experiments

Unigram language models as described above are used in a number of server selection
techniques including CORI [Callan et al. 1995], CVV [Yuwono and Lee 1997], GlOSS
[Gravano et al. 1999], and Kullback-Leibler divergence [Si et al. 2002; Xu and Croft
1999], and are therefore considered here. Experiments address three questions: how
good are language models built with sampled documents? How can this quality be
measured? And can models be improved with more effort?

These experiments do not consider the classification strategies of Section 6.1.1.
Most successful server selection techniques to date have used unigram language mod-
els, and it is not presently clear what form of topic heirarchy or query classification
technique would be appropriate for personal metasearch.

As in Chapters 4 and 5, the experiments reported here use six collections which
represent the range of size and subject matter in personal metasearch. They are sum-
marised in Table 4.2 on page 40.

6.2.1 Samples

Models were built from documents returned by each of three different samplers. As
a baseline, models were built using documents selected entirely at random; as noted
in Chapter 4, this is not possible in practice but provides a best case for comparison.
Models were also built from documents sampled by the multiple queries sampler of
Section 4.3, which was the best performing sampler in earlier experiments, and from

§6.2 Language modelling experiments 79

documents sampled by the query-based sampler of Section 4.2.2 [Callan et al. 1999],
which has been commonly used in previous work [Baillie et al. 2006b; Callan and
Connell 2001; Hawking and Thomas 2005; Shokouhi et al. 2007; Si and Callan 2003b].

6.2.2 Model quality

Each experiment considers the quality of language models built from each set of sam-
ples. Given access to the full collection, and hence accurate term frequency infor-
mation, three different measures have been proposed to measure model quality: the
collection term frequency ratio, differences in term ranking, and Kullback-Leibler di-
vergence.

(Baillie et al. [2006a] have suggested a fourth measure of model quality, the like-
lihood of a model generating a pool of queries P . By letting P be different for each
user, model quality can be calculated relative to a that user’s information needs; pools
can also be collection independent. Experiments by Baillie et al. showed a moderate
to strong correlation between likelihood and Kullback-Leibler divergence, suggesting
this could measure quality without any knowledge of true term distributions; how-
ever a pool must be defined before this measure can be calculated, and since there is
no pool of likely queries the likelihood measure is not considered in the experiments
below.)

Collection term frequency ratio

The collection term frequency (ctf) ratio was introduced by Callan et al. [1999] to mea-
sure the quality of models built by query-based sampling, where these models are
simple sets of terms with associated frequency information. It measures the corre-
spondence between the vocabulary of a model m and a collection, weighted to give
more emphasis to more common terms.

The term frequency of a term t, tf(t), is the total number of times it occurs in the
collection. T denotes the set of terms in a collection; ctf ratio then measures the pro-
portion of total term occurrences accounted for in the model:

ctf ratio = ∑t∈m tf(t)
∑u∈T tf(u)

.

The ratio falls in the range [0, 1], and higher values are assumed to represent a
better quality model.

For example, consider Table 6.1, which extracts from the email collection used in
the following experiments. In this subset there are a total of 51,540 term occurrences.
A model which included only the terms “au” and “years” would have a collection
term frequency ratio of (23187 + 2728)/51540, or 0.5028, regardless of the frequency
of these terms in the model. If it also included “anu” and “target”, it would produce
a ctf ratio of (23187 + 20219 + 2728 + 2706)/51540 = 0.9476, despite including only
four of eight terms.

80 Server characterisation: subject matter and language

Collection Model

Term t tf(t) Pr(t|c) tfm(t) Pr(t|m)

au 23187 0.4499 235 0.9589
anu 20219 0.3923 — ≈ 0

. . .
years 2728 0.0529 10 0.0408
target 2706 0.0525 — ≈ 0

face 2697 0.0523 — ≈ 0
. . .

zywczak 1 ≈ 0 — ≈ 0
zz9s 1 ≈ 0 — ≈ 0
zzz 1 ≈ 0 — ≈ 0

Total 51540 245

Table 6.1: A subset of term frequencies, extracted from the email collection. See the text for
calculations.

Term rankings

Collection term frequency ratio considers the proportion of terms included in the
model, but does not distinguish between a model with accurate term frequency in-
formation and a model without. For example, a single document such as a dictionary
may contribute greatly to ctf ratio but without information on relative frequencies
such a document would not be particularly helpful in selecting servers [Baillie et al.
2006b]. A second measure introduced by Callan and Connell [2001] addresses this by
comparing the ranking of terms in the model and the collection.

The Spearman rank correlation coefficient rs is used here to measure the correlation
between two lists of ranks: it is equivalent to the Pearson product-moment correlation
coefficient over ranks [Press et al. 1992; Sheskin 2004]. This is applied by Callan and
Connell to measure the quality of a model by first ordering terms in the collection
according to document frequency, df(t); doing the same for terms in the model with
dfm(d); and calculating the correlation

rs =
1− 6

n3−n

(
∑i d2

i + 1
12 ∑ j(f 3

j − f j) + 1
12 ∑k(g3

k − gk)
)

√(
1− ∑ j(f 3

j − f j)
n3−n

)√(
1− ∑k(g3

k−gk)
n3−n

) .

Here n is the number of terms which are in both the model and the collection (so
n = |T ∩ m|) and di the difference, for the ith term, between its rank in the collec-
tion and its rank in the model. f j is the number of terms tied for the jth rank in the
model, and gk is the number of ties in the kth rank for the collection; an example is in
Table 6.2. Note that if two or more terms have the same frequency, such as “website”
and “march” in Table 6.2, each has a rank adjusted for the number of tied terms.

§6.2 Language modelling experiments 81

Collection Model

Term t df(t) Rank gk dfm(t) Rank f j d2
i

paul 8421 1 1 724 1 1 0
http 7197 2 1 564 2.5 2 0.25
time 6697 3 1 564 2.5 2 0.25

. . .
data 914 4 1 11 6 3 4

website 910 5.5 2 11 6 3 0.25
march 910 5.5 2 11 6 3 0.25

open 907 7 1 12 4 1 9
. . .

zywczak 1 9 3 1 9 3 0
zz9s 1 9 3 1 9 3 0
zzz 1 9 3 1 9 3 0

Total 14

Table 6.2: A subset of document frequencies, extracted from the email collection. See the text
for calculations.

Spearman’s rs takes values in [−1, 1], where 1 indicates a perfect positive corre-
lation (so the terms are in exactly the same order), −1 indicates a perfect negative
correlation (so the terms are in exactly the opposite order), and 0 indicates no correla-
tion. Since the terms in the model may only be a subset of the terms in the collection,
rs is only calculated over the terms in the model. Therefore, if terms — even common
ones — are missing from the model, rs will not reflect this.

Results reported here use a simpler calculation [Sheskin 2004]:

rs =
Tf + Tg −∑i d2

i

2
√

Tf Tg

,

where Tf =
1

12

(
n3 − n−∑

j
(f 3

j − f j)

)

and Tg =
1

12

(
n3 − n−∑

k
(g3

k − gk)

)
.

Table 6.2 includes partial data from the email collection and a sample model. Con-
sidering only the ten terms shown, we can calculate

Tf = 1
12

(
n3 − n− ∑ j(f 3

j − f j)
)

= 1
12

(
103 − 10− [(23 − 2) + (33 − 3) + (33 − 3)]

)
= 78.

82 Server characterisation: subject matter and language

Similarly, Tg = 1
12

(
n3 − n− ∑k(g3

k − gk)
)

= 1
12

(
103 − 10− [(23 − 2) + (33 − 3)]

)
= 80,

and rs =
Tf + Tg −∑i d2

i

2
√

Tf Tg

=
78 + 80− 14
2
√

78× 80
= 0.9115.

Baillie et al. [2006b] suggest that rs may be a superior measure to ctf ratio, since
if term frequencies follow a known distribution, such as hyperbolic rank-frequency
[Zipf 1949, Chapter 2] or Waring [Wolfram 1992], then it may be possible to reconstruct
frequency information from a ranking.

Kullback-Leibler divergence

A model’s ctf ratio considers the proportion of terms included, and rs the relative
ranking of each. An alternative measure considers both, as well as the frequency of
each term.

Kullback-Leibler divergence [Kullback and Leibler 1951] was introduced to this
context by Xu and Croft [1999] as a means to compare a query to a collection; it is
used here to compare a model to a collection, and was independently suggested for
the same purpose by Baillie et al. [2006b]. The collection and model are each consid-
ered as discrete probability distributions over T , the terms in the collection, and the
divergence is then the relative entropy between the two. (Other information theoretic
measures, such as Jensen-Shannon divergence or Jeffreys divergence, also describe
the difference between two distributions but have been little used in information re-
trieval.) The divergence is defined by4

DKL(c‖m) = ∑
t∈T

Pr(t|c) log2
Pr(t|c)
Pr(t|m)

, (6.2)

where Pr(t|c) is the probability distribution over the collection c

Pr(t|c) =
tf(t)

∑u∈T tf(u)

and Pr(t|m), the probability distribution over the model m, uses Laplace smoothing
in case terms are missing or the sample is small:

Pr(t|m) =
tfm(t) +α

∑u∈T tfm(u) + |T |α .

4The choice of base for the logarithm is not critical. The data presented in this thesis uses base two,
and measures divergence in bits.

§6.3 Results 83

The experiments here follow Xu and Croft [1999] in assigning α = 0.01. (An ear-
lier use by Ipeirotis and Gravano [2004] did not smooth Pr(t|m), and was therefore
constrained to considering only terms in both the model and the collection.)

Kullback-Leibler divergence falls in [0, ∞). A value of zero indicates complete
concordance; larger values indicate more divergence between the distributions. This
is not a true distance metric since it is not symmetric (it is possible that DKL(a‖b) 6=
DKL(b‖a)) and does not obey the triangle inequality (it is possible that DKL(a‖c) >
DKL(a‖b) + DKL(b‖c)) [Kullback 1959, Chapter 1].5

For example, consider again the model in Table 6.1. Using α = 0.01 and with
|T | = 8, the contribution for the term “years” is

Pr(“years”|c) log2
Pr(“years”|c)
Pr(“years”|m)

.

In this case Pr(“years”|c) = 2728/51,540= 0.0529 and Pr(“years”|m) = (10 + 0.01)/
(245 + 8× 0.01) = 0.0408, so the contribution is 0.0529 log2(0.0529/0.0408) = 0.0198.
Repeating this for every other term in the collection and summing the contributions
gives an overall divergence.

Unlike ctf ratio and rs, Kullback-Liebler divergence directly measures the differ-
ence between two discrete distributions, and considers both vocabulary and absolute
frequency. This suggests it will be a more useful measure of model quality, and the
results of these experiments confirm this.

6.3 Results

Figure 6.1 summarises the ctf ratio, rs, and DKL measures over ten models for each
of the six collections. In all but one case, a model was built using 300 documents
selected randomly, by the multiple queries sampler, or by query-based sampling, and
no stemming or stopping was carried out. The multiple queries sampler was unable
to sample a full 300 documents from the calendar collection using the default query
pool, so models used 200 documents in this case.

On all three measures, models built by random sampling and multiple queries
samples are remarkably similar; there are no significant differences (t test, α = 0.05).
Models built by the query-based sampler differ significantly from both the others on
the rs measure (p < 0.0007 in both cases) and on the DKL measure (p < 0.0006 against
random sampling, p < 0.02 against multiple queries sampling).

Like the results of experiments in Chapter 5, these results suggest both that a bet-
ter quality sample makes an appreciable difference to metasearch algorithms and that
collection characterisations based on the multiple queries sampler are essentially in-
distinguishable from those based on true random samples.

5As originally described by Kullback and Leibler [1951], Kullback-Leibler divergence is symmetric:

DKL(c‖m) = ∑t∈T
(

Pr(t|c) log2
Pr(t|c)
Pr(t|m) + Pr(t|m) log2

Pr(t|m)
Pr(t|c)

)
. The form given above, a “directed di-

vergence” measure [Kullback 1959], is typical of current use. Jensen-Shannon and Jeffreys divergence
are symmetric.

84 Server characterisation: subject matter and language

Random Multiple queries QBS

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ct
f

(a) ctf ratio (1 is best). No significant differ-
ences in model quality.

Random Multiple queries QBS

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

r s

(b) rs (1 is best). Both random samples and
multiple queries samples produce significantly
better models than query based samples.

Random Multiple queries QBS

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

D
K

L

(c) DKL (0 is best). Both random samples and
multiple queries samples produce significantly
better models than query based samples.

Figure 6.1: Quality of models built from different samples. Ten models were built from 300
documents for each of six collections. See notes to Figure 5.2 on p. 63 for plotting conventions.

§6.3 Results 85

These results also suggest that ctf ratio may not have much discriminative power,
since it scores models built from a biased sample as well as it does those from a truly
random sample. This is not surprising: a large fraction of the ctf ratio will be gained
from seeing the most common words, even once, and these words are likely to be
represented in even a biased sample of documents. This in turn suggests that ctf ratio
is not likely to be a useful measure of model quality.

6.3.1 Evolution of models

The models used in the first experiment were based on samples of 300 documents,
following Callan et al. [1999]. It is reasonable to hypothesise that models built from
more documents will be of higher quality; however, it is also likely that the quality of
models will be constrained by any bias in the document samples themselves.

Figures 6.2 to 6.4 show improvements in ctf ratio, rs, and DKL for models built with
increasing numbers of documents sampled randomly (Figure 6.2), with the multiple
queries sampler (6.3), and with the query-based sampler (6.4). In each case, the lines
plotted are the mean measure of each of ten models; the bars give one standard error to
either side. As noted earlier, the calendar collection is particularly difficult to sample
and neither the multiple queries nor the query-based method were able to produce
large samples. The data for this collection is correspondingly cut off at 200 and 400
documents, respectively.

There are clear trends in each case. Models tend to improve on all metrics, and
with all samplers, as more documents are included. This improvement does however
slow down, and when models are built from random documents, there is no signifi-
cant improvement in ctf ratio across all collections with more than 700 documents (t
test, α = 0.05). Spearman’s rs does not improve significantly after 400 documents are
used, and DKL does not improve significantly after 500 documents. Using documents
from the multiple queries sampler, there is no significant improvement in ctf ratio af-
ter 700 documents, in rs after 200, or in DKL after 400; for the query-based sampler
there is no significant improvement in ctf ratio after 700, in rs after 100, or in DKL after
400 documents have been included in the model.

Models of the calendar collection improve fastest in all cases, although from a
relatively poor base. This is likely due to the nature of the documents in this collection:
they are very short, with a mean of only four terms, and there is little overlap between
terms in any two documents. With such a collection, there are very few common
terms, so models built from a small number of documents will be of low quality;
however, since there is little overlap between documents, each additional document
will contribute to the terms seen and hence to the quality of the model.

Models of the .GOV collection are also of relatively low quality, although the ctf
ratio is similar to other collections. This can be explained by the size of the collection:
with many more documents than other collections, a fixed size sample will cover less
of the collection.

The effect of biased samples, seen earlier, is confirmed in these experiments as
models built with documents from the query-based sample continue to have lower

86 Server characterisation: subject matter and language

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of documents in sample

ct
f

calendar
zsh−list
procmail

email
WSJ
GOV

(a) ctf ratio (1 is best). No significant improve-
ment overall after 700 documents are included.

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of documents in sample

r s

calendar
zsh−list
procmail

email
WSJ
GOV

(b) rs (1 is best). No significant improvement
overall after 400 documents are included.

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Number of documents in sample

D
K

L

calendar
zsh−list
procmail

email
WSJ
GOV

(c) DKL (0 is best). No significant improvement
overall after 500 documents are included.

Figure 6.2: Improvement in quality measures with more documents from random samples.
Plotted figures are the means from ten models each built from the specified number of docu-
ments, selected at random. Bars are ±1 standard error.

§6.3 Results 87

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of documents in sample

ct
f

calendar
zsh−list
procmail

email
WSJ
GOV

(a) ctf ratio (1 is best). No significant improve-
ment overall after 700 documents are included.

0 200 400 600 800
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Number of documents in sample

r s

calendar
zsh−list
procmail

email
WSJ
GOV

(b) rs (1 is best). No significant improvement
overall after 200 documents are included.

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Number of documents in sample

D
K

L

calendar
zsh−list
procmail

email
WSJ
GOV

(c) DKL (0 is best). No significant improvement
overall after 400 documents are included. Di-
vergence is very high (2.2± 0.03) for the calen-
dar collection at 100 documents sampled.

Figure 6.3: Improvement in quality measures with more documents from multiple queries
samples. Plotted figures are the means from ten models each built from the specified number
of documents, selected by the multiple queries sampler. Bars are ±1 standard error.

88 Server characterisation: subject matter and language

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of documents in sample

ct
f

calendar
zsh−list
procmail

email
WSJ
GOV

(a) ctf ratio (1 is best). No significant improve-
ment overall after 700 documents are included.

0 200 400 600 800

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of documents in sample

r s

calendar
zsh−list
procmail

email
WSJ
GOV

(b) rs (1 is best). No significant improvement
overall after 100 documents are included.

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

Number of documents in sample

D
K

L

calendar
zsh−list
procmail

email
WSJ
GOV

(c) DKL (0 is best). No significant improvement
overall after 400 documents are included. Di-
vergence is very high for the calendar collec-
tion at 100 (2.7± 0.06) and 200 (2.1± 0.02) doc-
uments sampled.

Figure 6.4: Improvement in quality measures with more documents from query-based sam-
ples. Plotted figures are the means from ten models each built from the specified number of
documents, selected by the query-based sampler. Bars are ±1 standard error.

§6.4 Conclusions 89

ctf ratio, lower rs, and higher DKL. With 900 documents per model, there is again no
significant difference in overall ctf ratio between the three samplers, but a significant
difference remains between models built with the query-based sampler and models
built with either of the other samplers if the rs or DKL measures are considered (p <
0.02 in each case).

Overall, these observations support the two hypotheses on p. 85. First, models
do improve on all metrics as the number of documents used increases, although im-
provements slow down and are not significant past around 700 documents. Second,
the quality of the samples used is a constraint on the quality of the models which are
built: with the more biased samples of documents from query-based sampling, all
three measures stop improving earlier and are significantly worse than alternatives.

6.3.2 Correlation between measures

From the results in Figures 6.2 to 6.4, it seems that the three measures are in agreement:
as the ctf ratio improves, so does rs and Kullback-Leibler divergence. To investigate
further, Pearson’s product-moment correlation [Sheskin 2004] was computed between
all three measures across all 1500 models built for the experiments above.

Over all models, ctf ratio and DKL are moderately negatively correlated (Pearson’s
r = −0.75). Since a lower DKL score represents a better model and a higher ctf ratio
represents the same, this indicates that the two measures broadly agree on the quality
of each model. rs is less correlated with the other two measures: r = 0.23 with ctf ratio
and r = −0.65 with DKL.

In similar experiments Baillie et al. [2006b], using query-based sampling of TREC
data, also observed a negative correlation between ctf ratio and DKL. Unlike the ex-
periments reported above, however, their results indicated a negative correlation also
existed beteween ctf ratio and rs, and a positive correlation (meaning in this case dis-
agreement) between rs and DKL. It is not clear why this should be the case: seeing
terms with a higher document frequency, and hence improving ctf ratio, need not re-
sult in terms being ranked poorly. Baillie et al. suggest that with more data, they may
have seen a positive correlation between ctf ratio and rs, and presumably a negative
correlation between rs and DKL.

6.4 Conclusions

Alongside attributes such as collection size, an important aspect of characterisation is
the subject matter and language used at each server. This can inform server selection
by suggesting what types of documents a server makes available, and the types of
queries for which it would be a good choice. Past work has been conducted in two
areas: classification according to pre-defined taxonomies, such as library cataloguing
schemes or the Open Directory heirarchy, and language models. In particular, uni-
gram language models which record term frequency information are used by many
server selection algorithms.

90 Server characterisation: subject matter and language

Experiments with unigram models show that the quality of the document sample
used makes an appreciable difference to the quality of the eventual model. Models
built with the multiple queries sampler of Section 4.3 are largely indistinguishable
from those based on true random documents; for example, there is no significant dif-
ference in Kullback-Leibler divergence when 300 documents are included. Models
built with query-based sampling are of lower quality.

Of the three quality measures considered, ctf ratio and Kullback-Leibler diver-
gence appear to be in agreement over the quality of models, across a range of sizes
and sampling methods, while rs does not agree with either.

With information collected ahead of time on the size and contents of each collec-
tion, a metasearch tool is able to select the most promising server or servers for each
query. This process of server selection is the subject of the next chapter.

Chapter 7

Server selection

Given appropriate characterisations of the available servers, a metasearch tool may
include server selection as part of its normal query processing. It is not generally feasi-
ble to forward every query to every server, as costs will be incurred in network traffic,
delay, and an increased risk of unavailability, and server selection aims to choose the
server or servers most useful for answering each query. As well as minimising costs
and increasing reliability, there is some evidence that a selection algorithm can im-
prove the quality of a result set even over that from a single index [Abbaci et al. 2002;
Craswell et al. 2000; Hawking and Thistlewaite 1999; Powell et al. 2000; Xu and Croft
1999]. Server selection has also been called “collection selection” (for example, Callan
et al. [1995]), “subcollection selection” [Baumgarten 1999], “text database discovery”
[Gravano et al. 1994], “text-source discovery” [Gravano et al. 1999], and “database
selection” [French et al. 1998]. See Section 2.2.2 on p. 13 for notes on terminology.

In past work several server selection algorithms have been proposed, and Sec-
tion 7.1 discusses these algorithms, past evaluations, and other related work. Selection
algorithms have been tested previously either with perfect characterisations (for ex-
ample, French et al. [1998] and [1999], or Powell and French [2003]), or with character-
isations from query-based sampling (Hawking and Thomas [2005], Shokouhi [2007],
Si and Callan [2003b], and others). As demonstrated in Chapters 4 to 6, perfect charac-
terisations are not generally possible and alternative sampling techniques outperform
query-based sampling in a personal metasearch context. Typical testbeds for server
selection evaluation have been based on TREC ad hoc or Web data, which is not rep-
resentative of personal metasearch. Experiments in Section 7.2 therefore evaluate the
performance of twelve algorithms in the testbed used in earlier chapters. Kullback-
Leibler divergence (two variants), CORI (three variants), and ReDDE represent state-
of-the-art server selection algorithms, which have been well tested in other scenarios;
cue validity variance (CVV), GlOSS (two variants), CRCS (two variants) and Zobel’s
method “I” are also included.

Section 7.3 demonstrates that selection performance varies both between methods
and between queries, with many methods prone to selecting large collections regard-
less of their utility to any given query. Most methods considered rely on good-quality
language models, and poorer models — for example from less representative doc-
ument samples — lead to poorer selection performance. Of the selection methods

91

92 Server selection

tested, Kullback-Leibler divergence and CORI are found to have the most promise for
personal metasearch applications.

7.1 Related work

A large number of selection methods have been described, drawing on a variety of
techniques including language modelling, classification, and characterising past per-
formance. Table 7.1 summarises a number of these methods with regard to the infor-
mation they use and the support needed from each server. Language models (“lang.
model”) are unigram in all cases, but different methods make use of absolute docu-
ment or term frequency counts (“df”, “tf”), or relative document or term frequencies
(“rdf”, “rtf”) which have been normalised according to collection (or model) size; note
that either of these can be generated from the other given a size estimate.

All the techniques described in this chapter select one or more collections from C,
the set of collections available, for each user query q. The majority, and all those con-
sidered in the experiments of this chapter, do this by scoring each possibility: given
the query, they produce a score sc(q) for every collection c in C.1 A metasearch tool
can rank the collections by this score, and choose either those collections with scores
above a threshold or some number of top-scoring collections. The servers handling
these collections are selected to receive the query.

Sections 7.1.1 to 7.1.14 describe a number of methods previously proposed,with
particular attention to those methods which make few demands on servers and users
and are therefore most likely to be useful in a personal metasearch environment.

As well as the evaluations carried out in the course of proposing selection meth-
ods, a number of researchers have reported evaluations of a set of methods or have
considered the general applicability of these results. Section 7.1.15 discusses this
work.

7.1.1 The GlOSS family

The “glossary of servers server” (GlOSS) family of algorithms [Gravano et al. 1994;
Gravano and Garcı́a-Molina 1995; Gravano et al. 1999] estimates the number of doc-
uments in each collection which a user will find interesting, and ranks collections
accordingly. Three versions have been described: bGlOSS assumes a Boolean model,
vGlOSS (originally called gGlOSS) assumes a vector-space model, and hGlOSS is a
hierarchical version.

bGlOSS

The original GlOSS server selection algorithm, later called the Boolean version or
bGlOSS [Gravano et al. 1994; Gravano et al. 1999], assumes that servers use a Boolean
retrieval model and that the interesting documents in a collection are those which
match all terms in the query q. If these terms, Tq, appear independently, the expected

1In an earlier survey, Powell and French [2003] use the notation merit(q, c).

§7.1 Related work 93

Information needed

Lang. Collection Query Past Server
Method model size terms performance support

Language models
bGlOSS rdf Docs Needed — —

gGlOSS/vGlOSS df, tf Docs Needed — —
CORI df Terms Needed — —

(extension 1) df Terms, docs Needed — —
(extension 2) df Terms, docs Needed — —

Lexicon inspection df Docs Needed — —
CVV rdf, df — Needed — —

KL divergence rdf, df Docs Needed — —
(extension) rdf, df Docs Needed — —

Most similar doc df, tf Docs Needed — —
ReDDE df, tf† Docs Needed† — Doc text

Central-rank-based df, tf† Docs Needed† — Doc text
Probes
Lightweight probes — — Needed — Probes

TRD-CS — — Needed — Doc text
Probe queries‡ — — — Doc ranks Doc text

Classifications
Profusion — — Needed Precision Doc text

RDD — — Needed Precision Doc text
QProber‡ — — — — —

Two-stage rdf — Needed — —
Inquirus2 — — — — —

Others
Decision-theoretic — — — R-P curve —

SavvySearch — — Needed Various —
UUM, RUM dt, tf† Docs Needed Relevance Doc text

HARP, AWSUM df, tf Docs Needed — Anchor-
-text

Manual selection — — — — —
Controls

Random — — — — —
Size — Docs — — —

Table 7.1: Characteristics of server selection methods. “Doc(s)” abbreviates “document(s)”;
see the text for details of the “lang. model” column. “Language model methods” and “con-
trols”are considered in the experiments of this chapter. † ReDDE, central-rank-based, and
UUM/RUM selection depend on ranking documents from a sample; in the ReDDE and
central-rank-based implementations used here, this ranking uses data on term occurrence,
query terms, and on anchortext where available. ‡ QProber and probe queries are not com-
plete server selection methods, but can be used with any other method.

94 Server selection

number of interesting documents — those including all query terms — can be esti-
mated by

sc(q) = Nc ∏
t∈Tq

Pr(t|c)

= Nc ∏
t∈Tq

dfc(t)
Nc

. (7.1)

Where dfc(t) is the document frequency of term t and Nc is the size of collection c,
as before. As originally described [Gravano et al. 1994], bGlOSS selects only the col-
lection with the highest score, or all top-scoring collections in the case of a tie. In the
experiments described here, it is used in a more conventional way to rank all available
collections.

Gravano et al. suggested two definitions of success for the selection problem: ei-
ther choosing all the best collections, where the “best” collections are those with the
highest number of matching documents, but possibly choosing other collections as
well; or choosing only the best collections, possibly missing some. (These are anal-
ogous to high-recall and high-precision tasks.) Using these two definitions, six col-
lections, and almost 7000 queries from a Stanford library system, they reported suc-
cess rates of 84% and 89%; choosing between only two collections success rates were
higher still at 92% and 99%.

Although the servers used in the experiments below do not use a Boolean model,
bGlOSS is similar to other selection techniques based on different assumptions and is
therefore included for comparison.

gGlOSS and vGlOSS

The “generalised” version of GlOSS, gGlOSS [Gravano and Garcı́a-Molina 1995] —
later called the vector-space version, vGlOSS [Gravano et al. 1999] — assumes users
are interested not in documents containing all query terms but in those documents
whose similarity to the query is more than a threshold l. To estimate this, vGlOSS
makes use of a collection-specific weight, wc(t), for each term t in c. In the origi-
nal presentation, this weight is calculated at the server, for example using term fre-
quency and inverse document frequency; it is then made available, along with docu-
ment frequency information, to the metasearcher [Gravano and Garcı́a-Molina 1995].
In a metasearch application without cooperative servers, however, this data is more
likely to be estimated from a sample.

Gravano and Garcı́a-Molina [1995] suggest two algorithms for vGlOSS to estimate
the score of a collection. The first, which assumes a “high correlation scenario”, makes
two assumptions:

1. If dfc(t1) ≤ dfc(t2), or t1 is rarer than t2 in c, then t2 appears in all the docu-
ments that t1 appears in. For example, if the term “information” appears in 10
documents and “retrieval” in 7, then there are 7 documents with both “infor-
mation” and “retrieval” and 10− 7 = 3 with “information” alone. As the rarer

§7.1 Related work 95

dfc(t1)
RESc(t1)

<

⊆
dfc(t2)

RESc(t2)
<

⊆
· · ·
· · ·

<

⊆
dfc(tp)

RESc(tp)︸ ︷︷ ︸
these documents

similar enough to q

<

⊆
dfc(tp+1)

RESc(tp+1)
<

⊆
· · ·
· · ·

<

⊆
dfc(tn)

RESc(tn)︸ ︷︷ ︸
these documents

not similar enough

Figure 7.1: Similarity under the high correlation scenario of Gravano and Garcı́a-Molina
[1995]. The dfc(tp) documents containing terms tp to tn are similar enough to the query (so
SIMc(q, p) > l), but the dfc(tp+1) documents containing only terms tp+1 to tn are not (so
SIMc(q, p + 1) ≤ l). Equation 7.2 defines SIMc(q, p).

term, no documents will have “retrieval” alone. It follows that dfc(ti)−dfc(ti−1)
documents include only term ti, with the convention that dfc(t0) = 0.

2. The weight of a term in a collection, wc(t), is distributed uniformly over all doc-
uments which contain the word. To continue the example, if wc(“retrieval”) =
0.35, then all 7 documents matching “retrieval” do so with weight 0.35/7 =
0.05.

Using these two assumptions, Gravano and Garcı́a-Molina [1995] describe the
function MAX(l, q, c), which scores collections according to the estimated number of
documents with similarity to the query of more than l. The algorithm starts by re-
ordering the query terms according to document frequency in c, so dfc(t1) ≤ dfc(t2) ≤
· · · ≤ dfc(tn). (Continuing the example above, the query 〈“information”, “retrieval”〉
will be reordered as 〈“retrieval”, “information”〉 since “retrieval” is the less common
term.) Note that, by assumption, the dfc(ti) documents which contain term ti also
contain the other n − i terms; and, also by assumption, the collection weight wc(ti)
is evenly distributed amongst these documents. It is therefore possible to define
SIMc(q, i), the similarity between query q and the documents containing terms t1 to ti,
with

SIMc(q, i) = ∑
j=i...n

wq(t j)
wc(t j)
dfc(t j)

, (7.2)

where wq(t) is the weight of term t in the query.
This similarity function, plus the threshold l, are used to estimate the total number

of useful documents in the collection. The dfc(t1) documents which include term t1,
the rarest term, by assumption also include all other terms in q; since they contain all
terms, they are the documents most similar to q. If these documents are not similar
enough to q, if SIMc(q, 1) ≤ l, there are no sufficiently similar documents in the col-
lection. Otherwise, when SIMc(q, 1) > l, it is possible that there are other documents,
without term t1 but with terms t2 to tn, which are also sufficiently similar. The same
observation holds for SIMc(q, 2), and so on to n− 1, and the general problem is to find
a cut-off p such that SIMc(q, p) > l but SIMc(q, p + 1) ≤ l. Figure 7.1 illustrates this
cut-off.

96 Server selection

Having found cut-off p, observe that the dfc(tp) documents which are assumed to
contain all of terms tp to tn are sufficiently similar to the query to be interesting; the
dfc(tp+1) documents containing only terms tp+1 to tn are not. Since (by assumption)
the weight due to each term is evenly distributed amongst all documents containing
that term, it is possible to assign a score to the documents containing only term ti: there
are dfc(ti)− dfc(ti−1) of these, so Gravano and Garcı́a-Molina [1995] let the score due
to these documents be (df(ti)− df(ti−1)) SIM(q, i). Finally, we can assign an overall
score for the collection by summing these scores over all terms 1 to p:

sc(q) = MAX(l, q, c)
= ∑

i=1...p
(dfc(ti)− dfc(ti−1)) SIMc(q, i).

The second estimator of Gravano and Garcı́a-Molina [1995] models disjoint term
occurrences. It also makes two assumptions about term distribution:

1. For any two query terms t1 and t2, the set of documents containing t1 is disjoint
from that containing t2; no document contains both.

2. The weight of a term is distributed uniformly over all documents which contain
the term, as before.

Again, t1 . . . tn represent the n terms in query q, although in this case they need
not be reordered. For each of these terms ti, there are by definition dfc(ti) documents
in collection c containing this term. The similarity of each of these documents to q
is entirely due to the one query term it has: since the collection weight of a term is
assumed to be evenly distributed, we can let this similarity be wq(ti) wc(ti)/ dfc(ti).

Scoring is then very simple: the score of a collection is just the sum of similarities
of each matching document, provided that similarity is greater than the threshold l.

sc(q) = SUM(l, q, c)

= ∑
i=1...n

wq(ti)wc(ti)/ dfc(ti)>l

dfc(ti) wq(ti)
wc(ti)
dfc(ti)

= ∑
i=1...n

wq(ti) wc(ti)/ dfc(ti)>l

wq(ti)wc(ti).

A common application considers any document at all similar to the query to be
useful, and sets l = 0 [Craswell et al. 2000; French et al. 1999; Powell and French 2003].
In this case, MAX and SUM are identical and document frequencies are not needed.

sc(q) = MAX(0, q, c)
= SUM(0, q, c)
= ∑

t∈Tq

wq(t) wc(t). (7.3)

§7.1 Related work 97

A series of experiments [Gravano and Garcı́a-Molina 1995; Gravano et al. 1999]
evaluated vGlOSS on a 53-collection testbed based on Usenet newsgroups. Gravano
et al. concluded that the best choice of threshold l, and the choice of MAX or SUM

as a scoring function, depended on the task: for high-precision tasks, SUM with l =
0.2 represented a good choice and for high-recall tasks, l = 0 (with MAX and SUM

identical) found more relevant documents. In general, vGlOSS appeared to select
collections fairly well. Later work, however, has found vGlOSS less effective than
alternatives [Craswell et al. 2000; French et al. 1998; French et al. 1999; Powell and
French 2003; Yuwono and Lee 1997]; the difference in evaluations may be due to a
difference in measures (see Section 7.2.3, p. 115). The experiments reported here, in
common with most other work, found vGlOSS to be fairly ineffective.

hGlOSS

Higher-level GlOSS, or hGlOSS, is a distributed variant of the vGlOSS algorithm which
selects between vGlOSS servers in the same way as vGlOSS selects between collec-
tions [Gravano and Garcı́a-Molina 1995]. A user query is first sent to the hGlOSS
server, then to promising vGlOSS servers, then to promising collections; in principle
this could be extended to arbitrary numbers of hGlOSS servers operating in a hierar-
chy.

Experiments by Gravano and Garcı́a-Molina used an analogue of MAX to score
vGlOSS servers. Document frequency df(t) was replaced by collection frequency
cf(t), and term weights wc(t) with the total number of matching documents across
all collections. Performance, as measured by an analogue of recall, was good: select-
ing between five vGlOSS servers, based on the 53 collections described above, hGlOSS
achieved recall of 99% with only one server selected.

Since it is unlikely that there will be a hierarchy of servers in a personal metasearch
application, hGlOSS is not considered in the experiments of this chapter.

7.1.2 CORI

The collection retrieval inference (CORI) algorithm [Callan et al. 1995] adapts the IN-
QUERY document ranking algorithm [Callan et al. 1995; Turtle and Croft 1991]. It
treats each server as a compound “document”, using document frequency (df) in-
stead of term frequency and collection frequency (cf) in place of document frequency.
Each term in the query is scored separately, according to document frequency (T) and
inverse collection frequency (I):

sc(t) = b + (1− b)TI;

where T =
dfc(t)

dfc(t) + df base + df factor (cwc/cw)

and I =
log

(
|C|+0.5
cfC (t)

)
log(|C|+ 1)

.

98 Server selection

As before, dfc(t) is the number of documents in collection c which contain term t, cwc

is the number of terms in the collection, and cw is the mean number of terms across
all collections. By analogy with tfc(t) and dfc(t), cfC(t) is the number of collections
containing t. The other terms are constants: b = 0.4, df base = 50, and df factor = 150.
The score for a query is the mean of the per-term scores, sc(q) = ∑t∈Tq sc(t)/|q|.

CORI has been widely used, and has proven effective in selection tasks based on
TREC ad hoc data [Callan et al. 1995; French et al. 1999; Powell et al. 2000; Powell
and French 2003] and Web data [Craswell et al. 2000; Hawking and Thomas 2005],
although Si and Callan [2003a, 2003b] and D’Souza et al. [2004a, 2004b] show poorer
performance when collection sizes are highly variable. CORI has also been included
in the decision-theoretic framework of Nottelmann and Fuhr [2004] (Section 7.1.13).

D’Souza et al. [2004a, 2004b] have examined the performance of CORI across a
variety of testbeds, based on TREC ad hoc data but with varying characteristics. In
these studies the best values for b, df base, and df factor — given as constants above —
vary greatly with each testbed, query set, and even from query to query. Even with the
best settings, CORI was often inferior to other, simpler, methods (including the “H”
and “I” methods of Section 7.1.4 below). D’Souza et al. conclude that CORI’s good
performance is due to the particular testbeds used to date and that it is not possible
to tune CORI for general use. (Earlier work by French et al. [1999] had concluded that
CORI was robust to changes in these three parameters, but had only considered one
testbed.)

7.1.3 Extended CORI

As described above, CORI relies on term frequency data from each collection. In prac-
tice, this will be estimated from language models which may be of widely varying size
both compared with each other and compared with the underlying collections. With
this in mind, later work by Si and Callan [2003a] suggested two extensions to the ba-
sic CORI algorithm, both of which make use of the Nm documents sampled from the
collection in the course of building a language model. There are four modifications.

1. dfc(t) counts the number of documents which contain term t. In practice, this
can be estimated from dfm(t), the number of documents in the model which
contain t, and a scaling ratio: dfc(t) ≈ dfm(t)× (Nc/Nm);

2. cwc, the number of terms in the collection, can also be estimated by scaling: so
cwc ≈ cwm × (Nc/Nm). cw can be scaled similarly. (Note however that Heaps’s
law suggests a linear growth in vocabulary is unlikely, at least for text in English
[Williams and Zobel 2005].)

3. df base can also be scaled by Nc/Nm;

4. finally, so can df factor.

In the experiments below, the basic CORI technique uses term information from
models and size estimates from one of the techniques of Chapter 5. Following Si

§7.1 Related work 99

and Callan [2003a], “CORI (extension 1)” uses the scaling of modifications 1 and 2
above, and “CORI (extension 2)” uses all of modifications 1 to 4. Since these vari-
ants expressly adjust for estimated size, they may be expected to perform better over
the large variety of collections in personal metasearch, although Si and Callan found
inconsistent performance over four testbeds based on TREC ad hoc data.

7.1.4 Lexicon inspection

Zobel [1997] sets out four desiderata for selection algorithms. According to this list,
collections should be ranked highly if and only if they contain the query terms; the
terms are common relative to other collections; the collection contains a high propor-
tion of documents with the terms; and the collection is likely to contain documents
which feature the terms frequently.

On the basis of these criteria, Zobel describes and evaluates four simple selection
algorithms: “C”, “S”, “H”, and “I”. Algorithm “C” derives from the cosine similarity
measure; it is the sum, for each query term t, of wq(t)wc(t) with normalisation for
query or document length. Algorithm “C” uses information about each collection in
isolation; the “skew” algorithm, “S”, uses information about term occurrence across
collections to try to identify terms which are common in c but uncommon elsewhere.
Algorithm “H” again makes use of the cosine measure to estimate the highest likely
similarity for an average-length document from c.

Experiments using two testbeds, one from the TREC data fusion track [Voorhees
1995] and one based on a random assignment of documents from TREC ad hoc data,
showed that these measures were able to outperform a static ranking based on size
alone (although performance differed according to whether similar documents, or
documents which had been judged relevant, were considered useful). Algorithms
“C”, “S”, and “H” were however consistently outperformed by Zobel’s algorithm “I”,
a simple inner product without length normalisation:

sc(q) = ∑
t∈Tq

wq(t) wc(t), (7.4)

where the weights are based on analogues of term frequency and inverse document
frequency: the query weight wq(t) = log(tfq(t)+ 1)w(t); the collection weight wc(t) =
log(dfc(t) + 1)w(t); and, as an analogue of inverse document frequency, w(t) =
log(N/ dfC(t) + 1). Here dfC(t) describes the total number of documents containing
a term t across all collections in C. The function in Equation 7.4 is identical to MAX(0)
and SUM(0) from vGlOSS (Equation 7.3), although in the case of vGlOSS weights are
calculated with collection-specific data only and may vary, even for the same term,
from collection to collection. In the experiments described below, this difference in
weights results in a significant difference in performance.

Zobel’s second testbed included 91 collections which varied in size by three orders
of magnitude, from 14 documents to 23,000. This wide range of sizes is likely to be
typical of personal metasearch applications, which suggests that algorithm “I” may
be of general use. This is explored further in the experiments below.

100 Server selection

Moffat and Zobel [1994] earlier suggested a similar scheme, designed for a sin-
gle large collection, in which “blocks” of several documents each were indexed and
ranked as if they were single large documents — a simple ranking was suggested
based on cosine similarity — and the highest-ranked blocks were selected for fur-
ther processing. Moffat and Zobel were however interested in efficient searches over
single indexes, not in metasearch, and used a fixed number of documents per block
rather than the highly variable distribution more typical of metasearch. Experiments
with the TREC ad hoc collection and blocks of one to 1000 documents showed that
as long as small numbers of documents were requested, this blocking was effective
at reducing effort at the expense of some loss of effectivness. The blocking scheme
was however less effective on tasks which required more documents to be retrieved.
Blocking was not used in a metasearch context, but is similar to Zobel’s algorithm “C”
above.

7.1.5 CVV

Cue validity variance (CVV), introduced by Yuwono and Lee [1997], is a server selec-
tion technique which weights terms according to their power to discriminate between
collections. The technique begins by calculating the cue validity of each term t at each
collection c, CV(t, c), which measures the extent to which t distinguishes c from other
collections [Goldberg 1995]:

CV(t, c) =
Pr(t|c)

Pr(t|c) + Pr(t|C \ c)
.

As before, Pr(t|c) can be approximated by the relative frequency of t in c, dfc(t)/Nc.
Pr(t|C \ c), the probability of t occurring in a “contrasting concept”, is the relative
frequency of t in all other collections: ∑k∈C\c dfk(t)/ ∑k∈C\c Nk. (In neither case is
any smoothing used, which means CV(t, c) is undefined for any term which is not
present in any collection. Yuwono and Lee [1997] do not appear to have considered
this possibility. The implementation used in the experiments described below assigns
CV(t, c) = 0 in such cases, meaning the term will not contribute to any collection’s
score.)

The cue validity of t at c gives an indication of how well t distinguishes documents
in c from documents from all other collections. CVV(t), the cue validity variance
of term t, is a measure of how useful a term is in distinguishing collections in C in
general. CVV(t) is just the variance of CV(t, c):

CVV(t) =
∑c∈C

(
CV(t, c)−CV(t)

)2

|C| .

where CV(t) is the mean value of CV(t, c) across all collections, ∑c∈C CV(t, c)/|C|.

§7.1 Related work 101

Finally, collections are scored according to the frequency of each query term, each
weighted by its cue validity variance so that terms with more discriminative power
are considered more important:

sc(q) = ∑
t∈Tq

CVV(t) dfc(t).

Initial evaluation by Yuwono and Lee [1997] compared CVV, bGlOSS, vGlOSS,
CORI, and other baseline methods on a four-collection, 7000-document testbed from
the SMART system [Salton and McGill 1983] with simulated vector-space retrieval.
bGlOSS performed relatively poorly in this vector-space environment, and the re-
maining methods were outperformed by CVV across a range of conditions from ho-
mogeneous to heterogeneous collections. With simulated Boolean retrieval over the
same collections, CVV appeared slightly less effective than bGlOSS but the other tech-
niques fared poorly.

This initial result has been called into question by later experiments by Powell and
French [2003]. This later work repeated the comparison on three different testbeds
drawn from TREC ad hoc collections. Unlike Yuwono and Lee, they found that CVV
performed close to, but worse than, CORI. Craswell et al. [2000], experimenting with
their “probe queries” technique (Section 7.1.12), also found CVV was poorer at the
selection task than other methods. Craswell et al. suggest that the assumption under-
lying CVV — that terms with more variability are more useful to discriminate between
collections — may lead to poor results when a term is very rare. In these cases, a term
may appear a small number of times in a small number of collections, and otherwise
not at all; this leads to a low CVV score and little emphasis on what could have been
a very useful term.

7.1.6 Kullback-Leibler divergence

Kullback-Leibler divergence, described earlier as a means to compare two language
models, was suggested for server selection by Xu and Croft [1999] and interpreted in
a language modelling framework by Si et al. [2002]. The language modelling inter-
pretation, following Ponte and Croft [1998], ranks each collection c according to its
probability of being generated given a model of query q: i.e., sc(q) = Pr(c|q). By
Bayes’s theorem,

sc(q) = Pr(c|q)

=
Pr(q|c) Pr(c)

Pr(q)
. (7.5)

Note that Pr(q), the prior probability of the query, does not depend on the collection
and can therefore be ignored. Similarly, Pr(c), the prior probability of collection c, is
normally considered constant and can also be ignored.

102 Server selection

With these two simplifications, and assuming that terms occur independently, we
can say

Pr(q|c) = ∏
t∈Tq

Pr(t|c). (7.6)

(Compare this with Equation 6.1, p. 76, which ranks documents.) Pr(t|c) can be esti-
mated from a model m as usual with dfm(t)/Nm.

This can be shown to rank collections equivalently to Kullback-Leibler divergence,
given that collections with lower divergence are more similar to the query and should
be ranked first. Recall from the discussion of divergence in Section 6.2.2 on p. 82 that

DKL(q‖c) = ∑
t∈Tq

Pr(t|q) log2
Pr(t|q)
Pr(t|c) (7.7)

(this is Equation 6.2, with queries substituted for collections and collections for mod-
els). As before, Pr(t|q) depends only on the query, not the collection, and can be
ignored for the purpose of ranking collections; what remains from Equation 7.7 is
proportional to −∑t∈Tq log2 Pr(t|c). Taking the logarithm of Equation 7.6 — which
will not modify the ranking — gives ∑t∈Tq log2 Pr(t|c). Ranking by Equation 7.6 is
therefore equivalent to ranking by (negative) Kullback-Leibler divergence.

As before, smoothing can be used to account for infrequent terms. Si et al. [2002]
use a global model, mg, which captures term occurrences across all collections:

Pr(t|mg) = ∑c∈C dfc(t)
∑c∈C Nc

.

Term data from this global model is then combined with data from each collection in
a modification of Equation 7.6:

Pr(q|c) = ∏
t∈Tq

(
λ Pr(t|c) + (1− λ) Pr(t|mg)

)
. (7.8)

The parameter λ controls the mixing and is typically 0.5 [Si et al. 2002; Si and Callan
2003a]. Note that when λ = 1, Kullback-Leibler divergence ranks equivalently to
bGlOSS.

Experiments with Kullback-Leibler divergence have had mixed results. Xu and
Croft [1999], using a 100-collection testbed based on TREC ad hoc data, reported re-
call of around 50% optimal at 10 collections selected, significantly worse than a single
centralised index. On a similar testbed, Si et al. [2002] reported precision of about
40%, although this represented better performance than CORI on the same data. Fur-
ther experiments by Si and Callan [2003a] found that Kullback-Leibler divergence per-
formed poorly on testbeds with a few relatively large collections, which prompted the
development of an extension.

§7.1 Related work 103

7.1.7 Extended Kullback-Leibler divergence

Si and Callan [2003a] observe that there is no explicit control for collection size in the
Kullback-Leibler method described above. Their extended algorithm assumes that
larger collections are more likely to be relevant and assigns the prior probability of
collection c being relevant, Pr(c), according to collection size:

Pr(c) =
Nc

∑i∈C Ni
.

Otherwise, this variant uses Equations 7.5 and 7.8 as before. The experiments below
consider this alternative as “extended Kullback-Leibler divergence”.

Evaluation of this extension by Si and Callan [2003a], over TREC ad hoc data,
found it improved recall on testbeds where collection sizes were particularly skewed;
the impact was less when collection sizes were more homogenous. Further evaluation
by Hawking and Thomas [2005], over TREC Web track data with a wide variety of
collection sizes, demonstrated extended Kullback-Leibler divergence performed well
across the board but especially with “topic distillation” tasks where the goal was to
return a set of key Web pages.

7.1.8 Most similar document

The most similar document method, like vGlOSS, tries to locate documents which are
similar to the query on the assumption that these are the most likely to be relevant
[Meng et al. 2001; Yu et al. 1999]. The algorithm has been described in two forms: one
uses a model of each collection as well as a global model describing term occurrences
overall; another uses a hierarchy of models, from those representing individual col-
lections through those representing several collections up to the global model. Only
the first of these appears to have been implemented.

For each term t in each collection c, the algorithm records two pieces of data: the
maximum normalised weight mnwc(t) and the average weight awc(t). The maxi-
mum normalised weight, mnwc(t) = maxd∈Dc(tfd(t)/|d|), is the highest density of
occurrences of t in any document in the collection. awc(t) is the average of these
proportions over all documents in the collection, even those which do not contain t:
awc(t) = (∑d∈Dc tfd(t)/|d|)/Nc. The intuition is that the most similar document to a
query term is likely to be that with the maximum normalised weight for that term.
Weighting each term according to a variant of tf·idf, tfq(t)/ dfmg(t) (recall that mg is
the “global” model), collections are scored with2

sc(q) = max
t∈Tq

 tfq(t)
dfmg(t)

mnwc(t) + ∑
t′∈Tq\t

tfq(t′)
dfmg(t′)

awc(t′)

 .

2Yu et al. [1999] normalised these scores by dividing by the number of terms in the query q. Since this
normalisation does not effect the final selection, it is ignored here.

104 Server selection

The first part of the bracketed expression is the maximum normalised weight for
this term; this is, by assumption, the weight of this term in the most similar docu-
ment. The second part accounts for other terms, assuming they appear with average
frequency. In both parts, terms are weighted as above. The best score for any one
query term is used for the score of the collection as a whole.

Experiments by Yu et al. [1999] used the same collections and queries as Gravano
and Garcı́a-Molina [1995]. For the same number of documents retrieved, the most
similar document method consistently retured more documents similar to the query
than the high correlation (MAX) version of vGlOSS. It is not however clear exactly
which variant of MAX was used in these experiments.

This method is not included in these experiments, since it is not possible to deduce
mnwc(t) from the unigram language models used to date.

7.1.9 ReDDE

The relevant document distribution estimation method, or ReDDE, is also due to Si
and Callan [2003b]. As with the GlOSS family, ReDDE attempts to estimate the distri-
bution of relevant documents across all collections based on a simple approximation
of relevance. The algorithm computes an estimate of |RELc(q)|, the number of doc-
uments in c which are relevant to the query q; this forms the basis of the eventual
ranking. ̂|RELc(q)| = ∑

d∈Dc

Pr(relevant|d) Pr(d|c)Nc

(Recall that ̂ represents an estimate and that Dc is the set of documents in collection
c.) If m, the model of c, is representative, it is possible to estimate Pr(d|c) by assuming
a uniform distribution: let Pr(d|c) = 1/Nm. Still assuming that the model is repre-
sentative, we can also estimate Pr(relevant|d) using the documents sampled when
building the model, Dm:

̂|RELc(q)| = Nc

Nm
∑

d∈Dm

Pr(relevant|d) (7.9)

Note that this is the expected number of relevant documents; the formulation is sim-
ilar to that used by bGlOSS (Equation 7.1). The remaining task is to estimate the
probability that each document d in Dm is relevant to q.

ReDDE estimates this from a hypothetical ranking of all documents in all collec-
tions. Each of the top-ranked documents in this complete (“central”) list has a fixed
chance of relevance and contributes to the score of the collection it comes from:

Pr(relevant|d) =

{
k if RANK CENTRAL(d) < rNall

0 otherwise
(7.10)

where RANK CENTRAL(d) is the rank, over all documents in all collections, of d; and
Nall is the total number of documents in all collections, ∑c∈C Nc. The parameters r and
k are tunable.

§7.1 Related work 105

Collection A: Twelve sampled documents, a1 to a12.
Total size 300,000 documents.

Collection B: Four sampled documents, b1, b2, b3, and b4.
Total size 3,000,000 documents.

Step Calculations Score

1 RANK SAMPLE(a1) = 0; RANK CENTRAL(a1) = 0 A← 1
2 RANK SAMPLE(a2) = 1; RANK CENTRAL(a2) = 25, 000 A← 1
3 RANK SAMPLE(b1) = 2; RANK CENTRAL(b1) = 50, 000 B← 1
4 RANK SAMPLE(b2) = 3; RANK CENTRAL(b2) = 850, 000 —

Figure 7.2: Example calculations for the ReDDE selection algorithm. See the text for details.

To compute this complete ranking would require a copy of every document in
every collection, which is of course infeasible. RANK CENTRAL(d) can instead itself
be estimated using the samples collected in the course of building models for the
collections. All documents sampled from all collections are indexed by the meta-
search tool itself, and ranked for each query by some effective method; the ranking
of sample document d, from a subset Dm of Dc, is RANK SAMPLE(d). With this sam-
ple rank, RANK CENTRAL(d) can be estimated from the total number of documents
ranked ahead of d: the intuition is that each document sampled from c stands for
Nc/Nm documents in the complete ranking.

̂RANK CENTRAL(d) = ∑
d′∈Dm

RANK SAMPLE(d′)<
RANK SAMPLE(d)

Ncd′

Nmd′
, (7.11)

where cd′ is the collection from which d′ is drawn, and md′ the sample from which d′

is drawn.

Substituting the estimates in Equations 7.10 and 7.11 into Equation 7.9 lets us es-
timate the total number of documents in each collection which are relevant to q. The
final score is a normalised version of this:

sc(q) =
̂|RELc(q)|

∑c′∈C
̂|RELc′(q)|.

For example, consider the problem of selecting between the two collections A and
B of Figure 7.2. First, given a query q, the sixteen sampled documents are ranked; as-
sume the result of this ranking is 〈a1, a2, b1, b2, b3, b4, a3 . . . a12〉. Nall, the total number
of documents across all collections, is 3, 300, 000. For this example we use k = 1 and
r = 0.03, which means only the top 3% of documents, or 99, 000 documents, will con-
tribute to the final score (Si and Callan [2003b] use k between 0.002 and 0.005, but with
much larger samples).

106 Server selection

The highest-ranked sample document is a1. By definition, RANK CENTRAL(a1) =
0, and collection A is awarded a score of 1.

The next sample document is a2. Since there are twelve documents in the sample
a1 came from (Nma1 = 12), representing a collection of 300, 000 documents (Nca1 =
300, 000), there are an estimated 300, 000/12 = 25, 000 documents above a2 in the
complete ranking and RANK CENTRAL(a2) = 25, 000. This is less than the 99, 000
document threshold, so collection A is again awarded a score of 1.

The third highest-ranked sample document is b1. The first 25, 000 documents
in the complete ranking are already assumed to be from A; and again Nca2/Nma2 =
25, 000, so there are an estimated 50, 000 documents ahead of b1 in the complete rank-
ing. This is still less than the 99, 000 document threshold, so collection B is credited
for including relevant documents.

The next document, b2, is at rank 3 on the sample list but is estimated to be at
rank 300, 000/6 + 300, 000/6 + 3, 000, 000/4 = 850, 000 in the complete list. This is
well past the 99, 000 document threshold, so b2 and all lower-ranked documents are
assumed to be insufficiently interesting and no collection will gain any further score.
The final scores are 2 for A and 1 for B, normalised to 2

3 and 1
3 .

Si and Callan [2003a, 2003b] used a variety of testbeds based on TREC ad hoc data
to compare ReDDE to CORI (and extensions) and Kullback-Leibler divergence (and
extensions). Methods were evaluated on recall: the ability to find collections with
the highest number of relevant documents. On those testbeds where collection sizes
were more or less uniform, ReDDE appeared to perform as well as or slightly better
than CORI; on those testbeds where collection size was more variable, however, with
some collections both larger than others and with more relevant documents, ReDDE
performed markedly better than all alternatives except extended Kullback-Leibler di-
vergence. Further evaluation by Hawking and Thomas [2005] also found ReDDE to
perform well across a variety of Web tasks.

7.1.10 Central-rank-based

The central-rank-based collection selection (CRCS) algorithms [Shokouhi 2007] are
similar to ReDDE, and also make use of an index of sample documents. As for ReDDE,
these documents are assumed to be representative of the collections they are drawn
from; they are ranked for each query, and those collections which contribute highly-
ranked sample documents are selected.

ReDDE awards collections a fixed score for each highly-ranked sample document
(Equation 7.10). Shokouhi notes that this does not reflect the documents’ likely utility
— when ordered by an effective system, top-ranked documents are generally more
useful than those of lower ranks [Joachims et al. 2005; Manmatha et al. 2001]. CRCS
therefore allocates a rank-based, rather than fixed, score to each of the top γ sample
documents. Shokouhi gives two variations. In the linear version, CRCS(l),

R(d) =

{
γ − RANK SAMPLE(d) if RANK SAMPLE(d) < γ

0 otherwise,

§7.1 Related work 107

where RANK SAMPLE(d) is the rank of sample document d, as before. In the exponen-
tial version, CRCS(e),

R(d) =

{
α e−β RANK SAMPLE(d) if RANK SAMPLE(d) < γ

0 otherwise.

These per-document scores are summed for each collection, in the same manner
as ReDDE, and a final score is calculated with

sc(q) =
Nc

NmaxNm
∑

d∈Dm

R(d).

Nmax is the size of the largest collection, and is used to normalise the scores. Besides
this normalisation, CRCS is very similar to ReDDE. Where ReDDE expressly rewards
collections with a large number of high-ranked documents, however, CRCS rewards
collections with both large numbers of documents and documents with particularly
high ranks.

Experiments by Shokouhi [2007] used a variety of testbeds, including a 100-server
subset of the .GOV2 Web crawl,3 and compared CRCS(l) and CRCS(e) with both
CORI and ReDDE. The two CRCS algorithms appeared generally as good as ReDDE,
although the exponential version CRCS(e) was somewhat better on two of the six
testbeds. Differences in performance were however small.

Of the other algorithms, CORI performed poorly on the “relevant” testbed, where
two large collections held the majority of relevant documents, and ReDDE performed
well on the TREC4-kmeans testbed [Xu and Croft 1999], where collections were topi-
cally focussed.

7.1.11 Query-time probes

The technique of Hawking and Thistlewaite [1999] collects information on term occur-
rences at query time, and uses this to score collections. Servers are required to support
special lightweight probes, sent for each user query; in response to these probes, each
server returns statistics including the number of documents in the collection, the num-
ber of documents which contain each probe term, the number of documents in which
terms co-occur, and the number of documents which contain probe terms within a
specified proximity. These statistics are combined to generate a score sc(q), which is
used to rank the available collections.

Hawking and Thistlewaite suggested two ways to generate the terms used in a
probe: manual assignment and an automatic system which chooses terms with low
expected frequency. In a series of experiments, the manual variant of lightweight
probes achieved the highest recall of four selection techniques, and this performance
appeared to be generalisable over a variety of collections. These experiments however
used very long queries (mean 65 terms), which is not typical of current environments.

3http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

108 Server selection

The Top-Ranked Documents for Collection Selection algorithm, TRD-CS [Rasolofo
et al. 2001], also relies on query-time probes of all collections, but does not require
server cooperation. Having received a user’s query, TRD-CS forwards this query to all
servers; each document in each result set is then downloaded and scored according to
a ranking formula which rewards term occurrences early in the document and prefers
the first two query terms. Similarly to ReDDE and to the probe queries technique
(Section 7.1.12 following), TRD-CS credits servers which provided the top-ranked re-
turned documents. In experiments by Rasolofo et al., over collections formed from
TREC ad hoc data, precision achieved by TRD-CS and an associated merging strat-
egy was significantly higher than that achieved by CORI and its associated merging
strategy [Callan et al. 1995] and close to the precision of an optimum selection. These
experiments did not however examine selection performance alone.

Query-time probes are not considered in the experiments below. Since both meth-
ods forward a probe query to all servers, for all user queries, these probe queries must
be cheap; this is not the case with real-world servers. Lightweight probes also require
the support of servers, since they rely on information that is not available via a simple
query interface.

7.1.12 Probe queries

Craswell et al. [2000] observe that there is little point selecting a collection with useful
documents if the server responsible for that collection performs poorly and cannot
return them. Their “probe queries” technique uses documents sampled from each
server to estimate effectiveness.

A pre-defined probe query is issued to each server, and each document in each
result set is downloaded and added to a local collection. All documents in this local
collection are then indexed and ranked against the probe query. On the assumption
that highly-ranked documents are useful, and that effective servers will be able to
return many useful documents, servers are given credit for each of their documents
in the top 20 of this central ranking. (The figure 20 appears to have been chosen
arbitarily.) Overall effectiveness is calculated as the mean score for each server over a
set of probe queries.

Craswell et al. describe combining server effectiveness scores, calculated in ad-
vance of any query, with per-query collection scores from CORI. This approach did
not however produce significant improvement and probe queries are not evaluated
in the experiments in this thesis. The ReDDE and CRCS algorithms, which are evalu-
ated, also make use of a central index of sampled documents.

7.1.13 Decision-theoretic

Starting from assumptions regarding the independence of relevance judgements and
the cost of retrieving documents, Fuhr [1999] derives a decision-theoretic formulation
of the server selection problem. The aim is to minimise the expected cost of the re-
trieval process; this cost includes the cost of interrogating each server, fetching each

§7.1 Related work 109

document, and separate costs for presenting relevant and irrelevant documents. If the
performance of each server is known, as a precision-recall curve, an expected optimal
solution can be found.

Early versions of the decision-theoretic framework (DTF) learned a linear approx-
imation of the precision-recall curve from training queries. Later work [Nottelmann
and Fuhr 2003; Nottelmann and Fuhr 2004] considered alternative approximations in-
cluding scoring documents in a central sample index, in a similar manner to ReDDE
and CRCS; modelling the distribution of relevant documents by estimating the fre-
quencies of terms in a collection; and estimating the distribution of relevant docu-
ments using CORI.

Experiments by Nottelmann and Fuhr, using the UBC-100 testbed of 100 collec-
tions from TREC ad hoc data, have compared selection and merging by CORI with
that by DTF in several variants. The simplest variant, DTF-rp [Fuhr 1999], assumes
a linear precision-recall curve for each server, and performs about the same as CORI.
Other more complex variants [Nottelmann and Fuhr 2003; Nottelmann and Fuhr 2004]
show greater precision than CORI, but this appears to depend upon the length of
queries and is less pronounced with queries which are shorter. Some key elements of
the model, including the cost of retrieval, have also not yet been considered.

In each case, each of the DTF algorithms was trained on half the available queries
to learn the parameters for, for example, the approximated precision-recall curve. It
is not possible at present to do this for personal metasearch collections: while it may
be feasible to pool judgements for shared collections, such as the Web or large corpo-
rate databases, many collections are private and judgements would need to be made
by each metasearch user. There is no such set of standard queries and judgements
presently available for experimentation in personal metasearch.

7.1.14 Other methods

Several selection methods have been described which rely on classifications, on esti-
mates of past performance or manual relevance judgements, or on characteristics of
particular environments.

Profusion [Gauch et al. 1996] offered automatic as well as manual server selection.
The automatic selection algorithm looked up each query term in a dictionary of sev-
eral thousand terms: each term was assigned to one of 13 categories such as “art”,
“travel”, or “music”. Each of the six search engines used in Profusion had been as-
signed a score in each category, based on manual relevance judgements on a test set of
queries, and these scores from the appropriate category were used to inform selection.
The dictionary could not cover all possible query terms, and a fixed set of three search
engines served as a default.

The relevant document distribution (RDD) method Voorhees et al. [1994] also uses
manual relevance judgements over training queries, but does not use predefined cat-
egories. The training queries most similar to the current query are identified instead
and the judgements for these are used to estimate each server’s performance.

110 Server selection

Ipeirotis and Gravano [2002] propose a technique (“QProber”) for selecting one or
more promising collections, if collections are first categorised in a hierarchical scheme
such as those in Section 6.1.1. The technique starts by building a language model for
each collection and for each category, by propagating terms up the hierarchy; then,
starting at the top-level category, selecting between lower-level classifications or col-
lections using for example CORI or bGlOSS. The selection process continues down the
hierarchy until there are few enough collections included, or until no sub-category ap-
pears promising. Experiments with a testbed of 50 Web-based search engines demon-
strated this hierarchical scheme offered greatly improved precision over a flat scheme
using either CORI or bGlOSS, a result which may be due to the ability to “forget” a
large number of collections which are not mostly about the topic at hand while not
discarding models which happen to exclude one or more query terms.

Yang and Zhang [2006] also make use of collections arranged in a topical hierar-
chy. They propose a two-stage process for selection: first, models of sub-hierarchies
are used to score each. Only collections from top-ranked sub-hierarchies are then con-
sidered in the second stage, which does the final scoring. Both stages use a scoring
technique based on unigram language models and very similar to that of Kullback-
Leibler divergence (equation 7.5). Experiments using Reuters data and a collection
of Web data showed clear improvements over CORI; however, the two-stage method
was allowed a query expansion phase and CORI was not.

The Inquirus2 system [Glover et al. 1999] relied on a classification of queries as
well as of servers. At the time of issuing a query, users were asked to specify one of
seven categories such as “research papers”, “organisational home page”, or “topical
current events”. The query would be forwarded to a fixed set of four to six Web search
engines according to this classification.

Server selection in the SavvySearch Web metasearch tool used a “metaindex” which
recorded for each 〈 term, server 〉 pair the number of times a user had selected a doc-
ument to view [Dreilinger and Howe 1997; Howe and Dreilinger 1997]. This was
used at selection time to estimate each server’s effectiveness on similar queries in the
past; scores from this index were combined with estimates of recent performance as
measured by the size of result sets and the servers’ response times.

As with ReDDE and CRCS, the unified utility maximisation (UUM) technique of Si
and Callan [2004] uses a central index of sampled documents, ranked for each query,
to estimate the distribution of relevant documents. UUM uses a set of queries and
relevance judgements ahead of time to learn a logistic model which maps scores from
the central index to probabilities of relevance. At query time, this model is used along
with scores from the central index to estimate probabilities of relevance for documents
in each collection; this in turn can be used to select servers. Unlike other methods,
UUM distinguishes between high-precision and high-recall tasks, and Si and Callan
provide an algorithm for each.

The returned utility maximisation (RUM) method [Si and Callan 2005] builds on
UUM but like Craswell et al. [2000] takes into account the effectiveness of each server
as well as the likely relevance of documents in each collection. Evaluations by Si and
Callan using a number of testbeds demonstrated that both UUM and RUM perform as

§7.1 Related work 111

well as, or better than, ReDDE, and that RUM performs better still in situations where
more servers are ineffective.

Finally, several selection methods have been proposed which rely on characteris-
tics of particular collections, or particular metasearch environments. COSCO [Her-
nandez and Kambhampati 2005] and ROSCO [Chokshi et al. 2006] use estimates of
overlap between collections to inform selection; both algorithms attempt to select col-
lections which can contribute new documents, rather than duplicates of those already
seen. The HARP and AWSUM algorithms for hybrid Web metasearch [Hawking and
Thomas 2005] use anchortext found in the locally-indexed portion as surrogate docu-
ments, and rank these surrogates to rank collections.

None of the methods of this subsection are considered in the experiments of Sec-
tion 7.2, since in this instance there are no classifications of collections; overlap be-
tween collections is minimal; anchortext is available in only one collection; and man-
ual feedback or judgements are not available (although this is considered further in
Section 8.2.1).

A small number of systems have included manual server selection, including “con-
tent labels” [Sheldon et al. 1994] and Profusion [Gauch et al. 1996]. Dolin et al. [1997]
and Meng et al. [2002] also proposed manual selection, after first classifying servers
according to collection content. These manual alternatives are not considered in this
thesis, although the PIS tool used in Chapter 9 offers manual selection as part of its
query syntax.

7.1.15 Evaluations

Each of the methods described above have been evaluated by their authors, using
testbeds of varying type. A number of studies have also compared two or more meth-
ods directly, on the same test data.

In a series of papers [French et al. 1998; French et al. 1999; Powell and French
2003], French, Powell et al. have developed a set of testbeds based on the TREC ad hoc
collections and used it to evaluate CVV, vGlOSS, and CORI for server selection. The
testbeds developed are based on data available at TREC-4 in 1995, and include SYM-
-236 (a division into 236 collections, arranged by source and publication date); UBC-
100 (100 collections, arranged to have approximately equal byte counts); and UDC-236
(236 collections, arranged to have approximately equal numbers of documents). Other
testbeds included up to 921 databases, but again arranged to keep size approximately
uniform. Queries in all these testbeds were based on TREC ad hoc topics and divided
into “short” and “long” forms, with mean lengths of 3.5 and 21 terms respectively, and
in one investigation [French et al. 1999] the queries were first fed through an automatic
expansion process.

Hyusein and Carthy [2004] explored the effect of increased topicality on the CORI,
CVV, and vGlOSS methods. 50 collections from the WT10g testbed were pre-processed
and formed into 20 clusters apiece; each of these clusters was then scored for each
query, and the collection which provided the top-scoring cluster was selected. From
this increased topicality, Hyusein and Carthy saw improvements in both precision

112 Server selection

and recall. They did not however report how the 50 collections were generated; real
collections may already be more focussed than the 50 they used. This method also
requirs support for document clustering at each server. A baseline run, with the same
50 collections and no clustering, saw CVV and CORI outperform vGlOSS. This is also
seen in the experiments in this chapter.

Relatively little work has been done to confirm the applicability to other environ-
ments of server selection results obtained on TREC ad hoc data. Rasolofo et al. [2001]
compared CORI and their own method for server selection and for results merging
using an eight-way division of the TREC WT10g collection of Web data. The authors
expressly considered the nature of Web queries and used either a very short form of
the TREC topics (two terms on average) or queries garnered from logs of the Excite
search engine (2.4 terms on average). Craswell et al. [2000] evaluated CORI, vGlOSS,
and CVV in a testbed based on the 2GB, 951 server WT2g crawl of the Web. They
concluded that CORI, and a modified version of the CORI algorithm, performed rea-
sonably effectively at the server selection task. Similar experiments by Hawking and
Thomas [2005], using the 18GB .GOV test collection divided according to the presence
of local search engines, compared CORI and extensions, ReDDE, Kullback-Leibler di-
vergence and extension, AWSUM, and HARP. ReDDE and extended Kullback-Liebler
divergence were the best-performing of the established methods, although perfor-
mance varied according to the type of task.

7.2 Selection experiments

In general, the performance of the selection techniques above has been evaluated us-
ing TREC ad hoc resources. The experiments reported below consider the likely per-
formance of these techniques in a personal metasearch tool, and consider questions
similar to those in Chapter 5:

1. How does selection performance compare across methods, and across queries?

2. How does selection performance vary, given samples and size estimates of dif-
ferent quality?

3. Which, if any, of the methods is appropriate for personal metasearch?

Twelve selection methods are considered in these experiments: bGlOSS, vGlOSS,
CORI and two extensions, lexicon inspection using algorithm “I”, CVV, Kullback-
Leibler divergence and one extension, ReDDE, and the linear and exponential variants
of CRCS. Of these, CORI and extensions, CVV, vGlOSS, Kullback-Leibler divergence
and extension, and ReDDE have been well-tested in other scenarios, but never all at
once and never on a personal metasearch testbed. bGlOSS, lexicon inspection, and
CRCS are less well-studied.

Two further methods are included as baselines. The “random” method ranks each
server randomly for each query, without using any information about each server.

§7.2 Selection experiments 113

The “size” method simply ranks servers by their estimated size, largest to smallest.
Neither of these baselines make use of the query text.

The collections used are again the six of Table 4.2 on p. 40, which are representative
of a range of document types and sizes:

• The “calendar” collection contains 1049 documents (appointments) from a cal-
endar application. Documents are typically short sentence fragments.

• The “zsh-list” and “procmail” collections are the archives of public mailing lists
discussing narrow technical topics, and have around 9000 and 24,000 documents
respectively.

• The “email” collection includes around 25,000 documents from a personal email
archive with much broader topics.

• “WSJ” collects several years of articles (around 99,000) from the Wall Street Jour-
nal.

• “.GOV”, the largest collection used here, is a 1.2 million page crawl of Web hosts
in the .gov domain.

7.2.1 Queries

No standard query sets have been collected for personal metasearch, so queries for
these experiments were created with the intention of representing the variety of topics
covered in personal metasearch collections. Past work has often used long queries; for
example, Xu and Croft [1999] report a series of experiments with a mean 34.5 terms
per query. This is evidently much larger than the 1.7–2.6 terms typical of queries to
web search services [Beitzel et al. 2004; Jansen et al. 2000; Silverstein et al. 1999; Spink
et al. 2002; Zhang and Moffat 2006], and the queries used here were accordingly kept
short.

Queries were generated in a number of ways and formed six sets of 20, each based
on one of the six collections in the testbed.

• Subject and location fields were extracted from calendar entries, stopwords were
removed, and 20 of these reduced fields selected at random made up the first set
of queries. Queries had a mean length of 1.95 terms, with a standard deviation
of 0.59 terms.

PADRE [Hawking et al. 2000] was used to retrieve the top five documents from
each collection for each of these 20 queries, and relevance judgements were con-
ducted manually for each returned document. (This is a pooling technique in the
manner of Harman [2005], with depth five.) The vast majority of relevant doc-
uments came from the calendar collection, with a number also from the email
collection; since these two collections overlap somewhat in subject matter, and
many pieces of email also contain dates and places, this is expected.

114 Server selection

• A similar process was used to construct queries from subject lines in the email
collection. Queries had a mean length of two terms and a standard deviation
of 0.55 terms, and top results were manually judged. Most relevant documents
were drawn from the email collection, with some from the calendar collection.

• The procmail and zsh-list collections represent mailing lists on narrow technical
subjects. The same process was used to construct queries based upon these two
collections, but there was no topical overlap; relevant documents from each set
of queries came only from the original collection.

As may be expected from more focussed sets of documents, these two sets of
queries were longer on average (mean 3.90 terms for procmail, 3.30 for zsh-list;
standard deviation 3.47 terms and 1.23 terms).

• The “topic” field of twenty topics from the TREC ad hoc track, all of which
had at least one relevant document in the WSJ collection, were used as a fifth
set of queries. Relevance judgements were made over the top results from the
calendar, email, procmail, zsh-list, and .GOV collections; relevance judgements
from TREC were used for documents from the WSJ collection. These queries
were rather long (mean 4.20 terms, standard deviation 2.52 terms).

• The “topic” field of twenty topics from the TREC Web track made up the final
set of queries, and relevance judgements were made in a similar way to the
previous set. This set had a mean length of 3.30 terms and standard deviation of
1.23 terms.

Over all 120 queries, the number of relevant documents per collection varied from
45 for the calendar collection to 101 for WSJ.

Queries in other test collections have typically been generated manually. The
first four sets of queries used in these experiments were instead created automati-
cally from identifying fields; the intention was to mimic the terms a user might type
if they were familiar with the contents of each collection. It is not clear how well
these automatically-generated queries match the queries metasearch users would re-
ally type, but nor is this clear for the manually-generated queries of the last two sets.
Experiments with test users, reported in Chapter 9, suggest that this test collection can
correctly identify high- and low-performing selection methods.

7.2.2 Models and size estimates

The selection techniques used in these experiments rely on language models and size
estimates of the collections involved (Table 7.1). As in Chapters 5 and 6, this data is
drawn from three sources.

As a baseline, models were built using all documents in each collection, and “esti-
mates” of collection size were entirely accurate. Although not possible in practice, this
provides a best case for comparison. A second set of models were built from 300 doc-
uments from each collection sampled by the multiple queries sampler of Section 4.3;

§7.2 Selection experiments 115

size estimates for this set were produced by the multiple capture-recapture method
[Shokouhi et al. 2006]. These represent the best-performing algorithms in earlier work.
A final set of models were built from 300 documents from each collection returned by
the query-based sampler of Section 4.2.2 [Callan et al. 1999], with size estimates from
the sample-resample algorithm of Section 5.1.4 [Si and Callan 2003b]; although not
as accurate as other techniques, models and size estimates built this way have been
used in previous selection experiments [Hawking and Thomas 2005; Shokouhi et al.
2007; Si and Callan 2003a; Si and Callan 2003b]. The choice of 300 documents follows
Hawking and Thomas [2005], Si et al. [2002], and Si and Callan [2003a, 2003b]; as seen
in Chapter 6, this is also around the point where model quality is no longer improved
by adding further documents.

7.2.3 Measures

Previous evaluations of server selection have used two strategies: a whole-system
approach, where a tool which includes selection but also result merging is considered
as a single system, and an isolated approach which evaluates selection alone.

The whole-system approach has been taken by, for example, Craswell et al. [2000],
Powell et al. [2000], Rasolofo et al. [2001], Si et al. [2002], Si and Callan [2003b] (who
also evaluate selection alone), Xu and Croft [1999], and Zobel [1997]. In the experi-
ments reported here, however, it is desirable to measure the performance of selection
alone; especially since this thesis does not propose any particular merging algorithm.

Callan et al. [1995] measured the effectiveness of the CORI selection algorithm
with the mean squared error between CORI’s ranking and an ideal ranking. If OPT(c)
is the rank of c in some optimal ordering (Callan et al. define this optimal ordering in
terms of the number of relevant documents in each collection) and EST(c) is the rank
of c in an estimated ordering, based for example on the scores sc(q), then the mean
squared error is

MSE =
1
|C| ∑

c∈C
(OPT(c)− EST(c))2.

The mean squared error has the disadvantage that in case of tied scores sc(q), both
OPT(c) and EST(c) can vary arbitrarily. For example, if two collections have no rele-
vant documents, it will make no practical difference which is ranked higher in either
OPT or EST but MSE will vary either way. Further, since MSE only considers relative
ranks it does not distinguish small errors from large: for example, the error in ranking
a collection with 20 relevant documents above one with 100 is the same as if it were
ranked above one with 25, despite the former arguably being more significant.

A widely-used alternative without these drawbacks provides a rough analogue to
classical precision and recall [Gravano and Garcı́a-Molina 1995; Lu et al. 1996]. Let
each collection c have an associated merit, denoted MERITc(q), which is a measure of
how good a choice c is for this query. Rn is the proportion of this merit captured by
the n top-ranked collections:

116 Server selection

Rn = ∑i=1...n MERITesti(q)
∑i=1...n MERIToptimali(q)

,

where esti is the i’th ranked collection in the estimated ranking and optimali is the i’th
ranked collection in the optimal ranking.4 Rn ranges from 0, meaning there is no merit
in the first n collections selected, to 1, meaning the first n collections selected are as
good as possible. Rn has been used by Gravano and Garcı́a-Molina [1995], Shokouhi
[2007], Si and Callan [2003a], and Si and Callan [2003b].

A related measure [French et al. 1998] gives the amount of merit in the first n
selections as compared with the total merit available over all collections:

R̂n = ∑i=1...n MERITesti(q)
∑c∈C MERITc(q)

,

The two measures are equivalent if n collections or fewer have non-zero merit. R̂n

has been used by French et al. [1998], French et al. [1999], Hawking and Thistlewaite
[1999] (where it is called Rn), and Powell and French [2003]. Similar analogues of
precision, Pn and P̂n, have also been described and used particularly by Gravano and
Garcı́a-Molina [1995].

MERITc(q), the (real) utility of a collection c, has been defined in a number of ways.
Gravano and Garcı́a-Molina [1995] define MERIT in terms of the total similarity be-
tween c and q: the sum, over all documents d ∈ Dc, of the similarity between d and
q. If servers work on a vector-space model, this is an approximation of what an effec-
tive server might retrieve in response to a question. This has the effect of including
an aspect of server performance, but as well as assuming a vector-space model at the
servers it assumes that documents similar to the query are likely to be useful. This
definition has also been used by French et al. [1998] and French et al. [1999] (who also
use the relevance-based definition discussed below), and Gravano et al. [1999].

An alternative definition of MERIT simply counts the number of relevant docu-
ments at each collection, MERITc(q) = |RELc(q)|.5 Since the relevant documents in
a collection may or may not be returned by a server, this measure is independent of
server performance. It has been commonly used for this reason [French et al. 1998;
French et al. 1999; Hawking and Thistlewaite 1999; Si and Callan 2003a; Si and Callan
2003b].

Further alternatives for measuring the performance of selection techniques in-
clude success; α (the proportion of wrong answers) and β (the proportion of correct
but partial answers) [Gravano et al. 1994]; and cosine similarity [Yuwono and Lee
1997], but these have been little-used.

The experiments in this chapter use Rn, with merit defined as the number of rel-
evant documents seen while judging. This measure is independent of the final per-
formance of any server, does not assume that only documents similar to the query

4Gravano and Garcı́a-Molina [1995] and most subsequent authors call this measure Rn. Lu et al.
[1996] use the notation Rn.

5Gravano and Garcı́a-Molina [1995] refer to this as Rel All.

§7.3 Results 117

are relevant, and has a straightforward interpretation as the proportion of possible
merit achieved with n collections. For the testbed used here, a random ordering has
an expected Rn of around n/6 since there are few queries where more than one col-
lection holds relevant documents. The best ordering, ranking collections according to
the number of relevant documents, has a score ofRn = 1 for all n.

The results below do not include a comparison of selective metasearch systems
with systems using a central index, as have for example Craswell et al. [2000], Ra-
solofo et al. [2001], and Xu and Croft [1999]. There are two reasons for this: first, a
central index is not a plausible model for personal metasearch, as discussed in Sec-
tion 3.3.3. Secondly, an optimum ranking function for one collection is likely to be
poor for another, and in these cases a central index will perform poorly. This is ev-
ident in the results for ReDDE and CRCS in Section 7.3.1 below, where the sample
index suffers similarly.

7.2.4 Validation of implementations

Previous work has presented performance figures for CORI and extensions, Kullback-
-Leibler divergence and extension, and ReDDE on a common testbed [Si and Callan
2003a]. The implementation of each of these six algorithms was validated against this
data.

The UBC-100 testbed [Powell et al. 2000], made up of 100 collections from TREC
CDs 1–3, was used along with TREC ad hoc queries 51–100. Rn scores from the
present implementations were compared with those of Si and Callan [2003a, Figure 1];
the values obtained were often higher than those previously published and were al-
ways within the small margin to be expected given uncontrolled differences in index-
ing and retrieval.

7.3 Results

Selection experiments based on perfectly accurate models and size estimates demon-
strated that Kullback-Leibler divergence performed well, as to a lesser extent did
CORI and variants, extended Kullback-Leibler divergence, and bGlOSS. Many meth-
ods however are prone to ranking larger collections highly, regardless of their use-
fulness for any particular query; only Kullback-Leibler divergence and vGlOSS were
found to be able to select small collections better than chance.

With less accurate models and size estimates built using the techniques of Chap-
ters 4 to 6, almost all methods were significantly less accurate. CORI, which is less
affected by inaccuracies in the model, and Kullback-Leibler divergence, which is less
prone to size-based ranking, seem appropriate choices for selection algorithms in real-
world tools.

118 Server selection

7.3.1 Baseline methods

The first experiment provided a baseline for later comparisons. Each method was
run with parameters set as described by the original authors; each method was also
allowed a perfectly accurate model built from all documents in the collection, and a
perfectly accurate size “estimate”. In the case of tied scores sc(q), collections were
ordered arbitrarily.

• vGlOSS used threshold l = 0, so any documents at all similar to the query were
considered interesting; note that this means the alternatives MAX(0, q, c) and
SUM(0, q, c) are equivalent. Following Gravano et al. [1999], weights were as-
signed to terms in the query (wq(t)) and in the collection (wc(t)) according to
term frequency and inverse document frequency:

wq(t) = tfq(t) log(Nc/ dfc(t))
and wc(t) = tfc(t) log(Nc/ dfc(t)).

Any query terms which did not appear at all in c were assigned a collection
weight wc(t) of zero. Each of wq(t) and wc(t) were normalised by dividing by
the Euclidean norm.

• Zobel’s algorithm “I” used weights as described in Section 7.1.4. If a query term
did not feature in any collection (so dfC(t) = 0), the weight for that term w(t)
was assigned zero.

• The CVV algorithm, as described above, will fail if a query term t does not ap-
pear in any of the collections (since both Pr(t|c) and Pr(t|¬c) will be zero, and
CV(t, c) will be undefined, for all collections c). In these cases, CVV(t) is as-
signed zero and the term is not used to calculate the score of any collection.

• The Kullback-Leibler divergence implementation used here smooths the lan-
guage model of each collection by mixing in a global language model, as in
Equation 7.8. Following Si et al. [2002] and Si and Callan [2003a], the mixing
parameter λ was set to 0.5.

• Si and Callan [2003b] suggest that ReDDE is robust with values of r from 0.002
to 0.005 (the top 0.2% to 0.5% of all documents considered relevant); the exper-
iments here used r = 0.003. Note that the other parameter k, the score given
to a collection for each highly-ranked sample document, is irrelevant due to the
normalisation step at the end of the ReDDE algorithm.

Rather than correct models, ReDDE used a sample index of all documents in all
collections. Documents were ranked for each query by PADRE [Hawking et al.
2000], which uses a slight variant of Okapi BM25 [Robertson et al. 1994].

• Following Shokouhi [2007], both CRCS methods give no points to any document
not in the top 50 (so γ = 50). For the exponential scoring of CRCS(e), α = 1.2

§7.3 Results 119

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers selected

M
ea

n
R

n
ov

er
 1

20
 q

ue
ri

es
+ + + + + +

+

+

+

+

+

+

Random selection

Perfect selection

bGlOSS
vGlOSS
CORI
CORI−ext1
CORI−ext2
I

CVV
KL
KL−ext
ReDDE
CRCS(l)
CRCS(e)

Figure 7.3: Performance of server selection methods, with one to six servers selected; models
built from all documents; and correct size estimates. Bars are ± one standard error.

and β = 0.28. (The figure β = 2.8 originally published by Shokouhi [2007] was
in error.6)

• The bGlOSS, CORI, and extended CORI algorithms have no tunable parameters.

Figure 7.3 summarises the performance of each method given this baseline data.
(Note that lines are interpolated for convenience; n must be in {1, 2, 3, 4, 5, 6}.) Since
models are built from all documents, Nm = Nc and so the three variants of CORI are
identical.

In this case the Kullback-Leibler divergence method is clearly the best-performing
of the techniques tested; Rn scores from this technique are significantly higher than
those from any other method for n = 1 to 5 (one-sided t test, α = 0.05). vGlOSS,
on the other hand, does relatively poorly and has significantly lower scores than all

6Personal communication from Milad Shokouhi.

120 Server selection

bGlOSS vGlOSS CORI I CVV KL KL−ext ReDDE CRCS(l) CRCS(e)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Method

r s

Figure 7.4: Correlation (Spearman’s rs) of collection rankings with rankings based on size
alone, over 120 queries. CORI-ext1 and -ext2 are identical to CORI. See notes to Figure 5.2 on
p. 63 for plotting conventions.

other methods for n = 2 or 3. bGlOSS, CORI and variants, extended Kullback-Leibler
divergence, and CRCS variants also perform well.

7.3.2 Correlation with size-based ranking

French et al. [1999] noted a very strong correlation between collection ranks from
vGlOSS and ranks based on collection size alone. The survey in Section 3.3 suggests
that collection sizes in personal metasearch may range from a few hundred docu-
ments (for small email archives, for example) to billions of documents (for the Web or
Dialog). If smaller collections contain useful documents, any tendency to select larger
collections could result in poor overall performance. A second set of experiments
investigated this bias.

Figure 7.4 plots the correlation between rankings based on server scores sc(q) and
those based on collection size Nc, over 120 queries for each selection method. Spear-
man’s rank correlation coefficient rs is used (see Section 6.2.2) and takes values in
[−1, 1]. A correlation of −1 indicates collections are ranked smallest to largest, 0 indi-
cates there is no correlation between Nc and sc(q), and a correlation of 1 indicates that
the collections are ordered strictly by size.

It is clear that most methods do in fact correlate highly with a size-based rank-
ing. From Figure 7.4, it seems only vGlOSS and Kullback-Leibler divergence are rel-
atively weakly correlated, which suggests that bGlOSS, CORI and extensions, “I”,
CVV, extended Kullback-Leibler divergence, and the CRCS variants are all prone to
ranking large collections highly regardless of the query. For example, over all 120 test
queries, bGlOSS ranks .GOV highest for 80 queries despite there only being 20 queries

§7.3 Results 121

for which this collection actually contains the largest number of relevant documents.
Most other methods are similar, ranking .GOV first for between 58 and 119 of the 120
queries. vGlOSS, which is less prone to ranking by size, ranks .GOV first for only 4 of
the 120 queries, and Kullback-Leibler divergence does the same for only 37.

A straightforward examination of the methods demonstrates why large collections
are favoured. bGlOSS and extended Kullback-Leibler divergence include an explicit
adjustment for Nc, the size of the collection; CORI and extensions, “I”, and CVV use
either dfc or tfc, which may be expected to correlate highly with collection size. Al-
though ReDDE and CRCS do not explicitly adjust for collection size in this instance
(since Nm = Nc), the sample index will be dominated by documents from larger col-
lections. In both vGlOSS and Kullback-Leibler divergence frequency information is
normalised on a collection-by-collection basis and larger collections are not favoured.

As an example of this bias, Figures 7.5 presents performance data for each method
over that subset of queries for which .GOV (the largest collection, with 1.2M docu-
ments) is the best answer, and Figure 7.6 over those for which calendar (the smallest,
with 1k documents) is the best answer. Performance on the first set, where success cor-
responds to choosing the largest collection, is near-perfect for most methods: this is
expected, since most methods are highly correlated with a size-based ranking which
would rank .GOV first. vGlOSS, however, which is less strongly correlated, is only
significantly better than random selection for n = 5. The situation is reversed for
the second subset of queries, where the task is to choose the smallest collection; only
Kullback-Leibler divergence and vGlOSS, the two methods least prone to size-based
ranking, are significantly better than random selection for any n. Other methods tend
to rank the small calendar collection low despite it being the best choice in these in-
stances.

French et al. [1999] report much higher correlation between vGlOSS and a size-
based ranking on their 236-collection testbed (mean rs = 0.97) than is seen here (mean
rs = −0.06). This may be due to differences in the distribution of relevant documents:
French et al. observe that the larger collections in their testbed tended to have more
relevant documents, which would lead them to be highly ranked by any effective
selection technique, and a relevance-based ranking of collections in their testbed cor-
relates moderately well with a size-based ranking (rs = 0.54 on average, and rs ≥ 0
for all queries). The distribution of relevant documents in the testbed used here, how-
ever, is much more uniform (Section 7.2.1). A difference in calculating the weights
wc(t) and wq(t), for example by normalising across all collections rather than across
a single collection at a time, could also give rise to this disagreement. Data from
French et al. and these experiments are in broad agreement however on the correla-
tion between CORI and a size-based ranking, and this correlation was also mooted by
D’Souza et al. [2004a].

7.3.3 Samples and size estimates

The experiments described in the previous subsection use perfect models, or complete
samples, and exact size “estimates”. This provides a baseline, but is of course imprac-

122 Server selection

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers selected

M
ea

n
R

n
ov

er
 2

0
qu

er
ie

s

+ + + + + +

+

+

+

+

+

+

Random selection

Perfect selection

bGlOSS
vGlOSS
CORI
CORI−ext1
CORI−ext2
I

CVV
KL
KL−ext
ReDDE
CRCS(l)
CRCS(e)

Figure 7.5: Queries for which .GOV (1.2M documents) is the best collection. bGlOSS, “I”, CVV,
extended Kullback-Leibler divergence, ReDDE, and CRCS all perform perfectly, as do CORI
and extensions and Kullback-Leibler divergence for n > 1. Models built from all documents;
and correct size estimates. Bars are ± one standard error.

§7.3 Results 123

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers selected

M
ea

n
R

n
ov

er
 2

0
qu

er
ie

s

+ + + + + +

+

+

+

+

+

+

Random selection

Perfect selection

bGlOSS
vGlOSS
CORI
CORI−ext1
CORI−ext2
I

CVV
KL
KL−ext
ReDDE
CRCS(l)
CRCS(e)

Figure 7.6: Queries for which calendar (1k documents) is the best collection. Most methods
perform worse than random selection. Models built from all documents; and correct size
estimates. Bars are ± one standard error.

124 Server selection

tical in real metasearch applications; a third set of experiments therefore considered
selection performance with models built from document samples and collection sizes
estimated using the techniques of Chapter 5.

Two sets of samples and size estimates were used. The first set used samples
of 300 documents per collection generated by the multiple queries sampler of Sec-
tion 4.3, and size estimates from multiple capture-recapture (Section 5.1.2; Shokouhi
et al. [2006]); these were the best-performing sampler and size estimator in previous
experiments. (As noted in Section 6.3, only 200 documents could be sampled from the
calendar collection.) The second used samples of 300 documents generated by query-
based sampling (Section 4.2.2; Callan et al. [1999]) and size estimates from (single)
capture-recapture (Section 5.1.1; Liu et al. [2001]), which have been commonly used
in previous work.

The choice of a 300-document sample size follows previous work [Callan et al.
1999; Hawking and Thomas 2005; Nottelmann and Fuhr 2003; Si et al. 2002; Si and
Callan 2003a; Si and Callan 2003b] but is essentially arbitrary. A more sophisticated
approach may attempt to sample documents until, for example, the learned language
model appears stable [Baillie et al. 2006a]; on the measures of Chapter 6, and on the
testbed used here, this appears likely to be at about 300–400 documents per collection.

Selection methods needed only minor adaptations to operate with models built
from sampled documents.

• For bGlOSS, document frequencies were estimated from the model and scaled
according to the ratio N̂c/Nm.

• Document and term frequencies for vGlOSS were estimated similarly. As before,
any query terms which did not appear at all in c were assigned a collection
weight wc(t) of zero.

• The two extended versions of CORI differed from unmodified CORI, as the lan-
guage models in these experiments were built from a subset of each collection
and N̂c 6= Nm. The extensions explicitly adjust for this, so no further modifica-
tions were made.

• Zobel’s algorithm “I” again used weights as described in Section 7.1.4. If a query
term did not feature in any collection (so dfC(t) = 0), the weight for that term
w(t) was assigned zero. Frequencies were estimated from the model and scaled
as for bGlOSS.

• CVV used document frequencies estimated from the model.

• The Kullback-Leibler divergence implementation again smoothed models with
the global model using λ = 0.5. Document frequencies were estimated.

• ReDDE explicitly adjusts for differences in model and collection size, so no fur-
ther modifications were made. As before, r = 0.003.

• The two CRCS variants also explicitly adjust for differences in model size, so no
modifications were necessary.

§7.3 Results 125

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers selected

M
ea

n
R

n
ov

er
 1

20
 q

ue
ri

es
+ + + + + +

+

+

+

+

+

+

Random selection

Perfect selection

bGlOSS
vGlOSS
CORI
CORI−ext1
CORI−ext2
I

CVV
KL
KL−ext
ReDDE
CRCS(l)
CRCS(e)

Figure 7.7: Performance of server selection methods, with one to six servers selected; mod-
els built from documents sampled with multiple queries; and collection sizes estimated with
multiple capture-recapture. Bars are ± one standard error.

Figures 7.7 and 7.8 summarise the performance of each method with these two
sets of samples. Most methods perform worse with these lower-quality models than
with the perfect models of Section 7.3.1 for at least some values of n. Kullback-Leibler
divergence was previously the best-performing method; with models built from 300-
-document samples from the multiple queries sampler and size estimates from multi-
ple capture-recapture, it is significantly worse for n = 1 to 5 (one-tailed Wilcoxon test,
α = 0.05 [Sheskin 2004]). bGlOSS, another method which performed well with correct
data, is significantly worse for n = 1 and 3 to 5; extended Kullback-Leibler divergence
is significantly worse for n = 1 to 5; and both CRCS variants are significantly worse
for n = 1 and 2. CORI, which performed relatively well in earlier experiments, is not
significantly worse for any n.

Similar trends hold for the second set of data, drawn from the query-based sam-
pler and (single) capture-recapture. Again Kullback-Leibler divergence, its extension,

126 Server selection

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of servers selected

M
ea

n
R

n
ov

er
 1

20
 q

ue
ri

es

+ + + + + +

+

+

+

+

+

+

Random selection

Perfect selection

bGlOSS
vGlOSS
CORI
CORI−ext1
CORI−ext2
I

CVV
KL
KL−ext
ReDDE
CRCS(l)
CRCS(e)

Figure 7.8: Performance of server selection methods, with one to six servers selected; models
built from documents sampled with query-based sampling; and collection sizes estimated
with capture-recapture. Bars are ± one standard error.

§7.3 Results 127

bGlOSS, and CRCS are significantly worse for several values of n, although Kullback-
Leibler divergence and the CRCS variants still perform well; CORI is not signifi-
cantly worse than before at any point, and in fact is significantly better for some n.
Taken with the observations on size-based ranking above, this suggests that Kullback-
Leibler divergence is an appropriate server selection method for personal metasearch.
CORI, CRCS(l), or CRCS(e) may also be appropriate, although they do a poorer job
of selecting smaller collections when needed. Choice of selection method may also be
influenced by the quality of samples and size estimates.

The extensions to CORI, “CORI-ext1” and “CORI-ext2” in Figures 7.7 and 7.8, have
little effect on CORI’s overall performance. This is consistent with earlier results from
Si and Callan [2003a] and Hawking and Thomas [2005].

7.3.4 Measures of model quality

Results from earlier experiments suggested that the quality of a language model has
a significant effect on the performance of selection algorithms. A final set of exper-
iments investigated this connection, and asked: is there a correlation between the
quality of a language model and the performance of selection algorithms? If so, the
results from Chapters 4 to 6, concerning techniques to improve the quality of sam-
ples and models, should have an impact in improved selection as well as in any other
applications.

Ninety sets of samples were generated, ten each of 100–900 documents (in steps of
100) chosen randomly from each collection. Models of each collection were built from
each of these ninety sets, and each model’s quality was calculated according to the
three measures from Chapter 6 (ctf ratio, rs, and DKL). The mean measure, over each
set of six collections, was treated as an indication of the quality of that set of samples.
In each case, the mean measure varied from set to set but improved as observed in
Section 6.3.1 as more documents were included.

To investigate the correlation between these quality measures and the performance
of server selection methods, the CORI and Kullback-Leibler divergence algorithms —
two of the most promising selection algorithms from earlier experiments — were run
with each set of models over the same 120 queries as before. (Size “estimates” in
these runs were correct, to isolate the effect of model quality.) Results for each run
are illustrated in Figure 7.9, which plots the performance of the algorithm (measured
as mean R1, or the mean recall at one collection selected over all 120 queries) against
each of the three quality measures. Recall that for ctf ratio and rs, 1 is best and 0 is
poor; for DKL, 0 is best and higher values are poorer.

All three measures correlate highly with R1 for both CORI and Kullback-Leibler
divergence, with absolute coefficients of correlation (Spearman’s rs) of between 0.64
and 0.82 (p� 0.05 in each case). This suggests that selection performance, at least for
the CORI and Kullback-Leibler algorithms, will increase if language models are im-
proved and degrade if they are made worse. Further, all three measures discussed in
Section 6.2.2 are useful; all three are good predictors of how well selection algorithms
will fare.

128 Server selection

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●

●
● ●

0.80 0.85 0.90 0.95

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

ctf ratio

R
1

+ +

+ +
+

+ + +

+

+

+
+

+ +

+

+
+

+

+
+

+

+
+

+
+

+

+

+

+

+ +

+ +
+

+ +

+

+

+

+ + +
+

+

+

+

+

+
+

+

+
+ +

+

+

+

+

+ +

+
+

+
+

+ +
+

+
+

+ +
+

+

+

+

+

+ +
+

+ + +

+

+ + +

+ +
+

+

+

Kullback−Leibler divergence

CORI

(a) R1 and ctf ratio. Correlation rs = 0.66 for
CORI, 0.82 for Kullback-Leibler divergence

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●

●
● ●

0.70 0.72 0.74 0.76 0.78 0.80

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

rs

R
1

+ +

+ +
+

+ ++

+

+

+
+

++

+

+
+

+

+
+

+

+
+

+
+

+

+

+

+

+ +

+ +
+

++

+

+

+

+ + +
+

+

+

+

+

+
+

+

+
+ +

+

+

+

+

+ +

+
+

+
+

+ +
+

+
+

+ +
+
+

+

+

+

+ +
+

+ + +

+

+ + +

+ +
+

+

+

Kullback−Leibler divergence

CORI

(b) R1 and rs. Correlation rs = 0.66 for CORI,
0.79 for Kullback-Leibler divergence

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●
●●

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

DKL

R
1

++

++
+

+++

+

+

+
+

++

+

+
+

+

+
+

+

+
+

+
+

+

+

+

+

++

++
+

++

+

+

+

+++
+

+

+

+

+

+
+

+

+
++

+

+

+

+

++

+
+

+
+

++
+

+
+

++
+

+

+

+

+

++
+

+++

+

+++

++
+

+

+

Kullback−Leibler divergence

CORI

(c) R1 and DKL. Correlation rs = −0.64 for
CORI, −0.82 for Kullback-Leibler divergence

Figure 7.9: Correlation between measures of model quality and selection performance at one
collection selected, for CORI and Kullback-Leibler divergence. Each plotted point is the mean
R1 over 120 queries. p� 0.05 in each instance.

§7.4 Conclusions 129

7.4 Conclusions

Most metasearch tools, including personal metasearch tools, need a query-time pro-
cess of server selection to identify which servers may be useful. This process can
reduce costs, especially if servers charge for access, can improve reliability and effi-
ciency, and if done well enough can improve results even compared to a single index.
Many selection methods have been suggested.

Overall, the CORI algorithm is promising for personal metasearch, and is robust to
poorer quality models; Kullback-Leibler divergence is also robust and is much more
likely to select smaller collections when appropriate.

Experiments in this chapter have shown several trends. Correcting for collection
size in a selection technique substantially reduces performance when smaller collec-
tions are required, and such corrections are unlikely to improve performance overall
unless most queries are in fact answered well by larger collections. The quality of lan-
guage models and collection size estimates used in selection tasks has been shown to
be important: almost all methods suffered a drop in performance when given models
inferred from sampled documents. Further, for the Kullback-Leibler divergence and
CORI techniques there is a strong correlation between measures of model quality (ctf
ratio, rs, and DKL) and early performance. This suggests that the techniques of Chap-
ters 4 to 6 will be of importance to any real-world tool using any of the most promising
selection techniques.

With techniques for sampling, size estimation, modelling, and selection it is pos-
sible to build a personal metasearch tool. Questions remain, however: how can such
a tool be evaluated? How can choices of algorithm be compared in practice? Work so
far in this thesis has used a static testbed and artificial queries, but this may not be the
best choice for personal metasearch. The next chapter considers questions of system
evaluation.

130 Server selection

Chapter 8

Evaluating personal metasearch

The experiments described in earlier chapters follow a standard approach, where a
fixed collection and “canned” information needs and judgements substitute for the
full system context and user needs. This is a straightforward and convenient tech-
nique, and one which allows components to be evaluated in isolation; however, it is
not a good match for the sort of personal metasearch system proposed in this thesis.
This chapter argues for an alternative method, which is then used for a user evalua-
tion of server selection algorithms in Chapter 9.1

There are a number of established approaches to evaluating information retrieval
systems, and these are discussed in Section 8.1. Section 8.2 proposes a randomised
comparison tool in which alternative result sets obtained in the actual context of a
real search are presented in side-by-side panels and the searcher is asked for online
comparative judgments. This tool has been implemented in two different forms and
has several mechanisms available for recording information about searcher behaviour.
Limitations are also discussed.

Section 8.3 reports experiments to validate the use of the tool in Web searching and
to test for inherent biases. This section also investigates the value of implicit feedback
as a predictor of explicit judgments.

The method also has application to other information retrieval problems. Sec-
tion 8.4 describes a case study, using the technique to evaluate whole-of-Web search,
and Section 8.5 discusses variants of the basic tool and outlines a range of other pos-
sible uses.

8.1 Established approaches

There are several broad approaches to the evaluation of information retrieval sys-
tems which may be appropriate for the study of personal metasearch: test collections,
search log analysis, human experimentation, and naturalistic observation. In this sec-
tion each approach is described, and its applicability to the task of evaluating personal
metasearch is considered.

1Some of this chapter has been published as Thomas and Hawking [2006]. The experimental work
was original with the author, as was other material reproduced here. “We” in this chapter refers to the
author and David Hawking.

131

132 Evaluating personal metasearch

8.1.1 Test collection approaches

The approach introduced by Cleverdon [1967] and developed by Spärck Jones and
van Rijsbergen [1976] has long been popular; it has notably been taken up by the
TREC [Voorhees and Harman 2005], INEX,2 NTCIR,3 and CLEF [Peters et al. 2001]
conferences. It has been successful in evaluating components of information retrieval
systems and has formed the basis for between-component and between-system com-
parisons. The approach relies on three elements: a standard collection of documents, a
large set of information needs (expressed in some useful way) which may be satisfied
by documents in the collection, and “complete” lists of relevant documents corre-
sponding to each information need.

If a suitable test collection is available, a new retrieval system can be evaluated by
converting the test information needs into queries, processing them against the collec-
tion and noting which of the retrieved documents are relevant. From this information,
standard measures can be computed: typically these are one or more of precision (P)
and recall (R) [Cleverdon and Mills 1963]; the weighted harmonic mean of precision
and recall (F) [van Rijsbergen 1979]; precision at n documents retrieved, for various
n, R-precision, average precision (AP) and mean average precision (MAP) [Buckley
and Voorhees 2005]; mean reciprocal rank (MRR) [Voorhees 1999]; cumulative gain,
discounted cumulative gain, and normalised discounted cumulative gain (CG, DCG,
and NDCG) [Järvelin and Kekäläinen 2000]; success at n documents retrieved, for
various n [Hawking and Craswell 2005]; or Q-measure [Sakai 2004].

In general there are strong advantages of the test collection approach.

• System evaluations are straightforward once the collection is in place. Given a test
collection and a system which can operate over that collection, it is simple to
run the system and calculate document-based performance measures. The cost
of each evaluation, once the system is in place, is small enough that many tests
can be made in order to (for example) fine-tune parameters.

• Experiments are reproducable. With the documents, queries, and judgements fixed,
it is possible to re-run evaluation experiments at a later date; or to reproduce
others’ results given a common system.

• The collection is reusable. With a collection in place, it can be reused, unmodi-
fied, for experiments at a later date; using a fixed test collection eliminates any
problem of documents changing or being removed [Soboroff 2006].

• Comparisons are robust and reliable. If a test collection contains a sufficient number
of information needs, and enough documents are judged for each (as exempli-
fied by TREC), it can be shown that system comparisons are robust to variations
in the particular information needs included [Buckley and Voorhees 2000].

2http://inex.is.informatik.uni-duisburg.de/
3http://research.nii.ac.jp/ntcir/

§8.1 Established approaches 133

There are however several potential problems to be overcome when contemplating
the creation or use of a test collection. First, the three elements of the collection and
the chosen effectiveness measures must approximate the real situation(s) in which the
retrieval system is going to be used well enough to usefully predict outcomes. This
can only be done by first understanding real search situations [Cleverdon and Mills
1963; Cooper 1973; Lancaster 1969]. The test collection must also be self-consistent;
for example, queries and relevance judgements must be appropriate to the documents
[Webber and Moffat 2005].

Second, it is important to minimise any loss of fidelity between the searcher’s orig-
inal information need, the recorded statement of that need (e.g. a TREC topic state-
ment), the query actually processed by the retrieval system, and the need as under-
stood by the person making the judgment. In modern search systems, it is almost
always the searcher with the information need who composes the query and who
judges the results while the need is still current.

Third, information needs, measures and judgments should accurately reflect the
contexts in which searches may be performed. An ideal result set for one searcher
may be of little value to another if, for example, they already know the content or are
incapable of understanding it.

Fourth, it is difficult to deal with the consequences of independent judgments. In
a test collection, each document is judged in isolation from the others, while stan-
dard precision and recall measures assume that each additional relevant document
retrieved contributes an equal amount to the value of the retrieved set. In reality, the
content of two relevant documents may overlap to such an extent that retrieval of the
second brings no additional benefit.

Test collections for personal metasearch

Using test collections for personal metasearch also raises problems particular to this
application.

Privacy, dynamism, and scale Personal information collections almost always con-
tain private data, such as email folders, which may not be viewable by experimenters.
Personal collections may also contain information which is not strictly private but
is still restricted in some way, such as proprietary encyclopaedias and content made
available by subscription services; these and other collections may have restrictions
on copying (Section 2.1.2).

Some collections will also be rapidly evolving and may even change from use to
use. A fixed test collection can at best be a snapshot of the documents available at one
instant.

Finally, most search will typically cover tens of billions of documents as most
searches will include the Web. Distribution of the Web as a document collection is
infeasible, and the scale of the Web makes full judgements impossible for practical
reasons (although see Section 8.1.1 for alternatives).

134 Evaluating personal metasearch

Diverse information needs It is likely that future users of personal metasearch sys-
tems will use them for a range of purposes including question answering, known-item
retrieval, navigational search, service finding, relationship management and informa-
tional research. A test collection representing the full range of search types would
necessarily be segmented by type since no single measure would reflect searcher sat-
isfaction across the types.

Information needs are typically specified in advance of any tests, and without any
tailoring to the capabilities of any one system (although they are tailored to the avail-
able collection). These information needs, distilled into possible search terms and a
brief discussion of the assumed background and what may count as relevant, may
model certain research tasks such as intelligence assessments but it has not been es-
tablished that they reflect the realities of workplace or personal search.

Typically, the needs are written by researchers or assessors who are not necessarily
knowledgeable about the content of the collection. This is appropriate for, e.g., Web
search, but for collections such as email archives many users will have a good idea
what is covered and what language is used.

A second possible mismatch is between the types of information required to satisfy
synthetic and natural needs. For TREC ad hoc and related evaluations, any informa-
tion on a specified topic is counted as useful; this is not the case for many day-to-day
information needs. Even in cases where synthetic needs cover many different types —
contact details, summaries of decisions taken, entry points for research, etc. — there
is no guarantee these accurately reflect users’ real day-to-day experience.

Further, in many cases users may be unable or unwilling to articulate their infor-
mation need, at least at early stages of the search process [Teevan et al. 2004]. Artifi-
cial needs, however, are generally clear and closely specify what sort of information
counts as useful.

Set-based and contextual judgements After-the-fact assessments of relevance to a
written statement of need are very different to the way a person would judge the
results of a search conducted in the course of their usual activities. A quick scan of
part of a result set is often enough to judge its utility for the task at hand.

Unlike relevance assessors, searchers very seldom read all the documents retrieved
for them by a search engine.4 A user’s goal in performing a search may be satisfied
by reading only a single document or without reading any. Instead, for example, they
may synthesise an understanding of an area from the result abstracts, or extract a
needed telephone number from one of them.

The relevance and utility of a document is sensitive not only to a user’s task and
information need, but to other aspects of a user’s or a document’s context. For ex-
ample, the same information may be contained in two separate documents: the first
document is then useful, but the second is not. Similarly, a user may be interested in
coverage of a topic from several different angles; documents in the same set may be

4Inspection of logs covering ten million queries submitted to the search engine of a busy commercial
website showed only around one query per 35,000 leading to clicks on all of the first ten search results.

§8.1 Established approaches 135

useful or useless depending on what else is retrieved. In the cases where documents
are not accessed and abstracts not examined [Joachims et al. 2005], the presence of
relevant documents elsewhere in the list obviously contributes nothing to the judged
value of the search. Most techniques which manipulate relevance judgements inde-
pendently, without reference to other documents, cannot take account of these cases.

Finally, users may not want to go straight to a relevant document even if a system
can always find it. Teevan et al. [2004] observed that many users prefer to navigate
via a series of known “landmarks”, rather than jump straight to a document with
relevant information. Most instances discussed were in web search, where presum-
ably people are on less familiar ground than they would be with their own files and
archives; however, getting the right answer first time may not be as useful for users as
finding appropriate, recognisable, starting points. Studies in the mid 1990s of infor-
mation searching on desktop computers suggested that such navigation is common
even when users are famililar with the data available [Barreau and Nardi 1995; Nardi
and Barreau 1997]. This may however have been due to limitations of the search tools
then available.

Extensions of test collection methodology

Test collection methods have been extended with an eye to generating collections or
judgements with less investigator effort; or to using different metrics or simulated
users as alternative evaluation techniques.

Pooling and building collections Pooling is commonly used to avoid the very large
cost of complete judgments in large test collections. Under a pooling regime, several
systems produce result sets for each query and the top n results from each set are
added to a pool. (n is called the “depth” of the pool.) Documents in this pool are
then judged; documents which are not in the pool, since they were not returned at a
high rank by any participating system, are assumed non-relevant [Harman 2005]. Per-
formance measures from pooled judgements are reliable, given sufficient judgements
and queries [Buckley and Voorhees 2000; Sanderson and Zobel 2005; Voorhees and
Buckley 2002; Zobel 1998].

Pooling is able to dramatically reduce the cost of judging. Measures from pooled
judgements are not reliable, however, when judgements do not cover enough of the
collection [Buckley and Voorhees 2004], which is almost inevitably the case for large
test collections containing millions of documents.

To manage the cost of judging relevance, Soboroff et al. [2001] suggest pooling
high-ranked documents from participating systems and marking some of these, at
random, as “relevant”. System rankings produced this way correlate fairly well with
those produced using manual judgements, although high-performing systems are
consistently penalised and could not always be distinguished from poorer perform-
ers. Since no judgements are needed, this technique could be applied to personal
metasearch and private collections to estimate relevance-based metrics. Some prior
knowledge of the distribution of relevant documents is however needed to tune the

136 Evaluating personal metasearch

selection process, and with a few exceptions (such as Web search) this information is
not available.

A small body of research has aimed to reduce the cost of pool-based methods; in
general, more sophisticated techniques for building the pool can offer similar mea-
surements of similar quality after judging fewer documents. Cormack et al. [1998]
suggest a “move to front” technique: a system is classified as high-performing as
long as its returned documents are judged relevant, and documents returned by high-
-performing systems are judged first. On a long-run average, systems which return
more relevant documents contribute more to the pool and fewer documents need to
be judged before sufficient relevant documents are found.

To the same end, Zobel [1998] proposes a method for predicting the number of
additional, as yet unjudged, relevant documents that exist for a particular query given
counts of the number of relevant documents already seen and the current pool depth.
Using this information, it is possible to choose different pool depths for each query,
and for a fixed amount of judging effort find a larger number of relevant documents.
With more relevant documents found, Zobel suggests pool-based results can be more
reliable.

Building on work by Cormack et al. [1998] and Soboroff and Robertson [2003],
experiments by Sanderson and Joho [2004] demonstrated satisfactory system rank-
ings if a “pool” was generated from results returned by only a single system. Using
relevance feedback to propose documents to judge generated rankings similar to offi-
cial TREC results with around 10% the effort. Adapting Cormack et al.’s “interactive
searching and judging” and again using a single-system “pool”, Sanderson and Joho
were able to produce rankings acceptably close to TREC results in about half of their
experiments.

Rather than increase the number of relevant documents found, Carterette et al.
[2006] suggest judging those documents most likely to influence the difference in MAP
between two systems. With an algorithm to return these documents, they were able to
use a small number of judgements to replicate rankings derived from relatively large
pools. The documents chosen for judging in this technique do however depend upon
the particular results returned by each system, so the collected judgements are not
useful for comparing other systems at a later date.

These techniques attempt to reduce judging effort by building pools in a more so-
phisticated manner. In contrast, the TREC Web Track [Hawking and Craswell 2005]
sought reusability by exploring search tasks for which there was only one right an-
swer defined in advance (homepage finding and named page finding) or only a well-
defined small set of right answers. A similar technique was used in the TREC-5 Confu-
sion Track and the TREC-6 Spoken-Document Retrieval Track [Voorhees and Garofolo
2005].

Alternative measures Buckley and Voorhees [2004] attempt to solve the problem of
building re-usable large collections with the bpref measure, in which unjudged docu-
ments are ignored rather than assumed non-relevant. Bpref correlates well with MAP

§8.1 Established approaches 137

when full judgements are available, but system rankings using bpref are more stable
when document sets change or when fewer judgements are available.

In a similar vein, Yilmaz and Aslam [2006] introduce three new measures which
like bpref are robust to incomplete or imperfect judgements. Induced AP (indAP), sub-
collection AP (subAP), and inferred AP (infAP) again correlate well with MAP when
full rankings are available (subAP and infAP are equivalent to AP when all documents
are judged), but are still more robust than bpref even when very small numbers of
judgements are available.

Simulated users Several researchers have used simulated users, some quite sophis-
ticated, in conjunction with TREC judgements and collections to evaluate IR tech-
niques [Harman 1998; Magennis and van Rijsbergen 1997; Ruthven 2003; White et al.
2005]. Although a useful low-cost alternative to full human experimentation, the re-
liance on fixed collections and judgements for evaluation and for input to the user
simulations means these techniques have limitations similar to traditional batch eval-
uation.

8.1.2 Search log analysis

An alternative to explicit judgements is to consider user selection of a document (a
click) as an indication of expected utility, and use clickthrough logging to evaluate
systems. This technique is appealing in that it does not entail any extra burden on
users, and it can capture judgements for a variety of information needs. Two forms of
bias however need addressing.

“Trust bias” leads to more clicks on high-ranked documents, regardless of the doc-
uments’ utility, as a result of users’ faith in IR systems. Observations from enterprise
search logs suggest that more than half of “wrong” clicks — that is, clicks on docu-
ments not previously judged as useful — are on the top-ranked result.5 “Quality bias”
is the result of users being given a set of documents to choose amongst, not a single
document at a time. A click on a document should be interpreted not as a vote for
that document’s relevance, but rather for its being more relevant than (at least some)
others in the set [Joachims et al. 2005].

There are two further weaknesses in clickthrough data which are relevant to the
metasearch setting. First, although clickthrough data is known to correlate with utility
in the web [Fox 2003; Joachims et al. 2005], it has not been established that this is the
case for other types of data.

Second, many queries have no associated clicks. (From observations of a commer-
cial search engine log, this may be the case for a majority of queries.6) There could be
several possible reasons: the summaries provided may answer the users’ information
need without any further reading (“brilliant success”); the summaries provided may
make it clear the retrieval system, or collection(s), cannot answer the need (“abject fail-
ure”); or characteristics of the delivery mechanism may be responsible, such as web

5Personal communication from David Hawking.
6Personal communication from Tom Rowlands.

138 Evaluating personal metasearch

page reloads or clicking more than once on the “search” button (“query bounce”). It
seems important to at least distinguish brilliant success from abject failure, but this is
not possible with clickthrough data alone.

To overcome trust and quality biases, Joachims [2002a] suggests interleaving re-
sults from two systems, and using the number of results selected from each as an
indication of that system’s quality. Tests with two presumed good systems (commer-
cial Web searches) and a presumed poor-quality system (a commercial Web search
but with reversed ranking) suggest this method can accurately predict user prefer-
ence. This method however is restricted to comparing ranked lists; it is not possible to
consider sets of documents, for example for coverage or duplication, or lists arranged
in some other manner (for example by source).

Finally, search logs are generally maintained by individual search engines. Given
two logs from two systems, each representing different user populations and infor-
mation needs, it is not clear how a reliable comparison could be made.

8.1.3 Human experimentation in the lab

A further method of evaluation involves observing test users in a laboratory setting,
conducting searches in response to a simulated information need.

Interactive evaluation

The TREC Interactive Track [Hersh and Over 2001] has attempted to isolate the effect
of different IR systems with a sophisticated design which controls for differences in
searcher and topic, and for presentation order. This method is independent of any par-
ticular questions and collection, but the same questions and collection must be used
for each participant in any given experiment. Problems are also caused by variation
between subjects and topics, and by effects due to presentation order.

Borlund and Ingwersen suggest an evaluation framework, which they call the IIR
(interactive IR) evaluation model [Borlund and Ingwersen 1998; Borlund 2003]. This
model makes use of “simulated work task situations”, a narrative which describes an
information need and its context, and which includes a sample request. By describing
a work situation, and not a topic, the aim is to allow individual interpretation of which
documents and which system features are useful. Alternative metrics, such as relative
relevance (RR) and ranked half-life (RHL), are based on these judgements.

By including users in evaluation, the IIR model is designed to produce realistic
judgements; by using the same work situations, these judgements are assumed to
be comparable. This latter assumption only holds however in those cases when the
same collection is available to each user, and when the task is understood in the same
way by each user. If either of these criteria are violated, it is not clear to what extent
user judgements would be stable from system to system or experiment to experiment,
which makes the calculated metrics less useful long-term. Experiments with the IIR
model generally need to control for order, learning, or fatigue effects as well as indi-
vidual differences.

§8.1 Established approaches 139

Borlund and Ingwersen [1998] also distinguish several types of “relevance”: al-
gorithmic relevance (relevance of results to request); intellectual topicality (relevance
of results to information need); and situational relevance (relevance of results to per-
ceived task). In a series of experiments, the same tasks and retrieved documents were
judged for all three types of relevance. Many documents which were highly relevant
on the algorithmic measure were still only marginally relevant on intellectual topical
or situational measures, which suggests that measures such as precision may not be a
good indicator of final user satisfaction.

Validating test collection metrics

A number of lab experiments have investigated the connection between system met-
rics derived from test collections and user satisfaction or performance. Hersh et al.
[2000] found that tuning a system to perform well on a test collection (TREC ad hoc)
did not significantly improve the search performance of a group of 24 experienced
users on an interactive retrieval task, which suggests that conclusions based on test
collection studies should be treated with some degree of caution. This study however
used very few queries and only one basic query type.

A later experiment by Turpin and Hersh [2001] again failed to find any difference
between a simple IR system and a system tuned for TREC ad hoc, this time consid-
ering a greater number and diversity of queries. Results from this latter experiment
suggested that users were able to compensate for poorer IR systems by looking further
down the ranked result list, and were able to make judgements on which documents
to read based on short snippets. If true, this suggests that rank-based metrics such
as mean reciprocal rank (MRR) are less informative than other metrics such as P@10.
Later experiments by Wu et al. [2004], however, did not show the same phenomenon.
They conclude that the differences observed earlier may be due to search engines not
being tailored to the task, rather than a deficiency in experimental method.

Further followup experiments [Turpin and Scholer 2006] considered the correla-
tion between system performance, as measured by MAP, and user performance. Test
users were given systems with known MAP scores (queries were silently ignored in
favour of prefabricated result sets), and two tasks assigned: one recall-oriented and
one precision-oriented. In the recall-oriented task, improved MAP did not generally
have a significant effect on user performance (although a significant but small differ-
ence was found between MAP 0.75 and MAP 0.65 or 0.55). In the precision-oriented
task, MAP had no significant effect on the time to find the first relevant document,
although there was a suggestion that P@1 may have been important. Although MAP
can reliably rank systems, these findings suggest it may not be a ranking which re-
flects real user concerns.

Similar experiments by Allan et al. [2005] examined the correlation between accu-
racy, task time, and bpref for a facet recall task. They observed some improvement as
bpref increased, but this was not consistent and only occasionally significant; their ex-
periments suggest that large improvements would be needed before users saw a real
benefit.

140 Evaluating personal metasearch

Other human experiments in the lab

Wu et al. [2001] compared two document-summarising interfaces by asking users
which was easier to use or learn and by comparing searcher effort and the quality
of final answers. Again, TREC topics were used (here from the Question Answering
track) in place of natural information needs. They found significant differences be-
tween questions but also between systems, which suggests that interface details have
a real impact.

Hersh et al. [1996] suggest that IR evaluation needs to focus on the outcomes of
a search, such as how well a person is able to meet an information need. To this
end they compared two search interfaces to the Medline database of medical publi-
cations,7 asking subjects to answer clinical questions (such as: “are steroids useful in
resolving the acute exacerbation of chronic obstructive pulmonary disease?”). Sub-
jects were also asked how satisfied they were with the interfaces, which were of very
different designs (one offering Boolean search, one offering free text queries with doc-
ument ranking). Although the systems were very different, no significant difference
was found either in the quality of answers given or in satisfaction with the interface.
However, participants were not given the opportunity to compare the two interfaces.

Other techniques reported in the literature include post-search or post-experiment
questionnaries [White et al. 2005] and manual judgements of results or result sets (e.g.
[Balmin et al. 2004; Shen et al. 2005]). These can capture individual information needs
and ideas of relevance, and are extensible to dynamic collection, but in their common
forms impose a significant burden on test subjects.

Evaluating retrieval systems by human experimentation in the lab is complicated by
problems due to collections and problems of artificial information needs, as with test
collection methods (p. 133). The complex experimental design, and associated over-
heads, also make this approach problematic.

8.1.4 Naturalistic observation

A small number of studies have placed an experimenter in the field to observe subjects
in the course of their day-to-day information seeking, in order to gain better under-
standing of user search behaviour. Some others report evaluations in which opinions
from system users, either on documents retrieved or on entire systems, are solicited at
the time of naturally occurring searches.

In a discussion of evaluation, Cooper [1973] suggested that a metric be chosen to
approximate an “ideal” measure of utility, which may not be practical to calculate
directly. Assuming the document collection, user interface, and users are the same be-
tween systems, his “naı̈ve” measure simply involves dividing interactions randomly
between two systems and asking users for an explicit estimate of utility (measured in
dollars) after seeing each document. The sum of document utility scores provides a
search utility score, and the mean of search utility scores provides a measure of the

7http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed

§8.1 Established approaches 141

utility of each system. In this formulation, users are questioned by an interviewer
as they use the system; the interviewer must be extremely careful not to disrupt the
users’ normal search behaviour. Measuring utility directly in dollar figures may not
always be easy or appropriate, as Cooper acknowledges, and conducting the inter-
views would be anything but easy; however it seems likely that explicit judgements
from real users are invaluable. It appears that Cooper’s methods have not been used
for any actual evaluations (although see Lopatovska [2006] for early investigations).

Although relatively rarely used in information retrieval, observation has been
used to assess online catalogues in library environments. (See for example Large and
Beheshti [1997] for a review.) Hancock-Beaulieu [1990] observed library users as they
used catalogue services, either online or via printed indexes, and then browsed the
shelves. She noted some differences in behaviour due to the online catalogue, but in
general differences which had been expected were not observed. In the same vein,
Nordlie [1999] observed similar behaviour between library users who used an online
catalogue and those who talked to a reference librarian. (In particular, queries started
vague and were disambiguated later, and choice of terms was poor.) Later interactions
with librarians and online systems were substantially different, and these differences
allowed Nordlie to make recommendations for the design of online tools.

A study reported by Hansen and Järvelin [2000] used a combination of informal
interviews, diaries, logs, think-aloud sessions, and structured questionnaires to inves-
tigate the information searching behaviour of staff in the Swedish Patent Office. Col-
laborative retrieval tasks appeared important in this context, and were highlighted for
further study.

There are serious problems with applying embedded observational techniques to
personal metasearch. First, it seems far too expensive for the benefit gained to employ
experimenters to observe search behaviour of enough individual subjects over enough
time to obtain an accurate general picture. There is likely to be large variability across
the population. Search activities may also occur at any time of the day and usually
comprise only a tiny proportion of a person’s overall activities.

Furthermore, there are serious risks of altering the behaviour being observed. The
mere presence of a search observer hovering in an office or around the home com-
puter may seriously affect what searches are conducted and how. Asking a subject to
vocalise their information needs or the process they are following is almost certain to
affect search behaviour.

An alternative approach which avoids these objections to some extent is to use
instrumented search software, which records aspects of interactions for later analy-
sis. In a comprehensive process, Kelly and Belkin [2004] used monitoring software
on specially-configured laptops to gather very extensive information on user’s inter-
actions with the Web. A more targeted approach was employed by Claypool et al.
[2001] to examine implicit indicators of interest. Their “Curious Browser” recorded
users’ actions as they browsed the Web and asked for an evaluation of interest, on
a five-point scale, the first time each user left each page. Similarly, Dumais et al.
[2003] used pre- and post-search questionnaires and recordings of interface actions to
evaluate their “Stuff I’ve Seen” retrieval system with natural information needs in a

142 Evaluating personal metasearch

large organisation, and Fox et al. [2005] used interface recording in conjunction with
prompts for explicit relevance judgement. This is similar to the method suggested in
the following section, but the technique introduced here considers feedback on sets
of results rather than individual results and compares two systems in the context of a
particular query.

8.2 Embedded comparisons

In the future, it may become possible to accurately predict the actual effectiveness of
personal metasearch (or other information retrieval) tools from test collections. Ex-
periments with human subjects will also be able to assist in designing and comparing
better retrieval tools.

In the meantime, collecting observational data about real search is a prerequisite
both for choosing or building appropriate test collections and for designing useful
human experiments. Following Hawking et al. [2005], we propose a means by which
some types of such data can be easily collected while at the same time allowing exper-
imental conditions to be compared in full context. The approach combines aspects of
embedded observation techniques and search log analysis. It supports a large range of
real-world information needs and judgements by providing a real, working, retrieval
system which takes the place of the searcher’s usual system and logs interactions.

Comparisons are however needed between two or more systems, and to have
users participate in our tests the additional overhead must be minimal. To this end
we propose an interface that provides two or more panels, each of which presents a
different retrieval system. (These “different systems” need not be completely inde-
pendent; for example, the panels may compare different presentations of results from
the same system, or variants of the same system with different parameters.) A sin-
gle field for user queries, which are passed to each system in parallel, provides an
interface not much more complex than users are accustomed to. Figure 8.1 shows two
examples: the PIS software of Section 3.4, with two panels comparing methods for
result ordering, and a web-based version used in most of the experiments described
in this chapter.

At the start of each search, the systems are randomly assigned to the panels to
control for any bias towards, for example, the left-hand side. By logging interactions
with each panel, it is possible to infer which result set or presentation is preferred. It
is also possible to ask for explicit judgements of preference.

Using a live search system has several advantages. The collections being searched
are those really available to users, and since the experiments need never divulge
details of any document it is possible to use private or otherwise restricted collec-
tions. Information needs are those users genuinely encounter day to day, and simi-
larly judgements can be made which account for context and the type of information
required. Since user satisfaction is recorded for a result set, not relevance of each doc-
ument, entire result sets can be judged — for coverage, for example, or variety — if
this is important to users.

§8.2 Embedded comparisons 143

(a) Implemented in PIS

(b) Implemented on the web

Figure 8.1: Sample two-panel interfaces, as implemented in the PIS tool (Section 3.4) and the
Web search tool of experiments 1–3.

144 Evaluating personal metasearch

(a) When no result is chosen

(b) When a result has been chosen

Figure 8.2: Extra feedback from the two-panel interface

Presenting two systems side by side and eliciting either explicit or implicit com-
parisons controls for differences between subjects (because the same person compares
both conditions) and also controls for presentational order effects (because the two
conditions are presented simultaneously). Furthermore, subjects are required to judge
differences rather than to make absolute ratings which will later be compared.

8.2.1 Alternatives and extras

An alternative interface could simply interleave result lists from two or more systems,
and use implicit feedback such as clickthroughs to estimate document relevance and
hence system performance [Joachims 2002a]. The two-panel interface has some ad-
vantages over this approach. First, it is possible to compare alternative, non-list, pre-
sentations: for example, it can compare two clustering algorithms or compare graphi-
cal presentations such as Kartoo8 with lists. Secondly, by keeping entire sets of results
together the two-panel interface allows judgements to be made of entire result sets.
These set-based judgements cannot be made if result sets are commingled.

At the expense of greater intrusion and effort for test subjects, the interface also al-
lows experimenters to prompt for extra information. The PIS software currently does
this in two cases: periodically after a result is selected, to ask whether it was useful;
and when no result is selected, to distinguish brilliant success from abject failure.9

Figure 8.2 has examples.
This extra feedback could also be used as training data for algorithms such as

decision-theoretic or relevant document server selection [Fuhr 1999; Voorhees et al.
1994]. In cases where one collection is used by several people — for example, public
web sites or corporate databases — feedback could be shared and used to tune these
algorithms. Search over private collections, such as calendars and email archives,

8http://www.kartoo.com/
9Other logging can detect query bounce, and there is no “reload” command, which completes the set

of possibilites described in Section 8.1.2.

§8.2 Embedded comparisons 145

would not benefit in this way since many hundreds or even thousands of judgements
are generally required.

A variant of this tool could be used to compare systems in a similar manner to
TREC ad hoc, by combining the results from two systems into one list and asking
users to judge each result for relevance. This bears close similarity to the evaluation
of Shen et al. [2005]. Again, however, the advantages of set-based judgements are lost
in this scenario, and judging many documents will require more participant effort
than comparing two sets.

8.2.2 Limitations of the approach

Like other forms of embedded observation, the method of embedded comparisons
is possibly subject to an experimenter effect. Subjects are inevitably aware that they
are participating in an experiment and that their actions are being logged for study.10

Furthermore, even if the metasearcher delivers the same results as their standard ser-
vice, it presents them in a different way, in less screen area, and likely takes longer
to present them. Careful design of the interface is required to minimise these effects.
Mechanisms for eliciting feedback must be as unobtrusive as possible and make min-
imal demands on users.

Second, experiments of this nature are not repeatable in particular ways: for ex-
ample, without access to the collection we cannot re-run queries with a different IR
system. We believe, nonetheless, that the ability to directly compare two IR systems
in a natural setting is invaluable.

Third, while it may be easy to show from a set of pairwise comparisons that sys-
tem A is categorically better than system B, it is much harder to know by how much,
or exactly why. It is also difficult to make multi-way comparisons. Dividing a screen
into more than two panels is feasible but it magnifies the experimenter effect by forc-
ing larger presentational changes, requiring more time for judging and making the
judging interface more complex. The alternative approach of making multiple pair-
wise comparisons inevitably makes it harder to control for inter-subject variation and
order effects, and needs significantly more effort.11

Finally, if one panel takes significantly longer than the other to retrieve results, this
could be the source of significant bias. This is controlled in the experiments reported
here by retrieving all results for both panels before displaying either.

8.2.3 Implementation

The design described above has been implemented in three versions, illustrated in
Figure 8.1.12

10Participants in the experiments described here and in the next chapter were given information on
the logging process, and could ask to have their records removed.

11To compare three systems requires three times as many judgements as to compare two; to compare
four systems requires six times as many judgements.

12A fourth version, providing a two-panel web-based front-end to PIS, has been developed but was
not used for any work reported in this thesis.

146 Evaluating personal metasearch

The PIS personal metasearch system, described in Section 3.4 and in Appendix E,
can display any number of panels side-by-side with different result merging and/
or server selection strategies for each. It records document selection for each panel,
and includes the two pop-ups of Figure 8.2: one appears occasionally after selecting
a result (asking whether a selected result was useful) and can inform the use of click-
through data as a proxy for user preference, and the other (asking whether document
summaries were good enough to answer the user’s need) appears if no document is
selected and can distinguish brilliant success from abject failure.

The second and third versions are web-based and provide two panels, each with
results from Web search engines. Both versions record clicks on results, but the state-
less nature of web protocols and limits on scripting prevented the implementation
of pop-ups for extra feedback. The two versions are identical, except that one (used
in experiments 1–3 below) includes a set of three buttons for explicit judgements of
result sets and the other (used in experiment 4) does not.

8.3 Validating the design

Four experiments have verified that the approach described above can provide a use-
ful comparison between two search systems. The first three of these requested explicit
feedback on two search systems, one of which was known to be better than the other,
and the fourth looked only at implicit feedback given the same two systems.

In the results reported below, one system is considered preferred to another if the
number of users reporting it as better overall is greater than the number reporting the
other plus the number with no overall preference. (This is a conservative approach.)
Users who submitted no judgements were not counted. Significance is measured with
a binomial sign test with criterion p < 0.05.

The instruments used to recruit participants, elicit demographic information, and
carry out searches are described in Appendix C.

8.3.1 First experiment: popular queries

The first experiment addressed two questions:

1. Given two result sets with a difference in quality, do users’ judgements reflect
this difference?

2. If so, can the two-panel design tell which set is better?

Question 1 acts as a validity check — if the answer is “no”, and users’ judgements
do not seem to distinguish a supposedly high-quality from a supposedly low-quality
result set, other results will be very doubtful. Assuming however that users agree
there is a real difference, Question 2 is key. In answering this, the first experiment
considerd two further questions:

3. To what extent do users tend to prefer the left-hand panel, as the one they read
first (or the right-hand panel, as the one they read last)?

§8.3 Validating the design 147

Age 22–54 (mean 35, std. dev. 10.5)
Sex Male: 16, female: 6
Education Postgraduate degree: 16,

first degree: 6

Computer use Daily: 21, occasional: 1
Web use Daily: 21, occasional: 1
Search engine use Daily: 17, occasional: 5
Computer experience 7–37 years (mean 19, sd 8.4)
Web experience 5–12 years (mean 9, sd 2.1)
Search engine exp. 5–11 years (mean 8, sd 2.4)

Table 8.1: User demographics for first experiment (23 users total). Not all users answered all
questions.

4. To what extent do click patterns, timing, or other implicit feedback correlate
with user judgements?

If the left- or right-hand bias is small, and one or more types of implicit feedback
correlates well with stated preference, then it is possible to use this implicit feedback
and a two-panel design to compare systems. If, on the other hand, no implicit data
seems to correlate with user judgements, a two-panel design can only be used with
explicit judgements.

A convenience sample of 23 users were recruited via email and posters. These par-
ticipants were given the web-based software illustrated in Figure 8.1(b); this simply
acted as a proxy to the Google search engine,13 which is known to return good qual-
ity result sets [Vaughan 2004]. One panel, chosen at random, displayed Google’s first
ten results, which was assumed to be a (relatively) high-quality result set. The other
panel, assumed to be of (relatively) low-quality, displayed Google’s 21st through 30th
results. Test participants were each given ten topics from Google’s list of popular
searches14 and after each search were prompted onscreen to indicate which set of re-
sults were “better”, if either. No further definition of “better” was given.

306 queries were recorded, indicating a small amount of query reformulation or
experimenting with the interface (the minimum number of queries, if all 23 users
issued only ten queries each, would be 230). 239 judgements were recorded from
these queries, of which 183 were judgements in favour of one panel or the other and
the remaining 56 were of “no difference”.

Participants were asked a number of optional demographic questions prior to the
experiment, the responses to which are summarised in Table 8.1.

13http://www.google.com/
14http://www.google.com/intl/en/press/zeitgeist/archive2005.html, downloaded

20 December 2005. Top queries for English-speaking countries (Australia, Canada, Ireland, New
Zealand, South Africa, and the United Kingdom) from June to September 2005 were selected, duplicates
removed, and a small number of apparently pornographic requests removed. 100 queries remained; a
sample is given in Section C.2.

148 Evaluating personal metasearch

Results

As hoped, there was a significant preference for the higher-quality set of results. 19
users preferred the high-quality set overall, 1 the lower-quality set, and 1 had no over-
all preference (sign test: ratio of 19:2 with π1 = 0.5 gives p � 0.01). (The remaining
two users made no judgements and were excluded from the analysis.) There was no
significant difference in the preference for result sets in the left-hand or right-hand
panels (sign test, p = 0.09).

Of the 183 queries where a preference was recorded, 34 included associated click-
through data with between one and ten clicks per query. To investigate whether im-
plicit feedback correlated with eventual explicit judgements, four attributes of this
clickthrough data were considered:

• The panel which received the first click; this may be the panel with the most
promising single result. This was the panel which received the final preference
in 67% of cases.

• The panel which received the last click; this may be the panel with the single
result which finally resolved the information need. This was the panel which
received the final preference in 70% of cases.

• The panel which received the most clicks; this may be the panel with the most
useful results. This predictor was 73% accurate.

• The panel which received the highest-ranked click: for example, if the fourth result
from the left-hand panel was clicked, as was the second from the right-hand
panel, the right-hand panel would be predicted for the user’s final preference as
2 < 4. This predictor may capture the panel with better results or better ranking,
and in this experiment was 79% accurate.

In this experiment, since users were assigned tasks and did not have a real need
for information, the clickthrough rate is low and click patterns may be different to
those in a more natural setting. This is considered further in other experiments below.

Each of these four predictors performed well above chance (sign test, p = 0.04 to
0.01). The web tool also recorded the time taken before the first result was chosen, but
there was no apparent connection between this and the final judgement. Finally, there
was no significant difference in the number of clicks in each panel (p = 0.43).

These first results are very encouraging. In answer to Question 1, users’ judge-
ments certainly do reflect differences in quality; this suggests that they are able to
judge two result sets when they are presented side-by-side in this manner. Further,
it seems the side-by-side design can indicate which set of results, and hence which
search service, users prefer (Question 2). There is no significant bias to either side
(Question 3), and results suggest that clickthrough data may be able to predict user
preference with this design (Question 4). Participants in this experiment did cover a
limited demographic range — in particular, they were all well-educated and experi-
enced with search engines and the Web — but early adopters of metasearch tools are
likely to be similar.

§8.3 Validating the design 149

Age 24–52 (mean 33, std. dev. 7.1)
Sex Male: 16, female: 4
Education Postgraduate degree: 14,

first degree: 6

Computer use Daily: 20
Web use Daily: 20
Search engine use Daily: 19, occasional: 1
Computer experience 8–37 years (mean 21, sd 6.7)
Web experience 8–13 years (mean 11, sd 1.4)
Search engine exp. 5–13 years (mean 9, sd 1.9)

Table 8.2: User demographics for second experiment (21 users total). Not all users answered
all questions.

8.3.2 Second experiment: natural queries

Results from the first experiment were encouraging, but participants had used artifi-
cial information needs. Given naturally-occuring needs and natural queries, would
results be similar?

A second experiment considered the same questions and used the same technique
as the first, but participants were not assigned search tasks: they were instead encour-
aged to use the web-based tool in place of their regular Web search engine. Since users
were issuing their own queries, for their own needs, and in their own time, this gives a
good indication of how well a two-panel evaluation method would work for retrieval
systems in the field. For privacy, users were reminded that they could choose not to
use the experimental software in cases where they would prefer data not be recorded,
but we expect this to have had only a small impact on the number and range of tasks
represented.

Demographic data was collected for this second experiment in the same manner
as for the first. The results were similar and are summarised in Table 8.2. Users were
not identified, but there is likely to have been a small amount of overlap between
participants in this and the first experiment.

179 queries were recorded and 147 judgements, of which 119 were in favour of one
panel or the other and the remaining 28 were for “no difference”.

Results

Despite the differences in queries and information needs, results were similar to the
first experiment. 17 of 20 users preferred the assumed high-quality result set overall
(a further 2 preferred the low-quality set and 1 had no overall preference; p � 0.01).
Again, there was no significant difference in judgements for, or clicks in, the left- or
right-hand panel (judgements p = 0.32, clicks p = 0.12).

150 Evaluating personal metasearch

85 of the 179 queries had both clickthrough data and an explicit judgement, a
higher proportion than in the earlier experiment. The same four clickthrough at-
tributes were considered as predictors of the final judgement:

• The first click predictor was accurate 81% of the time;

• the last click predictor was accurate 85% of the time;

• the most clicks predictor was accurate 85% of the time;

• and the highest ranked click predictor was 81% accurate.

Again all these results are significantly better than chance alone (p� 0.01).
The second experiment has a much higher conversion rate from queries to clicks,

and a marginally lower rate of “no difference” judgements. This may be explained by
observing that in this experiment users are carrying out their own searches to fulfil
genuine information needs. The higher click rate may be a reflection of the inade-
quacy of document summaries for some needs, and the lower “no difference” rate a
reflection of a stronger sense of what constitutes a useful set of documents.

8.3.3 Third experiment: overlapping result sets

In the first two experiments, result sets were disjoint by construction. This ensures a
large difference in quality, which although useful for validating the embedded com-
parisons method is perhaps not realistic.

Two systems, operating over the same collections, are likely to produce result sets
that are at least somewhat similar. A third experiment therefore considered the case
where result sets overlap.

The same method was used as for the second experiment above, but with Google’s
results 1–10 in one panel and results 6–15 in the other (so there was an overlap be-
tween the bottom five results of one set and the top five results of the other). This
has two effects, which provide a possibly more realistic test: first, there is significant
(50%) overlap between the two result sets, so that useful documents are more likely
to appear in both panels. Secondly, the difference in quality is much reduced. The
question asked by this experiment is: in these cases, where there will likely be less
difference in quality, can embedded comparisons still predict which set is preferred?

348 queries were recorded and 121 judgements, 79 of which were for one panel or
the other.

Demographics of the 36 users in this experiment, which included some users from
the first two experiments, were similar. Table 8.3 has a summary.

Results

Despite the overlap and the smaller difference in quality, results proved similar to the
second experiment. Of the 25 users who offered one or more judgements, 18 preferred
Google’s results 1–10 overall and 6 Google’s results 6–15; the remaining user had no

§8.3 Validating the design 151

Age 24–50 (mean 32, std. dev. 5.6)
Sex Male: 18, female: 17
Education Postgraduate degree: 26,

first degree: 8,
other post-school qualification: 1

Computer use Daily: 35
Web use Daily: 32
Search engine use Daily: 30, occasional: 4
Computer experience 4–30 years (mean 14, sd 5.7)
Web experience 4–17 years (mean 10, sd 2.9)
Search engine exp. 3–15 years (mean 9, sd 2.6)

Table 8.3: User demographics for third experiment (36 users total). Not all users answered all
questions.

overall preference. Although still significant (p = 0.02), this is a smaller difference
than observed when the two sets did not overlap. There was no significant difference
in the number of judgements in favour of either panel (p = 0.054), although there
were more clicks recorded on the right-hand than left-hand panel (p = 0.03). Since
the systems are randomly allocated to panels with each query, and other experiments
did not show this bias, this does not seem a significant problem.

The four attributes of clickthrough data considered earlier remained good pre-
dictors of the final judgement: the first click predictor was 86% accurate, the last
click predictor 84% accurate, the most clicks predictor 80% accurate, and the highest
ranked click predictor 86% accurate. All performed significantly better than chance
(p� 0.01).

8.3.4 Fourth experiment: implicit feedback

The first three experiments suggest that in the context of the two-panel design, click-
through data is a good predictor of final preference; they also suggest that users have
a strong preference for a higher-quality result set. These observations suggested a fi-
nal experiment, using the same system as the second experiment but with the voting
buttons removed. Again users were told to use our system as they would any other
web search service. The question this experiment asks is: assuming users prefer the
high-quality set, does clickthrough data still predict this preference in the absence of
the explicit voting step? It is possible, for example, that the presence of the explicit
voting prompts users to read both result sets more carefully. Without these their read-
ing, and hence click patterns, may be different.

Demographics of the 18 test users were again similar, and are summarised in Ta-
ble 8.4.

152 Evaluating personal metasearch

Age 28–54 (mean 38, std. dev. 9.3)
Sex Male: 13, female: 3
Education Postgraduate degree: 12,

first degree: 4

Computer use Daily: 16
Web use Daily: 16
Search engine use Daily: 14, occasional: 2
Computer experience 9–37 years (mean 22, sd 6.6)
Web experience 8–16 years (mean 11, sd 2.1)
Search engine exp. 6–14 years (mean 10, sd 2.1)

Table 8.4: User demographics for fourth experiment (18 users total). Not all users answered
all questions.

Results

The four attributes of clickthrough data remained good predictors of the high-quality
result set. Agreement with the first click predictor was 70%, with the last click pre-
dictor was 75%, with the most clicks predictor 68%, and with the highest rank clicked
predictor 87% over 129 queries with clickthrough data recorded (p� 0.01). As in the
earlier experiments there was no significant difference in the number of clicks in each
panel (p = 0.21), suggesting no bias towards one panel or the other on the basis of
their position alone. There is no data on judgements for each panel, since there were
no explicit judgements in this experiment.

These results strongly suggest that using clickthrough data alone, in place of ex-
plicit judgements, in the embedded evaluation method could provide a robust com-
parison of two retrieval systems. This would significantly reduce the burden on both
test users and experimenters.

8.3.5 Observations

Although privacy concerns made it impossible to contact test users directly, a num-
ber offered informal feedback on their use of the two-panel design. Comments were
positive: none reported finding the two panels distracting (one even found this lay-
out more useful, and requested that the software remain available long-term). Several
users commented that they found the process of scanning the result sets easy, but that
especially in experiment three there was sometimes no reason to choose one over the
other; this is consistent with reducing the difference in quality and allowing overlap.

There has not been any formal investigation, but these comments and the number
of queries collected suggest there is minimal extra burden for test users in comparing
results side-by-side.

§8.4 Case study 153

Age 20–54 (mean 33, std. dev. 9.4)
Sex Male: 33, female: 11
Education Postgraduate degree: 23,

first degree: 18,
other post-school qualification: 3

Computer use Daily: 45
Web use Daily: 43
Search engine use Daily: 42, occasional: 2
Computer experience 10–38 years (mean 19, sd 6.9)
Web experience 5–15 years (mean 10, sd 1.9)
Search engine exp. 3–12 years (mean 9, sd 2.1)

Table 8.5: User demographics for whole-of-Web case study (49 users total). Not all users
answered all questions.

8.4 Case study

A simple case study has demonstrated the method in action. This compared two
major whole-of-Web search engines, as exposed by their public APIs. (These are called
“engine A” and “engine B” below.) Again, users were asked to use the web-based
tool as they would a regular Web search engine, and to indicate which set of results,
if any, they preferred. The result sets were not re-ranked or modified except to ensure
consistent display, and overlap between the two was allowed.

49 users participated in this experiment; demographic details are summarised in
Table 8.5. 444 queries and 250 judgements were recorded; only 158 judgements were in
favour of one search engine or the other and the remaining 92 were of “no difference”.

Of the 40 users who recorded one or more judgements, 25 users preferred engine
A overall and 13 engine B; two users had no overall preference. This is not a sig-
nificant preference (binomial sign test, p < 0.08). Once again, there was no apparent
difference in the number of judgements or clicks for either the left- or right-hand panel
(judgements p = 0.21, clicks p = 0.15).

As in the validation experiments, clickthrough data was examined to determine
whether it reflected overall judgements. There were 117 queries recorded with both
explicit judgements and clickthrough data; the four predictors again fared well. The
first click predictor was accurate in 78% of cases, the last click predictor in 77%, the
most clicks predictor in 77%, and the highest ranked click predictor in 84%. These are
all significantly better than chance (p� 0.01).

Using this method it was possible to record user satisfaction directly. This is likely
to indicate how users rate search engine usefulness in real situations. By comparison,
methods based on precision or similar scores indicate performance only in an abstract
way and do not necessarily reflect user satisfaction.

154 Evaluating personal metasearch

8.5 Applications

The experiments described demonstrate that the embedded comparisons method can
capture useful judgements in realistic settings. The primary purpose of experimenting
with the method was to enable the evaluation of personal metasearch systems, which
are otherwise hard to evaluate. The technique could however be used to shed light on
many other questions in metasearch, including:

1. Is it better to merge metasearch results into a single ranked list, to segment by
source, or to cluster?

2. Do searchers prefer result sets which take into account aspects of their context
such as role or location?

3. Do query-biased summaries help users?

4. Is the exact order of high-ranked results important?

5. How much does it matter which results are “below the fold” and not on the first
screen of results?

There are also potential applications outside the immediate domain of metasearch.
Questions 3–5 above are also relevant to many other types of search, such as general
web search, enterprise search, encyclopædia search, and medical abstract search. The
technique could also be used in guiding purchasing decisions for website and enter-
prise search software.

This method has been used to investigate the influence of branding on the per-
ceived quality of Web result sets [Bailey et al. 2007]. In this case it is valuable to work
with real information needs and a changing collection; further, by manipulating the
presentation it is possible to record user preferences which are due only to branding
(such as search engine name). A traditional evaluation based on counting “correct”
documents would not be useful in this instance.

A variant of this method, with three panels and explicit ratings for each, has also
been used to elicit judgements in context for bibliographic search [Krumpholz and
Hawking 2006].

8.6 Conclusions

After considering familiar evaluation methodologies, it seems that a new technique is
more appropriate to the sorts of dynamic and private collections which are likely to be
covered by personal metasearch tools. Embedded comparisons are based on a tool which
takes the place of a user’s normal search interface and offers results from two systems
side-by-side. This tool can collect queries, interactions, and explicit judgements as
they occur, and can be used with private or dynamic collections. Use of the tool avoids
many of the costs and biases of familiar evaluation methods.

§8.6 Conclusions 155

Clicks Preferred Implicit feedback

Experiment LHS/RHS High/low quality First Last Most Highest

Popular queries neither high 67% 70% 73% 79%
Natural queries neither high 81% 85% 85% 81%

Overlap RHS high 86% 84% 80% 86%
No judgements neither n/a 70% 75% 68% 87%

Table 8.6: Summary of validation experiments. For each experiment: whether the left- (LHS)
or right-hand side (RHS) received more clicks; whether the high- or low-quality result set was
preferred overall; and the predictive accuracy of the first and last click, the side receiving the
most clicks, and the side with the highest-ranked click.

Experiments to validate the method, summarised in Table 8.6, confirm that it is
possible to detect a difference in user preferences between a high-quality set of re-
sults and a lower-quality set. There is no significant preference for the left- or right-
hand panel of results, although in one experiment the right-hand panel received more
clicks.

The experiments and case study also demonstrated that clickthrough data is use-
ful in inferring preference in side-by-side presentations of web results, even in the
absence of explicit user judgements. Demonstration of the method in a case study has
indicated that it is a viable means of gathering preference data with real users and real
information needs.

Although designed for personal metasearch, the method is useful for other evalua-
tions of retrieval systems. A comparison of whole-of-Web search engines, for example,
has been demonstrated and could be of particular value to Web search providers as it
captures user preference directly.

Having demonstracted that this method is a reliable means of comparing systems
in the sorts of scenarios imagined for personal metasearch, experiments in the next
chapter use embedded comparisons to evaluate the server selection mechanisms dis-
cussed in Chapter 7 with a real, working personal metasearch tool operating “in the
wild”.

156 Evaluating personal metasearch

Chapter 9

Evaluating server selection

Experiments in Chapter 8 have demonstrated that embedded comparisons provide a
straightforward method to evaluate search over personal, dynamic collections such
as those in personal metasearch. The embedded comparisons technique also appears
to impose little impact on users, suggesting it can be incorporated in a working meta-
search tool and used with searches day to day.

A final experiment demonstrated this technique, and further investigated server
selection in a personal metasearch environment, by comparing two selection methods
in a working metasearch tool installed on participants’ personal computers.

Participants preferred Kullback-Leibler divergence to vGlOSS, in line with earlier
experiments, but the effect was smaller than seen with evaluation based on the test
collection. This suggests that test collections may overestimate the impact of differ-
ences in performance. The embedded comparisons technique appears to be of value,
and indications are that it could scale to large numbers of users.

9.1 Experiment

The questions this experiment asked were:

1. Does the embedded comparisons technique work in a less controlled environ-
ment than that of Chapter 8, despite the complications of a working personal
metasearch tool?

2. If so, do users’ preferences for server selection bear out the findings of Chapter 7,
which were based on simulated information needs?

Seven users were recruited from amongst those participants in the survey of Sec-
tion 3.3 who had expressed interest in further involvement. These users were selected
to demonstrate a range of possible collections and servers, as well as for their will-
ingness to use prototype software; although a convenience sample, they are likely to
resemble early adopters of any personal metasearch tool.

Each participant was given a copy of the personal information search (PIS) proto-
type software described in Section 3.4. The software was configured to present two

157

158 Evaluating server selection

Figure 9.1: Server selection for each panel in PIS. This illustrates a hypothetical participant
using PIS to integrate six servers; other participants may use different collections or a different
number of collections. The left-to-right ordering was randomised for each query.

panels, in the manner of Section 8.2. Both panels used the SM-TSS algorithm [Ra-
solofo et al. 2003] to merge and re-sort results from different servers, but servers were
selected in two ways: one panel, chosen at random, scored servers using Kullback-
Leibler divergence (Section 7.1.6), which did well in the experiments in Chapter 7,
and the other used vGlOSS (Section 7.1.1), which was not as promising. In both cases,
term frequencies were estimated from unigram language models and the top-scoring
50% of servers were selected (subject to a minimum of two). Figure 9.1 illustrates the
process.

Although participants were not asked what collections they included, and PIS did
not record this information, informal feedback indicated that a variety of collections
and servers were used including email, in various formats; local files, also in various
formats; Wikipedia and other reference Web sites; intranets; wikis; the public Web;
LDAP directories; and local databases.

PIS is a hybrid metasearcher and is able to index some collections locally if ap-
propriate. In these cases, models were built from local indexes and were entirely
accurate; otherwise models were built using a minimum of 300 documents selected

§9.2 Results 159

using the multiple queries sampler of Section 4.3 and collection sizes were estimated
using multiple capture-recapture (Section 5.1.2), slightly modified to allow for non-
uniform sample sizes. These were the best-performing techniques for sampling and
size estimation, respectively, in earlier experiments.

PIS logged a small set of data for each user query: the fact that a query had been
issued, the number of servers in use, the ordering of the panels for this query, and the
panel and rank of any result opened. It was also configured to ask for additional feed-
back in the two situations described in Section 8.2.1: first, if no document was selected
(to distinguish brilliant success from abject failure) and second, in about 50% of cases,
after a document was selected (to confirm that it was in fact useful). To minimise work
for participants, they were not explicitly asked which panel was preferred. Relying on
implicit indicators limited the amount of data available, but demonstrates a plausible
“bare-bones” implementation of embedded comparisons.

The experiment ran for 64 days, although not all participants started at the same
time. The instruments for this experiment are described in Appendix D, and the PIS
tool is described further in Appendix E.

9.2 Results

Results recorded by PIS were automatically sent to a central server for analysis. If
additional feedback indicated that a selected result was not helpful, any associated
clickthrough data was removed and was not considered as evidence of a preference
for either selection algorithm. Further, since PIS enforced a minimum of two servers
for any query, clickthrough data was also removed for any query issued when only
one or two servers were configured. In total, 273 queries were recorded from seven
users; of these, 98 queries had usable clickthrough data with one to four clicks each.

Experiments reported in Chapter 8 suggested four indicators of overall prefer-
ence: the panel which received the first click, the panel which received the last click,
the panel which received the most clicks, and the panel which received the highest-
ranked click. The last of these appears to be the most reliable of these indicators (see
Section 8.3.4), and was used here. Ties, for example where the top result from each
panel was clicked, were broken in favour of the panel which received the first click.
(This happened with 11 queries, and there was no appreciable difference if ties were
broken in favour of the other panel.)

Results are summarised in Table 9.1. In the experiments of Chapter 7, which used
artificial information needs and collections, Kullback-Leibler divergence consistently
outperformed vGlOSS across a range of conditions. Kullback-Leibler divergence is
significantly preferred by two of the six participants in the current experiment (one-
-sided binomial sign test, α = 0.05, hypothesised ratio π1 = 0.5), and vGlOSS by
none. This is broadly consistent with the earlier result, but the effect is not as strong
as might have been expected. This may be explained by differences between the two
styles of evaluation: for example, set-based judgements in this experiment substitute
for document-based judgements in earlier experiments, and judgments in this exper-

160 Evaluating server selection

Preferred

User Servers Queries KL divergence vGlOSS

A 12 86 10? 2
B 4 97 38? 19
C 8 64 11 5
D 5 18 3 6
E 2 — — —
F 3 2 0 2
G 3 2 1 1

Table 9.1: Inferred preferences for server selection. “Servers” is the highest number of servers
configured by each user; “queries” reports the total number of queries issued, discounting
any with one or two servers. ? indicates a significant preference (one-sided binomial sign test,
α = 0.05, π1 = 0.5).

iment take into account relevant aspects of each user’s context. It is also possible that
both techniques are good enough, or poor enough, in a real setting that relative differ-
ences are less important; or that “information needs” in previous experiments are not
like the queries used here. Since this experiment includes real information needs, real
users, and real data, we must conclude that previous experiments were able to detect
the direction of the difference between Kullback-Leibler divergence and vGlOSS but
were unable to predict the true magnitude of this difference. Further, large differences
in traditional metrics such as Rn may be needed before users observe a difference in
quality, a conclusion consistent with earlier work by Allan et al. [2005] and Turpin and
Scholer [2006].

There were no significant effects due to elapsed time (so users did not appear to
change preferences over time), or due to user (so users did not vary significantly),
with the exception of user “D” who has a higher than normal preference for vGlOSS.
Contrary to previous experience, there were significantly more clicks on results from
the left-hand than the right-hand panel (binomial sign test, p� 0.01), but since panels
were assigned at random this is not a concern.

The other three indicators suggested in Section 8.3 could also be used to infer final
preference. All are summarised in Table 9.2. With the exception of user “F”, who
only recorded two queries with associated clickthrough data, there is no appreciable
difference using any of the alternative indicators.

9.3 Observations

The participation rate in this experiment was high: of those people approached as
potential users, only three who expressed interest pulled out before submitting re-
sults. One of those users withdrew due to a bug in PIS which made the tool unusable
in a particular configuration, and which could not be fixed in time. The other two
withdrawing participants did not give reasons.

§9.4 Conclusions 161

First click Last click Most clicks

User KL / vGlOSS KL / vGlOSS KL / vGlOSS

A 10?/ 2 10?/ 2 10?/ 2
B 38?/ 19 37?/ 20 37?/ 20
C 10 / 6 11 / 5 10 / 6
D 3 / 6 3 / 6 3 / 6
E — / — — / — — / —
F 0 / 2 1 / 1 2 / 0
G 1 / 1 1 / 1 1 / 1

Table 9.2: Inferred preferences for server selection, using alternative indicators. ? indicates a
significant preference (one-sided binomial sign test, α = 0.05, π1 = 0.5).

The high take-up rate likely indicates that personal metasearch, and the PIS pro-
totype in particular, does seem useful to most people; and that the tool, while only a
research prototype, was sufficiently robust for day-to-day use.

This experiment included only a small number of participants as each was selected
for using a range of collections, including collections of different sizes and data types.
It would have been possible, for example, to install PIS across student machines or
across an entire workgroup and thus aquire more users, although this would be at the
expense of including a much more homogenous set of users and collections. Future
work may consider this possibility. Scaling the embedded comparisons technique to
a larger group of users seems feasible: some effort was required helping participants
install the software, and further effort was required to debug the software and issue
new versions as bugs were exposed, but to support the participants in the present
experiment little effort was needed overall. As more participants were added, with
collections and usage patterns similar to existing users, experimenter effort would
likely be relatively small.

9.4 Conclusions

Results from this experiment were broadly in line with those from earlier experiments,
reported in Chapter 7, which used a fixed test collection and artificial “information
needs”; however the participants in this experiment expressed a much weaker prefer-
ence for server selection via Kullback-Leibler divergence than would be expected from
earlier results. This suggests that the test collection approach, while useful, is likely to
be somewhat inaccurate in predicting user preferences. The inaccuracy may be due to
differences in judgements (result sets against documents); user context; both methods
being good enough, or poor enough, that quality differences are small; a mismatch
between the collections and queries used earlier and those used by test participants;
or some combination of the above. This in turn suggests that evaluations based on
test collections may be somewhat limited, and in particular that large differences on
standard metrics may be needed before users appreciate a difference in quality.

162 Evaluating server selection

The embedded comparisons technique, while requiring significantly more exper-
imenter effort than testbed techniques, appears feasible even with prototype meta-
search tools operating over a variety of collections and with minimal intervention.
Although this experiment used a small number of participants, indications are that
the technique could scale to larger uses without unreasonable effort on the part of
experimenters.

Chapter 10

Summary and conclusions

Personal metasearch, introduced in this thesis, is a novel application of metasearch
techniques which is motivated by technical concerns and by ease of use, and which a
survey of potential users has confirmed could be of great benefit.

Several models have been suggested and examined for retrieval in such an applica-
tion. Models which are commonly assumed, including a central index and exhaustive
metasearch, are not appropriate, and this thesis has argued for a hybrid metasearch
model. This in turn suggests the environment metasearch tools must work in, and can
inform evaluations of candidate techniques.

Past research has described methods for sampling documents, estimating collec-
tion size, summarising collection contents, and selecting appropriate servers. Much
of this past work, however, has considered these in artificial test environments; this
thesis has re-examined many methods in a realistic metasearch environment and with
a potential real-world application in mind. From this it has been possible to sug-
gest which methods may be appropriate for a personal tool, and which are not. New
techniques have also been introduced for sampling and for evaluation; the sampling
technique is of use to metasearch tools in general, as well as to personal metasearch,
and the evaluation technique is useful in a wide variety of retrieval settings including
Web and interactive retrieval.

10.1 Summary of findings

This thesis has introduced and examined personal metasearch, a new application of
metasearch techniques to provide a single search tool operating over all of a user’s
digital sources. Such a tool is desirable: compared to the status quo, with a separate
tool for each source, a unified tool reduces cognitive load and time spent and avoids
certain types of error.

Personal metasearch can be distinguished from alternative search technologies.
Desktop search, which is increasingly popular, also provides a single search tool for
a variety of data, and personal information management (PIM) tools provide a single
environment for managing workflow. In most cases, however, these tools only offer
an index of local or networked files and cannot provide search facilities over other
commonly-used collections such as corporate databases, intranets, subscription ser-

163

164 Summary and conclusions

vices, or the public Web. The central index model adopted by these tools may also
lose any optimisations made possible by specialised tools, such as controlled vocabu-
laries, thesaurus expansions, or specialised ranking methods.

Personal metasearch can also be distinguished from other metasearch applica-
tions. In most work to date, metasearch tools have operated over public collections
and roughly homogeneous document types: for example, applications have consid-
ered the public Web or newswire collections. As an application aimed at individuals,
personal metasearch can consider very different collections, including private or re-
stricted collections such as email archives, calendars, or databases. This range of data,
and range of collection characteristics, has not otherwise been studied and offers an
alternative way to consider personalisation of search tools.

Several models are possible for search over multiple collections, and of those ex-
amined here the most feasible appears to be a hybrid metasearch model where some
collections are indexed locally and others are available via servers. The desirability
and practicality of a personal metasearch tool, working on such a model, has been
confirmed by a survey of search users.

A general description of the metasearch process (Section 2.2.2) provides some in-
sight into what is needed for a practical tool. This thesis has focussed on two subprob-
lems: server characterisation and server selection. Server characterisation in turn involves
at least three components: a reliable technique for sampling documents; a method for
estimating the size of each server’s holdings; and a method for establishing the subject
matter and/or language of each.

Several metasearch methods rely on being able to generate an unbiased sample of
documents from a collection, without the cooperation of a server. Experiments in this
thesis have demonstrated that all of five sampling methods applicable to personal
metasearch are subject to some degree to “query bias”, a bias towards a particular
subset of high-ranking documents, and in particular towards longer documents. This
bias results in poorer-quality size estimates, poorer language models, and also leads
to poorer server selection. A new sampling method, “multiple queries”, performs as
well as the best established alternatives but with much reduced computational and
network cost.

A second series of experiments in server characterisation has considered tech-
niques for estimating the size of a collection. A number of methods have been pro-
posed, and eight have been considered and tested for their performance in personal
metasearch. Although no technique performed well in all cases, broad patterns exist
and provide some indications which techniques will be useful in a working tool.

The third characterisation problem considered here was summarising the subject
matter and language of collections. Experiments with unigram language models,
which estimate the relative frequency of terms in a collection as a guide to its con-
tents, have shown that the quality of a model depends upon the quality of document
samples used as input. Models built with the multiple queries sampler are largely in-
distinguishable, on three measures, from those built with true random samples; mod-
els built with the popular query-based sampler are of poorer quality. Models improve
as more documents are included, but improvements eventually cease being signifi-

§10.2 Building a personal metasearch tool 165

cant. The point at which this happens is again determined by the sampling technique
in use.

With characterisations of each server, it is possible to carry out a process of server
selection for each query. The problem of server selection has been well studied, and
a large number of techniques have been described, but it has not before been con-
sidered with the variety of collection sizes and types characteristic of personal meta-
search. Experiments with twelve selection methods have demonstrated that several
perform well on average, but the majority are biased towards large collections and
perform poorly when smaller collections contain the most relevant documents. There
is a strong correlation between measures of model quality and selection performance,
indicating the importance of language models and hence size estimates and unbiased
document samples.

Finally, with algorithms for server characterisation and selection, and with some
assumptions regarding server discovery, query translation, and result merging it is
possible to build a simple personal metasearch tool. Research questions remain: how
can we evaluate such a tool, and how can we compare one algorithm with another?
This thesis has examined several well-used evaluation techniques, but none appear
suitable for evaluating tools which work over dynamic and private collections with-
out imposing too great a burden on participants or experimenters. Consequently a
new technique has been introduced, based on direct comparisons of whole result sets
in the normal search process; this technique allows algorithms to be compared with
real information needs, dynamic or private collections, and with regard to a user’s
context at the time a query is issued. It is lightweight and imposes little overhead on
test users or researchers. The technique has been validated in a series of experiments,
and demonstrated with a case study comparing techniques for server selection. A
case study has confirmed that the evaluation method is useful: it has been possible to
compare metasearch techniques in situ with little effort, and results of the comparison
are broadly but not exactly in agreement with those from a “canned” test collection.

10.2 Building a personal metasearch tool

It is possible, from the experiments reported here, to draw some conclusions on how
a working personal metasearch tool might be built.

All sampling techniques tested were poor over the .GOV collection, which has
around 1.2 million documents, and it is reasonable to assume they would be similarly
poor with larger collections such as Dialog or the public Web. However, collections
of this scale are likely to be shared between users and characteristics could be hard-
coded (see for example Section E.2.3, which describes models for Wikipedia and for
the Web in the PIS prototype). Across smaller collections, likely more characteristic of
private data, recent sampling methods including the novel multiple queries method
perform well. The multiple queries sampler, in particular, appears appropriate for
personal metasearch: it produces samples of a similar quality to the pool-based and
random walk samplers, is faster than either, and does not need access to document

166 Summary and conclusions

text. Size estimates built with samples from this method are largely indistinguishable
from those built from truly random samples.

Techniques for size estimation rely for the most part on unbiased samples of doc-
uments, and biased samples lead to systematic underestimates of size. Given sam-
ples from the multiple queries technique, however, the multiple capture-recapture
and capture history techniques perform relatively well across a variety of collections
and do not need acces to document text. This suggests that either of these techniques
could be suitable to use in a personal metasearch tool.

The quality of document samples is again important when estimating language
models; so too is the number of documents included. Across different samplers and
quality measures, models improve as more documents are added; however, quality
improvement does eventually tail off. On the Kullback-Leibler divergence measure,
models built with the multiple queries sampler improve until around 400 documents
are used, and there are no significant improvements overall past this point. A model
built from around 400 documents is practical for a working tool, and this is only
slightly more than the 300 commonly used in earlier work.

Experiments with server selection have demonstrated that, to be viable, a tech-
nique should not be overly biased by collection size. Several algorithms tested are
swayed by large collections. This is likely to be a real problem in personal meta-
search, where collections may vary in size by as much as seven orders of magnitude.
The Kullback-Leibler divergence and CORI algorithms however appear robust to vari-
ation in collection size, and to quality of language models, and are promising for per-
sonal metasearch applications.

The multiple queries, multiple capture-recapture, and Kullback-Leibler divergence
algorithms have been used to build PIS, a prototype personal metasearch tool. Feed-
back from test users has been positive, suggesting both that personal metasearch tools
could be of real benefit and that the algorithms used in the prototype perform reason-
ably well in real applications.

10.3 Future work

Work to date suggests future avenues for research in server characterisation and se-
lection.

Techniques for sampling are still effected by query bias, which leads to poor per-
formance in later characterisation and selection. A method which is able to produce
representative samples, while making few demands of servers, would be most useful.

Different-sized collections require different-sized document samples for size es-
timation or for language modelling. Experiments in Chapter 6 here have suggested
sample sizes which are appropriate on average, but in many cases a different size may
be preferable. Following Baillie et al. [2006a], a technique for choosing an appropri-
ate size — either ahead of time or while sampling — seems worthwhile. There is
little work reported on this at present, and none using the wide range of collections of
personal metasearch.

§10.4 Overall conclusion 167

Server selection techniques for personal metasearch must work over a large range
of collection sizes. As demonstrated in Chapter 7, many existing techniques are biased
toward larger collections; those which are not are still performing worse than should
be possible. Further work on server selection, and in particular in selection across
such a range of collections, would be worthwhile. Algorithms such as returned utility
maximisation (RUM) [Si and Callan 2005] and relevant document distribution (RDD)
[Voorhees et al. 1994] have not been considered to date, since they require training
data in the form of per-document relevance judgements. Additional feedback such as
that suggested in Section 8.2.1 could be used to acquire this data, and the algorithms
trained on the fly; this possibility is worth further consideration.

This thesis has assumed that servers will not cooperate with a metasearch tool.
It seems unlikely that separate providers will cooperate in the manner of STARTS
[Gravano et al. 1997a] or Pharos [Dolin et al. 1996]. However it is possible that, for
example, an enterprise search tool could cooperate with a metasearch tool for staff
inside that enterprise; or that a metasearch tool provided by a whole-of-Web search
company could have access to accurate Web statistics. It has not yet been established
what sort of benefit would be possible in this case, and whether cooperation would
be worthwhile; this is worth considering.

Besides server characterisation and selection, work is needed in related areas if
we are to build working tools for personal metasearch. The model of metasearch
in Section 2.2.2 suggests several avenues for future work: server discovery, query
translation, and result merging have not been considered in the personal metasearch
context to date. Result merging has been well-studied in other environments, but
not with the heterogenous data likely in a personal application; server discovery and
query translation have not yet been considered in depth. Further research on result
presentation and user interfaces for metasearch would also be rewarded, as would
research towards models and techniques for personalisation.

Most importantly, further work is needed to understand the possible scope and
utility of personal metasearch; to characterise the collections likely to be used; and to
understand likely uses. This would inform the design of metasearch techniques, and
would provide useful background information for evaluations.

10.4 Overall conclusion

Personal metasearch, a novel application of metasearch techniques over all collections
a user has access to, is desirable for technical reasons as well as for ease of use. Work
remains in some aspects of the metasearch process; but research reported in this the-
sis has established that personal metasearch is technically feasible, and that a useful,
working, tool can be built.

168 Summary and conclusions

Appendix A

Notation and terminology

This thesis uses the following notation and terminology. Cited material uses the orig-
inal notation and terminology as far as possible, but has been re-written where neces-
sary for consistency.

A.1 Notation

Collection-, query-, or document-specific terms such as c,D, df, N, s, and T may carry
a subscript to identify a particular collection or document; thus for example N is the
size of a particular collection under discussion, and Ni is the size of collection i.

∅ The empty set
α Rate of type I errors in hypothesis tests; or

Laplace smoothing constant for Kullback-Leibler divergence
(p. 82)

B Burn-in time for random walk sampler (p. 34)
b Base score for CORI server selection (p. 97)
C All collections known to a metasearch system (p. 92)
c A single collection (p. 92)

cf(t) Collection frequency: the number of collections which include
term t. Equal to |{c ∈ C : dfc(t) > 0}| (p. 98)

ctf ratio Collection term frequency ratio: the proportion of term occur-
rences accounted for in a model (p. 79)

D All documents in some collection (p. 30)
DP All documents from D covered by a query pool P : equal to⋃

q∈P RES(q) (p. 57)
DKL(a‖b) Kullback-Leibler divergence between any two distributions a

and b (p. 82)
d A single document (p. 30)

df(t) Document frequency: the number of documents in a collection
which include a term t

df(q) Document frequency: the number of documents in a collection
which match a query q. Equal to |RES(q)| (p. 55)

(Continued over)

169

170 Notation and terminology

(Continued from previous page)
dfm(q) Document frequency, from a model m: the number of documents

in the model which match a query q (p. 55)
E(X) Expected value of some random variable X

I Size (inverse document frequency) component for CORI server
selection (p. 97)

k Result limit: maximum number of documents returned by a
server (p. 30)

λ Mixing parameter in Kullback-Leibler divergence server selec-
tion (p. 102)

L Length of a random walk (p. 35)
l Minimum similarity for a document to be “interesting” in

vGlOSS (p. 94)
MATCHP (d) Queries in P for which document d is a match: equal to

{q ∈ P : d ∈ RES(q)} (p. 33)
M Number of documents newly seen (marked) in a single sample

(p. 54)
m Model for some single collection

mg Global model; model for all collections (p. 102)
MERITc(q) Merit of a collection c; measure of its use with regard to a query

q (p. 115)
N Number of documents in a collection: equal to |D| (p. 51)
o Overlap between a sample and previously-seen documents

(p. 52)
π1 Hypothesised success rate for binomial sign tests
P Query pool (p. 33)
P+ Subset of queries from pool P which neither over-

nor underflow with regard to a given server: equal to
{q ∈ P : 0 < |RES(q)| < k} (p. 33)

Pr(x) Probability of some event x
p1 Probability of success: parameter of a geometric distribution

(p. 38)
Q Second query pool (p. 58)
q A single query (p. 30)
R̂ Mixing parameter for Ponte and Croft’s unigram language mod-

els (p. 77)
Rn Proportion of merit captured by highest-ranked n servers

(p. 115)
r Result limit for the query-based sampler: number of top-ranked

documents downloaded and added to the model (p. 32)
rs Spearman’s rank correlation coefficient (p. 80)

rdf(t) Normalised (relative) document frequency of term t (p. 92)
REL(q) Relevant documents for query q (p. 104)

(Continued over)

§A.2 Terminology 171

(Continued from previous page)
RES(q) Result set: documents returned for query q by a given server

(p. 30)
rtf(t) Normalised (relative) term frequency of term t (p. 92)
S Set of servers known to a metasearch system (p. 9)

sc(q) Score of collection c for query q; assigned by a server selection
algorithm (p. 92)

sq Number of successful queries used per run of the multiple
queries sampler (p. 39)

SIMc(q, i) Similarity to a query q of documents in c containing the i most
common query terms (p. 95)

T Unique terms in a collection (p. 79)
T Term-specific (term frequency) component for CORI server se-

lection (p. 97)
t An individual term

tf(t) Term frequency of t: total number of occurences of t in the col-
lection (p. 79)

VDENSITY(d) Validity density: proportion of queries covering a doc-
ument d which neither over- nor underflow. Equal to
|MATCHP+(d)|/|MATCHP (d)| (p. 38)

VDENSITY(P) Validity density: proportion of queries from a pool P which nei-
ther over- nor underflow. Equal to |P+|/|P| (p. 38)

wc(t) Weight of a term t in collection c (p. 94)
wq(t) Weight of a term t in query q (p. 95)

A.2 Terminology

abject failure Descriptive of a result set which is poor enough that no results appear
reasonable, and which therefore will have no clickthrough data recorded.

brilliant success Descriptive of a result set which is good enough to answer a query
immediately (for example, in document summaries), and which therefore will
have no clickthrough data recorded.

collection A set of documents kept at the same repository: for example all pages in a
web site, all email in an archive, or all records in a database.

cooperative A “cooperative” server includes features useful for metasearch tools as
well as a standard query interface. For example, a cooperative server may re-
port collection size or term statistics. An “uncooperative” server exposes only a
query interface.

cover A query “covers” a document if the document matches the query; it covers a
set of documents if all documents in the set match. A query pool “covers” all
those documents covered by at least one query in the pool.

172 Notation and terminology

distributed information retrieval Used interchangably with “metasearch”.

document The unit of retrieval: for example a web page, email message, or database
record.

federated search Used interchangably with “metasearch”.

metasearch Search over several independent document collections, each of which
may be accessible through its own server.

overflow A query q “overflows” if the size of the result set is constrained by some
maximum k, and not by the number of matching documents (so |RES(q)| ≥ k).

query bounce Re-running a query, for example in a graphical interface by clicking a
control twice.

server A local or networked application which provides search capabilities for a col-
lection.

underflow A query q “underflows” if it produces no results (so |RES(q)| = 0).

web, Web A collection of documents generally available via HTTP. The capitalised
“Web” is used for the publicly-available world-wide Web.

Appendix B

Instruments for searcher survey

Participants in the survey described in Section 3.3 were recruited by email to mail-
ing lists and professional forums.1 Interested parties were directed to a Web site
where they were asked whether they consented to participate (email addresses and
telephone numbers have been removed):

This survey is being carried out as part of my PhD research at the Department
of Computer Science in the Australian National University. The main purpose
of the survey is to obtain an insight into what sorts of computerised information
resources people use, and how people work with them. This should help researchers
design future search software which better meets people’s needs.

Completing this survey will take about 10–20 minutes and all questions are op-
tional. You will be asked some initial questions about yourself and your experience
with computers, then asked specific questions about the sort of computerised in-
formation resources you use from day to day. We will record your answers and
analyse the results to guide our research.

Privacy statement

Security of the website

Users should be aware that the World Wide Web is an insecure public network that
gives rise to a potential risk that a user’s transactions are being viewed, intercepted
or modified by third parties or that data which the user downloads may contain
computer viruses or other defects.

Security of the data

The data will be kept secure on a password-protected computer for the length of the
project, and may be kept for the length of my PhD research. We will not publish
any information which could link you to the survey or to any particular response.
As the web can be an insecure medium you may choose to complete this survey by
fax or post; please contact us directly.

1The experiments described here were approved by the Australian National University Human Re-
search Ethics Committee as protocol 2006/162.

173

174 Instruments for searcher survey

Purpose of data collection

This information is being sought for a research project entitled “Understanding
digital information sources”. The researcher is Paul Thomas, in the Department
of Computer Science at the Australian National University. The information you
provide will only be used for the purpose for which you have provided it. It will
not be disclosed without your consent.

If you have any questions, comments, or complaints please contact the researcher,
Paul Thomas, at — or on — (x— on the ANU campus). You may also contact
my supervisor, Tom Gedeon, at — or on —. If you have any questions regard-
ing your rights as a research participant, please contact the Australian National
University’s Human Research Ethics Committee at — or on —.

Thank you for your participation.

Consenting participants were then given a survey in three parts. The first part
asked:

In this survey we are interested in any computer-based information sources you
use in your job. Some examples are:

• The web as a whole (e.g. a search with Google, Yahoo, etc.)

• Individual websites

• Corporate databases

• Online catalogues, for example library holdings or journals

• Subscription services like share quotes or company analyses

• Dictionaries or thesauri

• Personal email or mailing lists

• Calendars and diaries

• Bulletin boards

• Files on your local computer or in a shared folder

• Corporate intranets or extranets

• Resources made available by customers or suppliers

All the questions in this survey are optional, but the more information you are able
to give the more help it will be to us. To move on to the next part of the survey,
click on “Continue”.

1. What is your occupation?

2. Could you please describe one or more information/knowledge intensive tasks
that you perform?

3. What computer-based information sources do you use in the course of your
job? Please list as many as you can think of.

175

• My own Word or Excel documents (or similar)
• Documents shared amongst my section
• Documents shared amongst my organisation
• A local intranet
• The web
• Archived email
• Others (please specify)

4. When do you tend to turn to a computerised source, in preference to other
ways to get information?

5. Are there circumstances that make you likely to give up altogether on a
search for information?

The second part of the survey, which could be repeated any number of times,
asked for details on one or more of the sources identified earlier.

Now we would like to know about each individual source you listed above. Here
we’re asking for details of any one source; when you have answered the questions
for this source, please choose either “Continue and describe another source” if you
are willing to describe another of the sources you use, or “Continue to the next
part of the survey” to move on. We would be grateful if you were able to describe
several sources.

To jog your memory, the sources you mentioned earlier were: . . .

You can answer for any one of these.

1. What is this source? Please briefly name or describe it.

2. How often do you use this source?

• Lots (use daily)
• Some (use weekly)
• Little (use less than weekly)
• Rather not say

3. What sort of things are you looking for when you use this source? Can
anything found here also be found elsewhere?

4. Do you or your organisation pay an ongoing subscription, and/or per-use
fees, to access this source?

5. Does this source offer a search facility of any kind?

6. How often are you able to find what you’re looking for?

7. Are there any times when you’re especially likely to find what you’re looking
for, or when you’re especially likely to give up?

176 Instruments for searcher survey

The final part of the survey had some general questions.

Thank you for your responses so far. Some final questions:

1. Do you think it would be useful to be able to search all or some of the sources
you’ve identified via a single search interface? Any detail you can provide
would be most helpful.

2. Do you have any other comments on how you work with these computerised
sources, or how you’d like to if it were possible?

3. If you would like to know more about this project, or are willing to be con-
tacted for further information, how can we contact you? Please note that
this is entirely optional.

That’s the end of the survey. Thanks for your time. If you are interested in finding
out more about this survey or the project it’s part of, more information is available.

The underlined text linked to a page describing the overall personal metasearch
project.

Participants’ sessions were tracked by assigning a random identifier as they en-
tered the first part of the survey; this identifier was maintained in a hidden HTML
form field [Raggett et al. 1999].

Appendix C

Instruments for
evaluation experiments

Participants in the experiments described in Chapter 8 were recruited by email to
public mailing lists and by posters on noticeboards at the Australian National Univer-
sity.1 Interested parties were directed to a Web site where they were asked whether
they consented to participate (email addresses and telephone numbers have been re-
moved):

This experiment is being carried out as part of my PhD research at the Department
of Computer Science in the Australian National University. The main purpose of
the experiment is to obtain an insight into what sorts of search results people find
most useful, and to learn more about ways to evaluate search engines for future
work. This should help researchers design future search software which better
meets people’s needs.

Participation in this project can take as long or as short a time as you like. You will
be asked some initial questions about yourself and your experience with comput-
ers, then asked to carry out your normal web searches using software we provide.
We will record your interactions with our software and analyse the results to
guide our research.

Results from this project may be published in a research forum, and used in my
PhD thesis. No personal information will be published except in aggregate form
(such as averages or totals). We will not publish any information which could link
you to the experiment or to and particular search or web page, and any information
you provide will only be used for the purpose for which you have provided it. All
information will be protected to the greatest extent allowed by law, and data will
be kept secure on a password-protected computer during and after the project.

Your participation in this research is entirely voluntary. You are welcome to with-
draw at any time, even after finishing the search tasks, and there will be no penalty
whatsoever.

1The experiments described here were approved by the Australian National University Human Re-
search Ethics Committee as protocol 2005/326.

177

178 Instruments for evaluation experiments

If you have any questions, comments, or complaints please contact the researcher,
Paul Thomas, at — or on — (x— on the ANU campus). You may also contact
my supervisor, Tom Gedeon, at — or on —. If you have any questions regard-
ing your rights as a research participant, please contact the Australian National
University’s Human Research Ethics Committee at — or on —.

Thank you for your participation.

Consenting participants were then presented with instructions appropriate to the
current experiment (Sections C.2–C.3), and asked to choose a user name. This was
used to distinguish users in the logs, but not to identify any individual.

Thank you for being part of this experiment. To help us distinguish each partic-
ipant, please enter a user name. This can be any name you like, and need not be
your real name or anything else identifiable. We will not record who chooses which
name, so you can remain entirely anonymous; however, we would appreciate it if
you used the same name each time you participate in this experiment.

If at a later time you decide to withdraw from the experiment, or you would prefer
that we delete some of the data we have collected from your searches, please let us
know your user name and we can update our records. This is the only situation
in which we need to know the name you have chosen.

An HTTP cookie [Kristol and Montulli 2000] was used to record the chosen name.

C.1 Demographic questions

Before their first search, each user in each experiment was asked a number of demo-
graphic questions. Each had a “rather not say” option. Participants were asked:

1. Their sex;

2. Their age;

3. Their level of education: school, first degree, postgraduate degree, or other ter-
tiary qualification;

4. Their experience with computers: daily use, occasional use, some past use, or
no prior use;

5. The number of years they had been using computers;

6. Their experience with the Web;

7. The number of years they had been using the Web;

8. Their experience with Web search engines; and

9. The number of years they had been using Web search engines.

Users were then presented instructions and a search interface appropriate to the
particular experiment they were recruited for.

§C.2 First experiment 179

C.2 First experiment

The first experiment (Section 8.3.1) used topics selected ahead of time, from popular
queries submitted to Google. Volunteers were given the following instructions:

Thank you for participating in this experiment. There are three parts; the whole
process should take no more than an hour of your time. The software you are given
will provide details as you go.

First, you will be asked to choose a user name. This can be any name you like, and
need not be your real name or anything else identifiable. We will not record who
chooses which name, so you can remain entirely anonymous.

Next, you will be asked some questions about yourself and your experience with
computers and web search engines. If you would rather not answer any of the
questions, feel free to select the ”rather not say” option.

Finally, you will be given some search topics. For each topic, please type one
or more words into the search box, the same way you would for your usual web
search, and click “Search” or press enter. Where a normal web search only gives
you one set of results, however, our software gives you two; please take a look at
the pages in each set of results and indicate which set, if either, you think is better.
You should feel free to use different search words, or more than one search per
topic, if you think this will provide better web pages.

You shouldn’t need to spend more than five minutes on any topic.

For your list of topics, please see overleaf. If you have any questions, please don’t
hesitate to let the researchers know: you can also try emailing — or telephoning
— (x— on the ANU campus).

Topics were in ten sets of ten. Set #1 is illustrative:

1. 50 Cent

2. Australian Idol

3. Chad Michael Murray (an actor)

4. Dublin bus

5. Holiday

6. Japanese restaurant

7. Lost

8. NZdating

9. Rockstar INXS

10. Trading Post

180 Instruments for evaluation experiments

C.3 Later experiments

Participants in later experiments (Sections 8.3.2–8.3.4) were encouraged to use the tool
for naturally-occurring topics. In these experiments the following instructions were
issued before the first search:

That’s all the background information we need. This now works like a normal web
search engine: you can type your query in the box below, and click “Search” (or
just press enter) to get results from the web. Each time, you will be given two
sets of results and we’ll ask which (if any) is better. If you are able to answer this
question, it’ll be of great help, but it’s not compulsory.

The last two sentences were not included when explicit judging was removed in
experiment four (Section 8.3.4).

Appendix D

Instruments for
server selection evaluation

Participants in the experiments described in Chapter 9 were recruited by email from
previous participants who had expressed interest in followup work.1 Interested par-
ties were directed to a Web site where they were asked whether they consented to
participate (email addresses and telephone numbers have been removed):

This experiment is being carried out as part of my PhD research at the Department
of Computer Science in the Australian National University. The main purpose of
the experiment is to obtain an insight into how best to search several different
data sources (such as the web, email, and calendars) at once. This should help
researchers design future search software which better meets people’s needs.

Participation in this experiment can be as long or as short as you like. We invite
you to use our pilot search software instead of your normal search tools; after a
few minutes to set it up it should be able to replace a number of more specialised
tools for searching files, email, the web, calendars, individual websites, etc.

What information are we collecting?

We will record your interactions with our software and analyse the results to
guide our research, but we will not record any personal or private data and
the software will not divulge, even to us, the searches you make or the
data it is searching. If you prefer, however, you can of course choose not to use
our software for sensitive data or searches. You can also check from the software
itself what information is being recorded.

Results from this experiment may be published in a research forum, and used in
my PhD thesis. Information will only be published in aggregate form (such as
averages or totals), and no personal information will be collected or published. We
will not publish any information which could link you to the experiment or to any
particular search or set of data, and any information you provide will only be used
for the purpose for which you have provided it. All information will be protected to

1The experiments described here were approved by the Australian National University Human Re-
search Ethics Committee as protocol 2007/163.

181

182 Instruments for server selection evaluation

the greatest extent allowed by law, and will be kept secure on a password-protected
computer during and after the project.

What is this software?

Our “personal information search” software provides a search tool which can find
information in your files, email archives, local web sites, calendars, address books,
on the world-wide web, and in other sources using a single program. It can search
all these sources simultaneously, and can automatically choose where to look each
time.

Depending on what you choose to search, the software may write one or more
“indexes” to your local hard drive. It may also scan your email, calendars, etc., to
provide its search function. Every care has been taken to ensure it will not damage
your data, and versions of this software have been trialled by the author for several
months before being made available to you. Of course, if you have any concerns
we recommend you maintain an up-to-date backup and run a virus checker.

Please note that this is experimental software, rather than a commercial
product. Although we have taken all reasonable care when writing and test-
ing the software, unfortunately we are not able to provide any warranty that
it will work as advertised or that it will not result in some adverse impact in your
particular environment, nor any compensation.

Please also note that if you configure the software to search commercial databases
to which you are subscribed and which charge per minute, per search, or per doc-
ument retrieved, you may incur costs when the software searches these databases
on your behalf. Feel free to contact the researcher for more information.

What are my rights?

Your participation in this research is entirely voluntary. You are welcome to with-
draw at any time, and there will be no penalty whatsoever.

If you have any questions, comments, or complaints please contact the researcher,
Paul Thomas, at — or on —. You may also contact my supervisor, Tom Gedeon,
at — or on —. If you have any questions regarding your rights as a research
participant, please contact the Australian National University’s Human Research
Ethics Committee at — or on —.

Thank you for your participation.

Consenting participants were then offered a copy of the PIS software described in
Section 3.4 and Appendix E. The software was configured with two panels to allow
the evaluation: one panel used Kullback-Leibler divergence (Section 7.1.6) for server
selection, the other used vGlOSS (Section 7.1.1). Both panels used SM-TSS [Rasolofo
et al. 2003] to merge results from multiple sources. PIS was also configured to ask for
feedback as described in Section 9.1. Users were able to add or remove any collections
desired, but could not modify or remove either panel.

PIS logged a small set of data for each user query: the fact that a query had been
issued, the ordering of the panels for this query, the panel and rank of any result

§D.1 Sorting with SM-TSS 183

*** user Thu Aug 9 18:43:24 2007
08/09/2007 15:30:02 New query, 10 servers
08/09/2007 15:30:02 Panel order is: Pis.Sort.RasolofoSMTSS/-
Pis.Select.VGlOSSSelect Pis.Sort.RasolofoSMTSS/-
Pis.Select.KLSelect
08/09/2007 15:31:06 Selected 5 from Pis.Sort.RasolofoSMTSS/-
Pis.Select.KLSelect
08/09/2007 15:31:20 Result feedback for 5
Pis.Sort.RasolofoSMTSS/Pis.Select.KLSelect: helpful

Figure D.1: Typical data logged for a single query in PIS. “User” is a system-assigned unique
identifier.

Figure D.2: Reviewing logged data in PIS. Data was automatically sent every 48 hours, unless
deleted by the participant.

opened, and any additional feedback. Figure D.1 has an example. Users were given
the opportunity to review the accumulated data before it was sent, and to delete it, as
illustrated in Figure D.2; otherwise it was automatically sent to a Web-based recorder
at roughly 48-hour intervals.

D.1 Sorting with SM-TSS

PIS used the SM-TSS algorithm of Rasolofo et al. [2003] to re-sort and merge results
from different collections. The algorithm scores according to the number of words in
common between a document’s title and the query, normalised by the length of each;
it is summarised in Figure D.3.

184 Instruments for server selection evaluation

SM-TSS score (d, q):
if (d has a title):

score← text score(title of d, q)
else if (d has a summary):

score← text score(summary of d, q)
else:

score← rank score(d)
return score

Text score (text, q):
common← |text∩ q|
norm←

√
|text|2 + |q|2

score← 100, 000× common/norm
return score

Rank score (d):
score← 1000− rank of d
return score

Figure D.3: The SM-TSS algorithm [Rasolofo et al. 2003], as used in PIS.

Appendix E

Software

PIS, a personal information searcher, is a working personal metasearch tool which
has been used in the experiments of Chapter 9. It operates with the hybrid model
described in Section 2.1.5 on p. 10, acting as a front-end to servers where available
and doing its own indexing otherwise. It implements each of the stages in the meta-
search process of Section 2.2.2, with the exception of server discovery, and includes
implementations of several algorithms for server characterisation, server selection,
and result merging.

Figure E.1 illustrates PIS searching a number of collections and returning a single
ranked list, including pieces of email, entries in a library catalogue, BibTeX records,
and results from Project MUSE.1

PIS represents around 15,000 lines of C# code, plus 42,000 in included third-party
libraries, and has been tested on Linux (with the Mono .NET interpreter2) and on
Windows.

E.1 Interface

As a hybrid metasearcher, PIS offers a single interface to any number of independent
search engines and to any number of collections indexed by PIS itself (Figure E.1).

To support embedded comparisons of the type discussed in Chapters 8 and 9, PIS
can display results in two or more independent panels, each with its own algorithm
for server selection and result sorting and merging (Figure E.2). It also implements the
additional feedback options described in Section 8.2.1, which allows experimenters to
distinguish brilliant success from abject failure and provides confirmation of implicit
judgments. These extra feedback features are illustrated in Figure E.3.

E.2 Modules

PIS uses plug-in modules to provide key metasearch features. The present set of mod-
ules are described below.

1http://muse.jhu.edu/
2http://www.mono-project.org/

185

186 Software

Figure E.1: The PIS software.

Figure E.2: PIS with two panels, for evaluations in the manner of Chapters 8 and 9.

§E.2 Modules 187

(a) When no result is chosen

(b) When a result has been chosen

Figure E.3: Extra feedback from PIS.

E.2.1 Filters

Filters are responsible for parsing documents of various formats (typically from local
files, but possibly from a networked resource) and returning indexable content such
as text or title. At present PIS has filters for plain text documents; HTML [Raggett et al.
1999]; XML [Bray et al. 2006]; PDF;3 several programming languages; and images.

E.2.2 Sampling and size estimation

At present there is only one sampling plug-in, which implements the multiple queries
algorithm (Section 4.3) with result cut-off k = 10, 000 and query terms drawn from a
set of common English words. This was the most promising sampler in experiments
in this thesis (Section 4.5).

Similarly, only the only size estimation technique used at present is multiple cap-
ture-recapture [Shokouhi et al. 2006], using 300 to 1000 samples of up to 10 documents
each. The algorithm has been modified slightly to allow non-uniform sample sizes, to
request more documents if no samples overlap, and to offer a best guess at collection
size in the event that none of the eventual samples overlap.

E.2.3 Models

Modelling plug-ins provide techniques for working with unigram language models
of the kind described in Section 6.1.2. Separate plug-ins implement simple models
read from a plain-text file; models, useful for collections indexed by PIS itself, which
get term occurrence data from a local index; a special model for Wikipedia, which
is based on all article titles in an August 2007 snapshot; and a special model for the
world-wide Web, which is based on term frequencies from a number of large-scale

3http://www.adobe.com/devnet/pdf/pdf_reference.html

188 Software

Web crawls including the .GOV collection from the TREC Web Track and a crawl of
the .au top-level domain [Ackland et al. 2007].

E.2.4 Server selection

Four modules perform server selection. Two provide baseline algorithms: a trivial
“select all” technique and random scoring. A third implements Kullback-Leibler di-
vergence [Si et al. 2002; Xu and Croft 1999], which was one of the most promising
techniques examined in Chapter 7; it uses smoothing with a background model with
λ = 0.5, and estimates term frequencies from a model. The fourth implementation is
of vGlOSS [Gravano and Garcı́a-Molina 1995], using the SUM(0) scoring formula and
with weights as described in Section 7.3.1.

E.2.5 Search

A number of modules provide search capabilities. PIS assumes a hybrid model of
the kind discussed in Section 2.1.5, so modules can either communicate with a search
engine or provide their own indexing and searching. Modules provide search for:

• Addressbooks, in standard (vCard) format,4 and for the KDE5 addressbook in par-
ticular;

• Calendars, in standard iCalendar format [Dawson and Stenerson 1998] and the
KDE calendar in particular;

• Local email, in maildir,6 mbox [Hall 2005], nnml, or babyl format;

• Remote email, via IMAP [Crispin 2003];

• LDAP directories [Zeilenga 2006];

• The Web, via Google7 and Yahoo!;8

• Local files, in any format for which there is a filter (Section E.2.1);

• Databases available via PostgreSQL;9

• Bibliographic and reference sources, including Wikipedia,10 the library of the Aus-
tralian National University,11 Project MUSE, and WorldCat;12

4http://www.imc.org/pdi/vcard-21.txt
5http://www.kde.org/
6http://www.qmail.org/man/man5/maildir.html
7http://code.google.com/
8http://developer.yahoo.com/search/
9http://www.postgresql.org/

10http://www.wikipedia.org/
11http://library.anu.edu.au/
12http://www.worldcat.org/

§E.2 Modules 189

• Any service with a web interface. Built-in examples are del.icio.us13 and the
public websites of the Australian National University14 and the CSIRO.15

• The output of any external search software, in an XML-based interchange for-
mat.

E.2.6 Sorters

Finally, five different algorithms are available for sorting and merging the results from
the selected search engines. Trivial algorithms provide first-in-first-out “sorting” and
random “sorting”; PIS also includes an algorithm which sorts results first by collec-
tion then by server-assigned score, and an implementation of Rasolofo et al.’s SM-TSS
algorithm [2003]. A final algorithm removes any results from a specified collection
before passing the remainder to another sorter.

13http://del.icio.us/
14http://www.anu.edu.au/
15http://www.csiro.au/

190 Software

Bibliography

ABBACI, F., SAVOY, J., AND BEIGBEDER, M. 2002. A method for collection selection
in heterogenous contexts. In Proc. IEEE Conference on Information Technology (2002),
pp. 529–535. (pp. 10, 91)

ACKLAND, R., SPINK, A., AND BAILEY, P. 2007. Characteristics of .au websites:
An analysis of large-scale web crawl data from 2005. In Proc. 13th Australasian World
Wide Web Conference (AusWeb07) (2007). (p. 188)

ADAR, E., KARGER, D., AND STEIN, L. A. 1999. Haystack: Per-user information
environments. In Proc. CIKM (1999), pp. 413–422. (p. 20)

AGICHTEIN, E., BRILL, E., AND DUMAIS, S. 2006. Improving web search ranking
by incorporating user behaviour information. In Proc. ACM SIGIR (2006), pp. 19–26.
(p. 9)

ALLAN, J., CARTERETTE, B., AND LEWIS, J. 2005. When will information retrieval
be “good enough”? In Proc. ACM SIGIR (2005), pp. 433–440. (pp. 139, 160)

ANAGNOSTOPOULOS, A., BRODER, A. Z., AND CARMEL, D. 2005. Sampling
search-engine results. In Proc. WWW (2005), pp. 245–256. (p. 56)

ANSI/NISO. 2003. Z39.50-2003 information retrieval: Application service defini-
tion and protocol specification. (p. 11)

AVRAHAMI, T. T., YAU, L., SI, L., AND CALLAN, J. 2006. The FedLemur project:
Federated search in the real world. JASIST 57, 3, 347–358. (pp. 9, 10, 16, 56)

AZZOPARDI, L., BAILLIE, M., AND CRESTANI, F. 2006. Adaptive query-based
sampling for distributed IR. In Proc. ACM SIGIR (2006), pp. 605–606. Poster. (p. 16)

BAEZA-YATES, R. AND CASTILLO, C. 2007. Crawling the infinite web. Journal of
Web Engineering 6, 1, 49–72. (p. 8)

BAILEY, N. T. J. 1951. On estimating the size of mobile populations from recapture
data. Biometrika 38, 3/4, 293–306. (p. 53)

BAILEY, P., THOMAS, P., AND HAWKING, D. 2007. Does brandname influence per-
ceived search result quality? Yahoo!, Google, and WebKumara. Submitted to Aus-
tralasian Document Computing Symposium. (p. 154)

BAILLIE, M., AZZOPARDI, L., AND CRESTANI, F. 2006a. Adaptive query-based
sampling of distributed collections. In Proc. SPIRE, Number 4209 in Lecture Notes
in Computer Science (2006), pp. 316–328. (pp. 32, 40, 48, 79, 124, 166)

BAILLIE, M., AZZOPARDI, L., AND CRESTANI, F. 2006b. Towards better measures:
Evaluation of estimated resource description quality for distributed IR. In Proc. First

191

192 Bibliography

International Conference on Scalable Information Systems (2006). (pp. 78, 79, 80, 82, 89)

BAILLIE, M., CRESTANI, F., AND LANDONI, M. 2006. PENG: Integrated search of
digital news archives. In Proc. ACM SIGIR (2006), pp. 607–608. Poster. (p. 16)

BALMIN, A., HRISTIDIS, V., AND PAPAKONSTANTINOU, Y. 2004. ObjectRank:
Authority-based keyword search in databases. In Proc. VLDB (2004), pp. 564–575.
(p. 140)

BAR-YOSSEF, Z., BERG, A., CHIEN, S., FACKCHAROENPHOL, J., AND WEITZ, D.
2000. Approximating aggregate queries about web pages via random walks. In
Proc. VLDB (2000), pp. 535–544. (pp. 31, 36, 40)

BAR-YOSSEF, Z. AND GUREVICH, M. 2006. Random sampling from a search en-
gine’s index. In Proc. WWW (2006), pp. 267–376. (pp. 30, 31, 33, 34, 35, 38, 40, 60)

BARBOSA, L. AND FREIRE, J. 2005. Searching for hidden-web databases. In
Proc. Eighth International Workshop on the Web and Databases (WebDB) (2005), pp. 1–6.
(p. 12)

BARREAU, D. AND NARDI, B. A. 1995. Finding and reminding: File organization
from the desktop. ACM SIGCHI Bulletin 27, 3. (pp. 5, 135)

BAUMGARTEN, C. 1999. A probabilistic solution to the selection and fusion prob-
lem in distributed information retrieval. In Proc. ACM SIGIR (1999), pp. 246–253.
(pp. 9, 13, 91)

BEIGI, M., BENITEZ, A. B., AND CHANG, S.-F. 1998. MetaSEEk: A content-based
meta-search engine for images. In Proc. 1998 SPIE Conference on Storage and Retrieval
for Image and Video Databases VI, Volume 3312 of Proceedings of SPIE (1998), pp. 118–
128. (pp. 15, 16)

BEITZEL, S. M., JENSEN, E. C., CHOWDHURY, A., GROSSMAN, D., AND FRIEDER,
O. 2004. Hourly analysis of a very large topically categorized web query log. In
Proc. ACM SIGIR (2004), pp. 321–328. (p. 113)

BELLOTTI, V. AND THORNTON, J. 2006. Managing activities with TV-ACTA:
TaskVista and Activity-Centered Task Assistant. In Proc. SIGIR workshop on Personal
Information Management (2006), pp. 8–11. (p. 20)

BENITEZ, A. B., BEIGI, M., AND CHANG, S.-F. 1998. Using relevance feedback in
content-based image metasearch. IEEE Computer 2, 4, 59–69. (p. 16)

BERNSTEIN, Y., SHOKOUHI, M., AND ZOBEL, J. 2006. Compact features for de-
tection of near-duplicates in distributed retrieval. In Proc. SPIRE, Number 4209 in
Lecture Notes in Computer Science (2006), pp. 110–121. (p. 14)

BHARAT, K. AND BRODER, A. 1998. A technique for measuring the relative size
and overlap of public web search engines. In Proc. WWW (1998), pp. 379–388.
(pp. 12, 29, 30, 40, 59)

BORLUND, P. 2003. The IIR evaluation model: A framework for evaluation of in-
teractive information retrieval systems. Information Research 8, 3. (p. 138)

Bibliography 193

BORLUND, P. AND INGWERSEN, P. 1998. Measures of relative relevance and ranked
half-life. In Proc. ACM SIGIR (1998), pp. 324–331. (p. 138)

BOWMAN, C. M., DANZIG, P. B., HARDY, D. R., MANBER, U., AND SCHWARTZ, M. F.
1994. Harvest: A scalable, customizable discovery and access system. Technical
Report CU-CS-732-94, University of Colorado at Boulder Department of Computer
Science. (p. 78)

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU,
F. 2006. Extensible markup language (XML) 1.0. http://www.w3.org/TR/
2006/REC-xml-20060816/. (p. 187)

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual web search
engine. In Proc. WWW (1998), pp. 107–117. (p. 36)

BRODER, A., FONTURA, M., JOSIFIVSKI, V., KUMAR, R., MOTWANI, R., NABAR, S.,
PANIGRAHY, R., TOMKINS, A., AND XU, Y. 2006. Estimating corpus size via
queries. In Proc. CIKM (2006), pp. 594–603. (pp. 29, 56, 58, 62, 71)

BUCKLEY, C. AND VOORHEES, E. M. 2000. Evaluating evaluation measure stabil-
ity. In Proc. ACM SIGIR (2000), pp. 33–40. (pp. 132, 135)

BUCKLEY, C. AND VOORHEES, E. M. 2004. Retrieval evaluation with incomplete
information. In Proc. ACM SIGIR (2004), pp. 25–32. (pp. 135, 136)

BUCKLEY, C. AND VOORHEES, E. M. 2005. Retrieval system evaluation. In E. M.
VOORHEES AND D. K. HARMAN Eds., TREC: Experiment and Evaluation in Informa-
tion Retrieval, pp. 53–78. MIT Press. (p. 132)

CALLAN, J. AND CONNELL, M. 2001. Query-based sampling of text databases.
ACM Trans. Info. Systems 19, 2, 97–130. (pp. 12, 32, 62, 79, 80)

CALLAN, J., CONNELL, M., AND DU, A. 1999. Automatic discovery of language
models for text databases. In Proc. ACM SIGMOD (1999), pp. 479–490. (pp. 12, 16,
32, 40, 42, 47, 53, 54, 56, 61, 68, 78, 79, 85, 115, 124)

CALLAN, J. P., CROFT, W. B., AND BROGLIO, J. 1995. TREC and TIPSTER ex-
periments with INQUERY. Information Processing and Management 31, 3, 327–343.
(p. 97)

CALLAN, J. P., CROFT, W. B., AND HARDING, S. M. 1992. The INQUERY retrieval
system. In Proc. Third International Conference on Database and Expert Systems Appli-
cations (1992), pp. 78–83. (p. 77)

CALLAN, J. P., LU, Z., AND CROFT, W. B. 1995. Searching distributed collections
with inference networks. In Proc. ACM SIGIR (1995), pp. 21–28. (pp. 9, 13, 14, 16, 51,
77, 78, 91, 97, 98, 108, 115)

CARTERETTE, B., ALLAN, J., AND SITARAMAN, R. 2006. Minimal test collections
for information retrieval. In Proc. ACM SIGIR (2006), pp. 268–275. (p. 136)

CASTILLO, C., MARIN, M., RODRIGUEZ, A., AND BAEZA-YATES, R. 2004.
Scheduling algorithms for web crawling. In Proc. WebMedia/LA-WEB (2004), pp.
10–17. (p. 8)

194 Bibliography

CHANG, K. C.-C., GARCIA-MOLINA, H., AND PAEPCKE, A. 1996. Boolean query
mapping across heterogenous information sources. IEEE Transactions on Knowledge
and Data Engineering 8, 4, 515–521. (p. 13)

CHO, J. AND GARCIA-MOLINA, H. 2000. The evolution of the web and implica-
tions for an incremental crawler. In Proc. VLDB (2000), pp. 200–209. (p. 9)

CHO, J. AND GARCIA-MOLINA, H. 2003. Estimating frequency of change. ACM
Trans. Internet Technology 3, 3, 256–290. (p. 9)

CHOKSHI, B., DYER, J. W., HERNANDEZ, T., AND KHAMBHAMPATI, S. 2006. Rel-
evance and overlap aware text collection selection. Technical Report ASU CSE TR
06-019, Department of Computer Science and Engineering, Arizona State Univer-
sity. (p. 111)

CLAYPOOL, M., LE, P., WASEDA, M., AND BROWN, D. 2001. Implicit interest indi-
cators. In Proc. Intelligent User Interfaces (2001), pp. 33–40. (p. 141)

CLEVERDON, C. W. 1967. The Cranfield tests on index language devices. In
K. SPÄRK JONES AND P. WILLETT Eds., Readings in Information Retrieval, Series in
Multimedia Information and Systems, pp. 47–59. San Francisco, CA, USA: Morgan
Kaufmann. (p. 132)

CLEVERDON, C. W. AND MILLS, J. 1963. The testing of index language devices. In
K. SPÄRK JONES AND P. WILLETT Eds., Readings in Information Retrieval, Series in
Multimedia Information and Systems, pp. 98–110. San Francisco, CA, USA: Morgan
Kaufmann. (pp. 132, 133)

COHEN, W. W. 1995. Fast effective rules induction. In Proc. Twelfth International
Conference on Machine Learning (1995), pp. 115–123. (p. 75)

COHEN, W. W. 1996. Learning trees and rules with set-valued features. In
Proc. Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Ap-
plications of Artificial Intelligence Conference, Volume 1 (1996), pp. 709–716. (p. 75)

CONRAD, J. G., GUO, X. S., AND SCHRIBER, C. P. 2003. Online duplicate doc-
ument detection: Signature reliability in a dynamic retrieval environment. In
Proc. CIKM (2003), pp. 443–452. (p. 14)

COOPER, W. S. 1973. On selecting a measure of retrieval effectiveness. JASIS 24, 2,
87–100. (pp. 133, 140)

COPE, J., CRASWELL, N., AND HAWKING, D. 2003. Automated discovery of
search interfaces on the web. In Proc. 14th Australasian Database Conference (2003),
pp. 181–189. (pp. 11, 12)

CORMACK, G. V., PALMER, C. R., AND CLARKE, C. L. A. 1998. Efficient construc-
tion of large test collections. In Proc. ACM SIGIR (1998), pp. 282–289. (p. 136)

COX, C. 2006. An analysis of the impact of federated search products on library
instruction using the ACRL standards. portal: Libraries and the Academy 6, 3, 253–
267. (p. 26)

Bibliography 195

CRASWELL, N., BAILEY, P., AND HAWKING, D. 2000. Server selection on the world
wide web. In Proc. ACM International Conference on Digital Libraries (2000), pp. 37–46.
(pp. 12, 91, 96, 97, 98, 101, 108, 110, 112, 115, 117)

CRASWELL, N., CRIMMINS, F., HAWKING, D., AND MOFFAT, A. 2004. Perfor-
mance and cost tradeoffs in web search. In Proc. Australasian Database Conference
(2004), pp. 161–170. (pp. 5, 8, 9, 10)

CRASWELL, N., HAWKING, D., AND THISTLEWAITE, P. 1999. Merging results from
isolated search engines. In Proc. Australasian Database Conference (1999), pp. 189–200.
(p. 51)

CRISPIN, M. 2003. Internet message access protocol — version 4rev1. RFC 3501.
(p. 188)

CUTRELL, E., ROBBINS, D., DUMAIS, S., AND SARIN, R. 2006. Fast, flexible filter-
ing with Phlat — personal search and organisation made easy. In Proc. CHI (2006),
pp. 261–270. (p. 20)

DAWSON, F. AND STENERSON, D. 1998. Internet calendaring and scheduling core
object specification (icalendar). RFC 2445. (p. 188)

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND HARSH-
MAN, R. 1990. Indexing by latent semantic analysis. JASIS 41, 6, 391–407.
(p. 74)

DOLIN, R., AGRAWAL, D., DILLON, L., AND EL ABBADI, A. 1996. Pharos: A scal-
able distributed architecture for locating heterogeneous information sources. Tech-
nical Report TRCS96-05, Department of Computer Science, University of California
at Santa Barbara. (pp. 11, 13, 25, 74, 167)

DOLIN, R., AGRAWAL, D., AND EL ABBADI, A. 1999. Scalable collection sum-
marization and selection. In Proc. ACM International Conference on Digital Libraries
(1999), pp. 49–58. (p. 74)

DOLIN, R., AGRAWAL, D., EL ABBADI, A., AND DILLON, L. 1997. Pharos: A
scalable distributed architecture for locating heterogeneous information sources.
In Proc. CIKM (1997), pp. 348–355. (pp. 74, 111)

DREILINGER, D. AND HOWE, A. E. 1997. Experiences with selecting search en-
gines using metasearch. ACM Trans. Info. Systems 15, 3, 195–222. (pp. 15, 110)

D’SOUZA, D., THOM, J. A., AND ZOBEL, J. 2004a. Collection selection for man-
aged distributed document databases. Information Processing and Management 40, 3,
527–546. (pp. 40, 98, 121)

D’SOUZA, D., ZOBEL, J., AND THOM, J. A. 2004b. Is CORI effective for collection
selection? An exploration of parameters, queries, and data. In Proc. Australasian
Document Computing Symposium (2004). (p. 98)

DUDA, R. O. AND HART, P. E. 1975. Pattern Classification and Scene Analysis. John
Wiley and Sons, New York, USA. (p. 75)

196 Bibliography

DUMAIS, S., CUTRELL, E., CADIZ, J. J., JANCKE, G., SARIN, R., AND ROBBINS, D. C.
2003. Stuff I’ve Seen: A system for personal information retrieval and re-use. In
Proc. ACM SIGIR (2003), pp. 72–79. (pp. 20, 21, 141)

EDWARDS, J., MCCURLEY, K., AND TOMLIN, J. 2001. An adaptive model for op-
timizing performance of an incremental web crawler. In Proc. WWW (2001), pp.
106–113. (p. 8)

FETTERLY, D., MANASSE, M., NAJORK, M., AND WIENER, J. 2003. A large-scale
study of the evolution of web pages. In Proc. WWW (2003), pp. 669–678. (p. 9)

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND

BERNERS-LEE, T. 1999. Hypertext transfer protocol — HTTP/1.1. RFC 2616.
(p. 5)

FOX, S. 2003. Evaluating implicit measures to improve the search experience. Talk
presented at SIGIR Workshop on Implicit Measures of User Interests and Preferences.
(p. 137)

FOX, S., KARNAWAT, K., MYDLAND, M., DUMAIS, S., AND WHITE, T. 2005. Eval-
uating implicit measures to improve web search. ACM Trans. Info. Systems 23, 2,
147–168. (p. 142)

FRENCH, J. C., POWELL, A. L., AND CALLAN, J. 1999. Effective and efficient au-
tomatic database selection. Technical Report CS-99-08, Department of Computer
Science, University of Virginia. (p. 98)

FRENCH, J. C., POWELL, A. L., CALLAN, J., VILES, C. L., EMMITT, T., PREY, K. J.,
AND MOU, Y. 1999. Comparing the performance of database selection algo-
rithms. In Proc. ACM SIGIR (1999), pp. 238–245. (pp. 10, 91, 96, 97, 98, 111, 116, 120,
121)

FRENCH, J. C., POWELL, A. L., VILES, C. L., EMMITT, T., AND PREY, K. J. 1998.
Evaluating database selection techniques: A testbed and experiment. In Proc. ACM
SIGIR (1998), pp. 121–129. (pp. 10, 13, 91, 97, 111, 116)

FREYNE, J., SMYTH, B., COYLE, M., BALFE, E., AND BRIGGS, P. 2004. Further
experiments on collaborative ranking in community-based web search. Artificial
Intelligence Review 21, 3–4, 229–252. (p. 9)

FUHR, N. 1999. A decision-theoretic approach to database selection in networked
IR. ACM Trans. Info. Systems 17, 3, 229–249. (pp. 108, 109, 144)

GAUCH, S., WANG, G., AND GOMEZ, M. 1996. ProFusion: Intelligent fusion from
multiple, distributed search engines. Journal of Universal Computer Science 2, 9, 637–
649. (pp. 14, 75, 109, 111)

GLOVER, E. J., LAWRENCE, S., BIRMINGHAM, W. P., AND GILES, C. L. 1999.
Architecture of a metasearch engine that supports user information needs. In
Proc. CIKM (1999), pp. 210–216. (pp. 12, 15, 22, 25, 110)

GOLDBERG, J. L. 1995. CDM: An approach to learning in text categorization. In
Proc. Seventh International Conference on Tools with Artificial Intelligence (1995), pp.
258–265. (p. 100)

Bibliography 197

GRAVANO, L., CHANG, K., GARCÍA-MOLINA, H., LAGOZE, C., AND PAEPCKE, A.
1997a. STARTS: Stanford protocol proposal for internet retrieval and search. In
Proc. ACM SIGMOD (1997), pp. 207–218. (pp. 11, 77, 167)

GRAVANO, L., CHANG, K., GARCÍA-MOLINA, H., LAGOZE, C., AND PAEPCKE, A.
1997b. STARTS: Stanford protocol proposal for internet retrieval and search.
http://infolab.stanford.edu/˜gravano/starts.html. Protocol specifi-
cation. (p. 11)

GRAVANO, L. AND GARCÍA-MOLINA, H. 1995. Generalizing GlOSS to vector-
space databases and broker hierarchies. In Proc. VLDB (1995), pp. 78–89. (pp. 92,
94, 95, 96, 97, 104, 115, 116, 188)

GRAVANO, L., GARCÍA-MOLINA, H., AND TOMASIC, A. 1994. The effectiveness
of GlOSS for the text database discovery problem. In Proc. ACM SIGMOD (1994),
pp. 126–137. (pp. 13, 91, 92, 94, 116)

GRAVANO, L., GARCÍA-MOLINA, H., AND TOMASIC, A. 1999. GlOSS: Text-source
discovery over the internet. ACM Trans. Database Systems 24, 2, 229–264. (pp. 13,
77, 78, 91, 92, 94, 97, 116, 118)

GRAVANO, L. AND IPEIROTIS, P. G. 2003. QProber: A system for automatic classi-
fication of hidden-web databases. ACM Trans. Info. Systems 21, 1, 1–41. (pp. 12, 13,
75)

GULLI, A. AND SIGNORINI, A. 2005. The indexable web is more than 11.5 billion
pages. In Proc. WWW (2005), pp. 902–903. Poster. (pp. 31, 40, 60)

HALL, E. 2005. The application/mbox media type. RFC 4155. (p. 188)

HANCOCK-BEAULIEU, M. 1990. Evaluating the impact of an online library cata-
logue on subject searching behaviour at the catalogue and at the shelves. Journal of
Documentation 46, 318–338. (p. 141)

HANSEN, P. AND JÄRVELIN, K. 2000. The information seeking and retrieval pro-
cess at the Swedish Patent and Registration Office. In Proc. ACM SIGIR Workshop on
Patent Retrieval (2000). (p. 141)

HARMAN, D. 1998. Towards interactive query expansion. In Proc. ACM SIGIR
(1998), pp. 321–331. (p. 137)

HARMAN, D. K. 2005. The TREC test collections. In E. M. VOORHEES AND D. K.
HARMAN Eds., TREC: Experiment and Evaluation in Information Retrieval, pp. 21–52.
MIT Press. (pp. 40, 113, 135)

HAWKING, D., BAILEY, P., AND CRASWELL, N. 2000. Efficient and flexible search
using text and metadata. Technical Report 2000/83, CSIRO Mathematical and Infor-
mation Sciences. http://es.csiro.au/pubs/hawking_tr00b.pdf. (pp. 39,
61, 113, 118)

HAWKING, D. AND CRASWELL, N. 2005. Very large scale retrieval and web search.
In E. M. VOORHEES AND D. K. HARMAN Eds., TREC: Experiment and Evaluation in
Information Retrieval, pp. 199–232. MIT Press. (pp. 132, 136)

198 Bibliography

HAWKING, D., CRASWELL, N., BAILEY, P., AND GRIFFITHS, K. 2001. Measuring
search engine quality. Information Retrieval 4, 1, 33–59. (p. 14)

HAWKING, D., PARIS, C., WILKINSON, R., AND WU, M. 2005. Context in enter-
prise search and delivery. In Proc. IRiX Workshop, ACM SIGIR (2005), pp. 14–16.
(p. 142)

HAWKING, D. AND THISTLEWAITE, P. 1999. Methods for information server selec-
tion. ACM Trans. Info. Systems 17, 1, 40–76. (pp. 10, 91, 107, 116)

HAWKING, D. AND THOMAS, P. 2005. Server selection methods in hybrid portal
search. In Proc. ACM SIGIR (2005), pp. 75–82. (pp. 10, 32, 41, 56, 79, 91, 98, 103, 106,
111, 112, 115, 124, 127)

HENZINGER, M. R., HEYDON, A., MITZENMACHER, M., AND NAJORK, M. 2000.
On near-uniform URL sampling. In Proc. WWW (2000), pp. 295–308. (pp. 35, 40,
60)

HERNANDEZ, T. AND KAMBHAMPATI, S. 2005. Improving text collection selection
with coverage and overlap statistics. In Proc. WWW (2005), pp. 1128–1129. Poster.
(pp. 12, 111)

HERSH, W. AND OVER, P. 2001. TREC-9 interactive track report. In Proc. TREC
(2001), pp. 41–50. (p. 138)

HERSH, W., PENTECOST, J., AND HICKAM, D. 1996. A task-oriented approach to
information retrieval evaluation. JASIS 47, 1, 50–56. (p. 140)

HERSH, W., TURPIN, A., PRICE, S., CHAN, B., KRAEMER, D., SACHEREK, L., AND

OLSON, D. 2000. Do batch and user evaluations give the same results? In
Proc. ACM SIGIR (2000), pp. 17–24. (p. 139)

HOWE, A. E. AND DREILINGER, D. 1997. SavvySearch: A meta-search engine that
learns which search engines to query. AI Magazine 18, 2, 19–25. (pp. 15, 110)

HYUSEIN, B. AND CARTHY, J. 2004. An advanced server ranking algorithm for dis-
tributed information retrieval systems on the internet. In Proc. International Sympo-
sium on Computer and Information Sciences, Volume 3280 of Lecture Notes in Computer
Science (2004), pp. 837–844. Springer-Verlag. (p. 111)

IPEIROTIS, P. G. AND GRAVANO, L. 2002. Distributed search over the hidden web:
Hierarchical database sampling and selection. In Proc. VLDB (2002), pp. 394–406.
(pp. 78, 110)

IPEIROTIS, P. G. AND GRAVANO, L. 2004. When one sample is not enough: Im-
proving text database selection using shrinkage. In Proc. ACM SIGMOD (2004), pp.
767–778. (pp. 77, 83)

IPEIROTIS, P. G., GRAVANO, L., AND SAHAMI, M. 2001. Probe, count, and clas-
sify: Categorising hidden-web databases. In Proc. ACM SIGMOD (2001), pp. 67–78.
(pp. 12, 75, 76)

Bibliography 199

JANSEN, B. J., SPINK, A., AND SARACEVIC, T. 2000. Real life, real users, and real
needs: A study and analysis of user queries on the web. Information Processing and
Management 36, 2, 207–227. (p. 113)

JÄRVELIN, K. AND KEKÄLÄINEN, J. 2000. IR evaluation methods for retrieving
highly relevant documents. In Proc. ACM SIGIR (2000), pp. 41–48. (p. 132)

JOACHIMS, T. 1998. Text categorization with support vector machines: Learning
with many relevant features. In Proc. Tenth European Conference on Machine Learning
(1998), pp. 137–142. (p. 75)

JOACHIMS, T. 2002a. Evaluating retrieval performance using clickthrough data. In
Proc. SIGIR Workshop on Mathematical/Formal Methods in IR (2002). (pp. 138, 144)

JOACHIMS, T. 2002b. Optimizing search engines using clickthrough data. In
Proc. ACM Conference on Knowledge Discovery and Data Mining (2002), pp. 133–142.
(p. 9)

JOACHIMS, T., GRANKA, L., PAN, B., HEMBROOKE, H., AND GAY, G. 2005. Ac-
curately interpreting clickthrough data as implicit feedback. In Proc. ACM SIGIR
(2005), pp. 154–161. (pp. 106, 135, 137)

KANTOR, B. AND LAPSLEY, P. 1986. Network news transfer protocol: A proposed
standard for the stream-based transmission of news. RFC 977. (p. 74)

KELLY, D. AND BELKIN, N. J. 2004. Display time as implicit feedback: Understand-
ing task effects. In Proc. ACM SIGIR (2004), pp. 377–384. (p. 141)

KOUTRIKA, G. AND IOANNIDIS, Y. 2005. A unified user profile framework for
query disambiguation and personalisation. In Proc. Workshop on New Technology for
Personalized Information Access (2005), pp. 44–45. (p. 22)

KRISTOL, D. AND MONTULLI, L. 2000. HTTP state management mechanism. RFC
2965. (p. 178)

KRUMPHOLZ, A. H. AND HAWKING, D. 2006. InexBib — retrieving XML docu-
ments based on external evidence. In Proc. Australasian Document Computing Sym-
posium (2006), pp. 72–79. (p. 154)

KULLBACK, S. 1959. Information Theory and Statistics. John Wiley & Sons, New York,
NY, USA. (p. 83)

KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. Annals
of Mathematical Statistics 22, 1, 79–86. (pp. 82, 83)

LANCASTER, F. W. 1969. MEDLARS: Report on the Evaluationo of its Operating Ef-
ficiency. Series in Multimedia Information and Systems. Morgan Kaufmann, San
Francisco, CA, USA. (p. 133)

LARGE, A. AND BEHESHTI, J. 1997. OPACs: A research review. Library & Informa-
tion Science Research 19, 2, 111–133. (p. 141)

LAWRENCE, S. AND GILES, C. L. 1998. Searching the World Wide Web. Science 280,
98–100. (p. 60)

200 Bibliography

LAWRENCE, S. AND GILES, C. L. 1999. Accessibility of information on the web.
Nature 400, 107–109. (p. 60)

LEMPEL, R. AND MORAN, S. 2002. Optimizing result prefetching in web search
engines with segmented indicies. In Proc. VLDB (2002), pp. 370–381. (p. 9)

LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996. Querying heterogenous
information sources using source descriptions. In Proc. VLDB (1996), pp. 251–262.
(p. 13)

LIMBU, D. K., CONNOR, A., AND MACDONELL, S. 2006. Contextual relevance
feedback in web information retrieval. In Proc. IIiX Symposium on Information Inter-
action in Context (2006), pp. 235–244. (p. 22)

LIU, K.-L., MENG, W., QUI, J., YU, C., RAGHAVAN, V., WU, Z., LU, Y., HE, H., AND

ZHAO, H. 2007. AllInOneNews: Development and evaluation of a large-scale
news metasearch engine. In Proc. ACM SIGMOD (2007), pp. 1017–1028. (p. 16)

LIU, K.-L., SANTOSO, A., YU, C., MENG, W., AND ZHANG, C. 2001. Discovering
the representative of a search engine. In Proc. CIKM (2001), pp. 577–579. Poster.
(pp. 12, 29, 52, 53, 60, 61, 62, 76, 124)

LOPATOVSKA, I. 2006. Measuring experienced utility of information retrieval sys-
tems: Experimental approach. In Proc. ASIST, Volume 42 (2006). (p. 141)

LU, Z., CALLAN, J. P., AND CROFT, W. B. 1996. Measures in collection ranking
evaluation. Technical Report 96-39, Computer Science Department, University of
Massachusetts. (pp. 115, 116)

MAGENNIS, M. AND VAN RIJSBERGEN, C. J. 1997. The potential and actual effec-
tiveness of interactive query expansion. In Proc. ACM SIGIR (1997), pp. 324–332.
(p. 137)

MANMATHA, R., RATH, T., AND FENG, F. 2001. Modeling score distributions for
combining the outputs of search engines. In Proc. ACM SIGIR (2001), pp. 267–275.
(p. 106)

MCGOWAN, J. P., KUSHMERICK, N., AND SMYTH, B. 2002. Who do you want to be
today? Web personae for personalised information access. In Proc. Adaptive Hyper-
media and Adaptive Web-Based Systems, Number 2347 in Lecture Notes in Computer
Science (2002), pp. 514–517. (p. 22)

MENG, W., WANG, W., SUN, H., AND YU, C. 2002. Concept hierarchy based text
database categorization. Knowledge and Information Systems 4, 2, 132–150. (pp. 75,
76, 111)

MENG, W., WU, Z., YU, C., AND LI, Z. 2001. A highly scalable and effective
method for metasearch. ACM Trans. Info. Systems 19, 3, 310–335. (p. 103)

MOFFAT, A. AND ZOBEL, J. 1994. Information retrieval systems for large document
collections. In Proc. TREC (1994), pp. 85–94. (p. 99)

Bibliography 201

NARDI, B. AND BARREAU, D. 1997. “Finding and reminding” revisited: Appro-
priate metaphors for file organization on the desktop. ACM SIGIR Bulletin 29, 1.
(p. 135)

NORDLIE, R. 1999. “User revealment” — a comparison of initial queries and ensu-
ing question development in online searching and in human reference interactions.
In Proc. ACM SIGIR (1999), pp. 11–18. (p. 141)

NOTTELMANN, H. AND FUHR, N. 2003. Evaluating different methods of estimat-
ing retrieval quality for resource selection. In Proc. ACM SIGIR (2003), pp. 290–297.
(pp. 56, 109, 124)

NOTTELMANN, H. AND FUHR, N. 2004. Combining CORI and the decision-
theoretic approach for advanced resource selection. In Proc. ECIR (2004), pp. 138–
153. (pp. 98, 109)

PERKOWITZ, M., DOORENBOS, R. B., ETZIONI, O., AND WELD, D. S. 1997. Learn-
ing to understand information on the internet: An example-based approach. Journal
of Intelligent Information Systems 8, 133–153. (p. 10)

PETERS, C., BRASCHLER, M., GONZALO, J., AND KLUCK, M. Eds. 2001. Second
Workshop of the Cross-Language Evaluation Forum, CLEF 2001, Volume 2406 of Lecture
Notes in Computer Science (2001). (p. 132)

PITKOW, J., SCHÜTZE, H., CASS, T., COOLEY, R., TURNBULL, D., EDMONDS, A.,
ADAR, E., AND BREUEL, T. 2002. Personalized search. Comm. ACM 45, 9, 50–55.
(p. 22)

PONTE, J. M. AND CROFT, W. B. 1998. A language modeling approach to informa-
tion retrieval. In Proc. ACM SIGIR (1998), pp. 275–281. (pp. 76, 77, 101)

POWELL, A. L. AND FRENCH, J. C. 2003. Comparing the performance of collection
selection algorithms. ACM Trans. Info. Systems 21, 4, 412–456. (pp. 10, 91, 92, 96, 97,
98, 101, 111, 116)

POWELL, A. L., FRENCH, J. C., CALLAN, J., CONNELL, M., AND VILES, C. L. 2000.
The impact of database selection on distributed searching. In Proc. ACM SIGIR
(2000), pp. 232–239. (pp. 10, 41, 91, 98, 115, 117)

POWELL, J. AND FOX, E. A. 1998. Multilingual federated searching across het-
erogenous collections. D-Lib Magazine 4, 9. (p. 78)

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 1992.
Numerical Recipes in FORTRAN (2nd ed.). Cambridge University Press, Cambridge,
United Kingdom. (p. 80)

RAGGETT, D., HORS, A. L., AND JACOBS, I. 1999. HTML 4.01 specification. http:
//www.w3.org/TR/1999/REC-html401-19991224/. (pp. 5, 176, 187)

RAGHAVAN, S. AND GARCIA-MOLINA, H. 2001. Crawling the hidden web. In
Proc. VLDB (2001), pp. 129–138. (p. 10)

202 Bibliography

RASOLOFO, Y., ABBACI, F., AND SAVOY, J. 2001. Approaches to collection selection
and results merging for distributed information retrieval. In Proc. CIKM (2001), pp.
191–198. (pp. 10, 108, 112, 115, 117)

RASOLOFO, Y., HAWKING, D., AND SAVOY, J. 2003. Result merging strategies for
a current news metasearcher. Information Processing and Management 39, 4, 581–609.
(pp. 14, 158, 182, 183, 184, 189)

RICKER, W. E. 1975. Computation and Interpretation of Biological Statistics of Fish Pop-
ulations. Number 191 in Bulletins of the Fisheries Research Board of Canada. De-
partment of Fisheries and the Environment, Ottawa, Canada. (pp. 52, 54)

ROBERTSON, S. E., WALKER, S., JONES, S., HANCOCK-BEAULIEU, M. M., AND GAT-
FORD, M. 1994. Okapi at TREC-3. In Proc. TREC (1994), pp. 109–126. (p. 118)

RU, Y. AND HOROWITZ, E. 2005. Indexing the invisible web: A survey. Online
Information Review 29, 3, 249–265. (p. 76)

RUSMEVICHIENTONG, P., PENNOCK, D. M., LAWRENCE, S., AND GILES, C. L.
2001. Methods for sampling pages uniformly from the world wide web. In
Proc. AAAI Fall Symposium on Using Uncertainty Within Computation (2001), pp. 121–
128. (pp. 35, 37, 40)

RUTHVEN, I. 2003. Re-examining the potential effectiveness of interactive query
expansion. In Proc. ACM SIGIR (2003), pp. 213–220. (p. 137)

SAKAI, T. 2004. New performance measures based on multigrade relevance: Their
application to question answering. In Proc. NTCIR (2004). (p. 132)

SALTON, G. AND MCGILL, M. J. 1983. The SMART and SIRE experimental re-
trieval systems. In K. SPÄRK JONES AND P. WILLETT Eds., Readings in Information
Retrieval, Series in Multimedia Information and Systems. San Francisco, CA, USA:
Morgan Kaufmann. (pp. 32, 42, 101)

SANDERSON, M. AND JOHO, H. 2004. Forming test collections with no system
pooling. In Proc. ACM SIGIR (2004), pp. 33–40. (p. 136)

SANDERSON, M. AND ZOBEL, J. 2005. Information retrieval system evaluation: Ef-
fort, sensitivity, and reliability. In Proc. ACM SIGIR (2005), pp. 162–169. (p. 135)

SCHUMACHER, F. X. AND ESCHMEYER, R. W. 1943. The estimate of fish popula-
tion in lakes or ponds. Journal of the Tennessee Academy of Science 18, 228–249. (p. 54)

SELBERG, E. AND ETZIONI, O. 1995. Multi-service search and comparison using
the MetaCrawler. In Proc. WWW (1995). (pp. 12, 14)

SHELDON, M. A., DUDA, A., WEISS, R., O’TOOLE, J., AND GIFFORD, D. K. 1994.
Content routing for distributed information servers. In Proc. Int. Conf. on Extending
Database Technology (1994), pp. 109–122. (pp. 74, 111)

SHEN, X., TAN, B., AND ZHAI, C. 2005. Implicit user modeling for personalized
search. In Proc. CIKM (2005), pp. 824–831. (pp. 21, 22, 140, 145)

Bibliography 203

SHESKIN, D. J. 2004. Handbook of Parametric and Nonparametric Statistical Procedures
(3rd ed.). Chapman & Hall/CRC, Boca Raton, Florida, USA. (pp. 42, 55, 80, 81, 89,
125)

SHOKOUHI, M. 2007. Central-rank-based collection selection in uncooperative dis-
tributed information retrieval. In Proc. ECIR (2007), pp. 160–172. (pp. 91, 106, 107,
116, 118, 119)

SHOKOUHI, M., BAILLIE, M., AND AZZOPARDI, L. 2007. Updating collection rep-
resentations for federated search. In Proc. ACM SIGIR (2007), pp. 511–518. (pp. 76,
78, 79, 115)

SHOKOUHI, M., SCHOLER, F., AND ZOBEL, J. 2006. Sample sizes for query probing
in uncooperative distributed information retrieval. In APWeb 2006, Volume 3841 of
Lecture Notes in Computer Science (2006), pp. 63–75. Springer. (pp. 32, 40, 62)

SHOKOUHI, M., ZOBEL, J., SCHOLER, F., AND TAHAGHOGHI, S. M. M. 2006. Cap-
turing collection size for distributed non-cooperative retrieval. In Proc. ACM SIGIR
(2006), pp. 316–323. (pp. 12, 29, 32, 53, 54, 56, 60, 62, 65, 66, 69, 70, 115, 124, 187)

SI, L. AND CALLAN, J. 2003a. The effect of database size distribution on resource
selection algorithms. In Proc. ACM SIGIR (2003), pp. 31–42. (pp. 51, 98, 102, 103, 106,
115, 116, 117, 118, 124, 127)

SI, L. AND CALLAN, J. 2003b. Relevant document distribution estimation method
for resource selection. In Proc. ACM SIGIR (2003), pp. 298–305. (pp. 12, 13, 29, 32,
41, 51, 55, 56, 62, 79, 91, 98, 104, 105, 106, 115, 116, 118, 124)

SI, L. AND CALLAN, J. 2003c. A semisupervised learning method to merge search
engine results. ACM Trans. Info. Systems 21, 4, 457–491. (p. 16)

SI, L. AND CALLAN, J. 2004. Unified utility maximization framework for result
selection. In Proc. CIKM (2004), pp. 32–41. (p. 110)

SI, L. AND CALLAN, J. 2005. Modeling search engine effectiveness for federated
search. In Proc. ACM SIGIR (2005), pp. 83–90. (pp. 110, 167)

SI, L., JIN, R., CALLAN, J., AND OGILVIE, P. 2002. A language modeling frame-
work for resource selection and results merging. In Proc. CIKM (2002), pp. 391–397.
(pp. 13, 14, 77, 78, 101, 102, 115, 118, 124, 188)

SILVERSTEIN, C., HENZINGER, M., MARAIS, H., AND MORICZ, M. 1999. Analysis
of a very large web search engine query log. SIGIR Forum 33, 1, 6–12. (pp. 26, 113)

SOBOROFF, I. 2006. Dynamic test collections: Measuring search effectiveness on
the live web. In Proc. ACM SIGIR (2006), pp. 276–283. (p. 132)

SOBOROFF, I., NICHOLAS, C., AND CAHAN, P. 2001. Ranking retrieval systems
without relevance judgements. In Proc. ACM SIGIR (2001), pp. 66–73. (p. 135)

SOBOROFF, I. AND ROBERTSON, S. 2003. Building a filtering test collection for
TREC 2002. In Proc. ACM SIGIR (2003), pp. 243–250. (p. 136)

SPÄRCK JONES, K. AND VAN RIJSBERGEN, C. J. 1976. Information retrieval test
collections. Journal of Documentation 32, 1, 59–75. (p. 132)

204 Bibliography

SPINK, A., OZMUTLU, S., OZMUTLU, H. C., AND JANSEN, B. J. 2002. U.S. versus
European web searching trends. SIGIR Forum 36, 2, 32–38. (p. 113)

SUGIYAMA, K., HATANO, K., AND YOSHIKAWA, M. 2004. Adaptive web search
based on user profile constructed without any effort from users. In Proc. WWW
(2004), pp. 675–684. (p. 22)

TEEVAN, J., ALVARADO, C., ACKERMAN, M. S., AND KARGER, D. R. 2004. The
perfect search engine is not enough: A study of orienteering behaviour in di-
rected search. In Proc. Conf. Human Factors in Computing Systems (2004), pp. 415–422.
(pp. 5, 134, 135)

TEEVAN, J., DUMAIS, S. T., AND HORVITZ, E. 2005a. Beyond the commons: Inves-
tigating the value of personalizing web search. In Proc. Workshop on New Technology
for Personalized Information Access (2005), pp. 84–92. (p. 22)

TEEVAN, J., DUMAIS, S. T., AND HORVITZ, E. 2005b. Personalizing search via au-
tomated analysis of interests and activities. In Proc. ACM SIGIR (2005), pp. 449–456.
(p. 21)

THOMAS, P. AND HAWKING, D. 2006. Evaluation by comparing result sets in con-
text. In Proc. CIKM (2006), pp. 94–101. (p. 131)

THOMAS, P. AND HAWKING, D. 2007. Evaluating sampling methods for uncoop-
erative collections. In Proc. ACM SIGIR (2007), pp. 503–510. (p. 29)

THOMAS, P. AND ROWLANDS, T. 2007. Estimating the value of automatic disam-
biguation. In Proc. ACM SIGIR (2007), pp. 719–720. Poster. (p. 22)

TURPIN, A. AND HERSH, W. 2001. Why batch and user evaluations do not give the
same results. In Proc. ACM SIGIR (2001), pp. 225–231. (p. 139)

TURPIN, A. AND SCHOLER, F. 2006. User performance versus precision measures
for simple search tasks. In Proc. ACM SIGIR (2006), pp. 11–18. (pp. 139, 160)

TURTLE, H. R. AND CROFT, W. B. 1991. Evaluation of an inference network-based
retrieval model. ACM Trans. Info. Systems 9, 3, 187–222. (p. 97)

VAN RIJSBERGEN, C. J. 1979. Information Retrieval (2nd ed.). Butterworths, London,
United Kingdom. (p. 132)

VAUGHAN, L. 2004. New measurements for search engine evaluation proposed
and tested. Information Processing and Management 40, 4, 677–691. (p. 147)

VOORHEES, E. 1999. The TREC-8 question answering track. In Proc. TREC (1999),
pp. 77–92. (p. 132)

VOORHEES, E. AND TONG, R. 1997. Multiple search engines in database merging.
In Proc. ACM International Conference on Digital Libraries (1997), pp. 93–102. (p. 13)

VOORHEES, E. M. 1995. Siemens TREC-4 report: Further experiments with
database merging. In Proc. TREC (1995), pp. 121–130. (p. 99)

VOORHEES, E. M. AND BUCKLEY, C. 2002. The effect of topic set size on retrieval
experiment error. In Proc. ACM SIGIR (2002), pp. 316–323. (p. 135)

Bibliography 205

VOORHEES, E. M. AND GAROFOLO, J. S. 2005. Retrieving noisy text. In E. M.
VOORHEES AND D. K. HARMAN Eds., TREC: Experiment and Evaluation in Infor-
mation Retrieval, pp. 183–197. MIT Press. (p. 136)

VOORHEES, E. M., GUPTA, N. K., AND JOHNSON-LAIRD, B. 1994. The collection
fusion problem. In Proc. TREC (1994), pp. 95–104. (pp. 13, 109, 144, 167)

VOORHEES, E. M. AND HARMAN, D. K. Eds. 2005. TREC: Experiment and Evalua-
tion in Information Retrieval. MIT Press. (p. 132)

WEBBER, W. AND MOFFAT, A. 2005. In search of reliable retrieval experiments. In
Proc. Australasian Document Computing Symposium (2005). (p. 133)

WHITE, R. W., RUTHVEN, I., AND JOSE, J. M. 2005. A study of factors affecting
the utility of implicit relevance feedback. In Proc. ACM SIGIR (2005), pp. 35–42.
(p. 140)

WHITE, R. W., RUTHVEN, I., JOSE, J. M., AND VAN RIJSBERGEN, C. J. 2005. Eval-
uating implicit feedback models using searcher simulations. ACM Trans. Info. Sys-
tems 23, 3, 325–361. (p. 137)

WILLIAMS, H. E. AND ZOBEL, J. 2005. Searchable words on the web. Int’l Journal
of Digital Libraries 5, 2, 99–105. (p. 98)

WOLFRAM, D. 1992. Applying informetric characteristics of databases to IR system
file design, part I: Informetric models. Information Processing and Management 28, 1,
121–133. (p. 82)

WU, M., FULLER, M., AND WILKINSON, R. 2001. Searcher performance in ques-
tion answering. In Proc. ACM SIGIR (2001), pp. 375–381. (p. 140)

WU, M., MURESAN, G., MCLEAN, A., TANG, M.-C. M., WILKINSON, R., LI, Y., LEE,
H.-J., AND BELKIN, N. J. 2004. Human versus machine in the topic distillation
task. In Proc. ACM SIGIR (2004), pp. 385–392. (p. 139)

XU, J. AND CROFT, W. B. 1999. Cluster-based language models for distributed re-
trieval. In Proc. ACM SIGIR (1999), pp. 254–261. (pp. 10, 77, 78, 82, 83, 91, 101, 102,
107, 113, 115, 117, 188)

YANG, H. AND ZHANG, M. 2006. Two-stage statistical language models for text
database selection. Information Retrieval 9, 1, 5–31. (p. 110)

YANG, Y. AND CHUTE, C. G. 1994. An example-based mapping method for text
categorization and retrieval. ACM Trans. Info. Systems 12, 3, 252–277. (p. 76)

YILMAZ, E. AND ASLAM, J. A. 2006. Estimating average precision with incomplete
and imperfect judgements. In Proc. CIKM (2006), pp. 102–111. (p. 137)

YU, C., MENG, W., LIU, K.-L., WU, W., AND RISHE, N. 1999. Efficient and ef-
fective metasearch for a large number of text databases. In Proc. CIKM (1999), pp.
217–224. (pp. 103, 104)

YUWONO, B. AND LEE, D. L. 1997. Server ranking for distributed text retrieval
systems on the internet. In Proc. 5th Int. Conf. on Database Systems for Advanced Ap-
plications (1997), pp. 41–49. (pp. 13, 77, 78, 97, 100, 101, 116)

206 Bibliography

ZEILENGA, K. 2006. Lightweight directory access protocol (LDAP): Technical spec-
ification road map. RFC 4510. (p. 188)

ZHANG, Y. AND MOFFAT, A. 2006. Some observations on user search behaviour.
In Proc. Australasian Document Computing Symposium (2006). (p. 113)

ZIPF, G. K. 1949. Human Behaviour and the Principle of Least Effort: An Introduction
to Human Ecology. Addison-Wesley, Reading, MA, USA. (p. 82)

ZOBEL, J. 1997. Collection selection via lexicon inspection. In Proc. Australasian
Document Computing Symposium (1997). (pp. 99, 115)

ZOBEL, J. 1998. How reliable are the results of large-scale information retrieval
experiments? In Proc. ACM SIGIR (1998), pp. 307–314. (pp. 135, 136)

